1
|
Fang Z, Liu C, Cheng Y, Ji Y, Liu C. Combined analysis of bulk, single-cell RNA sequencing, and spatial transcriptomics reveals the expression patterns of lipid metabolism and ferroptosis in the immune microenvironment of metabolic-associated fatty liver disease. Life Sci 2025; 362:123377. [PMID: 39793853 DOI: 10.1016/j.lfs.2025.123377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
AIMS This study aims to identify key biomarkers associated with ferroptosis and lipid metabolism and investigate their roles in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). It further explores interactions between these biomarkers and the immune-infiltration environment, shedding light on how ferroptosis and lipid metabolism influence immune dynamics in MAFLD. MAIN METHODS Single-cell RNA sequencing data from liver samples were analyzed to evaluate expression variations related to ferroptosis and lipid metabolism in MAFLD patients. Gene scores were assessed to explore their impact on the immune microenvironment, particularly hepatocyte-macrophage communication. Weighted Gene Co-expression Network Analysis (WGCNA) was applied to Bulk-RNA-Seq data to identify gene clusters associated with ferroptosis and lipid metabolism. The analyses were integrated into a risk assessment system and predictive model, with validation conducted through in vivo experiments. KEY FINDINGS Integration of single-cell and WGCNA data identified 11 key genes linked to ferroptosis and lipid metabolism (e.g., IER5L, SOCS2, KLF9), significantly influencing the liver's immune microenvironment. The risk assessment system and predictive model achieved an AUC of 0.92 and revealed distinct immune and biological characteristics in MAFLD patients across risk levels. The expression patterns and biological roles of these genes were confirmed in in vivo studies. SIGNIFICANCE This study establishes a strong link between ferroptosis- and lipid metabolism-related gene expression and MAFLD's complexity. It provides novel insights into disease mechanisms, supporting personalized prognosis and targeted therapeutic strategies for MAFLD patients.
Collapse
Affiliation(s)
- Zhihao Fang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changxu Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Cheng
- Cardiovascular Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanchao Ji
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Wabel EA, Krieger-Burke T, Watts SW. Vascular chemerin from PVAT contributes to norepinephrine and serotonin-induced vasoconstriction and vascular stiffness in a sex-dependent manner. Am J Physiol Heart Circ Physiol 2024; 327:H1577-H1589. [PMID: 39453435 DOI: 10.1152/ajpheart.00475.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The adipokine chemerin supports normal blood pressure and contributes to adiposity-associated hypertension, evidenced by falls in mean arterial pressure in Dahl SS rats given an antisense oligonucleotide against chemerin. In humans, circulating chemerin is positively associated with hypertension and aortic stiffness. Mechanisms of chemerin's influence on vascular health and disease remain unknown. We identified chemerin production in the vasculature-the blood vessel and its perivascular adipose tissue (PVAT). Here, using RNAScope, qPCR, isometric contractility, high-frequency ultrasound imaging, and Western blot in the Dahl SS rat, we test the hypothesis that endogenous chemerin amplifies agonist-induced vasoconstriction through the chemerin1 receptor and that chemerin drives aortic stiffness in the thoracic aorta. CMKLR1 (chemerin1) expression was higher in the media, and Rarres2 (chemerin) expression was higher in the PVAT. Chemerin1 receptor antagonism via selective inhibitor CCX832 reduced maximal contraction to norepinephrine (NE) and serotonin (5-HT), but not angiotensin II, in isolated thoracic aorta (PVAT intact) from male Dahl SS rat. In females, CCX832 did not alter contraction to NE or 5-HT. Male, but not female, genetic chemerin knockout Dahl SS rats had lower aortic arch pulse wave velocity than wild types, indicating chemerin's role in aortic stiffness. Aortic PVAT from females expressed less chemerin protein than males, suggesting PVAT as the primary source of active chemerin. We show that chemerin made by the PVAT amplifies NE and 5-HT-induced contraction and potentially induces aortic stiffening in a sex-dependent manner, highlighting the potential for chemerin to be a key factor in blood pressure control and aortic stiffening.NEW & NOTEWORTHY Chemerin1 receptor inhibition reduced norepinephrine (NE) and 5-HT-induced vasoconstriction in males. Genetic chemerin knockout (KO) resulted in lower pulse wave velocity in males. Differences in chemerin abundance in aorta perivascular adipose tissue (APVAT) may explain sex-dependent role of chemerin.
Collapse
Affiliation(s)
- Emma A Wabel
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
4
|
Wu R, Zhang G, Guo M, Li Y, Qin L, Jiang T, Li P, Wang Y, Wang K, Liu Y, He Z, Cheng Z. Assessing personalized molecular portraits underlying endothelial-to-mesenchymal transition within pulmonary arterial hypertension. Mol Med 2024; 30:189. [PMID: 39462326 PMCID: PMC11513636 DOI: 10.1186/s10020-024-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rapidly fatal disease with an intricate etiology. Identifying biomarkers for early PAH lesions based on the exploration of subtle biological processes is significant for timely diagnosis and treatment. In the present study, nine distinct cell populations identified based on gene expression profiles revealed high heterogeneity in cell composition ratio, biological function, distribution preference, and communication patterns in PAH. Notably, compared to other cells, endothelial cells (ECs) showed prominent variation in multiple perspectives. Further analysis demonstrated the endothelial-to-mesenchymal transition (EndMT) in ECs and identified a subgroup exhibiting a contrasting phenotype. Based on these findings, a machine-learning integrated program consisting of nine learners was developed to create a PAH Endothelial-to-mesenchymal transition Signature (PETS). This study identified cell populations underlying EndMT and furnished a potential tool that might be valuable for PAH diagnosis and new precise therapies.
Collapse
Affiliation(s)
- Ruhao Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ge Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, 450018, Henan, China
| | - Mingzhou Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yue Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lu Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tianci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yize Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiqiu He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
6
|
Mitsis A, Khattab E, Myrianthefs M, Tzikas S, Kadoglou NPE, Fragakis N, Ziakas A, Kassimis G. Chemerin in the Spotlight: Revealing Its Multifaceted Role in Acute Myocardial Infarction. Biomedicines 2024; 12:2133. [PMID: 39335646 PMCID: PMC11428948 DOI: 10.3390/biomedicines12092133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chemerin, an adipokine known for its role in adipogenesis and inflammation, has emerged as a significant biomarker in cardiovascular diseases, including acute myocardial infarction (AMI). Recent studies have highlighted chemerin's involvement in the pathophysiological processes of coronary artery disease (CAD), where it modulates inflammatory responses, endothelial function, and vascular remodelling. Elevated levels of chemerin have been associated with adverse cardiovascular outcomes, including increased myocardial injury, left ventricular dysfunction, and heightened inflammatory states post-AMI. This manuscript aims to provide a comprehensive review of the current understanding of chemerin's role in AMI, detailing its molecular mechanisms, clinical implications, and potential as a biomarker for diagnosis and prognosis. Additionally, we explore the therapeutic prospects of targeting chemerin pathways to mitigate myocardial damage and improve clinical outcomes in AMI patients. By synthesizing the latest research findings, this review seeks to elucidate the multifaceted role of chemerin in AMI and its promise as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| |
Collapse
|
7
|
Pavel V, Amend P, Schmidtner N, Utrata A, Birner C, Schmid S, Krautbauer S, Müller M, Mester P, Buechler C. Chemerin Levels in COVID-19 Are More Affected by Underlying Diseases than by the Virus Infection Itself. Biomedicines 2024; 12:2099. [PMID: 39335612 PMCID: PMC11430512 DOI: 10.3390/biomedicines12092099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chemerin is an adipokine involved in inflammatory and metabolic diseases, and its circulating levels have been associated with inflammatory parameters in various patient cohorts. Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, which causes COVID-19, triggers inflammatory pathways. However, the association between serum chemerin levels and COVID-19 disease severity and outcomes has not been definitively established. METHODS In this study, serum chemerin levels were analyzed in 64 patients with moderate COVID-19 and 60 patients with severe disease. RESULTS The results showed that serum chemerin levels were comparable between these two groups and slightly higher than in healthy controls. Notably, COVID-19 patients with hypertension exhibited elevated serum chemerin levels, while those with liver cirrhosis had lower levels. When patients with these comorbidities were excluded from the analyses, serum chemerin levels in COVID-19 patients were similar to those in healthy controls. Positive correlations were observed between serum chemerin levels and markers such as alkaline phosphatase, C-reactive protein, eosinophils, and lymphocytes in the entire cohort, as well as in the subgroup excluding patients with hypertension and cirrhosis. Additionally, urinary chemerin levels were comparable between COVID-19 patients and controls, and neither hypertension nor dialysis significantly affected urinary chemerin levels. Both survivors and non-survivors had similar serum and urinary chemerin levels. CONCLUSIONS In conclusion, this study suggests that comorbidities such as arterial hypertension and liver cirrhosis do have a more significant impact on serum chemerin levels than SARS-CoV-2 infection itself.
Collapse
Affiliation(s)
- Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Pablo Amend
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Niklas Schmidtner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alexander Utrata
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Charlotte Birner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Tan L, Wang N, Galema‐Boers AMH, van Vark‐van der Zee L, van Lennep JR, Mulder MT, Lu X, Danser AHJ, Verdonk K. Statins, but not proprotein convertase subtilisin-kexin type 9 inhibitors, lower chemerin in hypercholesterolemia via low-density lipoprotein receptor upregulation. MedComm (Beijing) 2024; 5:e681. [PMID: 39220103 PMCID: PMC11364859 DOI: 10.1002/mco2.681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Hypercholesterolemia is characterized by elevated low-density lipoprotein (LDL)-cholesterol levels and an increased risk of cardiovascular disease. The adipokine chemerin is an additional risk factor. Here we investigated whether cholesterol-lowering with statins or proprotein convertase subtilisin-kexin type 9 inhibitors (PCSK9i) affects chemerin. Both statins and PCKS9i lowered plasma LDL-cholesterol, triglycerides and total cholesterol in hypercholesterolemic patients, and increased high-density lipoprotein (HDL)-cholesterol. Yet, only statins additionally reduced chemerin and high-sensitivity C-reactive protein (hsCRP). Applying PCSK9i on top of statins did not further reduce chemerin. Around 20% of chemerin occurred in the HDL2/HDL3 fractions, while >75% was free. Statins lowered both HDL-bound and free chemerin. Pull-down assays revealed that chemerin binds to the HDL-component Apolipoprotein A-I (ApoA-I). The statins, but not PCSK9i, diminished chemerin secretion from HepG2 cells by upregulating LDL receptor mRNA. Furthermore, chemerin inhibited HDL-mediated cholesterol efflux via its chemerin chemokine-like receptor 1 in differentiated macrophages. In conclusion, statins, but not PCSK9i, lower circulating chemerin by directly affecting its release from hepatocytes. Chemerin binds to ApoA-I and inhibits HDL-mediated cholesterol efflux. Statins prevent this by lowering HDL-bound chemerin. Combined with their anti-inflammatory effect evidenced by hsCRP suppression, this represents a novel cardiovascular protective function of statins that distinguishes them from PCSK9i.
Collapse
Affiliation(s)
- Lunbo Tan
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
- Clinical Research CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Na Wang
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
- Clinical Research CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Annet M. H. Galema‐Boers
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Leonie van Vark‐van der Zee
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Jeanine Roeters van Lennep
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Monique T. Mulder
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Xifeng Lu
- Clinical Research CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - A. H. Jan Danser
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Koen Verdonk
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
9
|
Xie Y, Quan X, Yang X. Raised levels of chemerin in women with preeclampsia: A meta-analysis. BIOMOLECULES & BIOMEDICINE 2024; 24:454-464. [PMID: 37782564 PMCID: PMC11088885 DOI: 10.17305/bb.2023.9671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/04/2023]
Abstract
Chemerin is a multifunctional adipokine associated with systemic inflammation, angiogenesis, and oxidative stress. Emerging evidence suggests a potential link between chemerin and the pathogenesis of preeclampsia (PE). In this systematic review and meta-analysis, we aimed to evaluate the serum chemerin levels in women with PE. A systematic search was conducted across Medline, Web of Science, and Embase databases from inception until April 15, 2023, to identify studies comparing serum chemerin levels in pregnant women with and without PE. A random-effects model was employed to pool the results, accounting for heterogeneity. Thirteen datasets from 10 observational studies, encompassing 832 women with PE and 1298 healthy pregnant women, were analyzed. The pooled findings indicated a statistically significant elevation in serum chemerin levels in women with PE compared to controls (mean difference [MD] = 89.56 ng/mL, 95% confidence interval [CI] 62.14 - 116.98; P < 0.001; I2 = 87%). The subgroup analysis revealed consistent findings across studies that measured chemerin levels before or after the diagnosis of PE, studies that did or did not match the body mass index (BMI), and studies with varying quality scores (P values for subgroup differences were all > 0.05). Compared to controls, women with severe PE exhibited a significantly greater increase in serum chemerin levels than those with mild PE (P value for subgroup difference = 0.007). Additionally, meta-regression analysis results suggested that the mean BMI of the included pregnant women might positively modify the difference in circulating chemerin levels between women with and without PE (coefficient = 8.92; P = 0.045). In conclusion, this meta-analysis suggests a positive correlation between elevated serum chemerin levels and PE diagnosis in comparison to pregnant women without the condition.
Collapse
Affiliation(s)
- Yue Xie
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei Province, China
| | - Xiaozhen Quan
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei Province, China
| | - Xuezhou Yang
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei Province, China
| |
Collapse
|
10
|
Gebauer J, Hodkovicova N, Tosnerova K, Skoupa K, Batik A, Bartejsova I, Charvatova M, Leva L, Jarosova R, Sladek Z, Faldyna M, Stastny K. Anabolic steroids induced changes at the level of protein expression: Effects of prolonged administration of testosterone and nandrolone to pigs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104422. [PMID: 38521435 DOI: 10.1016/j.etap.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Synthetic derivatives of steroid hormones, specifically anabolic-androgenic steroids (AAS), have gained prominence due to their observed benefits in enhancing meat quality. The study replicated the administration of banned AAS and investigated their impacts on pigs to contribute to the understanding of animal biochemistry and to explore the feasibility of detecting AAS administration by employing a non-targeted analysis. The effects were corroborated by evaluating changes in the expression of selected proteins, as well as examining haematological and biochemical profiles and histological alterations. Exposure to AAS influenced the expression of proteins related to drug-metabolizing enzymes, muscle and lipid metabolism, kidney function, reproductive processes, immune system functions, and carcinogenic changes. The effects of AAS appear intricate and contingent on factors such as the specific drug used, dosage, and duration of administration. The results underscore that protein expression analysis holds promise as a valuable tool for detecting illicit AAS use in the fattening process.
Collapse
Affiliation(s)
- Jan Gebauer
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic.
| | - Kristina Tosnerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kristyna Skoupa
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Iva Bartejsova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Michaela Charvatova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Rea Jarosova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Zbysek Sladek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kamil Stastny
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
11
|
Trammell CE, Rowe EH, Char AB, Jones BJ, Fawcett S, Ahlers LRH, Goodman AG. Insulin-mediated endothelin signaling is antiviral during West Nile virus infection. J Virol 2023; 97:e0111223. [PMID: 37796127 PMCID: PMC10617537 DOI: 10.1128/jvi.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Evelyn H. Rowe
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Aditya B. Char
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Brianne J. Jones
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Stephen Fawcett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Laura R. H. Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
12
|
Szabó R, Börzsei D, Hoffmann A, Kiss V, Nagy A, Török S, Veszelka M, Almási N, Varga C. The Interplay of Lifestyle and Adipokines in the Non-Obese Stroke-Prone Spontaneously Hypertensive Rats. Antioxidants (Basel) 2023; 12:1450. [PMID: 37507988 PMCID: PMC10376584 DOI: 10.3390/antiox12071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Although the morphological features and functions of adipose tissue are well-described in obesity-prone animal models, less information is available on animals such as the stroke-prone spontaneously hypertensive (SHRSP) strain with cardiovascular abnormalities, which is not characterized by excessive adiposity. Our aim was to focus on lifestyle-induced (type of diet and physical exercise) effects on adipokine profile and lipid peroxidation in SHRSP rats. In our study, male Wistar-kyoto (control) and SHRSP rats were used. SHRSP rats were fed either standard chow or a high-fat diet with 40% fat content (HFD). One group of the animals was placed into cages fitted with a running-wheel; thus, the dietary and training period started at the same time and lasted for 12 weeks. At the end of the experimental period, adiponectin, leptin, omentin, and chemerin concentrations were determined from adipose tissue and serum. Besides adipokines, malondialdehyde (MDA) levels were also measured. Twelve weeks of HFD significantly decreased adiponectin and omentin concentrations of both adipose tissue and serum, which were ameliorated by physical exercise. Serum leptin, chemerin, and MDA values were elevated in HFD groups; however, physical exercise was able to mitigate these adverse changes. Our results underpin the crosstalk between lifestyle changes and dysfunctional adipose tissue in SHRSP rats.
Collapse
Affiliation(s)
- Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Alexandra Hoffmann
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Viktória Kiss
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - András Nagy
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
13
|
Wabel E, Orr A, Flood ED, Thompson JM, Xie H, Demireva EY, Abolibdeh B, Honke Hulbert D, Mullick AE, Garver H, Fink GD, Kung TA, Watts SW. Chemerin is resident to vascular tunicas and contributes to vascular tone. Am J Physiol Heart Circ Physiol 2023; 325:H172-H186. [PMID: 37294893 PMCID: PMC11467446 DOI: 10.1152/ajpheart.00239.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/11/2023]
Abstract
The adipokine chemerin may support blood pressure, evidenced by a fall in mean arterial pressure after whole body antisense oligonucleotide (ASO)-mediated knockdown of chemerin protein in rat models of normal and elevated blood pressure. Although the liver is the greatest contributor of circulating chemerin, liver-specific ASOs that abolished hepatic-derived chemerin did not change blood pressure. Thus, other sites must produce the chemerin that supports blood pressure. We hypothesize that the vasculature is a source of chemerin independent of the liver that supports arterial tone. RNAScope, PCR, Western blot analyses, ASOs, isometric contractility, and radiotelemetry were used in the Dahl salt-sensitive (SS) rat (male and female) on a normal diet. Retinoic acid receptor responder 2 (Rarres2) mRNA was detected in the smooth muscle, adventitia, and perivascular adipose tissue of the thoracic aorta. Chemerin protein was detected immunohistochemically in the endothelium, smooth muscle cells, adventitia, and perivascular adipose tissue. Chemerin colocalized with the vascular smooth muscle marker α-actin and the adipocyte marker perilipin. Importantly, chemerin protein in the thoracic aorta was not reduced when liver-derived chemerin was abolished by a liver-specific ASO against chemerin. Chemerin protein was similarly absent in arteries from a newly created global chemerin knockout in Dahl SS rats. Inhibition of the receptor Chemerin1 by the receptor antagonist CCX832 resulted in the loss of vascular tone that supports potential contributions of chemerin by both perivascular adipose tissue and the media. These data suggest that vessel-derived chemerin may support vascular tone locally through constitutive activation of Chemerin1. This posits chemerin as a potential therapeutic target in blood pressure regulation.NEW & NOTEWORTHY Vascular tunicas synthesizing chemerin is a new finding. Vascular chemerin is independent of hepatic-derived chemerin. Vasculature from both males and females have resident chemerin. Chemerin1 receptor activity supports vascular tone.
Collapse
Affiliation(s)
- Emma Wabel
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Alexis Orr
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Emma D Flood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Janice M Thompson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Research Technology Support Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States
| | - Elena Y Demireva
- Transgenic and Genome Editing Facility, Research Technology Support Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States
| | - Bana Abolibdeh
- Transgenic and Genome Editing Facility, Research Technology Support Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States
| | - Darcy Honke Hulbert
- Cardiovascular Division, Campus Animal Resources, Michigan State University, East Lansing, Michigan, United States
| | - Adam E Mullick
- Ionis Pharmaceuticals, Carlsbad, California, United States
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Theodore A Kung
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
14
|
Tan L, Lu X, Danser AHJ, Verdonk K. The Role of Chemerin in Metabolic and Cardiovascular Disease: A Literature Review of Its Physiology and Pathology from a Nutritional Perspective. Nutrients 2023; 15:2878. [PMID: 37447205 DOI: 10.3390/nu15132878] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Chemerin is a novel adipokine that plays a major role in adipogenesis and lipid metabolism. It also induces inflammation and affects insulin signaling, steroidogenesis and thermogenesis. Consequently, it likely contributes to a variety of metabolic and cardiovascular diseases, including atherosclerosis, diabetes, hypertension and pre-eclampsia. This review describes its origin and receptors, as well as its role in various diseases, and subsequently summarizes how nutrition affects its levels. It concludes that vitamin A, fat, glucose and alcohol generally upregulate chemerin, while omega-3, salt and vitamin D suppress it. Dietary measures rather than drugs acting as chemerin receptor antagonists might become a novel tool to suppress chemerin effects, thereby potentially improving the aforementioned diseases. However, more detailed studies are required to fully understand chemerin regulation.
Collapse
Affiliation(s)
- Lunbo Tan
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xifeng Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Koen Verdonk
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
15
|
Li M, Zhang R, Ge Q, Yue L, Ma D, Khattab F, Xie W, Cui Y, Gilon P, Zhao X, Li X, Cheng R. Chemerin as an Inducer of β Cell Proliferation Mediates Mitochondrial Homeostasis and Promotes β Cell Mass Expansion. Int J Mol Sci 2023; 24:ijms24119136. [PMID: 37298086 DOI: 10.3390/ijms24119136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Loss of the β cell population is a crucial feature of type 2 diabetes. Restoring the β cell mass by stimulating β cell proliferation and preventing its apoptosis was proposed as a therapeutic approach to treating diabetes. Therefore, researchers have been increasingly interested in identifying exogenous factors that can stimulate β cell proliferation in situ and in vitro. Adipokine chemerin, which is secreted from adipose tissue and the liver, has been identified as a chemokine that plays a critical role in the regulation of metabolism. In this study, we demonstrate that chemerin as a circulating adipokine promotes β cell proliferation in vivo and in vitro. Chemerin serum levels and the expression of the main receptors within islets are highly regulated under a variety of challenging conditions, including obesity and type 2 diabetes. As compared to their littermates, mice overexpressing chemerin had a larger islet area and increased β cell mass with both a normal and high-fat diet. Moreover, in chemerin-overexpressed mice, we observed improved mitochondrial homeostasis and increased insulin synthesis. In summary, our findings confirm the potential role of chemerin as an inducer of β cell proliferation, and they provide novel insights into the helpful strategy to expand β cell population.
Collapse
Affiliation(s)
- Min Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ruifan Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qian Ge
- The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Lingzhi Yue
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dan Ma
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Firas Khattab
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Wenhua Xie
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yewei Cui
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Patrick Gilon
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Xueya Zhao
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Rui Cheng
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Levakov G, Kaplan A, Yaskolka Meir A, Rinott E, Tsaban G, Zelicha H, Blüher M, Ceglarek U, Stumvoll M, Shelef I, Avidan G, Shai I. The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity. eLife 2023; 12:e83604. [PMID: 37022140 PMCID: PMC10174688 DOI: 10.7554/elife.83604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention. Methods In a sub-study of 102 participants of the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on magnetic resonance imaging (MRI)-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age. Results To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months' attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18 months of intervention. Finally, we showed that lower consumption of processed food, sweets and beverages were associated with attenuated brain age. Conclusions Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging. Funding The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11, Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission 09933838 SFB 105 (to I Shai).
Collapse
Affiliation(s)
- Gidon Levakov
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Alon Kaplan
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- Department of Internal Medicine D, Chaim Sheba Medical CenterRamat-GanIsrael
| | - Anat Yaskolka Meir
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ehud Rinott
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gal Tsaban
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | | | - Uta Ceglarek
- Department of Medicine, University of LeipzigLeipzigGermany
| | | | - Ilan Shelef
- Department of Diagnostic Imaging, Soroka Medical CenterBeer ShevaIsrael
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Shai
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- Department of Medicine, University of LeipzigLeipzigGermany
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBostonUnited States
| |
Collapse
|
17
|
Rafaqat S, Nasreen S, Rafaqat S. Role of major adipokines in hypertension: A literature review. World J Hypertens 2023; 11:1-11. [DOI: 10.5494/wjh.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/11/2023] [Accepted: 03/06/2023] [Indexed: 03/20/2023] Open
Abstract
The incidence and prevalence of hypertension are increasing as a consequence of the obesity epidemic. Adipocytes and their variety of factors make contributions to the long-term regulation of blood pressure. The pathophysiologic states of hypertension, including obesity, are regulated by the production of adipocyte-derived factors. Increased body mass index was closely linked to elevated blood pressure. Mostly the hypertensive subjects were obese as well as overweight. There are numerous adipokines, however, this review article only focuses on the major adipokines including chemerin, visfatin, retinol-binding protein 4, plasminogen activator inhibitor-1, monocyte chemotactic protein-1, omentin-1, lipocalin-2, vaspin, progranulin, complement c1q tumor necrosis factor-related protein, and nesfatin-1 role in the pathogenesis of hypertension. This review article concludes the significant association of major adipokines in the pathogenesis of hypertensives. New research should be focused on other newly reported adipokine roles in hypertensive subjects and the management of these adipokines in hypertensive subjects. The discovery of this information could result in the creation of antihypertensive medications, particularly those that focus on obesity-related hypertension.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan
| | - Sobia Nasreen
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan
| |
Collapse
|
18
|
Chen Y, Wu L, Liu H, Li Z, Li L, Wu X, Lei Q, Yin A, Tong J, Liu K, Guan X, Zeng C, Zhang H, Wan Y, Huang X, Huang P, Yang Q, Zhou X, Niu J. Third-Trimester Maternal Serum Chemerin and Hypertension After Preeclampsia: A Prospective Cohort Study. J Am Heart Assoc 2023; 12:e027930. [PMID: 36847060 PMCID: PMC10111437 DOI: 10.1161/jaha.122.027930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Background Limited data are available for postpartum hypertension prediction after preeclampsia. Methods and Results We examined the association between maternal serum chemerin levels in patients with preeclampsia and blood pressure (BP) levels after delivery in a prospective birth cohort of 15 041 singleton pregnant women. A total of 310 cases among 322 patients with preeclampsia (follow-up rate, 96.3%) were followed up during a mean 2.8 years after delivery. Compared with matched uncomplicated controls (n=310), serum chemerin measured at ≈35 gestational weeks was significantly increased in preeclampsia (171.8±49.2 versus 140.2±53.5 ng/mL; P<0.01) and positively correlated with the occurrence of postpartum hypertension, defined as either BP ≥130/80 mm Hg (per 1-SD increase: odds ratio [OR], 4.01 [95% CI, 2.77-5.81]) or as BP ≥140/90 mm Hg (per 1-SD increase: OR, 1.70 [95% CI, 1.28-2.25]) in patients with preeclampsia. The addition of chemerin levels improved the predictive performance of the clinical variable-derived prediction models for postpartum hypertension (for BP ≥130/80 mm Hg: area under the curve, 0.903 [95% CI, 0.869-0.937], Δ area under the curve, 0.070, P<0.001; for BP ≥140/90 mm Hg: area under the curve, 0.852 [95% CI, 0.803-0.902], Δ area under the curve, 0.030, P=0.002). The decision curve analysis revealed a net benefit of the chemerin-based prediction model for postpartum BP ≥130/80 mm Hg. Conclusions This study provides the first evidence supporting the independent predictive role of third-trimester maternal chemerin levels for postpartum hypertension after preeclampsia. Future study is warranted for external validation of this finding.
Collapse
Affiliation(s)
- Yixuan Chen
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China.,The First School of Clinical Medicine Southern Medical University Shenzhen Guangdong China
| | - Linlin Wu
- Department of Obstetrics and Gynecology, the Eighth Affiliated Hospital Sun Yat-sen University Shenzhen Guangdong China
| | - Hangkuan Liu
- Department of Cardiology Tianjin Medical University General Hospital Tianjin China
| | - Ziping Li
- Department of Cardiology Tianjin Medical University General Hospital Tianjin China
| | - Linjie Li
- Department of Cardiology Tianjin Medical University General Hospital Tianjin China
| | - Xiaoxia Wu
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China
| | - Qiong Lei
- Department of Obstetrics and Gynecology, the Eighth Affiliated Hospital Sun Yat-sen University Shenzhen Guangdong China
| | - Aiqi Yin
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China.,The First School of Clinical Medicine Southern Medical University Shenzhen Guangdong China
| | - Jianing Tong
- Department of Obstetrics and Gynecology, the Eighth Affiliated Hospital Sun Yat-sen University Shenzhen Guangdong China
| | - Kan Liu
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China.,The First School of Clinical Medicine Southern Medical University Shenzhen Guangdong China
| | - Xiaonian Guan
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China.,The First School of Clinical Medicine Southern Medical University Shenzhen Guangdong China
| | - Cuiping Zeng
- Department of Obstetrics and Gynecology, the Eighth Affiliated Hospital Sun Yat-sen University Shenzhen Guangdong China
| | - Huafan Zhang
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China.,The First School of Clinical Medicine Southern Medical University Shenzhen Guangdong China
| | - Yanmei Wan
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China.,The First School of Clinical Medicine Southern Medical University Shenzhen Guangdong China
| | - Xuna Huang
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China.,The First School of Clinical Medicine Southern Medical University Shenzhen Guangdong China
| | - Pingping Huang
- Department of Obstetrics and Gynecology, the Eighth Affiliated Hospital Sun Yat-sen University Shenzhen Guangdong China
| | - Qing Yang
- Department of Cardiology Tianjin Medical University General Hospital Tianjin China
| | - Xin Zhou
- Department of Cardiology Tianjin Medical University General Hospital Tianjin China
| | - Jianmin Niu
- Department of Obstetrics Shenzhen Maternity and Child Healthcare Hospital Shenzhen Guangdong China.,The First School of Clinical Medicine Southern Medical University Shenzhen Guangdong China
| |
Collapse
|
19
|
Weber F, Schueler-Toprak S, Buechler C, Ortmann O, Treeck O. Chemerin and Chemokine-like Receptor 1 Expression in Ovarian Cancer Associates with Proteins Involved in Estrogen Signaling. Diagnostics (Basel) 2023; 13:diagnostics13050944. [PMID: 36900088 PMCID: PMC10001027 DOI: 10.3390/diagnostics13050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chemerin, a pleiotropic adipokine coded by the RARRES2 gene, has been reported to affect the pathophysiology of various cancer entities. To further approach the role of this adipokine in ovarian cancer (OC), intratumoral protein levels of chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were examined by immunohistochemistry analyzing tissue microarrays with tumor samples from 208 OC patients. Since chemerin has been reported to affect the female reproductive system, associations with proteins involved in steroid hormone signaling were analyzed. Additionally, correlations with ovarian cancer markers, cancer-related proteins, and survival of OC patients were examined. A positive correlation of chemerin and CMKLR1 protein levels in OC (Spearman's rho = 0.6, p < 0.0001) was observed. Chemerin staining intensity was strongly associated with the expression of progesterone receptor (PR) (Spearman´s rho = 0.79, p < 0.0001). Both chemerin and CMKLR1 proteins positively correlated with estrogen receptor β (ERβ) and estrogen-related receptors. Neither chemerin nor the CMKLR1 protein level was associated with the survival of OC patients. At the mRNA level, in silico analysis revealed low RARRES2 and high CMKLR1 expression associated with longer overall survival. The results of our correlation analyses suggested the previously reported interaction of chemerin and estrogen signaling to be present in OC tissue. Further studies are needed to elucidate to which extent this interaction might affect OC development and progression.
Collapse
Affiliation(s)
- Florian Weber
- Institute for Pathology, University of Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Susanne Schueler-Toprak
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
20
|
Sanges S, Rice L, Tu L, Valenzi E, Cracowski JL, Montani D, Mantero JC, Ternynck C, Marot G, Bujor AM, Hachulla E, Launay D, Humbert M, Guignabert C, Lafyatis R. Biomarkers of haemodynamic severity of systemic sclerosis-associated pulmonary arterial hypertension by serum proteome analysis. Ann Rheum Dis 2023; 82:365-373. [PMID: 36600187 PMCID: PMC9918672 DOI: 10.1136/ard-2022-223237] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To mine the serum proteome of patients with systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH) and to detect biomarkers that may assist in earlier and more effective diagnosis and treatment. METHODS Patients with limited cutaneous SSc, no extensive interstitial lung disease and no PAH-specific therapy were included. They were classified as cases if they had PAH confirmed by right heart catheterisation (RHC) and serum collected on the same day as RHC; and as controls if they had no clinical evidence of PAH. RESULTS Patients were mostly middle-aged females with anticentromere-associated SSc. Among 1129 proteins assessed by a high-throughput proteomic assay (SOMAscan), only 2 were differentially expressed and correlated significantly with pulmonary vascular resistance (PVR) in SSc-PAH patients (n=15): chemerin (ρ=0.62, p=0.01) and SET (ρ=0.62, p=0.01). To validate these results, serum levels of chemerin were measured by ELISA in an independent cohort. Chemerin levels were confirmed to be significantly higher (p=0.01) and correlate with PVR (ρ=0.42, p=0.04) in SSc-PAH patients (n=24). Chemerin mRNA expression was detected in fibroblasts, pulmonary artery smooth muscle cells (PA-SMCs)/pericytes and mesothelial cells in SSc-PAH lungs by single-cell RNA-sequencing. Confocal immunofluorescence revealed increased expression of a chemerin receptor, CMKLR1, on SSc-PAH PA-SMCs. SSc-PAH serum seemed to induce higher PA-SMC proliferation than serum from SSc patients without PAH. This difference appeared neutralised when adding the CMKLR1 inhibitor α-NETA. CONCLUSION Chemerin seems an interesting surrogate biomarker for PVR in SSc-PAH. Increased chemerin serum levels and CMKLR1 expression by PA-SMCs may contribute to SSc-PAH pathogenesis by inducing PA-SMC proliferation.
Collapse
Affiliation(s)
- Sébastien Sanges
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Lisa Rice
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Ly Tu
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - David Montani
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Kremlin-Bicêtre, France
| | - Julio C Mantero
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Camille Ternynck
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
- Inria, MODAL: MOdels for Data Analysis and Learning, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR 2014 - US 41 - PLBS, bilille, Lille, France
| | - Andreea M Bujor
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Eric Hachulla
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Marc Humbert
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Lőrincz H, Somodi S, Ratku B, Harangi M, Paragh G. Crucial Regulatory Role of Organokines in Relation to Metabolic Changes in Non-Diabetic Obesity. Metabolites 2023; 13:270. [PMID: 36837889 PMCID: PMC9967669 DOI: 10.3390/metabo13020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity is characterized by an excessive accumulation of fat leading to a plethora of medical complications, including coronary artery disease, hypertension, type 2 diabetes mellitus or impaired glucose tolerance and dyslipidemia. Formerly, several physiological roles of organokines, including adipokines, hepatokines, myokines and gut hormones have been described in obesity, especially in the regulation of glucose and lipid metabolism, insulin sensitivity, oxidative stress, and low-grade inflammation. The canonical effect of these biologically active peptides and proteins may serve as an intermediate regulatory level that connects the central nervous system and the endocrine, autocrine, and paracrine actions of organs responsible for metabolic and inflammatory processes. Better understanding of the function of this delicately tuned network may provide an explanation for the wide range of obesity phenotypes with remarkable inter-individual differences regarding comorbidities and therapeutic responses. The aim of this review is to demonstrate the role of organokines in the lipid and glucose metabolism focusing on the obese non-diabetic subgroup. We also discuss the latest findings about sarcopenic obesity, which has recently become one of the most relevant metabolic disturbances in the aging population.
Collapse
Affiliation(s)
- Hajnalka Lőrincz
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Balázs Ratku
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
22
|
Trammell CE, Rowe EH, Jones BJ, Char AB, Fawcett S, Ahlers LR, Goodman AG. Insulin-mediated endothelin signaling is antiviral during West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524426. [PMID: 36712090 PMCID: PMC9882177 DOI: 10.1101/2023.01.17.524426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
West Nile virus (WNV) is the most prevalent mosquito-borne virus in the United States with approximately 2,000 cases each year. There are currently no approved human vaccines and a lack of prophylactic and therapeutic treatments. Understanding host responses to infection may reveal potential intervention targets to reduce virus replication and disease progression. The use of Drosophila melanogaster as a model organism to understand innate immunity and host antiviral responses is well established. Previous studies revealed that insulin-mediated signaling regulates WNV infection in invertebrates by regulating canonical antiviral pathways. Because insulin signaling is well-conserved across insect and mammalian species, we sought to determine if results using D. melanogaster can be extrapolated for the analysis of orthologous pathways in humans. Here, we identify insulin-mediated endothelin signaling using the D. melanogaster model and evaluate an orthologous pathway in human cells during WNV infection. We demonstrate that endothelin signaling reduces WNV replication through the activation of canonical antiviral signaling. Taken together, our findings show that endothelin-mediated antiviral immunity is broadly conserved across species and reduces replication of viruses that can cause severe human disease. IMPORTANCE Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identifies potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Evelyn H. Rowe
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Brianne J. Jones
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Aditya B. Char
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Stephen Fawcett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Laura R.H. Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
23
|
Chemerin-9 in paraventricular nucleus increases sympathetic outflow and blood pressure via glutamate receptor-mediated ROS generation. Eur J Pharmacol 2022; 936:175343. [DOI: 10.1016/j.ejphar.2022.175343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
|
24
|
Galley JC, Singh S, Awata WMC, Alves JV, Bruder-Nascimento T. Adipokines: Deciphering the cardiovascular signature of adipose tissue. Biochem Pharmacol 2022; 206:115324. [PMID: 36309078 PMCID: PMC10509780 DOI: 10.1016/j.bcp.2022.115324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
Abstract
Obesity and hypertension are intimately linked due to the various ways that the important cell types such as vascular smooth muscle cells (VSMC), endothelial cells (EC), immune cells, and adipocytes, communicate with one another to contribute to these two pathologies. Adipose tissue is a very dynamic organ comprised primarily of adipocytes, which are well known for their role in energy storage. More recently adipose tissue has been recognized as the largest endocrine organ because of its ability to produce a vast number of signaling molecules called adipokines. These signaling molecules stimulate specific types of cells or tissues with many adipokines acting as indicators of adipocyte healthy function, such as adiponectin, omentin, and FGF21, which show anti-inflammatory or cardioprotective effects, acting as regulators of healthy physiological function. Others, like visfatin, chemerin, resistin, and leptin are often altered during pathophysiological circumstances like obesity and lipodystrophy, demonstrating negative cardiovascular outcomes when produced in excess. This review aims to explore the role of adipocytes and their derived products as well as the impacts of these adipokines on blood pressure regulation and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Joseph C. Galley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Wanessa M. C. Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliano V. Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Macvanin MT, Rizzo M, Radovanovic J, Sonmez A, Paneni F, Isenovic ER. Role of Chemerin in Cardiovascular Diseases. Biomedicines 2022; 10:biomedicines10112970. [PMID: 36428537 PMCID: PMC9687862 DOI: 10.3390/biomedicines10112970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
(1) Background: Obesity is closely connected to the pathophysiology of cardiovascular diseases (CVDs). Excess fat accumulation is associated with metabolic malfunctions that disrupt cardiovascular homeostasis by activating inflammatory processes that recruit immune cells to the site of injury and reduce nitric oxide levels, resulting in increased blood pressure, endothelial cell migration, proliferation, and apoptosis. Adipose tissue produces adipokines, such as chemerin, that may alter immune responses, lipid metabolism, vascular homeostasis, and angiogenesis. (2) Methods: We performed PubMed and MEDLINE searches for articles with English abstracts published between 1997 (when the first report on chemerin identification was published) and 2022. The search retrieved original peer-reviewed articles analyzed in the context of the role of chemerin in CVDs, explicitly focusing on the most recent findings published in the past five years. (3) Results: This review summarizes up-to-date findings related to mechanisms of chemerin action, its role in the development and progression of CVDs, and novel strategies for developing chemerin-targeting therapeutic agents for treating CVDs. (4) Conclusions: Extensive evidence points to chemerin's role in vascular inflammation, angiogenesis, and blood pressure modulation, which opens up exciting perspectives for developing chemerin-targeting therapeutic agents for the treatment of CVDs.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Manfredi Rizzo
- Department of Internal Medicine and Medical Specialties (DIMIS), Università degli Studi di Palermo (UNIPA), 90128 Palermo, Italy
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Alper Sonmez
- Department of Endocrinology and Metabolism, Gulhane School of Medicine, University of Health Sciences, Ankara 34668, Turkey
| | - Francesco Paneni
- University Heart Center, University Hospital Zurich, 8091 Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Correspondence:
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Gunawan S, Elger T, Loibl J, Fererberger T, Sommersberger S, Kandulski A, Müller M, Tews HC, Buechler C. Urinary chemerin as a potential biomarker for inflammatory bowel disease. Front Med (Lausanne) 2022; 9:1058108. [PMID: 36438059 PMCID: PMC9691457 DOI: 10.3389/fmed.2022.1058108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/03/2023] Open
Abstract
Purpose Systemic levels of the adipokine chemerin are elevated in different inflammatory conditions such as inflammatory bowel disease (IBD). In IBD, chemerin protein expression in colon mucosa is induced and serum chemerin levels are increased. Aim of this study was to identify chemerin protein in human feces and/or urine and to evaluate a possible association with IBD activity. Materials and methods Feces and urine of 40 patients with IBD and the respective sera of 34 patients were collected. Chemerin levels were analyzed by immunoblot in feces and urine samples. In addition, enzyme-linked immunosorbent assay (ELISA) was used to measure chemerin in all urine, feces and serum samples of the patients and in urine of 17 healthy controls. Results Chemerin was not detectable in 80% of the human feces samples by ELISA. Chemerin in human urine was detected by immunoblot and ELISA. Compared to serum levels, urinary concentration was about 6,000-fold lower. Urinary chemerin did not differ between patients with ulcerative colitis (n = 15) and Crohn's disease (n = 25). Urinary chemerin was not related to its serum levels, did not correlate with serum C-reactive protein level and negatively correlated with serum creatinine. Of note, urinary chemerin of patients with a fecal calprotectin > 500 μg/g was significantly higher compared to patients with lower calprotectin levels and compared to healthy controls. Serum creatinine did not differ between the patient groups. Conclusion Urinary chemerin might present a novel non-invasive biomarker for monitoring IBD severity and clinical course.
Collapse
|
27
|
The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis. Biomedicines 2022; 10:biomedicines10102503. [PMID: 36289764 PMCID: PMC9598769 DOI: 10.3390/biomedicines10102503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role in energy metabolism. More recently, their involvement in PCOS and endometriosis has been demonstrated. In this review article, we provide an update on the role of adipokines in both diseases and summarize previous findings. We also address the results of multi-omics approaches in adipokine research to examine the role of single nucleotide polymorphisms (SNPs) in genes coding for adipokines and their receptors, the secretome of adipocytes and to identify epigenetic alterations of adipokine genes that might be conferred from mother to child. Finally, we address novel data on the role of brown adipose tissue (BAT), which seems to have notable effects on PCOS. For this review, original research articles on adipokine actions in PCOS and endometriosis are considered, which are listed in the PubMed database.
Collapse
|
28
|
Watts SW, Mullick AE, Garver H, Orr A, Fink GD. A high fat diet does not stimulate blood pressure dependence on chemerin in the Sprague-Dawley rat. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 22:100205. [PMID: 38558911 PMCID: PMC10978417 DOI: 10.1016/j.ahjo.2022.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 04/04/2024]
Abstract
The adipokine chemerin is a candidate for connecting obesity to hypertension. Study objective To test the hypothesis that a high fat (HF) diet stimulates dependence on chemerin for blood pressure regulation. Design Blood pressure in male Sprague Dawley rats fed a control (10 % fat) or HF (60 % fat) diet from weaning was measured using radiotelemetry. Antisense oligonucleotides (ASOs), administered after 17 weeks of feeding, were used to abolish chemerin production. Results The HF diet did not increase blood pressure (mm Hg; control = 117.0 ± 2.5; HF = 122.0 ± 2.2). An ASO against chemerin (dosed 1×/week, 4 weeks) similarly reduced blood pressure in the control (-14.0 ± 2.7 mmHg) and HF rat (-12.4 ± 2.3). Chemerin mRNA was abolished in the liver and fats (primary producers of chemerin) from rats given the ASO chemerin vs control. Conclusion A HF diet alone is insufficient to stimulate the dependence of blood pressure in the rat on chemerin.
Collapse
Affiliation(s)
- Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, USA
| | | | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, USA
| | - Alexis Orr
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, USA
| | - Gregory D. Fink
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, USA
| |
Collapse
|
29
|
Chemerin Forms: Their Generation and Activity. Biomedicines 2022; 10:biomedicines10082018. [PMID: 36009565 PMCID: PMC9405667 DOI: 10.3390/biomedicines10082018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Chemerin is the product of the RARRES2 gene which is secreted as a precursor of 143 amino acids. That precursor is inactive, but proteases from the coagulation and fibrinolytic cascades, as well as from inflammatory reactions, process the C-terminus of chemerin to first activate it and then subsequently inactivate it. Chemerin can signal via two G protein-coupled receptors, chem1 and chem2, as well as be bound to a third non-signaling receptor, CCRL2. Chemerin is produced by the liver and secreted into the circulation as a precursor, but it is also expressed in some tissues where it can be activated locally. This review discusses the specific tissue expression of the components of the chemerin system, and the role of different proteases in regulating the activation and inactivation of chemerin. Methods of identifying and determining the levels of different chemerin forms in both mass and activity assays are reviewed. The levels of chemerin in circulation are correlated with certain disease conditions, such as patients with obesity or diabetes, leading to the possibility of using chemerin as a biomarker.
Collapse
|
30
|
Pohl R, Eichelberger L, Feder S, Haberl EM, Rein-Fischboeck L, McMullen N, Sinal CJ, Bruckmann A, Weiss TS, Beck M, Höring M, Krautbauer S, Liebisch G, Wiest R, Wanninger J, Buechler C. Hepatocyte expressed chemerin-156 does not protect from experimental non-alcoholic steatohepatitis. Mol Cell Biochem 2022; 477:2059-2071. [PMID: 35449483 PMCID: PMC9237010 DOI: 10.1007/s11010-022-04430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a rapidly growing liver disease. The chemoattractant chemerin is abundant in hepatocytes, and hepatocyte expressed prochemerin protected from NASH. Prochemerin is inactive and different active isoforms have been described. Here, the effect of hepatocyte expressed muChem-156, a highly active murine chemerin isoform, was studied in the methionine–choline deficient dietary model of NASH. Mice overexpressing muChem-156 had higher hepatic chemerin protein. Serum chemerin levels and the capability of serum to activate the chemerin receptors was unchanged showing that the liver did not release active chemerin. Notably, activation of the chemerin receptors by hepatic vein blood did not increase in parallel to total chemerin protein in patients with liver cirrhosis. In experimental NASH, muChem-156 had no effect on liver lipids. Accordingly, overexpression of active chemerin in hepatocytes or treatment of hepatocytes with recombinant chemerin did not affect cellular triglyceride and cholesterol levels. Importantly, overexpression of muChem-156 in the murine liver did not change the hepatic expression of inflammatory and profibrotic genes. The downstream targets of chemerin such as p38 kinase were neither activated in the liver of muChem-156 producing mice nor in HepG2, Huh7 and Hepa1-6 cells overexpressing this isoform. Recombinant chemerin had no effect on global gene expression of primary human hepatocytes and hepatic stellate cells within 24 h of incubation. Phosphorylation of p38 kinase was, however, increased upon short-time incubation of HepG2 cells with chemerin. These findings show that muChem-156 overexpression in hepatocytes does not protect from liver steatosis and inflammation.
Collapse
Affiliation(s)
- Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Laura Eichelberger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher J Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Regensburg University Hospital, 93053, Regensburg, Germany
| | - Michael Beck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010, Bern, Switzerland
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| |
Collapse
|
31
|
Divergence of Chemerin Reduction by an ATS9R Nanoparticle Targeting Adipose Tissue In Vitro vs. In Vivo in the Rat. Biomedicines 2022; 10:biomedicines10071635. [PMID: 35884940 PMCID: PMC9313470 DOI: 10.3390/biomedicines10071635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles (NPs) can enable delivery of a drug to a targeted tissue. Previous studies have shown that an NP utilizing an adipose targeting sequence (ATS) peptide in conjunction with a drug can selectively deliver the drug to mouse adipose tissues, using the prohibitin protein expressed in adipose tissue as the target of the ATS. Adipose tissue is a major source of the adipokine chemerin, a prohypertensive protein. Liver-derived chemerin, the largest source of circulating chemerin, is biologically inactive in blood pressure regulation. Our goal is to understand if chemerin produced in adipose tissue contributes to blood pressure/hypertension. We hypothesize the ATS drug delivery system could be used specifically to reduce the levels of adipose tissue-derived chemerin. We created an NP consisting of an antisense oligonucleotide (ASO) against chemerin and a FITC-labeled ATS with a nine arginine sequence (ATS9R). In vitro studies showed that the ASO is functional when incorporated into an NP with ATS9R as it reduced chemerin mRNA expression in isolated epidydimal (Epi) and retroperitoneal (RP) fat adipocytes from Dahl SS rats. This same NP reduced chemerin in isolated whole fats. However, this NP was unable to selectively deliver the ASO to adipose tissue in vivo; liver delivery was dominant. Varying NP doses, administration route, and the concentration of components constituting the NP showed no improvement in ASO delivery to fats vs. the liver. Further studies are therefore needed to develop the ATS9R system to deliver an ASO to adipose beds in rats.
Collapse
|
32
|
Xie Y, Liu L. Role of Chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction. J Transl Med 2022; 20:141. [PMID: 35317838 PMCID: PMC8939091 DOI: 10.1186/s12967-021-03220-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
Sufficient epidemiological investigations demonstrate that there is a close correlation between obesity and vascular dysfunction. Nevertheless, specific mechanisms underlying this link remain currently unclear. Given the crucial and decisive role of vascular dysfunction in multitudinous diseases, various hypotheses had been proposed and numerous experiments were being carried out. One recognized view is that increased adipokine secretion following the expanded mass of white adipose tissue due to obesity contributes to the regulation of vascular function. Chemerin, as a neo-adipokine, whose systemic level is elevated in obesity, is believed as a regulator of adipogenesis, inflammation, and vascular dysfunction via binding its cell surface receptor, chemR23. Hence, this review aims to focus on the up-to-date proof on chemerin/chemR23 axis-relevant signaling pathways, emphasize the multifarious impacts of chemerin/chemR23 axis on vascular function regulation, raise certain unsettled questions to inspire further investigations, and explore the therapeutic possibilities targeting chemerin/chemR23.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China. .,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China. .,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China. .,Cardiovascular Disease Research Center of Hunan Province, Changsha, China.
| |
Collapse
|
33
|
Léniz A, González M, Besné I, Carr-Ugarte H, Gómez-García I, Portillo MP. Role of chemerin in the control of glucose homeostasis. Mol Cell Endocrinol 2022; 541:111504. [PMID: 34763009 DOI: 10.1016/j.mce.2021.111504] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
Chemerin is an adipokine produced by the white adipose tissue and other tissues, which plays various roles in the pathogenesis of inflammatory and metabolic diseases in multiple organs. The present review aims at gathering scientific evidence reported in the last ten years, concerning the relationship of chemerin with alterations of glycaemic control, such as insulin resistance, type 2 diabetes and gestational diabetes in humans. Although the vast majority of the studies have shown a positive correlation between the chemerin level and a bad glycaemic control, a general consensus has not been reached. The reported results come from case-control and observational longitudinal studies, thereby limiting their interpretation. In fact, it cannot be stated whether insulin resistance and diabetes lead to an increase in chemerin levels or, on the contrary, if high levels of chemerin contribute to an impaired glycaemic control. Elevated levels of circulating chemerin are also associated with gestational diabetes mellitus. Chemerin gene polymorphisms could be proposed as mediators of glucose-related diseases. Nevertheless, to date very little is known about their implication in glucose metabolism. With regard to the mechanisms of action, chemerin impairs insulin cascade signaling by acting on several proteins of this cascade and by inducing inflammation.
Collapse
Affiliation(s)
- A Léniz
- Vitoria-Gasteiz Nursing School, Osakidetza-Basque Health Service, Vitoria-Gasteiz, Spain; Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain; BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - M González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), 3000 Santa Fe, Argentina
| | - I Besné
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - H Carr-Ugarte
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - I Gómez-García
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - M P Portillo
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain; BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain.
| |
Collapse
|
34
|
A Chemerin Peptide Analog Stimulates Tumor Growth in Two Xenograft Mouse Models of Human Colorectal Carcinoma. Cancers (Basel) 2021; 14:cancers14010125. [PMID: 35008289 PMCID: PMC8750290 DOI: 10.3390/cancers14010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The chemoattractant adipokine chemerin has been found to be elevated in several types of cancer, including colorectal carcinoma. The functional role of chemerin in colorectal carcinoma, however, has not been elucidated to date. This study analyses the impact of the chemerin analog CG34 on proliferation, colony formation, and migration in the human colorectal cancer cell lines HCT116, HT29 and SW620. In addition, the effect of systemic CG34 treatment is investigated in two xenograft mouse models of colorectal cancer (HCT116-luc and HT29-luc). The results of this study suggest there is a stimulatory role of chemerin receptor activation on the growth of colorectal carcinoma. Abstract Background: Chemerin plasma concentration has been reported to be positively correlated with the risk of colorectal cancer. However, the potential regulation of CRC tumorigenesis and progression has not yet been investigated in an experimental setting. This study addresses this hypothesis by investigating proliferation, colony formation, and migration of CRC cell lines in vitro as well as in animal models. Methods: In vitro, microscopic assays to study proliferation, as well as a scratch-wound assay for migration monitoring, were applied using the human CRC cell lines HCT116, HT29, and SW620 under the influence of the chemerin analog CG34. The animal study investigated HCT116-luc and HT29-luc subcutaneous tumor size and bioluminescence during treatment with CG34 versus control, followed by an ex-vivo analysis of vessel density and mitotic activity. Results: While the proliferation of the three CRC cell lines in monolayers was not clearly stimulated by CG34, the chemerin analog promoted colony formation in three-dimensional aggregates. An effect on cell migration was not observed. In the treatment study, CG34 significantly stimulated both growth and bioluminescence signals of HCT116-luc and HT29-luc xenografts. Conclusions: The results of this study represent the first indication of a tumor growth-stimulating effect of chemerin signaling in CRC.
Collapse
|
35
|
Koelman L, Reichmann R, Börnhorst C, Schulze MB, Weikert C, Biemann R, Isermann B, Fritsche A, Aleksandrova K. Determinants of elevated chemerin as a novel biomarker of immunometabolism: data from a large population-based cohort. Endocr Connect 2021; 10:1200-1211. [PMID: 34431786 PMCID: PMC8494416 DOI: 10.1530/ec-21-0273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Chemerin is a novel inflammatory biomarker suggested to play a role in the development of metabolic disorders, providing new avenues for treatment and prevention. Little is known about the factors that predispose elevated chemerin concentrations. We therefore aimed to explore a range of lifestyle-associated, dietary, and metabolic factors as potential determinants of elevated chemerin concentrations in asymptomatic adults. DESIGN We used cross-sectional data from a random subsample of 2433 participants (1494 women and 939 men) aged 42-58 years of the European Prospective Investigation into Cancer and Nutrition-Potsdam cohort. METHODS Random forest regression (RFR) was applied to explore the relative importance of 32 variables as statistical predictors of elevated chemerin concentrations overall and by sex. Multivariable-adjusted linear regression was applied to evaluate associations between selected predictors and chemerin concentrations. RESULTS Results from RFR suggested BMI, waist circumference, C-reactive protein, fatty liver index, and estimated glomerular filtration rate as the strongest predictors of chemerin concentrations. Additional predictors included sleeping duration, alcohol, red and processed meat, fruits, sugar-sweetened beverages (SSB), vegetables, dairy, and refined grains. Collectively, these factors explained 32.9% variation of circulating chemerin. Multivariable-adjusted analyses revealed linear associations of elevated chemerin with metabolic parameters, obesity, longer sleep, higher intakes of red meat and SSB, and lower intakes of dairy. CONCLUSIONS These findings come in support of the role of chemerin as a biomarker characterizing inflammatory and metabolic phenotypes in asymptomatic adults. Modifiable dietary and lifestyle-associated determinants of elevated chemerin concentrations require further evaluation in a prospective study setting.
Collapse
Affiliation(s)
- Liselot Koelman
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Robin Reichmann
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Claudia Börnhorst
- Department of Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute for Social Medicine, Epidemiology and Health Economics, Charité University Medical Center, Berlin, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Andreas Fritsche
- Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Krasimira Aleksandrova
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
36
|
Para I, Albu A, Porojan MD. Adipokines and Arterial Stiffness in Obesity. ACTA ACUST UNITED AC 2021; 57:medicina57070653. [PMID: 34202323 PMCID: PMC8305474 DOI: 10.3390/medicina57070653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Adipokines are active molecules with pleiotropic effects produced by adipose tissue and involved in obesity-related metabolic and cardiovascular diseases. Arterial stiffness, which is a consequence of arteriosclerosis, has been shown to be an independent predictor of cardiovascular morbidity and mortality. The pathogenesis of arterial stiffness is complex but incompletely understood. Adipokines dysregulation may induce, by various mechanisms, vascular inflammation, endothelial dysfunction, and vascular remodeling, leading to increased arterial stiffness. This article summarizes literature data regarding adipokine-related pathogenetic mechanisms involved in the development of arterial stiffness, particularly in obesity, as well as the results of clinical and epidemiological studies which investigated the relationship between adipokines and arterial stiffness.
Collapse
Affiliation(s)
- Ioana Para
- 4th Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Adriana Albu
- 2nd Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
- Correspondence:
| | - Mihai D. Porojan
- 2nd Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
37
|
Cooperation of augmented calcium sensitization and increased calcium entry contributes to high blood pressure in salt-sensitive Dahl rats. Hypertens Res 2021; 44:1067-1078. [PMID: 33875859 DOI: 10.1038/s41440-021-00659-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 03/14/2021] [Indexed: 11/09/2022]
Abstract
Salt hypertensive Dahl rats are characterized by sympathoexcitation and relative NO deficiency. We tested the hypothesis that the increased blood pressure (BP) response to fasudil in salt hypertensive Dahl rats is due to augmented calcium sensitization in the salt-sensitive strain and/or due to their decreased baroreflex efficiency. BP reduction after acute administration of nifedipine (an L-type voltage-dependent calcium channel blocker) or fasudil (a Rho kinase inhibitor) was studied in conscious intact rats and in rats subjected to acute NO synthase inhibition or combined blockade of the renin-angiotensin system (captopril), sympathetic nervous system (pentolinium), and NO synthase (L-NAME). Intact salt-sensitive (SS) Dahl rats fed a low-salt diet had greater BP responses to nifedipine (-31 ± 6 mmHg) or fasudil (-34 ± 7 mmHg) than salt-resistant (SR) Dahl rats (-16 ± 4 and -17 ± 2 mmHg, respectively), and a high-salt intake augmented the BP response only in SS rats. These BP responses were doubled after acute NO synthase inhibition, indicating that endogenous NO attenuates both calcium entry and calcium sensitization. Additional pentolinium administration, which minimized sympathetic compensation for the drug-induced BP reduction, magnified the BP responses to nifedipine or fasudil in all groups except for salt hypertensive SS rats due to their lower baroreflex efficiency. The BP response to the calcium channel blocker nifedipine can distinguish SS and SR rats even after calcium sensitization inhibition by fasudil, which was not seen when fasudil was administered to nifedipine-pretreated rats. Thus, enhanced calcium entry (potentiated by sympathoexcitation) in salt hypertensive Dahl rats is the abnormality that is essential for their BP increase, which was further augmented by increased calcium sensitization in salt-sensitive Dahl rats.
Collapse
|
38
|
Treeck O, Buechler C. Chemerin Signaling in Cancer. Cancers (Basel) 2020; 12:cancers12113085. [PMID: 33105894 PMCID: PMC7690612 DOI: 10.3390/cancers12113085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics I, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Christa Buechler
- Department of Internal Medicine I, University Medical Center Regensburg, 93053 Regensburg, Germany;
| |
Collapse
|
39
|
Feder S, Bruckmann A, McMullen N, Sinal CJ, Buechler C. Chemerin Isoform-Specific Effects on Hepatocyte Migration and Immune Cell Inflammation. Int J Mol Sci 2020; 21:ijms21197205. [PMID: 33003572 PMCID: PMC7582997 DOI: 10.3390/ijms21197205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Murine chemerin is C-terminally processed to the bioactive isoforms, muChem-156 and muChem-155, among which the longer variant protects from hepatocellular carcinoma (HCC). However, the role of muChem-155 is mostly unknown. Here, we aimed to compare the effects of these isoforms on the proliferation, migration and the secretome of the human hepatocyte cell lines HepG2 and Huh7 and the murine Hepa1-6 cell line. Therefore, huChem-157 and -156 were overexpressed in the human cells, and the respective murine variants, muChem-156 and -155, in the murine hepatocytes. Both chemerin isoforms produced by HepG2 and Hepa1-6 cells activated the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). HuChem-157 was the active isoform in the Huh7 cell culture medium. The potencies of muChem-155 and muChem-156 to activate human GPR1 and mouse CMKLR1 were equivalent. Human CMKLR1 was most responsive to muChem-156. Chemerin variants showed no effect on cell viability and proliferation. Activation of the mitogen-activated protein kinases Erk1/2 and p38, and protein levels of the epithelial–mesenchymal transition marker, E-cadherin, were not regulated by the chemerin variants. Migration was reduced in HepG2 and Hepa1-6 cells by the longer isoform. Protective effects of chemerin in HCC include the modulation of cytokines but huChem-156 and huChem-157 overexpression did not change IL-8, CCL20 or osteopontin in the hepatocytes. The conditioned medium of the transfected hepatocytes failed to alter these soluble factors in the cell culture medium of peripheral blood mononuclear cells (PBMCs). Interestingly, the cell culture medium of Huh7 cells producing the inactive variant huChem-155 reduced CCL2 and IL-8 in PBMCs. To sum up, huChem-157 and muChem-156 inhibited hepatocyte migration and may protect from HCC metastasis. HuChem-155 was the only human isoform exerting anti-inflammatory effects on immune cells.
Collapse
Affiliation(s)
- Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany;
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93042 Regensburg, Germany;
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (N.M.); (C.J.S.)
| | - Christopher J. Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (N.M.); (C.J.S.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany;
- Correspondence: ; Tel.: +49-941-944-7009
| |
Collapse
|
40
|
Flood ED, Watts SW. Endogenous Chemerin from PVAT Amplifies Electrical Field-Stimulated Arterial Contraction: Use of the Chemerin Knockout Rat. Int J Mol Sci 2020; 21:ijms21176392. [PMID: 32887510 PMCID: PMC7503709 DOI: 10.3390/ijms21176392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background: We previously reported that the adipokine chemerin, when added exogenously to the isolated rat mesenteric artery, amplified electrical field-stimulated (EFS) contraction. The Chemerin1 antagonist CCX832 alone inhibited EFS-induced contraction in tissues with but not without perivascular adipose tissue (PVAT). These data suggested indirectly that chemerin itself, presumably from the PVAT, facilitated EFS-induced contraction. We created the chemerin KO rat and now test the focused hypothesis that endogenous chemerin amplifies EFS-induced arterial contraction. Methods: The superior mesenteric artery +PVAT from global chemerin WT and KO female rats, with endothelium and sympathetic nerve intact, were mounted into isolated tissue baths for isometric and EFS-induced contraction. Results: CCX832 reduced EFS (2-20 Hz)-induced contraction in tissues from the WT but not KO rats. Consistent with this finding, the magnitude of EFS-induced contraction was lower in the tissues from the KO vs. WT rats, yet the maximum response to the adrenergic stimulus PE was not different among all tissues. Conclusion: These studies support that endogenous chemerin modifies sympathetic nerve-mediated contraction through Chemerin1, an important finding relative in understanding chemerin's role in control of blood pressure.
Collapse
|