1
|
Gibbs DJ, Theodoulou FL, Bailey-Serres J. Primed to persevere: Hypoxia regulation from epigenome to protein accumulation in plants. PLANT PHYSIOLOGY 2024; 197:kiae584. [PMID: 39479777 DOI: 10.1093/plphys/kiae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 12/24/2024]
Abstract
Plant cells regularly encounter hypoxia (low-oxygen conditions) as part of normal growth and development, or in response to environmental stresses such as flooding. In recent years, our understanding of the multi-layered control of hypoxia-responsive gene expression has greatly increased. In this Update, we take a broad look at the epigenetic, transcriptional, translational, and post-translational mechanisms that regulate responses to low-oxygen levels. We highlight how a network of post-translational modifications (including phosphorylation), secondary messengers, transcriptional cascades, and retrograde signals from the mitochondria and endoplasmic reticulum (ER) feed into the control of transcription factor activity and hypoxia-responsive gene transcription. We discuss epigenetic mechanisms regulating the response to reduced oxygen availability, through focussing on active and repressive chromatin modifications and DNA methylation. We also describe current knowledge of the co- and post-transcriptional mechanisms that tightly regulate mRNA translation to coordinate effective gene expression under hypoxia. Finally, we present a series of outstanding questions in the field and consider how new insights into the molecular workings of the hypoxia-triggered regulatory hierarchy could pave the way for developing flood-resilient crops.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Shao D, Abubakar AS, Chen J, Zhao H, Chen P, Chen K, Wang X, Shawai RS, Chen Y, Zhu A, Gao G. Physiological, molecular, and morphological adjustment to waterlogging stress in ramie and selection of waterlogging-tolerant varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109101. [PMID: 39255614 DOI: 10.1016/j.plaphy.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Waterlogging stress is a severe abiotic challenge that impedes plant growth and development. Ramie (Boehmeria nivea L.) is a Chinese traditional characteristic economic crop, valued for its fibers and by-products. To investigate the waterlogging tolerance of ramie and provide the scientific basis for selecting waterlogging-tolerant ramie varieties, this study examined the morphological, physiological, biochemical, and molecular responses of 15 ramie germplasms (varieties) under waterlogging stress. The results revealed varied impacts of waterlogging stress across the 15 ramie varieties, characterized by a decrease in SPAD values, net photosynthesis rates, and relative water content of ramie leaves, along with a significant increase in relative conductivity and the activities of antioxidant enzymes such as SOD, POD, CAT, and APX. Additionally, the levels of soluble sugars, soluble proteins, and free proline exhibited varying degrees of increase. Through Principal Component Analysis (PCA), ZZ_2 and ZSZ_1 were identified as relatively tolerant and susceptible varieties. Transcriptome analysis showed that the differential expressed genes between ZZ_2 and ZSZ_1 were significantly enriched in metabolic pathways, ascorbate and aldarate metabolism, and inositol phosphate metabolism, under waterlogging stress. In addition, the expression of hypoxia-responsive genes was higher in ZZ_2 than in ZSZ_1 under waterlogging stress. These differences might account for the varied waterlogging responses between the two varieties. Therefore, this study explored the morpho-physiological responses of ramie under waterlogging stress and identified the molecular mechanisms involved, providing valuable insights for improving ramie varieties and breeding new ones.
Collapse
Affiliation(s)
- Deyi Shao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Department of Agronomy, Bayero University Kano, PMB 3011, Kano, Nigeria
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Rabiu Sani Shawai
- Department of Crop Science, Faculty of Agriculture and Agricultural Technology, Kano University of Science and Technology Wudil, Kano, 713281, Nigeria
| | - Yu Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Yuelushan Laboratory, Changsha, 410082, China.
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China; Yuelushan Laboratory, Changsha, 410082, China.
| |
Collapse
|
3
|
Jiang X, Chen D, Wang X, Wang C, Zheng H, Ye W, Zhou W, Liu G, Zhang K. Nitazoxanide synergizes polymyxin B against Escherichia coli by depleting cellular energy. Microbiol Spectr 2024; 12:e0019124. [PMID: 38904380 PMCID: PMC11302062 DOI: 10.1128/spectrum.00191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The rapid expansion of antibiotic-resistant bacterial diseases is a global burden on public health. It makes sense to repurpose and reposition already-approved medications for use as supplementary agents in synergistic combinations with existing antibiotics. Here, we demonstrate that the anthelmintic drug nitazoxanide (NTZ) synergistically enhances the effectiveness of the lipopeptide antibiotic polymyxin B in inhibiting gram-negative bacteria, including those resistant to polymyxin B. Mechanistic investigations revealed that nitazoxanide inhibited calcium influx and cell membrane depolarization, enhanced the affinity between polymyxin B and the extracellular membrane, and promoted intracellular ATP depletion and an increase in reactive oxygen species (ROS), thus enhancing the penetration and disruption of the Escherichia coli cell membrane by polymyxin B. The transcriptomic analysis revealed that the combination resulted in energy depletion by inhibiting both aerobic and anaerobic respiration patterns in bacterial cells. The increased bactericidal effect of polymyxin B on the E. coli ∆nuoC strain further indicates that NuoC could be a promising target for nitazoxanide. Furthermore, the combination of nitazoxanide and polymyxin B showed promising therapeutic effects in a mouse infection model infected with E. coli. Taken together, these results demonstrate the potential of nitazoxanide as a novel adjuvant to polymyxin B, to overcome antibiotic resistance and improve therapeutic outcomes in refractory infections.IMPORTANCEThe rapid spread of antibiotic-resistant bacteria poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Here, the synergistic activity of the FDA-approved agent nitazoxanide (NTZ) combined with polymyxin B was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of the combination of nitazoxanide and polymyxin B were explored by fluorescent dye, transmission electron microscopy (TEM), and transcriptomic analysis. The synergistic efficacy was evaluated in vivo by the Escherichia coli and mouse sepsis models. These results suggested that nitazoxanide, as a promising antibiotic adjuvant, can effectively enhance polymyxin B activity, providing a potential strategy for treating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xuejia Jiang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Dongliang Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haihong Zheng
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenchong Ye
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Wu H, Yu H, Zhang X, Wang Y, Zhu H, Zhao Y, Ma Q. Identification and characterization of waterlogging-responsive genes in the parental line of maize hybrid An'nong 876. Genet Mol Biol 2024; 46:e20230026. [PMID: 38224488 PMCID: PMC10789244 DOI: 10.1590/1678-4685-gmb-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
Waterlogging stress is an important abiotic stress that adversely affects maize growth and yield. The mechanism regulating the early stage of the maize response to waterlogging stress is largely unknown. In this study, CM37 and cmh15 seedlings were treated with waterlogging stress and then examined in terms of their physiological changes. The results indicated that inbred line cmh15 is more tolerant to waterlogging stress and less susceptible to peroxide-based damages than CM37. The RNA sequencing analysis identified 1,359 down-regulated genes and 830 up-regulated genes in the waterlogging-treated cmh15 plants (relative to the corresponding control levels). According to the Gene Ontology analysis for the differentially expressed genes (DEGs), some important terms were identified which may play important roles in the response to waterlogging stress. Moreover, enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified for the DEGs. Furthermore, the substantial changes in the expression of 36 key transcription factors may be closely related to the maize in response to waterlogging stress. This study offers important insights into the mechanism in regulating maize tolerance to waterlogging stress, with important foundations for future research.
Collapse
Affiliation(s)
- Hongying Wu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Haitao Yu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Xingen Zhang
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
- West Anhui University, College of Biological and Pharmaceutical Engineering, Lu’an, China
| | - Yixiao Wang
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Hongjia Zhu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Yang Zhao
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Qing Ma
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| |
Collapse
|
5
|
Lin C, Zhang Z, Shen X, Liu D, Pedersen O. Flooding-adaptive root and shoot traits in rice. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23226. [PMID: 38167593 DOI: 10.1071/fp23226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Wetland plants, including rice (Oryza spp.), have developed multiple functional adaptive traits to survive soil flooding, partial submergence or even complete submergence. In waterlogged soils and under water, diffusion of O2 and CO2 is extremely slow with severe impacts on photosynthesis and respiration. As a response to shallow floods or rising floodwater, several rice varieties, including deepwater rice, elongate their stems to keep their leaves above the water surface so that photosynthesis can occur unhindered during partial submergence. In stark contrast, some other varieties hardly elongate even if they become completely submerged. Instead, their metabolism is reduced to an absolute minimum so that carbohydrates are conserved enabling fast regrowth once the floodwater recedes. This review focuses on the fascinating functional adaptive traits conferring tolerance to soil flooding, partial or complete submergence. We provide a general analysis of these traits focusing on molecular, anatomical and morphological, physiological and ecological levels. Some of these key traits have already been introgressed into modern high-yielding genotypes improving flood tolerance of several cultivars used by millions of farmers in Asia. However, with the ongoing changes in climate, we propose that even more emphasis should be placed on improving flood tolerance of rice by breeding for rice that can tolerate longer periods of complete submergence or stagnant flooding. Such tolerance could be achieved via additional tissues; i.e. aquatic adventitious roots relevant during partial submergence, and leaves with higher underwater photosynthesis caused by a longer gas film retention time.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; and Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, Kiel 24118, Germany
| | - Zhao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xuwen Shen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dan Liu
- Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, Kiel 24118, Germany; and Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark; and School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
6
|
Bakshi A, Choi WG, Kim SH, Gilroy S. The vacuolar Ca 2+ transporter CATION EXCHANGER 2 regulates cytosolic calcium homeostasis, hypoxic signaling, and response to flooding in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 240:1830-1847. [PMID: 37743731 DOI: 10.1111/nph.19274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short- or longer-term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding-triggered Ca2+ signaling. We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+ -related transcripts. We then focused on transporters likely to modulate Ca2+ signals. Candidates emerging from this analysis included AUTOINHIBITED Ca2+ ATPASE 1 and CATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding-related Ca2+ changes. Knockout mutants in CAX2 especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others. CAX2 mutants also generated larger and more sustained Ca2+ signals in response to both flooding and hypoxic challenges. CAX2 is a Ca2+ transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+ transport in the signaling systems that trigger flooding response.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Dr., Madison, WI, 53706, USA
| |
Collapse
|
7
|
Ganotra J, Sharma B, Biswal B, Bhardwaj D, Tuteja N. Emerging role of small GTPases and their interactome in plants to combat abiotic and biotic stress. PROTOPLASMA 2023; 260:1007-1029. [PMID: 36525153 DOI: 10.1007/s00709-022-01830-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/05/2022] [Indexed: 06/07/2023]
Abstract
Plants are frequently subjected to abiotic and biotic stress which causes major impediments in their growth and development. It is emerging that small guanosine triphosphatases (small GTPases), also known as monomeric GTP-binding proteins, assist plants in managing environmental stress. Small GTPases function as tightly regulated molecular switches that get activated with the aid of guanosine triphosphate (GTP) and deactivated by the subsequent hydrolysis of GTP to guanosine diphosphate (GDP). All small GTPases except Rat sarcoma (Ras) are found in plants, including Ras-like in brain (Rab), Rho of plant (Rop), ADP-ribosylation factor (Arf) and Ras-like nuclear (Ran). The members of small GTPases in plants interact with several downstream effectors to counteract the negative effects of environmental stress and disease-causing pathogens. In this review, we describe processes of stress alleviation by developing pathways involving several small GTPases and their associated proteins which are important for neutralizing fungal infections, stomatal regulation, and activation of abiotic stress-tolerant genes in plants. Previous reviews on small GTPases in plants were primarily focused on Rab GTPases, abiotic stress, and membrane trafficking, whereas this review seeks to improve our understanding of the role of all small GTPases in plants as well as their interactome in regulating mechanisms to combat abiotic and biotic stress. This review brings to the attention of scientists recent research on small GTPases so that they can employ genome editing tools to precisely engineer economically important plants through the overexpression/knock-out/knock-in of stress-related small GTPase genes.
Collapse
Affiliation(s)
- Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
8
|
Sun L, Wang J, Cui Y, Cui R, Kang R, Zhang Y, Wang S, Zhao L, Wang D, Lu X, Fan Y, Han M, Chen C, Chen X, Guo L, Ye W. Changes in terpene biosynthesis and submergence tolerance in cotton. BMC PLANT BIOLOGY 2023; 23:330. [PMID: 37344795 DOI: 10.1186/s12870-023-04334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Flooding is among the most severe abiotic stresses in plant growth and development. The mechanism of submergence tolerance of cotton in response to submergence stress is unknown. RESULTS The transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the submergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in submergence stress. CONCLUSIONS Regulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the tolerance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submergence stress.
Collapse
Affiliation(s)
- Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
- Cotton Research Institute of Jiangxi Province, Jiujiang, 332105, Jiangxi, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Ruiqing Kang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| |
Collapse
|
9
|
Kuanar SR, Sarkar RK, Panigrahi R, Mohapatra PK. Introgression of SUB1 aggravates the susceptibility of the popular rice cultivars Swarna and Savitri to stagnant flooding. Sci Rep 2023; 13:9032. [PMID: 37270542 DOI: 10.1038/s41598-023-35251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Identification of the Sub1 gene for tolerance to flash flooding and its introgression into high-yielding rice cultivars are major targets in rice breeding for flood-prone rice agro-ecosystems for ensuring yield stability. However, knowledge is scant on the response of the modified genotypes under stagnant flooding (SF) to meet the challenge of finding a superior allele that may confer greater resilience to the plant under a stress-prone environment. In pursuance, we have tested the response of Sub1-introgression in two popular rice varieties, Swarna and Savitri to SF by comparing the biochemical factors in the control of flag leaf senescence and its primary production mechanisms of the parental lines' versus Sub1-introgressed lines. The activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GR), and ascorbate peroxidase (APX) increased while various parameters of primary production like total chlorophyll content, stomatal conductance (gs), normalized difference vegetation index (NDVI) and photosynthetic activity (Pn) decreased progressively with passage of time in the flag leaf of the cultivars during the post-anthesis period and SF-treatment increased the enzyme activity while depressing primary production further. Introgression of Sub1 had no influence on these activities under control conditions but widened the margin of effects under SF. It was concluded that the functional ability of flag leaf in mega rice cultivars like Swarna and Savitri decreased significantly by SF because of an ethylene-mediated promotion of senescence of the flag leaf. The enhancement of antioxidant enzyme activity by SF could not sustain the stability of primary production in the flag leaf. The introgression of the Sub1 gene made the cultivars more vulnerable to SF because the gene induced overexpression of ethylene.
Collapse
Affiliation(s)
- Sandhya Rani Kuanar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Anchal College, Padampur, 768036, India
| | | | - Rashmi Panigrahi
- School of Life Science, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | | |
Collapse
|
10
|
Zhang K, Chen X, Yuan P, Song C, Song S, Jiao J, Wang M, Hao P, Zheng X, Bai T. Comparative Physiological and Transcriptome Analysis Reveals Potential Pathways and Specific Genes Involved in Waterlogging Tolerance in Apple Rootstocks. Int J Mol Sci 2023; 24:ijms24119298. [PMID: 37298249 DOI: 10.3390/ijms24119298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Apple (Malus × domestica Borkh.) is one of the most cultivated fruit crops in China. Apple trees frequently encounter waterlogging stress, mainly due to excess rainfall, soil compaction, or poor soil drainage, results in yellowing leaves and declined fruit quality and yield in some regions. However, the mechanism underlying the response to waterlogging has not been well elucidated. Therefore, we performed a physiological and transcriptomic analysis to examine the differential responses of two apple rootstocks (waterlogging-tolerant M. hupehensis and waterlogging-sensitive M. toringoides) to waterlogging stress. The results showed that M. toringoides displayed more severe leaf chlorosis during the waterlogging treatment than M. hupehensis. Compared with M. hupehensis, the more severe leaf chlorosis induced by waterlogging stress in M. toringoides was highly correlated with increased electrolyte leakage and superoxide radicals, hydrogen peroxide accumulation, and increased stomata closure. Interestingly, M. toringoides also conveyed a higher ethylene production under waterlogging stress. Furthermore, RNA-seq revealed that a total of 13,913 common differentially expressed genes (DEGs) were differentially regulated between M. hupehensis and M. toringoides under waterlogging stress, especially those DEGs involved in the biosynthesis of flavonoids and hormone signaling. This suggests a possible link of flavonoids and hormone signaling to waterlogging tolerance. Taken together, our data provide the targeted genes for further investigation of the functions, as well as for future molecular breeding of waterlogging-tolerant apple rootstocks.
Collapse
Affiliation(s)
- Kunxi Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaofei Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Penghao Yuan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Shangwei Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbo Hao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
11
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
12
|
Gao J, Zhuang S, Gui R. Subsurface aeration mitigates organic material mulching-induced anaerobic stress via regulating hormone signaling in Phyllostachys praecox roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1121604. [PMID: 36938059 PMCID: PMC10014838 DOI: 10.3389/fpls.2023.1121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Organic material mulching has been used extensively to allow Phyllostachys praecox to promote growth and development of shoots. However, the bamboo forest always showed a significant degradation, probably due to anaerobic damage caused by the mulching after several years. Therefore, we have innovatively proposed an improvement measure to aerate the underground pipes for the first time. We investigated the role of subsurface pipe aeration in regulating root hypoxia to reduce the stress and to identify the degradation mechanism. Results showed that aeration increased oxygen concentration, shoot yield and root growth compared with mulching, and the aeration enhanced the concentration of indole-3-acetic acid (IAA) and the expression of Aux/IAAs (Aux1, Aux2, Aux3, and Aux4). Aeration reduced gibberellin (GA), ethylene (ETH), and abscisic acid (ABA) contents as well as anaerobic enzyme activities (alanine transaminase, AlaAT; alcohol dehydrogenase, ADH; pyruvate decarboxylase, PDC; and lactate dehydrogenase, LDH), which alleviated root damage in anoxic conditions. Furthermore, correlation showed that the activities of ADH, LDH, PDC, and AlaAT showed significant linear correlations with soil oxygen levels. RDA analyses showed that ABA, IAA, and ETH were found as the key driving hormones of Aux/IAAs in the root of the forest mulched with organic material. Here we show that subsurface aeration increases soil oxygen concentration, shoot yield, root growth and regulates phytohormone concentrations and Aux/IAAs expression, which reduces anaerobic enzyme activities. Consequently, subsurface pipe aeration is an effective measure to mitigate the degradation of bamboo forests caused by soil hypoxia that results from organic material mulching.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Renyi Gui
- State Key Lab of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
13
|
Qu M, Zheng Y, Bi L, Yang X, Shang P, Zhou X, Zeng B, Shen B, Li W, Fan Y, Zeng B. Comparative transcriptomic analysis of the gene expression and underlying molecular mechanism of submergence stress response in orchardgrass roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1104755. [PMID: 36704155 PMCID: PMC9871833 DOI: 10.3389/fpls.2022.1104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Submergence stress creates a hypoxic environment. Roots are the first plant organ to face these low-oxygen conditions, which causes damage and affects the plant growth and yield. Orchardgrass (Dactylis glomerata L.) is one of the most important cold-season forage grasses globally. However, their submergence stress-induced gene expression and the underlying molecular mechanisms of orchardgrass roots are still unknown. METHODS Using the submergence-tolerant 'Dianbei' and submergence-sensitive 'Anba', the transcriptomic analysis of orchardgrass roots at different time points of submergence stress (0 h, 8 h, and 24 h) was performed. RESULTS We obtained 118.82Gb clean data by RNA-Seq. As compared with the control, a total of 6663 and 9857 differentially expressed genes (DEGs) were detected in Dianbei, while 7894 and 11215 DEGs were detected in Anba at 8 h and 24 h post-submergence-stress, respectively. Gene Ontology (GO) enrichment analysis obtained 986 terms, while Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis obtained 123 pathways. Among them, the DEGs in plant hormones, mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction were significantly differentially expressed in Dianbei, but not in Anba. DISCUSSION This study was the first to molecularly elucidate the submergence stress tolerance in the roots of two orchardgrass cultivars. These findings not only enhanced our understanding of the orchardgrass submergence tolerance, but also provided a theoretical basis 36 for the cultivation of submergence-tolerant forage varieties.
Collapse
Affiliation(s)
- Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Lei Bi
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xingyun Yang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Panpan Shang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Fan
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
14
|
Liu Z, Qiao D, Liu Z, Wang P, Sun L, Li X. Evaluation of waterlogging tolerance and responses of protective enzymes to waterlogging stress in pumpkin. PeerJ 2023; 11:e15177. [PMID: 37101787 PMCID: PMC10124548 DOI: 10.7717/peerj.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 04/28/2023] Open
Abstract
Waterlogging caused by short and severe, or prolonged precipitation can be attributed to global warming. Pumpkin plants are drought-tolerant but not tolerate to waterlogging stress. Under frequent rain and waterlogging conditions, the production of pumpkins is of lower quality, sometimes rotten, and harvest failure occurs in severe cases. Therefore, it is of great significance to assess the waterlogging tolerance mechanism of pumpkin plants. In this study, 10 novel pumpkin varieties from Baimi series were used. The waterlogging tolerance level of pumpkin plants was evaluated by measuring waterlogging tolerance coefficient of biomass and physiological indices using waterlogging stress simulation method. The criteria to evaluate the waterlogging tolerance capacities of pumpkin plants were also explored. Using principal component and membership function analysis, waterlogging tolerance levels of the pumpkin varieties were ranked as follows: Baimi No. 10>; Baimi No. 5>; Baimi No. 1>; Baimi No. 2>; Baimi No. 3>; Baimi No. 7>; Baimi No. 9>; Baimi No. 6>; Baimi No. 4>; Baimi No. 8. Based on the results, Baimi No. 10 was identified with strong waterlogging tolerance and Baimi No. 8 with weak waterlogging tolerance. The responses of malondialdehyde (MDA), proline, key enzymes responsible for anaerobic respiration, and antioxidant enzymes to waterlogging stress were studied in pumpkin plants. The relative expression levels of related genes were determined using real-time fluorescence quantitative PCR technique. The aim of our study was to assess the waterlogging tolerance mechanism of pumpkin plants, thus laying a theoretical foundation for breeding waterlogging-tolerant varieties in the future. After flooding stress treatment, the antioxidant enzyme activities, contents of proline and alcohol dehydrogenases of Baimi No. 10 and Baimi No. 8 displayed an increase followed by a decrease. All indices of Baimi No. 10 were higher than Baimi No. 8. MDA contents gradually increased, with the content being higher in Baimi No. 8 than Baimi No. 10. The activities of pyruvate decarboxylases (PDCs) in Baimi No. 8 and Baimi No. 10 exhibited a decrease initially, followed by an increase, and then a decrease again. The PDC activity in Baimi No. 8 was generally higher than Baimi No. 10. The relative expression levels of genes encoding superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase were consistent with their corresponding enzyme activities. During the early stage of flooding stress, pumpkin plants waterlogging tolerance was improved by enhancing the expression levels of antioxidant enzyme encoding genes and increasing the antioxidant enzyme activities.
Collapse
Affiliation(s)
- Zhenwei Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
- Henan Provincial Research Center for Horticultural Plant Resource Utilization and Germplasm Innovation Engineering, Henan, Xinxiang, China
| | - Dandan Qiao
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
- Henan Provincial Research Center for Horticultural Plant Resource Utilization and Germplasm Innovation Engineering, Henan, Xinxiang, China
| | - Zhenyu Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
- Henan Provincial Research Center for Horticultural Plant Resource Utilization and Germplasm Innovation Engineering, Henan, Xinxiang, China
| | - Pengwei Wang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
- Henan Provincial Research Center for Horticultural Plant Resource Utilization and Germplasm Innovation Engineering, Henan, Xinxiang, China
| | - Li Sun
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
- Henan Provincial Research Center for Horticultural Plant Resource Utilization and Germplasm Innovation Engineering, Henan, Xinxiang, China
| | - Xinzheng Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
- Henan Provincial Research Center for Horticultural Plant Resource Utilization and Germplasm Innovation Engineering, Henan, Xinxiang, China
| |
Collapse
|
15
|
Yang J, Mathew IE, Rhein H, Barker R, Guo Q, Brunello L, Loreti E, Barkla BJ, Gilroy S, Perata P, Hirschi KD. The vacuolar H+/Ca transporter CAX1 participates in submergence and anoxia stress responses. PLANT PHYSIOLOGY 2022; 190:2617-2636. [PMID: 35972350 PMCID: PMC9706465 DOI: 10.1093/plphys/kiac375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 05/04/2023]
Abstract
A plant's oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1-4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.
Collapse
Affiliation(s)
- Jian Yang
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hormat Rhein
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard Barker
- Department of Botany, Birge Hall, University of Wisconsin, Wisconsin, USA
| | - Qi Guo
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Luca Brunello
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, San Giuliano Terme, Pisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Simon Gilroy
- Department of Botany, Birge Hall, University of Wisconsin, Wisconsin, USA
| | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, San Giuliano Terme, Pisa, Italy
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
16
|
Gao J, Qian Z, Zhang Y, Zhuang S. Exogenous spermidine regulates the anaerobic enzyme system through hormone concentrations and related-gene expression in Phyllostachys praecox roots under flooding stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:182-196. [PMID: 35868108 DOI: 10.1016/j.plaphy.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Acclimation to hypoxia and anoxia is important in various ecological systems, especially flooded soil. Phyllostachys pracecox is sensitive to flooding, and therefore, it is important to explore ways of alleviating hypoxia stress in the roots. In this study, we investigated the regulatory effect of spermidine (Spd) on flooded P. praecox seedlings. METHODS A batch experiment was carried out in roots treated with Spd under flooding for eight days. The following factors were subsequently measured: growth, survival rate, root respiratory activity, soluble protein and anaerobic respiration enzyme contents (pyruvate decarboxylase, PDC; alcohol dehydrogenase, ADH; lactate dehydrogenase, LDH; alanine aminotransferase, AlaAT), S-adenosylmethionine decarboxylase (SAMDC), nitrate reductase (NR), ACC oxidase (ACO) and ACC synthetase (ACS) activities, free Spd, spermine (Spm) and the diamine precursor putrescine (Put) content, indole-3-acetic acid (IAA) and abscisic acid (ABA) content, ethylene emissions and expression of hormone-related genes. RESULTS Application of Spd promoted root growth (root length, volume, surface and dry weight) and root respiratory inhibition, improved the soluble protein content, and reduced the O2·- production rate, H2O2 and MDA content to alleviate the damage of roots under flooding. A significant increase in SAMDC activity, and ABA and IAA contents were also observed, along with a reduction in ethylene emissions, NR, ACO and ACS activities (p < 0.05). Exogenous Spd increased the free Spd and Spm contents in the P. praecox roots, but decreased the free Put content. Taken together, these findings suggest that hypoxia stress was alleviated. Moreover, exogenous Spd up-regulated the expression of auxin-related genes ARF1, AUX1, AUX2, AUX3 and AUX4, and down-regulated the expression of ethylene-related ACO and ACS genes during flooding. In addition, correlation and RDA analysis showed that ARF1, ACO and ACS significantly promoted the expression of auxin, ACO and ACS enzyme activities, respectively (p < 0.05), while ADH, NR, AlaAT, ethylene emissions, Put, Spd, ACS and ACO were significantly correlated with ACS, ACO, and auxin-related gene expression (p < 0.05). Overall, ethylene emissions, ACS and ACO were identified as the main drivers of ethylene and auxin-related gene structure. CONCLUSIONS These results suggest that Spd regulated hormone concentrations, the content of Spd, Spm and Put, and related gene expression, in turn regulating physiological changes such as anaerobic enzyme activity, mitigating flooding stress in the roots and improving overall growth. Spd therefore has the potential to improve the adaptability of P. praecox to flooding stress.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuangzhuang Qian
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuhe Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
17
|
da Silva Correa H, Blum CT, Galvão F, Maranho LT. Effects of oil contamination on plant growth and development: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43501-43515. [PMID: 35386087 DOI: 10.1007/s11356-022-19939-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Oil spills generate several environmental impacts and have become more common with the increase in petroleum extraction, refining, transportation, and trade. In soil, oil contamination increases water and nutrient availability and compaction, directly affecting plant growth and development. Different aspects of phytotoxicity can be observed and will vary according to the characteristics of soil and plants. Oil-contaminated soil also results in negative effects on biomass and changes in leaves and roots. Investigating the effects of oil contamination on plant growth and development can aid in the conservation of plant species and in the development of techniques such as bioremediation and biomonitoring. Thus, this review aims to discuss the main effects of oil contamination on plants, such as environmental stress and morphological, physiological, and anatomical changes, and the strategies developed by plants to survive contamination, as well as to identify plants with phytoremediation potential that can assist in removing oil from the environment.
Collapse
Affiliation(s)
- Hauane da Silva Correa
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Christopher Thomas Blum
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Franklin Galvão
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Leila Teresinha Maranho
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil.
| |
Collapse
|
18
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|
19
|
Deng X, Yang D, Sun H, Liu J, Song H, Xiong Y, Wang Y, Ma J, Zhang M, Li J, Liu Y, Yang M. Time-course analysis and transcriptomic identification of key response strategies to complete submergence in Nelumbo nucifera. HORTICULTURE RESEARCH 2022; 9:uhac001. [PMID: 35147174 PMCID: PMC8973275 DOI: 10.1093/hr/uhac001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/12/2021] [Indexed: 05/12/2023]
Abstract
Water submergence is an environmental stress with detrimental effects on plant growth and survival. As a wetland plant species, lotus (Nelumbo nucifera) is widely cultivated in flood-prone lowlands throughout Asian countries, but little is known about its endurance and acclimation mechanisms to complete submergence. Here, we combined a time-course submergence experiment and an RNA-sequencing transcriptome analysis on two lotus varieties of "Qiuxing" and "China Antique". Both varieties showed a low submergence tolerance, with a median lethal time of around 10 days. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) identified a number of key genes putatively involved in lotus submergence responses. Lotus plants under complete submergence developed thinned leaves and elongated petioles containing high density of aerenchyma. All four lotus submergence responsive ERF-VII genes and gene sets corresponding to the low oxygen "escape" strategy (LOES) were elevated. In addition, a number of lotus innate immunity genes were rapidly induced by submergence, likely to confer resistance to possible pathogen infections. Our data also reveals the likely involvement of jasmonic acid in modulating lotus submergence responses, but to a lesser extent than the gaseous ethylene hormone. These results suggest that lotus plants primarily take the LOES strategy in coping with submergence-induced complex stresses, and will be valuable for people understanding the molecular basis underlying the plant submergence acclimations.
Collapse
Affiliation(s)
- Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaqian Xiong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yunmeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Junyu Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
20
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
21
|
Wang Z, Han Y, Luo S, Rong X, Song H, Jiang N, Li C, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. FRONTIERS IN PLANT SCIENCE 2022; 13:1048227. [PMID: 36466266 PMCID: PMC9718366 DOI: 10.3389/fpls.2022.1048227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 05/16/2023]
Abstract
Waterlogging stress has a negative influence on agricultural production, particularly for rapeseed yield in a rice-rape rotation field. To alleviate the profound impacts of waterlogging stress on rapeseed production, a new fertilization with calcium peroxide (CaO2) was proposed. In this field experiment, with the conventional rape (Brassica napus L.) variety fengyou958 (FY958) and early maturing rape variety xiangyou420 (XY420) as materials, waterlogging was imposed from the bud to flowering stage, and three supplies of CaO2 (0, C1 for the 594 kg hm-2 and C2 for the 864 kg hm-2) were added as basal fertilizer. The results showed that CaO2 significantly reduced the accumulation of fermentation products in roots and alleviated the peroxidation of leaves. The reduced waterlogging stress promoted the root vigor and agronomic characters, such as branches, plant height and stem diameter, accelerated dry matter and nutrients accumulation, and resulting in 22.7% (C1) to 232.8% (C2) higher grain yields in XY420, and 112.4% (C1) to 291.8% (C2) higher grain yields in FY958, respectively. In conclusion, 594 kg hm-2 to 864 kg hm-2 CaO2 application restored the growth of waterlogged rapeseed leaves, and reduced the anaerobic intensity of root, which enhanced the resistance of plants to waterlogging, and improved crop productivity. In a certain range, the higher CaO2 application, the more the yield. This study provides a valid method to prevent damage from flooding in crop fields.
Collapse
Affiliation(s)
- Zhiyuan Wang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Yongliang Han
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Shang Luo
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Xiangmin Rong
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Haixing Song
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Na Jiang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Changwei Li
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Lan Yang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
- *Correspondence: Lan Yang,
| |
Collapse
|
22
|
Pérez-Jiménez M, Pérez-Tornero O. Short-Term Waterlogging in Citrus Rootstocks. PLANTS (BASEL, SWITZERLAND) 2021; 10:2772. [PMID: 34961243 PMCID: PMC8704903 DOI: 10.3390/plants10122772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Changes in climate are provoking flooding events that cause waterlogging in the fields. Citrus are mainly cultivated in areas with a high susceptibility to climate change. Therefore, it is vital to explore their responses to these events to anticipate future challenges by means of genetic improvement of the commercial rootstocks. In this experiment, three popular commercial rootstocks, namely 'Cleopatra' (C. reshni Hort. Ex Tanaka), C. macrophylla, and 'Forner Alcaide no. 5' (Citrus reshni Hort. Ex Tanaka × Poncirus trifoliata), were evaluated after being submitted to short-term waterlogging and a period of recovery of 7 days in each case. Photosynthesis rate and stomatal conductance decreased in 'Cleopatra', while in the other two genotypes they were maintained (C. macrophylla) or restored after recovery ('Forner Alcaide no. 5''). Relative water content and chlorophylls also decreased in 'Cleopatra'. This indicates a deeper effect of flooding in 'Cleopatra', which suffered changes during flooding that were also sustained during the recovery phase. This did not occur in the other two rootstocks, since they showed signs of recovery for those parameters that decreased during waterlogging.
Collapse
Affiliation(s)
- Margarita Pérez-Jiménez
- Equipo de Mejora Genética de Cítricos, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150 Murcia, Spain;
| | | |
Collapse
|
23
|
Benkeblia N. Physiological and Biochemical Response of Tropical Fruits to Hypoxia/Anoxia. FRONTIERS IN PLANT SCIENCE 2021; 12:670803. [PMID: 34335647 PMCID: PMC8322732 DOI: 10.3389/fpls.2021.670803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Aerobic respiration and oxygen consumption are indicators of routine metabolic rate, and dissolved oxygen in plant tissues is one of the most important environmental factors affecting their survival. The reduction of available O2 leads to hypoxia which causes a limitation of the oxidative phosphorylation; when O2 is absent, tissues generate ATP by activating the fermentative glycolysis to sustain glycolysis in the absence of mitochondrial respiration, which results in the production of lactate. Overall, hypoxia was reported to often decrease the respiration rate (O2 uptake) and delay the climacteric rise of ethylene in climacteric fruits by inhibiting action, thus delaying their ripening. Much research has been done on the application of postharvest hypoxia and anoxia treatment to temperate fresh crops (controlled or modified atmosphere), however, very few reported on tropical commodities. Indeed, the physiological mode of action of low or absence of oxygen in fresh crops is not well understood; and the physiological and biochemical bases of the effects low or absence of O2 are also yet to be clarified. Recent investigations using omics technologies, however, have provided useful information on the response of fresh fruits and vegetables to this abiotic stress. The aims of this review are to (i) report on the oxygen exchange in the crops tissue, (ii) discuss the metabolic responses to hypoxia and anoxia, and (iii) report the physiological and biochemical responses of crops tissues to these abiotic stresses and the potential benefits of these environmental conditions.
Collapse
|
24
|
Transcriptome Analysis Reveals Genes of Flooding-Tolerant and Flooding-Sensitive Rapeseeds Differentially Respond to Flooding at the Germination Stage. PLANTS 2021; 10:plants10040693. [PMID: 33916802 PMCID: PMC8065761 DOI: 10.3390/plants10040693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/31/2022]
Abstract
Flooding results in significant crop yield losses due to exposure of plants to hypoxic stress. Various studies have reported the effect of flooding stress at seedling establishment or later stages. However, the molecular mechanism prevailing at the germination stage under flooding stress remains enigmatic. The present study highlights the comparative transcriptome analysis in two rapeseed lines, i.e., flooding-tolerant (Santana) and -sensitive (23651) lines under control and 6-h flooding treatments at the germination stage. A total of 1840 up-regulated and 1301 down-regulated genes were shared by both lines in response to flooding. There were 4410 differentially expressed genes (DEGs) with increased expression and 4271 DEGs with reduced expression shared in both control and flooding conditions. Gene ontology (GO) enrichment analysis revealed that “transcription regulation”, “structural constituent of cell wall”, “reactive oxygen species metabolic”, “peroxidase”, oxidoreductase”, and “antioxidant activity” were the common processes in rapeseed flooding response. In addition, the processes such as “hormone-mediated signaling pathway”, “response to organic substance response”, “motor activity”, and “microtubule-based process” are likely to confer rapeseed flooding resistance. Mclust analysis clustered DEGs into nine modules; genes in each module shared similar expression patterns and many of these genes overlapped with the top 20 DEGs in some groups. This work provides a comprehensive insight into gene responses and the regulatory network in rapeseed flooding stress and provides guidelines for probing the underlying molecular mechanisms in flooding resistance.
Collapse
|
25
|
Karahara I, Horie T. Functions and structure of roots and their contributions to salinity tolerance in plants. BREEDING SCIENCE 2021; 71:89-108. [PMID: 33762879 PMCID: PMC7973495 DOI: 10.1270/jsbbs.20123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
Soil salinity is an increasing threat to the productivity of glycophytic crops worldwide. The root plays vital roles under various stress conditions, including salinity, as well as has diverse functions in non-stress soil environments. In this review, we focus on the essential functions of roots such as in ion homeostasis mediated by several different membrane transporters and signaling molecules under salinity stress and describe recent advances in the impacts of quantitative trait loci (QTLs) or genetic loci (and their causal genes, if applicable) on salinity tolerance. Furthermore, we introduce important literature for the development of barriers against the apoplastic flow of ions, including Na+, as well as for understanding the functions and components of the barrier structure under salinity stress.
Collapse
Affiliation(s)
- Ichirou Karahara
- Department of Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
26
|
Chung H, Lee YH. Hypoxia: A Double-Edged Sword During Fungal Pathogenesis? Front Microbiol 2020; 11:1920. [PMID: 32903454 PMCID: PMC7434965 DOI: 10.3389/fmicb.2020.01920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular oxygen functions as an electron acceptor for aerobic respiration and a substrate for key metabolisms and cellular processes. Most eukaryotes develop direct or indirect oxygen sensors and reprogram transcriptional and translational metabolisms to adapt to altered oxygen availability under varying oxygen concentrations. Human fungal pathogens manipulate transcriptional levels of genes related to virulence as well as oxygen-dependent metabolisms such as ergosterol homeostasis when they are confronted with oxygen limitation (hypoxia) during infection. Oxygen states in plant tissues also vary depending on site, species, and external environment, potentially providing hypoxia to plant pathogens during infection. In this review, knowledge on the regulation of oxygen sensing and adaptive mechanisms in eukaryotes and nascent understanding of hypoxic responses in plant pathogens are summarized and discussed.
Collapse
Affiliation(s)
- Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Tagliani A, Tran AN, Novi G, Di Mambro R, Pesenti M, Sacchi GA, Perata P, Pucciariello C. The calcineurin β-like interacting protein kinase CIPK25 regulates potassium homeostasis under low oxygen in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2678-2689. [PMID: 32053194 PMCID: PMC7210770 DOI: 10.1093/jxb/eraa004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/12/2020] [Indexed: 05/24/2023]
Abstract
Hypoxic conditions often arise from waterlogging and flooding, affecting several aspects of plant metabolism, including the uptake of nutrients. We identified a member of the CALCINEURIN β-LIKE INTERACTING PROTEIN KINASE (CIPK) family in Arabidopsis, CIPK25, which is induced in the root endodermis under low-oxygen conditions. A cipk25 mutant exhibited higher sensitivity to anoxia in conditions of potassium limitation, suggesting that this kinase is involved in the regulation of potassium uptake. Interestingly, we found that CIPK25 interacts with AKT1, the major inward rectifying potassium channel in Arabidopsis. Under anoxic conditions, cipk25 mutant seedlings were unable to maintain potassium concentrations at wild-type levels, suggesting that CIPK25 likely plays a role in modulating potassium homeostasis under low-oxygen conditions. In addition, cipk25 and akt1 mutants share similar developmental defects under waterlogging, further supporting an interplay between CIPK25 and AKT1.
Collapse
Affiliation(s)
- Andrea Tagliani
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Anh Nguyet Tran
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Giacomo Novi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Riccardo Di Mambro
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Michele Pesenti
- Department of Agricultural and Environmental Science, University of Milano, Milano, Italy
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Science, University of Milano, Milano, Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
28
|
Chung H, Kim S, Kim KT, Hwang BG, Kim HJ, Lee SJ, Lee YH. A novel approach to investigate hypoxic microenvironment during rice colonization by Magnaporthe oryzae. Environ Microbiol 2020; 21:1151-1169. [PMID: 30773773 DOI: 10.1111/1462-2920.14563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/13/2019] [Indexed: 01/22/2023]
Abstract
Because molecular oxygen functions as the final acceptor of electrons during aerobic respiration and a substrate for diverse enzymatic reactions, eukaryotes employ various mechanisms to maintain cellular homeostasis under varying oxygen concentration. Human fungal pathogens change the expression of genes involved in virulence and oxygen-required metabolisms such as ergosterol (ERG) synthesis when they encounter oxygen limitation (hypoxia) during infection. The oxygen level in plant tissues also fluctuates, potentially creating hypoxic stress to pathogens during infection. However, little is known about how in planta oxygen dynamics impact pathogenesis. In this study, we investigated oxygen dynamics in rice during infection by Magnaporthe oryzae via two approaches. First, rice leaves infected by M. oryzae were noninvasively probed using a microscopic oxygen sensor. Second, an immunofluorescence assay based on a chemical probe, pimonidazole, was used. Both methods showed that oxygen concentration in rice decreased after fungal penetration. We also functionally characterized five hypoxia-responsive genes participating in ERG biosynthesis for their role in pathogenesis. Resulting insights and tools will help study the nature of in planta oxygen dynamics in other pathosystems.
Collapse
Affiliation(s)
- Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Bae-Geun Hwang
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Hye-Jeong Kim
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Sang-Joon Lee
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea.,Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
29
|
Nakamura M, Noguchi K. Tolerant mechanisms to O 2 deficiency under submergence conditions in plants. JOURNAL OF PLANT RESEARCH 2020; 133:343-371. [PMID: 32185673 PMCID: PMC7214491 DOI: 10.1007/s10265-020-01176-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 05/02/2023]
Abstract
Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared to terrestrial plants. During O2 deficiency, both wetland and terrestrial plants use NAD(P)+ and ATP that are produced during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic stresses. Wetland plants show two contrasting strategies, low O2 escape and low O2 quiescence strategies (LOES and LOQS, respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. During O2 deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize NH4+ as the nitrogen (N) source without NH4+-dependent respiratory increase, leading to efficient respiratory O2 consumption in roots. In contrast, some wetland plants with high O2 supply system efficiently use NO3- from the soil where nitrification occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO2--driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or anoxia tolerance in the wetland plants.
Collapse
Affiliation(s)
- Motoka Nakamura
- Department of Bio-Production, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
30
|
Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K. Plant waterlogging/flooding stress responses: From seed germination to maturation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:228-236. [PMID: 31981875 DOI: 10.1016/j.plaphy.2020.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
Global climate change is strongly associated with variations in precipitation and flooding events. Flooding usually causes submergence- or partial submergence stress in plants, which significantly has a negative influence on agricultural production, from seed germination to vegetative and reproductive growth. Flooding stress results in crop growth under low oxygen conditions and thus, negatively affects the developmental periods of plant lifecycle. The survival strategies of different plant species under this stressful condition are distinct, whereas the perception pathways associated with flooding stress are similar at the molecular level. Plants respond to flooding stress by mediating changes in their architecture, energy metabolism, photosynthesis, respiration and endogenous phytohormone biosynthesis/signaling, because aerobic respiration is inhibited under flooding stress, the decrease of energy metabolism further constrains plant development. Consequently, to acclimate under these unfavorable conditions, the anaerobic respiration cascade must be promoted. In this updated review, we primarily focus on recent advances in our understanding of the mechanisms underlying plant responses to flooding stress. We summarize the functions of the flooding response factors involved in energy metabolism and phytohormone biosynthesis/signaling cascades. Finally, the current understanding of how plants circumvent flooding stress, and the potential challenges for future research, are discussed.
Collapse
Affiliation(s)
- Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongjie Meng
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
31
|
Gupta KJ, Mur LAJ, Wany A, Kumari A, Fernie AR, Ratcliffe RG. The role of nitrite and nitric oxide under low oxygen conditions in plants. THE NEW PHYTOLOGIST 2020; 225:1143-1151. [PMID: 31144317 DOI: 10.1111/nph.15969] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Plant tissues, particularly roots, can be subjected to periods of hypoxia due to environmental circumstances. Plants have developed various adaptations in response to hypoxic stress and these have been described extensively. Less well-appreciated is the body of evidence demonstrating that scavenging of nitric oxide (NO) and the reduction of nitrate/nitrite regulate important mechanisms that contribute to tolerance to hypoxia. Although ethylene controls hyponasty and aerenchyma formation, NO production apparently regulates hypoxic ethylene biosynthesis. In the hypoxic mitochondrion, cytochrome c oxidase, which is a major source of NO, also is inhibited by NO, thereby reducing the respiratory rate and enhancing local oxygen concentrations. Nitrite can maintain ATP generation under hypoxia by coupling its reduction to the translocation of protons from the inner side of mitochondria and generating an electrochemical gradient. This reaction can be further coupled to a reaction whereby nonsymbiotic haemoglobin oxidizes NO to nitrate. In addition to these functions, nitrite has been reported to influence mitochondrial structure and supercomplex formation, as well as playing a role in oxygen sensing via the N-end rule pathway. These studies establish that nitrite and NO perform multiple functions during plant hypoxia and suggest that further research into the underlying mechanisms is warranted.
Collapse
Affiliation(s)
- Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Luis A J Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth, SY23 3DA, UK
| | - Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
32
|
Ghosal S, Quilloy FA, Casal C, Septiningsih EM, Mendioro MS, Dixit S. Trait-based mapping to identify the genetic factors underlying anaerobic germination of rice: Phenotyping, GXE, and QTL mapping. BMC Genet 2020; 21:6. [PMID: 31952473 PMCID: PMC6969419 DOI: 10.1186/s12863-020-0808-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anaerobic germination is one of the most important traits for rice under direct-seeded conditions. The trait reduces risk of crop failure due to waterlogged conditions after seeding and allows water to be used as a means of weed control. The identification of QTLs and causal genes for anaerobic germination will facilitate breeding for improved direct-seeded rice varieties. In this study, we explored a BC1F2:3 population developed from a cross between BJ1, an indica landrace, and NSIC Rc222, a high-yielding recurrent parent. The population was phenotyped under different screening methods (anaerobic screenhouse, anaerobic tray, and aerobic screenhouse) to establish the relationship among the methods and to identify the most suitable screening method, followed by bulk segregant analysis (BSA) to identify large-effect QTLs. RESULTS The study showed high heritability for survival (SUR) under all three phenotyping conditions. Although high correlation was observed within screening environments between survival at 14 and 21 days after seeding, the correlation across environments was low. Germination under aerobic and anaerobic conditions showed very low correlation, indicating the independence of their genetic control. The results were further confirmed through AMMI analysis. Four significant markers with an effect on anaerobic germination were identified through BSA. CIM analysis revealed qAG1-2, qAG6-2, qAG7-4, and qAG10-1 having significant effects on the trait. qAG6-2 and qAG10-1 were consistent across screening conditions and seedling age while qAG1-2 and qAG7-4 were specific to screening methods. All QTLs showed an effect when survival across all screening methods was analyzed. Together, the QTLs explained 39 to 55% of the phenotypic variation for survival under anaerobic conditions. No QTL effects were observed under aerobic conditions. CONCLUSIONS The study helped us understand the effect of phenotyping method on anaerobic germination, which will lead to better phenotyping for this trait in future studies. The QTLs identified through this study will allow the improvement of breeding lines for the trait through marker-assisted selection or through forward breeding approaches such as genomic selection. The high frequency of the BJ1 allele of these QTLs will enhance the robustness of germination under anaerobic conditions in inbred and hybrid rice varieties.
Collapse
Affiliation(s)
- Sharmistha Ghosal
- International Rice Research Institute, Los Baños, Laguna, Philippines.,University of the Philippines, Los Baños, Laguna, Philippines.,Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | | | - Carlos Casal
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | | | | | - Shalabh Dixit
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
33
|
Pan J, Sharif R, Xu X, Chen X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:627331. [PMID: 33643336 PMCID: PMC7902513 DOI: 10.3389/fpls.2020.627331] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 05/19/2023]
Abstract
Waterlogging is one of the main abiotic stresses suffered by plants. Inhibition of aerobic respiration during waterlogging limits energy metabolism and restricts growth and a wide range of developmental processes, from seed germination to vegetative growth and further reproductive growth. Plants respond to waterlogging stress by regulating their morphological structure, energy metabolism, endogenous hormone biosynthesis, and signaling processes. In this updated review, we systematically summarize the changes in morphological structure, photosynthesis, respiration, reactive oxygen species damage, plant hormone synthesis, and signaling cascades after plants were subjected to waterlogging stress. Finally, we propose future challenges and research directions in this field.
Collapse
Affiliation(s)
- Jiawei Pan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Rahat Sharif
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Xuehao Chen,
| |
Collapse
|
34
|
Premkumar A, Lindberg S, Lager I, Rasmussen U, Schulz A. Arabidopsis PLDs with C2-domain function distinctively in hypoxia. PHYSIOLOGIA PLANTARUM 2019; 167:90-110. [PMID: 30417386 DOI: 10.1111/ppl.12874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Hypoxia (oxygen deprivation) causes metabolic disturbances at physiological, biochemical and genetic levels and results in decreased plant growth and development. Phospholipase D (PLD)-mediated signaling was reported for abiotic and biotic stress signaling events in plants. To investigate the participatory role of PLDs also in hypoxia signaling, we used wild type of Arabidopsis thaliana and 10 pld isoform mutants containing C2-domain. Hypoxia-induced changes in three major signaling players, namely, cytosolic free calcium (Ca2+ cyt ), reactive oxygen species (ROS) and phosphatidic acid (PA), were determined in mesophyll protoplasts. The Ca2+ cyt and ROS levels were monitored by fluorescence microscopy and confocal imaging, while PA levels were quantified by an enzymatic method. Our findings reveal that the elevations of cytosolic calcium and PA are reduced in all the 10 mutants dysfunctional in PLD isoforms. The hypoxia-related changes in both calcium and ROS show different kinetic patterns depending on the type of PLD studied. Pharmacological experiments confirm that both external and internal sources contribute to calcium and ROS accumulation under hypoxia. PLDα1-3, PLDβ1 and PLDγ1-3 are likely involved in calcium signaling under hypoxia as well as in PA production, while all investigated PLDs, except for PLDγ3, take part in ROS elevation.
Collapse
Affiliation(s)
- Albert Premkumar
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander Schulz
- Center for Advanced Bioimaging, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Fredriksberg, Denmark
| |
Collapse
|
35
|
Armstrong W, Beckett PM, Colmer TD, Setter TL, Greenway H. Tolerance of roots to low oxygen: 'Anoxic' cores, the phytoglobin-nitric oxide cycle, and energy or oxygen sensing. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:92-108. [PMID: 31255944 DOI: 10.1016/j.jplph.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Acclimation by plants to hypoxia and anoxia is of importance in various ecological systems, and especially for roots in waterlogged soil. We present evidence for acclimation by roots via 'anoxic' cores rather than being triggered by O2 sensors. The evidence for 'anoxic' cores comes from radial O2 profiles across maize roots and associated metabolic changes such as increases in the 'anaerobic enzymes' ADH and PDC in the 'anoxic' core, and inhibition of Cl- transport to the xylem. These cores are predicted to develop within 15-20 min after sudden transfer of a root to hypoxia, so that the cores are 'anoxically-shocked'. We suggest that 'anoxic' cores could emanate a signal(s), such as ACC the precursor of ethylene and/or propagation of a 'Ca2+ wave', to other tissue zones. There, the signalling would result in acclimation of the tissues to energy crisis metabolism. An O2 diffusion model for tissues with an 'anoxic' core, indicates that the phytoglobin-nitric oxide (Pgb-NO) cycle would only be engaged in a thin 'shell' (annulus) of tissue surrounding the 'anoxic' core, and so would only contribute small amounts of ATP on a whole organ basis (e.g. whole roots). A key feature within this annulus of tissue, where O2 is likely to be limiting, is that the ratio (ATP formed) / (O2 consumed) is 5-6, both when the NAD(P)H of glycolysis is converted to NAD(P)+ by the Pgb-NO cycle or by the TCA cycle linked to the electron transport chain. The main function of the Pgb-NO cycle may be the modulating of NO levels and O2 scavenging, thus preventing oxidative damage. We speculate that an 'anoxic' core in hypoxic plant organs may have a particularly high tolerance to anoxia because cells might receive a prolonged supply of carbohydrates and/or ATP from the regions still receiving sufficient O2 for oxidative phosphorylation. Severely hypoxic or 'anoxic' cores are well documented, but much research on responses of roots to hypoxia is still based on bulk tissue analyses. More research is needed on the interaction between 'anoxic' cores and tissues still receiving sufficient O2 for oxidative phosphorylation, both during a hypoxic exposure and during subsequent anoxia of the tissue/organ as a whole.
Collapse
Affiliation(s)
- William Armstrong
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia; Department of Biological Sciences, The University of Hull, Hull, UK
| | | | - Timothy D Colmer
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia.
| | - Timothy L Setter
- Agricultural and Environmental Consultant, P.O. Box 305, Bull Creek, 6149, WA, Australia
| | - Hank Greenway
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia
| |
Collapse
|
36
|
Gao L, Lee JS, Hübner S, Hulke BS, Qu Y, Rieseberg LH. Genetic and phenotypic analyses indicate that resistance to flooding stress is uncoupled from performance in cultivated sunflower. THE NEW PHYTOLOGIST 2019; 223:1657-1670. [PMID: 31059137 DOI: 10.1111/nph.15894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Given the rising risk of extreme weather caused by climate change, enhancement of abiotic stress resistance in crops is increasingly urgent. But will the development of stress-resistant cultivars come at the cost of yield under ideal conditions? We hypothesize that this need not be inevitable, because resistance alleles with minimal pleiotropic costs may evade artificial selection and be retained in crop germplasm. Genome-wide association (GWA) analyses for variation in plant performance and flooding response were conducted in cultivated sunflower, a globally important oilseed. We observed broad variation in flooding responses among genotypes. Flooding resistance was not strongly correlated with performance in control conditions, suggesting no inherent trade-offs. Consistent with this finding, we identified a subset of loci conferring flooding resistance, but lacking antagonistic effects on growth. Genetic diversity loss at candidate genes underlying these loci was significantly less than for other resistance genes during cultivated sunflower evolution. Despite bottlenecks associated with domestication and improvement, low-cost resistance alleles remain within the cultivated sunflower gene pool. Thus, development of cultivars that are both flooding-tolerant and highly productive should be straightforward. Results further indicate that estimates of pleiotropic costs from GWA analyses explain, in part, patterns of diversity loss in crop genomes.
Collapse
Affiliation(s)
- Lexuan Gao
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, 3888 Chenhua Road, Shanghai, 201602, China
| | - Joon Seon Lee
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sariel Hübner
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Galilee Research Institute (MIGAL), Tel Hai College, Upper Galilee, 12210, Israel
| | - Brent S Hulke
- USDA-ARS Red River Valley Agricultural Research Center, 1307 18th Street North, Fargo, ND, 58102, USA
| | - Yan Qu
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
- School of Landscape, Southwest Forestry University, 300 BailongSi, Kunming, 650224, China
| | - Loren H Rieseberg
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Ghosal S, Casal C, Quilloy FA, Septiningsih EM, Mendioro MS, Dixit S. Deciphering Genetics Underlying Stable Anaerobic Germination in Rice: Phenotyping, QTL Identification, and Interaction Analysis. RICE (NEW YORK, N.Y.) 2019; 12:50. [PMID: 31309351 PMCID: PMC6629739 DOI: 10.1186/s12284-019-0305-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/19/2019] [Indexed: 06/02/2023]
Abstract
Anaerobic germination (AG) is an important trait for direct-seeded rice (DSR) to be successful. Rice usually has low germination under anaerobic conditions, which leads to a poor crop stand in DSR when rain occurs after seeding. The ability of rice to germinate under water reduces the risk of poor crop stand. Further, this allows the use of water as a method of weed control. The identification of the genetic factors leading to high anaerobic germination is required to develop improved DSR varieties. In the present study, two BC1F2:3 mapping families involving a common parent with anaerobic germination potential, Kalarata, an indica landrace, and two recurrent parents, NSIC Rc222 and NSIC Rc238, were used. Phenotyping was done under two environmental conditions and genotyping was carried out through the KASP SNP genotyping platform. A total of 185 and 189 individuals genotyped with 170 and 179 polymorphic SNPs were used for QTL analysis for the two populations, Kalarata/NSIC Rc238 and Kalarata/NSIC Rc222, respectively. A total of five QTLs on chromosomes 3, 5, 6, 7, and 8 for survival (SUR) and four QTLs on chromosomes 1, 3 (two locations), and 7 for the trait seedling height (SH) across the populations and over the screening conditions were identified. Except for the QTLs on chromosomes 5 and 8, the parent with AG potential, Kalarata, contributed all the other QTLs. Among the five QTLs for SUR, the second-largest QTL (qSUR6-1) was novel for AG potential in rice, showing a stable expression in terms of genetic background and screening conditions explaining 11.96% to 16.01% of the phenotypic variation. The QTL for SH (qSH1-1) was also novel. Considering different genetic backgrounds and different screening conditions, the QTLs identified for the trait SUR explained phenotypic variation in the range of 57.60% to 73.09% while that for the trait SH ranged from 13.53% to 34.30%.
Collapse
Affiliation(s)
- Sharmistha Ghosal
- International Rice Research Institute, Los Baños, Laguna Philippines
- University of the Philippines, Los Baños, Laguna Philippines
- Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Carlos Casal
- International Rice Research Institute, Los Baños, Laguna Philippines
| | | | | | | | - Shalabh Dixit
- International Rice Research Institute, Los Baños, Laguna Philippines
| |
Collapse
|
38
|
Understanding the Impacts of Crude Oil and its Induced Abiotic Stresses on Agrifood Production: A Review. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In many parts of the world, the agricultural sector is faced with a number of challenges including those arising from abiotic environmental stresses which are the key factors responsible for most reductions in agrifood production. Crude oil contamination, an abiotic stress factor and a common environmental contaminant, at toxic levels has negative impacts on plants. Although various attempts have been made to demonstrate the impact of abiotic stresses on crops, the underlying factors responsible for the effects of crude oil and its induced abiotic stresses on the composition of the stressed plants are poorly understood. Hence, this review provides an in-depth examination of the: (1) effect of petroleum hydrocarbons on plants; (2) impact of abiotic environmental stresses on crop quality; (3) mechanistic link between crude oil stress and its induced abiotic stresses; as well as (4) mode of action/plant response mechanism to these induced stresses. The paper clearly reveals the implications of crude oil-induced abiotic stresses arising from the soil-root-plant route and from direct application on plant leaves.
Collapse
|
39
|
Gill MB, Zeng F, Shabala L, Zhang G, Yu M, Demidchik V, Shabala S, Zhou M. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Int J Mol Sci 2019; 20:E699. [PMID: 30736310 PMCID: PMC6387252 DOI: 10.3390/ijms20030699] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O₂•-) and hydrogen peroxide (H₂O₂)-two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O₂•- (QSO.TxNn.2H) and H₂O₂ (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O₂•- and H₂O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Min Yu
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
| | - Vadim Demidchik
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 222030 Minsk, Belarus.
| | - Sergey Shabala
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| |
Collapse
|
40
|
Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz KJ. Interference between arsenic-induced toxicity and hypoxia. PLANT, CELL & ENVIRONMENT 2019; 42:574-590. [PMID: 30198184 DOI: 10.1111/pce.13441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Plants often face combinatorial stresses in their natural environment. Here, arsenic (As) toxicity was combined with hypoxia (Hpx) in the roots of Arabidopsis thaliana as it often occurs in nature. Arsenic inhibited growth of both roots and leaves, whereas root growth almost entirely ceased in Hpx. Growth efficiently resumed, and Hpx marker transcripts decreased upon reaeration. Compromised recovery from HpxAs treatment following reaeration indicated some persistent effects of combined stresses despite lower As accumulation. Root glutathione redox potential turned more oxidized in Hpx and most strongly in HpxAs. The more oxidizing root cell redox potential and the lowered glutathione amounts may be conducive to the growth arrest of plants exposed to HpxAs. The stresses elicited changes in elemental and transcriptomic composition. Thus, calcium, magnesium, and phosphorous amounts decreased in rosettes, but the strongest decline was seen for potassium. The reorganized potassium-related transcriptome supports the conclusion that disturbed potassium homeostasis contributes to the growth phenotype. In a converse manner, photosynthesis-related parameters were hardly affected, whereas accumulated carbohydrates under all stresses and anthocyanins under Hpx exclude carbohydrate limitation. The study demonstrates the existence of both synergistic since mutually aggravating effects and antagonistic effects of single and combined stresses.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Lara Vogelsang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Romy Schmidt
- Institute of Biology I (Botany/Molecular Genetics), RWTH Aachen University, Aachen, Germany
| | - Michael Weber
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Bayreuth, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Meyer
- Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, Bonn, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Clemens
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Bayreuth, Germany
| | - Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, India
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
41
|
Ni XL, Gui MY, Tan LL, Zhu Q, Liu WZ, Li CX. Programmed Cell Death and Aerenchyma Formation in Water-Logged Sunflower Stems and Its Promotion by Ethylene and ROS. FRONTIERS IN PLANT SCIENCE 2019; 9:1928. [PMID: 30687344 PMCID: PMC6333753 DOI: 10.3389/fpls.2018.01928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/12/2018] [Indexed: 05/25/2023]
Abstract
Previous studies have shown that waterlogging/ hypoxic conditions induce aerenchyma formation to facilitate gas exchange. Ethylene (ET) and reactive oxygen species (ROS), as regulatory signals, might also be involved in these adaptive responses. However, the interrelationships between these signals have seldom been reported. Herein, we showed that programmed cell death (PCD) was involved in aerenchyma formation in the stem of Helianthus annuus. Lysigenous aerenchyma formation in the stem was induced through waterlogging (WA), ethylene and ROS. Pre-treatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) partially suppressed aerenchyma formation in the seedlings after treatment with WA, ET and 3-amino-1, 2, 4-triazole (AT, catalase inhibitor). In addition, pre-treatment with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) partially suppressed aerenchyma formation induced through WA and ET in the seedlings, but barely inhibited aerenchyma formation induced through ROS. These results revealed that ethylene-mediated ROS signaling plays a role in aerenchyma formation, and there is a causal and interdependent relationship during WA, ET and ROS in PCD, which regulates signal networks in the stem of H. annuus.
Collapse
Affiliation(s)
- Xi-Lu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Yinchuan, China
- Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of the Ministry of Education, College of Life Science, Southwest University, Chongqing, China
- School of Life Science, Northwest University, Xi'an, China
| | - Meng-Yuan Gui
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, China
| | - Ling-Ling Tan
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Qiang Zhu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Yinchuan, China
| | - Wen-Zhe Liu
- School of Life Science, Northwest University, Xi'an, China
| | - Chang-Xiao Li
- Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of the Ministry of Education, College of Life Science, Southwest University, Chongqing, China
| |
Collapse
|
42
|
Parveen M, Miyagi A, Kawai-Yamada M, Rashid MH, Asaeda T. Metabolic and biochemical responses of Potamogeton anguillanus Koidz. (Potamogetonaceae) to low oxygen conditions. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:171-179. [PMID: 30537604 DOI: 10.1016/j.jplph.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 02/21/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Oxygen availability in water is considered one of the most important factors for growth and productivity in aquatic submerged macrophytes. In the present study, the growth, stress responses, and metabolic changes in Potamogeton anguillanus Koidz. (Potamogetonaceae) were assessed after a 21-day exposure to low (hypoxia; dissolved oxygen, DO < 1 mg/L) or null (anoxia) oxygen concentrations in water. High growth rates and an increased indole acetic acid (IAA) content in P. anguillanus were observed under the hypoxic conditions (4-fold to control) compared to the anoxic conditions. In addition, the activation of glycolysis and fermentation processes was further recorded, given the increase in alcohol dehydrogenase activity and pyruvate concentration on the studied plants that were exposed to low oxygen concentrations. Moreover, the positive correlations of antioxidative enzyme activities, catalase (CAT) and guaiacol peroxidase (POD) with hydrogen peroxide (H2O2) confirmed the species ability to scavenge excess H2O2 under low oxygen stress. The capillary electrophoresis-mass spectrometry (CE-MS) analysis of the metabolome identified metabolite accumulations (e.g., glutamate, glutamine, aspartate, asparagine, valine, malate, lactate, citrate, isocitrate, proline and γ-amino butyric acid) in response to the anoxia.
Collapse
Affiliation(s)
- Mahfuza Parveen
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; Department of Environmental Science and Disaster Management, Daffodil International University, Bangladesh.
| | - Atsuko Miyagi
- Department of Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | - Maki Kawai-Yamada
- Department of Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | - Md H Rashid
- Department of Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| | - Takashi Asaeda
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; Research Institute of Chuo University, Kasuga, Bunkyo, Tokyo 112-8551, Japan.
| |
Collapse
|
43
|
Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling. mBio 2018; 9:mBio.01318-18. [PMID: 30401773 PMCID: PMC6222127 DOI: 10.1128/mbio.01318-18] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Organisms must adapt to changes in oxygen tension if they are to exploit the energetic benefits of reducing oxygen while minimizing the potentially damaging effects of oxidation. Consequently, organisms in all eukaryotic kingdoms display robust adaptation to hypoxia (low oxygen levels). This is particularly important for fungal pathogens that colonize hypoxic niches in the host. We show that adaptation to hypoxia in the major fungal pathogen of humans Candida albicans includes changes in cell wall structure and reduced exposure, at the cell surface, of β-glucan, a key pathogen-associated molecular pattern (PAMP). This leads to reduced phagocytosis by murine bone marrow-derived macrophages and decreased production of IL-10, RANTES, and TNF-α by peripheral blood mononuclear cells, suggesting that hypoxia-induced β-glucan masking has a significant effect upon C. albicans-host interactions. We show that hypoxia-induced β-glucan masking is dependent upon both mitochondrial and cAMP-protein kinase A (PKA) signaling. The decrease in β-glucan exposure is blocked by mutations that affect mitochondrial functionality (goa1Δ and upc2Δ) or that decrease production of hydrogen peroxide in the inner membrane space (sod1Δ). Furthermore, β-glucan masking is enhanced by mutations that elevate mitochondrial reactive oxygen species (aox1Δ). The β-glucan masking defects displayed by goa1Δ and upc2Δ cells are suppressed by exogenous dibutyryl-cAMP. Also, mutations that inactivate cAMP synthesis (cyr1Δ) or PKA (tpk1Δ tpk2Δ) block the masking phenotype. Our data suggest that C. albicans responds to hypoxic niches by inducing β-glucan masking via a mitochondrial cAMP-PKA signaling pathway, thereby modulating local immune responses and promoting fungal colonization.IMPORTANCE Animal, plant, and fungal cells occupy environments that impose changes in oxygen tension. Consequently, many species have evolved mechanisms that permit robust adaptation to these changes. The fungal pathogen Candida albicans can colonize hypoxic (low oxygen) niches in its human host, such as the lower gastrointestinal tract and inflamed tissues, but to colonize its host, the fungus must also evade local immune defenses. We reveal, for the first time, a defined link between hypoxic adaptation and immune evasion in C. albicans As this pathogen adapts to hypoxia, it undergoes changes in cell wall structure that include masking of β-glucan at its cell surface, and it becomes better able to evade phagocytosis by innate immune cells. We also define the signaling mechanisms that mediate hypoxia-induced β-glucan masking, showing that they are dependent on mitochondrial signaling and the cAMP-protein kinase pathway. Therefore, hypoxia appears to trigger immune evasion in this fungal pathogen.
Collapse
|
44
|
Sun L, Ma L, He S, Hao F. AtrbohD functions downstream of ROP2 and positively regulates waterlogging response in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513300. [PMID: 30188766 PMCID: PMC6204828 DOI: 10.1080/15592324.2018.1513300] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
NADPH oxidase AtrbohD plays very important roles in modulating many cellular processes through production of signal molecules reactive oxygen species in Arabidopsis. However, whether it regulates the response to waterlogging stress is unclear. In this report, we showed that expression of AtrbohD was markedly induced by waterlogging stress, and mutation in AtrbohD led to clear sensitivity of Arabidopsis plants to waterlogging stress. Moreover, waterlogging-promoted increases in alcohol dehydrogenase (ADH) activity, ADH1 expression and H2O2 accumulation were significantly attenuated in two mutant lines of AtrbohD. These results indicate that AtrbohD is required for Arabidopsis tolerance to waterlogging stress. Besides, GUS staining experiments revealed that disruption of small G protein ROP2 encoding gene evidently suppressed the increase of AtrbohD expression while defect of AtrbohD did not prominently affect the abundance enhancements of ROP2 transcripts under waterlogged conditions. Together, these data suggest that AtrbohD functions downstream of ROP2 to positively regulate the response to waterlogging stress in Arabidopsis.
Collapse
Affiliation(s)
- Lirong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - Liya Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, China
- Anci District Agricultural Bureau of Langfang, Langfang, China
| | - Shibin He
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - Fushun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
45
|
Mateluna P, Salvatierra A, Solis S, Nuñez G, Pimentel P. Involvement of aquaporin NIP1;1 in the contrasting tolerance response to root hypoxia in Prunus rootstocks. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:19-28. [PMID: 29842998 DOI: 10.1016/j.jplph.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
Prunus species have been classified as moderately sensitive to root hypoxia, but with a certain intrageneric tolerance degree to oxygen deficiency. Previously, RNA-seq analysis described the transcriptomic reconfiguration of two Prunus rootstocks contrasting to root hypoxia, which included the shift from aerobic to anaerobic metabolism. Here, we studied the relationship between lactate accumulation and the functionality of an aquaporin differentially expressed in 'Mariana 2624', a plum-based (Prunus cerasifera x Prunus munsoniana) rootstock tolerant to root hypoxia stress, and 'Mazzard F12/1', a cherry-based (Prunus avium) rootstock sensitive to root hypoxia stress. In the root hypoxia-sensitive rootstock, higher levels of lactate and LDH1 gene expression were found in roots exposed to oxygen deprivation. Concomitantly, we detected an increase in the mRNA abundance of Prunus spp. NIP1;1, a putative lactic acid transporter. Intriguingly, the high expression of PruavNIP1;1 is not linked to a lower lactic acid content in the roots of 'Mazzard F12/1'. To study this phenomenon, we calculated the force required for the transit of a lactic acid molecule through Prunus spp. NIP1;1 channels. Comparing the calculated forces, we identified steric hindrances in PruavNIP1;1 given by the residues Phe107 and Trp88 in the NPA region and ar/R filter, respectively. The functionality of both channels was corroborated by the restoration of the lactic acid transport and the differential lactic acid sensitive-phenotypes of the yeast strain Δjen1 complemented with PruavNIP1;1 and PrucxmNIP1;1. Our findings provide new insights into the mechanisms involved in determining hypoxia tolerance between closely related species, such as plum and cherry.
Collapse
Affiliation(s)
- Patricio Mateluna
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo, 2940000 Chile
| | - Ariel Salvatierra
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo, 2940000 Chile
| | - Simón Solis
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo, 2940000 Chile
| | - Gabriel Nuñez
- Escuela de Ingeniería Civil en Bioinformática, Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Paula Pimentel
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo, 2940000 Chile.
| |
Collapse
|
46
|
Yang Y, Fu Q, Wang X, Liu Y, Zeng Q, Li Y, Gao S, Bao L, Liu S, Gao D, Dunham R, Liu Z. Comparative transcriptome analysis of the swimbladder reveals expression signatures in response to low oxygen stress in channel catfish, Ictalurus punctatus. Physiol Genomics 2018; 50:636-647. [PMID: 29799804 DOI: 10.1152/physiolgenomics.00125.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment and to reveal genes, their expression patterns, and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish under hypoxic condition as compared with untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway ( nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway ( itga6, g6pc, and cdkn1a), Ras signaling pathway ( efna3 and ksr2), and signaling by VEGF ( fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.
Collapse
Affiliation(s)
- Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama.,Marine Science and Engineering College, Qingdao Agricultural University , Qingdao , China
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Sen Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University , Syracuse, New York
| |
Collapse
|
47
|
Pérez-Jiménez M, Hernández-Munuera M, Piñero MC, López-Ortega G, Del Amor FM. Are commercial sweet cherry rootstocks adapted to climate change? Short-term waterlogging and CO 2 effects on sweet cherry cv. 'Burlat'. PLANT, CELL & ENVIRONMENT 2018; 41:908-918. [PMID: 28107563 DOI: 10.1111/pce.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
High CO2 is able to ameliorate some negative effects due to climate change and intensify others. This study involves the sweet cherry (Prunus avium) cultivar 'Burlat' grafted on the 'Mariana 2624', 'Adara' and 'LC 52' rootstocks. In a climate chamber at two CO2 concentrations, ambient (400 µmol mol-1 ) and elevated (800 µmol mol-1 ), the plants were submitted to waterlogging for 7 d, followed by 7 d of recovery after drainage. Waterlogging drastically decreased the rate of photosynthesis, significantly endangering plant survival, particularly for the 'LC 52' and 'Adara' rootstocks. 'Mariana 2624' was also clearly affected by waterlogging that increased lipid peroxidation and the Cl- and SO42- concentrations in all the studied plants. Nevertheless, CO2 was able to overcome this reduction in photosynthesis, augmenting growth, increasing soluble sugars and starch, raising turgor and regulating the concentrations of Cl- and SO42- , while lowering the NO3- concentration in leaves of all the studied rootstocks. In concordance with these results, the proline levels indicated a more intense stress at control CO2 than at high CO2 for waterlogged plants. 'Mariana 2624' was more resistant to waterlogging than 'Adara', and both were more resistant than 'LC 52' in control CO2 conditions; this clearly enhanced the chance of survival under hypoxia.
Collapse
Affiliation(s)
- Margarita Pérez-Jiménez
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150, Murcia, Spain
| | - María Hernández-Munuera
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150, Murcia, Spain
| | - M Carmen Piñero
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150, Murcia, Spain
| | - Gregorio López-Ortega
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150, Murcia, Spain
| | - Francisco M Del Amor
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150, Murcia, Spain
| |
Collapse
|
48
|
Ye NH, Wang FZ, Shi L, Chen MX, Cao YY, Zhu FY, Wu YZ, Xie LJ, Liu TY, Su ZZ, Xiao S, Zhang H, Yang J, Gu HY, Hou XX, Hu QJ, Yi HJ, Zhu CX, Zhang J, Liu YG. Natural variation in the promoter of rice calcineurin B-like protein10 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:612-625. [PMID: 29495079 DOI: 10.1111/tpj.13881] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 05/23/2023]
Abstract
Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.
Collapse
Affiliation(s)
- Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lu Shi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yun-Ying Cao
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Fu-Yuan Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
| | - Yi-Zhen Wu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tie-Yuan Liu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ze-Zhuo Su
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hai-Yong Gu
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences (GDRRI), Guangzhou, China
| | - Xuan-Xuan Hou
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Qi-Juan Hu
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hui-Juan Yi
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Chang-Xiang Zhu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
49
|
Elevation of cytosolic Ca2+ in response to energy deficiency in plants: the general mechanism of adaptation to low oxygen stress. Biochem J 2018; 475:1411-1425. [DOI: 10.1042/bcj20180169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Ca2+ can be released from cell compartments to the cytosol during stress conditions. We discuss here the causes of Ca2+ release under conditions of ATP concentration decline that result in the suppression of ATPases and activation of calcium ion channels. The main signaling and metabolic consequences of Ca2+ release are considered for stressed plant cells. The signaling function includes generation and spreading of calcium waves, while the metabolic function results in the activation of particular enzymes and genes. Ca2+ is involved in the activation of glutamate decarboxylase, initiating the γ-aminobutyric acid shunt and triggering the formation of alanine, processes which play a role, in particular, in pH regulation. Ca2+ activates the transcription of several genes, e.g. of plant hemoglobin (phytoglobin, Pgb) which scavenges nitric oxide and regulates redox and energy balance through the Pgb–nitric oxide cycle. This cycle involves NADH and NADPH oxidation from the cytosolic side of mitochondria, in which Ca2+- and low pH-activated external NADH and NADPH dehydrogenases participate. Ca2+ can also activate the genes of alcohol dehydrogenase and pyruvate decarboxylase stimulating hypoxic fermentation. It is concluded that calcium is a primary factor that causes the metabolic shift under conditions of oxygen deficiency.
Collapse
|
50
|
Xiao Z, Rogiers SY, Sadras VO, Tyerman SD. Hypoxia in grape berries: the role of seed respiration and lenticels on the berry pedicel and the possible link to cell death. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2071-2083. [PMID: 29415235 PMCID: PMC6018838 DOI: 10.1093/jxb/ery039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/31/2018] [Indexed: 05/20/2023]
Abstract
Mesocarp cell death (CD) during ripening is common in berries of seeded Vitis vinifera L. wine cultivars. We examined if hypoxia within berries is linked to CD. The internal oxygen concentration ([O2]) across the mesocarp was measured in berries from Chardonnay and Shiraz, both seeded, and Ruby Seedless, using an oxygen micro-sensor. Steep [O2] gradients were observed across the skin and [O2] decreased toward the middle of the mesocarp. As ripening progressed, the minimum [O2] approached zero in the seeded cultivars and correlated to the profile of CD across the mesocarp. Seed respiration declined during ripening, from a large proportion of total berry respiration early to negligible at later stages. [O2] increased towards the central axis corresponding to the presence of air spaces visualized using X-ray micro-computed tomography (CT). These air spaces connect to the pedicel where lenticels are located that are critical for berry O2 uptake as a function of temperature, and when blocked caused hypoxia in Chardonnay berries, ethanol accumulation, and CD. The implications of hypoxia in grape berries are discussed in terms of its role in CD, ripening, and berry water relations.
Collapse
Affiliation(s)
- Zeyu Xiao
- The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB1, Glen Osmond, SA, Australia
| | - Suzy Y Rogiers
- The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Glen Osmond, SA, Australia
- NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Victor O Sadras
- The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB1, Glen Osmond, SA, Australia
- South Australian Research & Development Institute, Waite Research Precinct, Urrbrae, SA, Australia
| | - Stephen D Tyerman
- The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB1, Glen Osmond, SA, Australia
| |
Collapse
|