1
|
Boucher MJ, Banerjee S, Joshi MB, Wei AL, Nalley MJ, Huang MY, Lei S, Ciranni M, Condon A, Langen A, Goddard TD, Caradonna I, Goranov AI, Homer CM, Mortensen Y, Petnic S, Reilly MC, Xiong Y, Susa KJ, Pastore VP, Zaro BW, Madhani HD. Phenotypic landscape of an invasive fungal pathogen reveals its unique biology. Cell 2025:S0092-8674(25)00567-7. [PMID: 40505656 DOI: 10.1016/j.cell.2025.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/27/2025] [Accepted: 05/16/2025] [Indexed: 06/18/2025]
Abstract
Cryptococcus neoformans is the most common cause of fungal meningitis and the top-ranking WHO fungal priority pathogen. Only distantly related to model fungi, C. neoformans is also a powerful experimental system for exploring conserved eukaryotic mechanisms lost from specialist model yeast lineages. To decipher its biology globally, we constructed 4,328 gene deletions and measured-with exceptional precision-the fitness of each mutant under 141 diverse growth-limiting in vitro conditions and during murine infection. We defined functional modules by clustering genes based on their phenotypic signatures. In-depth studies leveraged these data in two ways. First, we defined and investigated new components of key signaling pathways, which revealed metazoan-like cellular machinery not present in model yeasts. Second, we identified environmental adaptation mechanisms repurposed to promote mammalian virulence by C. neoformans, which lacks a known animal reservoir. Our work provides an unprecedented resource for deciphering a deadly human pathogen.
Collapse
Affiliation(s)
- Michael J Boucher
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sanjita Banerjee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Meenakshi B Joshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Angela L Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew J Nalley
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manning Y Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Susan Lei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Massimiliano Ciranni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Andrew Condon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andreas Langen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas D Goddard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ippolito Caradonna
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexi I Goranov
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christina M Homer
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yasaman Mortensen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah Petnic
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Morgann C Reilly
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ying Xiong
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine J Susa
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vito Paolo Pastore
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Balyn W Zaro
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Bohm KA, Laughery MF, Mieczkowski PA, Roberts SA, Wyrick J. Genome-wide maps of UV damage repair and mutation suppression by CPD photolyase. Nucleic Acids Res 2025; 53:gkaf495. [PMID: 40498072 PMCID: PMC12153352 DOI: 10.1093/nar/gkaf495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/23/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
Ultraviolet (UV) light causes cyclobutane pyrimidine dimers (CPDs) and other DNA lesions that must be efficiently repaired to prevent cell death and mutagenesis. While mammals utilize the nucleotide excision repair (NER) pathway to repair CPDs, many species primarily utilize photolyase enzymes to repair UV damage. Our understanding of how different genomic and chromatin features impact photolyase repair across a eukaryotic genome is limited. Here, we map repair of CPDs by photolyase across the yeast genome at single-nucleotide resolution. Our data indicate that yeast photolyase repairs CPDs more rapidly than NER, but photolyase activity is inhibited at certain classes of transcription factor binding sites and in nucleosomes. Repair in nucleosomes is particularly inhibited when CPDs are located along the 3' side of the nucleosomal DNA or at minor-in rotational settings. Our data indicate that photolyase efficiently repairs the non-transcribed strand of yeast genes, but repair of the transcribed strand (TS) is inhibited. Genome-wide analysis of UV-induced mutations in NER-deficient photoreactivated yeast reveals a striking enrichment of mutations along the TS of yeast genes. These data indicate that inhibition of photolyase repair along the TS, likely due to occlusion of CPDs by RNA polymerase II stalling, promotes UV mutagenesis.
Collapse
Affiliation(s)
- Kaitlynne A Bohm
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States
| | - Marian F Laughery
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
3
|
Schmerer N, Janga H, Aillaud M, Hoffmann J, Aznaourova M, Wende S, Steding H, Halder LD, Uhl M, Boldt F, Stiewe T, Nist A, Jerrentrup L, Kirschbaum A, Ruppert C, Rossbach O, Ntini E, Marsico A, Valasarajan C, Backofen R, Linne U, Pullamsetti SS, Schmeck B, Schulte LN. A searchable atlas of pathogen-sensitive lncRNA networks in human macrophages. Nat Commun 2025; 16:4733. [PMID: 40399309 PMCID: PMC12095776 DOI: 10.1038/s41467-025-60084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
Long noncoding RNAs (lncRNA) are crucial yet underexplored regulators of human immunity. Here we develop GRADR, a method integrating gradient profiling with RNA-binding proteome analysis, to map the protein interactomes of all expressed RNAs in a single experiment to study mechanisms of lncRNA-mediated regulation of human primary macrophages. Applying GRADR alongside CRISPR-multiomics, we reveal a network of NFκB-dependent lncRNAs, including LINC01215, AC022816.1 and ROCKI, which modulate distinct aspects of macrophage immunity, particularly through interactions with mRNA-processing factors, such as hnRNP proteins. We further uncover the function of ROCKI in repressing the messenger of the anti-inflammatory GATA2 transcription factor, thus promoting macrophage activation. Lastly, all data are consolidated in the SMyLR web interface, a searchable reference catalog for exploring lncRNA functions and pathway-dependencies in immune cells. Our results thus not only highlight the important functions of lncRNAs in immune regulation, but also provide a rich resource for lncRNA studies.
Collapse
Affiliation(s)
- Nils Schmerer
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Harshavardhan Janga
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Michelle Aillaud
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Janina Hoffmann
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Marina Aznaourova
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Sarah Wende
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Henrike Steding
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Luke D Halder
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Michael Uhl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
- Signalling Research Centre CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Fabian Boldt
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Thorsten Stiewe
- German Center for Lung Research (DZL), 35392, Giessen, Germany
- Genomics Core Facility, Institute of Molecular Oncology, University of Marburg, 35043, Marburg, Germany
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, University of Marburg, 35043, Marburg, Germany
| | - Lukas Jerrentrup
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
| | - Andreas Kirschbaum
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Clemens Ruppert
- German Center for Lung Research (DZL), 35392, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, 35392, Germany
- UGMLC Giessen Biobank and european IPF registry (eurIPFreg), Giessen, 35392, Germany
| | - Oliver Rossbach
- Institute for Biochemistry, FB08, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Evgenia Ntini
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Annalisa Marsico
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Institute for Computational Biology, Helmholtz Center, 85764, München, Germany
| | - Chanil Valasarajan
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, 35392, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
- Signalling Research Centre CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Uwe Linne
- Mass spectrometry facility of the Department of Chemistry, Philipps University, Marburg, Germany
| | - Soni S Pullamsetti
- German Center for Lung Research (DZL), 35392, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, 35392, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany
- German Center for Lung Research (DZL), 35392, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Hospital Giessen and Marburg, Philipps University Marburg, Marburg, Germany
- German Centre for Infectious Disease Research (DZIF), SYNMIKRO Centre for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, 35043, Marburg, Germany.
- German Center for Lung Research (DZL), 35392, Giessen, Germany.
| |
Collapse
|
4
|
Juszczak GR, Stankiewicz AM, Starzyński RR, Ogłuszka M, Jaszczyk A. Effect of Corticosterone on Gene Expression in the Context of Global Hippocampal Transcription. Int J Mol Sci 2025; 26:4889. [PMID: 40430058 PMCID: PMC12112531 DOI: 10.3390/ijms26104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
The composition of genomic mediators of glucocorticoid actions in the brain remains elusive because of low-statistical-power experiments and the associated transcriptomic data with very low consistency. The problem is further exaggerated by the underrepresentation of chronic experiments and the interpretation of differentially expressed genes without understanding their contribution to the total transcriptomic activity. To fill existing gaps in knowledge, we have performed a large transcriptomic experiment, testing the effects of prolonged treatment with corticosterone on the hippocampal transcriptome (RNA sequencing). The experiment showed that prolonged treatment with corticosterone induced a set of transcriptomic effects that were replicable across treatment durations, including genes relevant for human PTSD (Opalin, Pllp, Ttyh2, Lpar1) and prolonged stress in animals (Cnp, Fam163a, Fcrls, Tmem125). Some of the affected genes are specific for oligodendrocytes, neurons, astrocytes, immune cells, the vascular system, and brain ventricles, indicating that glucocorticoids may affect all central nervous system components. The data also showed that the largest changes in expression of corticosterone-responsive genes are restricted to genes with a relatively low expression level and small contribution to the overall pool of mRNAs in the hippocampus. As a result, even a large change in the number of affected genes leads to a small change in the number of newly synthesized mRNA copies. This means, in turn, that the transcriptomic changes induced by corticosterone have low-cost effects on the brain. This specificity of transcriptomic responses also poses a challenge for the interpretation of data and constitutes a potential source of reporting bias in past studies. Therefore, there is a need for further research on products of gene expression, both at the transcriptomic and proteomic levels, during stress conditions.
Collapse
Affiliation(s)
- Grzegorz R. Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland;
| | - Adrian M. Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland;
| |
Collapse
|
5
|
Chen F, Zhang Y, Li W, Sedlazeck FJ, Shen L, Creighton CJ. Global DNA methylation differences involving germline structural variation impact gene expression in pediatric brain tumors. Nat Commun 2025; 16:4713. [PMID: 40399292 PMCID: PMC12095544 DOI: 10.1038/s41467-025-60110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The extent of genetic variation and its influence on gene expression across multiple tissue and cellular contexts is still being characterized, with germline Structural Variants (SVs) being historically understudied. DNA methylation also represents a component of normal germline variation across individuals. Here, we combine germline SVs (by short-read sequencing) with tumor DNA methylation across 1292 pediatric brain tumor patients. For thousands of methylation probes for CpG Islands (CGIs) or enhancers, rare and common SV breakpoints upstream or downstream associate with differential methylation in tumors spanning various histologic types, a significant subset involving genes with SV-associated differential expression. Cancer predisposition genes involving SV-associated differential methylation and expression include MSH2, RSPA, and PALB2. SV breakpoints falling within CGIs or histone marks H3K36me3 or H3K9me3 associate with differential CGI methylation. Genes with SVs and CGI methylation associated with patient survival include POLD4. Our results capture a class of normal phenotypic variation having disease implications.
Collapse
Affiliation(s)
- Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Lanlan Shen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Mitchelson KAJ, O'Connell F, Wynne K, Matallanas D, O'Sullivan J, Roche HM. Saturated fat exacerbates mitochondrial dysfunction through remodelling of ATP production and inflammation in Barrett's oesophagus compared to monounsaturated fat, particularly in contrast to oesophageal adenocarcinoma. Neoplasia 2025; 66:101173. [PMID: 40381373 DOI: 10.1016/j.neo.2025.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
Obesity-related oesophageal adenocarcinoma (OAC), arising from Barrett's oesophagus (BO), incidence rates are rising coincident with high-fat diets. However, adipose tissue phenotype drives metabolic characteristics. Prior feeding studies demonstrated that obesogenic diets enriched in saturated fatty acids (SFA) induce a more adverse metabolic and pro-inflammatory adipose phenotype, compared to monounsaturated fatty acids (MUFA) enriched high-fat diets, despite equal obesity. We hypothesise that different fatty acids may alter the progression of BO to OAC, wherein SFA may be more pathogenic compared to MUFA. Proteomic analysis shows that SFA, not MUFA, increases fatty acid metabolism, oncogenic signalling, and mitochondrial respiratory chain to a greater extent in BO but not in OAC cells. Cellular metabolic analysis validated proteomic findings to show mitochondrial dysfunction in BO but showed an increase in glycolysis in OAC following SFA treatment compared to MUFA. Additionally, it showed a decrease in mitochondrial ATP production following treatment of SFA in BO and OAC cells. Reduction of SFA intake may be beneficial as a supplementary treatment approach to manage and/or prevent OAC progression.
Collapse
Affiliation(s)
- Kathleen A J Mitchelson
- Nutrigenomics Research Group, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Kieran Wynne
- UCD Conway Institute, University College Dublin, Dublin, Ireland; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom.
| |
Collapse
|
7
|
Lopez-Pajares V, Bhaduri A, Zhao Y, Gowrishankar G, Donohue LKH, Guo MG, Siprashvili Z, Miao W, Nguyen DT, Yang X, Li AM, Tung ASH, Shanderson RL, Winge MCG, Meservey LM, Srinivasan S, Meyers RM, Guerrero A, Ji AL, Garcia OS, Tao S, Gambhir SS, Long JZ, Ye J, Khavari PA. Glucose modulates IRF6 transcription factor dimerization to enable epidermal differentiation. Cell Stem Cell 2025; 32:795-810.e10. [PMID: 40120584 PMCID: PMC12048241 DOI: 10.1016/j.stem.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Non-energetic roles for glucose are largely unclear, as is the interplay between transcription factors (TFs) and ubiquitous biomolecules. Metabolomic analyses uncovered elevation of intracellular glucose during differentiation of diverse cell types. Human and mouse tissue engineered with glucose sensors detected a glucose gradient that peaked in the outermost differentiated layers of the epidermis. Free glucose accumulation was essential for epidermal differentiation and required the SGLT1 glucose transporter. Glucose affinity chromatography uncovered glucose binding to diverse regulatory proteins, including the IRF6 TF. Direct glucose binding enabled IRF6 dimerization, DNA binding, genomic localization, and induction of IRF6 target genes, including essential pro-differentiation TFs GRHL1, GRHL3, HOPX, and PRDM1. These data identify a role for glucose as a gradient morphogen that modulates protein multimerization in cellular differentiation.
Collapse
Affiliation(s)
- Vanessa Lopez-Pajares
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Aparna Bhaduri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gayatri Gowrishankar
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Marten C G Winge
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsey M Meservey
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angela Guerrero
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
8
|
Oyabu M, Ohira Y, Fujita M, Yoshioka K, Kawaguchi R, Kubo A, Hatazawa Y, Yukitoshi H, Ortuste Quiroga HP, Horii N, Miura F, Araki H, Okano M, Hatada I, Gotoh H, Yoshizawa T, Fukada SI, Ogawa Y, Ito T, Ishihara K, Ono Y, Kamei Y. Dnmt3a overexpression disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces metabolic elasticity. iScience 2025; 28:112144. [PMID: 40151644 PMCID: PMC11937683 DOI: 10.1016/j.isci.2025.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/10/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Mammalian aging is reportedly driven by the loss of epigenetic information; however, its impact on skeletal muscle aging remains unclear. This study shows that aging mouse skeletal muscle exhibits increased DNA methylation, and overexpression of DNA methyltransferase 3a (Dnmt3a) induces an aging-like phenotype. Muscle-specific Dnmt3a overexpression leads to an increase in central nucleus-positive myofibers, predominantly in fast-twitch fibers, a shift toward slow-twitch fibers, elevated inflammatory and senescence markers, mitochondrial OXPHOS complex I reduction, and decreased basal autophagy. Dnmt3a overexpression resulted in reduced muscle mass and strength and impaired endurance exercise capacity with age, accompanied by an enhanced inflammatory signature. In addition, Dnmt3a overexpression reduced not only sensitivity to starvation-induced muscle atrophy but also the restorability from muscle atrophy. These findings suggest that increased DNA methylation disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces muscle metabolic elasticity.
Collapse
Affiliation(s)
- Mamoru Oyabu
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuto Ohira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Mariko Fujita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kiyoshi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan
| | - Runa Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukino Hatazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Hinako Yukitoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Huascar Pedro Ortuste Quiroga
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Hitoshi Gotoh
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tatsuya Yoshizawa
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - So-ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kengo Ishihara
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
9
|
Stokes MS, Kim YJ, Kim Y, Koul S, Chiu SP, Dasovich M, Zuniga J, Nandu T, Huang D, Mathews TP, Solmonson A, Camacho CV, Kraus WL. NAD + Sensing by PARP7 Regulates the C/EBPβ-Dependent Transcription Program in Adipose Tissue In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647692. [PMID: 40291749 PMCID: PMC12027069 DOI: 10.1101/2025.04.07.647692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We have identified PARP7, an NAD + -dependent mono(ADP-ribosyl) transferase, as a key regulator of the C/EBPβ-dependent proadipogenic transcription program. Moreover, PARP7 is required for efficient adipogenesis and downstream biological functions, including involution of the lactating mammary gland. PARP7 serves as a coregulator of C/EBPβ, and depletion of PARP7 causes a dramatic reduction in C/EBPβ binding across the genome. PARP7 functions as a sensor of nuclear NAD + levels to control gene expression. At the relatively high nuclear NAD + concentrations in undifferentiated preadipocytes, PARP7 is catalytically active for auto- mono(ADP-ribosyl)ation (autoMARylation). As nuclear NAD + concentrations decline post- differentiation, autoMARylation decreases dramatically. AutoMARylation promotes instability of PARP7 through an E3 ligase-ubiquitin-proteasome pathway mediated by the ADP-ribose (ADPR)-binding ubiquitin E3 ligases DTX2 and RNF114. Genetic depletion of PARP7 in mice promotes a dramatic reduction in a wide array of lipids in the mammary gland fat pads and milk from lactating females, as well as a significant decrease in nicotinamide mononucleotide (NMN), a key nutrient in mother's milk. The latter is due to reduced expression of Nampt , the gene encoding NAMPT, the enzyme that produces NMN, which is a direct transcriptional target of PARP7 and C/EBPβ. Collectively, our results extend the biology of PARP7 to adipogenesis and perinatal health. Moreover, our results describe the molecular events that regulate these downstream biological functions.
Collapse
|
10
|
Kumarathasan P, Nazemof N, Blais E, Syama KP, Breznan D, Dirieh Y, Aoki H, Phanse S, Tayabali A, Babu M. In Vitro Exposure of A549 and J774A.1 Cells to SiO 2 and TiO 2 Nanoforms and Related Cellular- and Molecular-Level Effects: Application of Proteomics. J Proteome Res 2025; 24:1672-1687. [PMID: 40036262 PMCID: PMC11976856 DOI: 10.1021/acs.jproteome.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025]
Abstract
There is an emerging interest in incorporating proteomic data for environmental health risk assessments. Meanwhile, the production and use of engineered nanomaterials (ENMs) with attractive physicochemical properties are expanding with the potential for exposure, thus necessitating toxicity information on these materials for health risk analysis, where proteomic data can be informative. Here, cells (A549 human lung epithelial and J774A.1 mouse monocyte/macrophage cells) were exposed to ENMs (nanoforms of SiO2and TiO2) of different sizes and surface chemistries (dose: 0-100 μg/cm2, 24 h) for in vitro toxicity data. Cytotoxicity (CTB, ATP, and LDH), oxidative stress (GSH oxidation), and proteomic analysis (MS- and antibody-based) were conducted post-nanoparticle (NP) exposure to determine the relative potency and identify perturbed cellular pathways. Dose-, nanoform-, and cell type-specific cytotoxicity changes were observed upon exposure to both nanoSiO2 and nanoTiO2. Size, agglomeration, surface modification, and metal impurities appeared to be the determinants of cytotoxicity. Proteomic analysis identified some enriched mechanistic pathways and biological processes relevant to cell defense/phagocytosis, stress, metabolism, apoptosis, and inflammatory processes in J774A.1 cells exposed to these NPs. A549 cells exhibited enriched pathway/biological processes relevant to transport/endocytosis, stress, metabolism, and inflammatory processes post-NP exposures. Concordance was observed between the nanoform exposure- and cell type-related cytotoxicity responses, notably cellular ATP, which is critical for cell viability, oxidative stress, and cellular pathways/biological processes. These findings demonstrate the application of proteomics in regulatory toxicology and warrant further research in this direction.
Collapse
Affiliation(s)
- Premkumari Kumarathasan
- Environmental
Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
- Faculty
of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Nazila Nazemof
- Environmental
Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
- Faculty
of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Erica Blais
- Environmental
Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Krishna Priya Syama
- Environmental
Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Dalibor Breznan
- Environmental
Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Yasmine Dirieh
- Environmental
Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Hiroyuki Aoki
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Sadhna Phanse
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Azam Tayabali
- Environmental
Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Mohan Babu
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| |
Collapse
|
11
|
Wang Z, Wu Y, Ding Z, Xiao X, Huang Y, Liu Z, Zhang Q. A novel mechanism for A-to-I RNA-edited CYP1A1 in promoting cancer progression in NSCLC. Cell Mol Biol Lett 2025; 30:40. [PMID: 40175891 PMCID: PMC11966828 DOI: 10.1186/s11658-025-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Lung cancer is the most frequently diagnosed malignancy and the leading cause of cancer-related mortality worldwide. Similar to other solid tumors, the development of non-small cell lung cancer (NSCLC) is believed to be a multistep process involving the accumulation of genetic and epigenetic alterations. A-to-I RNA editing is a widespread posttranscriptional epigenetic modification that confers specific nucleotide changes in selected RNA transcripts and plays a critical role in the pathogenesis of many human cancers. However, the mechanisms underlying A-to-I RNA editing that act as a potential driver in the pathogenesis of NSCLC progression remain incompletely elucidated. METHODS Sanger sequencing was performed to validate the CYP1A1_I462V RNA editing event in NSCLC patients. In vitro and in vivo experiments were used to assess the effects of an ADAR1-regulated CYP1A1 and its editing on NSCLC cell growth and metastasis. The crosstalk between CYP1A1_I462V RNA editing and PI3K-AKT signaling was analyzed using RNA sequencing and molecular methods. The functional role of CYP1A1_I462V in the response to oxidative stress was verified through proteomics analysis, co-IP assay, and immunofluorescence assay. RESULTS Sanger sequencing analysis identified an increased A-to-I RNA editing ratio of CYP1A1 in NSCLC specimens. This specific RNA editing, regulated by ADAR1, resulted in gain-of-function phenotypes characterized by enhanced tumor progression and more aggressive behavior. The edited form induced the expression of heme oxygenase-1 (HO-1) via PI3K/Akt-dependent activation compared with the wild-type CYP1A1, which led to an enhanced interaction with CYP1A1, thereby promoting the translocation of abundant HO-1 into the nucleus to resist oxidant stress in NSCLC cells. CONCLUSIONS Our findings highlight that the I462V A-to-I RNA editing event of CYP1A1 drives pulmonary carcinogenesis through inhibiting oxidative stress and suggest that the CYP1A1-HO-1-PI3K/Akt axis may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Yan Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziqi Ding
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Xinru Xiao
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Yanhua Huang
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Zhiguang Liu
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China.
| |
Collapse
|
12
|
Kim HB, Kraus WL. Intracellular Retention of Estradiol Is Mediated by GRAM Domain-Containing Protein ASTER-B in Breast Cancer Cells. Mol Cancer Res 2025; 23:313-326. [PMID: 39804053 PMCID: PMC11961310 DOI: 10.1158/1541-7786.mcr-24-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/05/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Elevated blood levels of estrogens have been associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating hormone levels in the blood and intracellular hormone concentrations is not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon the removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal. Although circulating E2 is sequestered by sex hormone binding globulin, the potential mechanisms of intracellular E2 retention are poorly understood. We found that mislocalization of a steroid-binding GRAM domain-containing protein, ASTER-B, to the nucleus, which is observed in a subset of patients with breast cancer, is associated with higher cellular E2 retention. Accumulation and retention of E2 are related to the steroidal properties of E2 and require nuclear localization and steroid binding by ASTER-B, as shown using a panel of mutant ASTER-B proteins. Finally, we observed that nuclear ASTER-B-mediated E2 retention is required for sustained hormone-induced ERα chromatin occupancy at enhancers and gene expression, as well as subsequent cell growth responses. Our results add intracellular hormone retention as a mechanism controlling E2-dependent gene expression and downstream biological outcomes. Implications: Mislocalized nuclear ASTER-B, which binds estradiol to support the functions of ER, can provide an alternate means of enhancing the biological effects of E2 in breast cancers and may be a potential therapeutic target that addresses multiple aspects of estrogen bioavailability.
Collapse
Affiliation(s)
- Hyung Bum Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States
- Address correspondence to: W. Lee Kraus ()
| |
Collapse
|
13
|
Li P, Zhang Y, Yu Y. A large-scale method to measure the absolute stoichiometries of protein Poly-ADP-Ribosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645734. [PMID: 40196648 PMCID: PMC11974908 DOI: 10.1101/2025.03.27.645734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Poly-ADP-ribosylation (PARylation) is a reversible posttranslational modification that occurs in higher eukaryotes. While thousands of PARylated substrates have been identified, the specific biological functions of most PARylated proteins remain elusive. PARylation stoichiometry is a critical parameter to assess the potential functions of a PARylated protein. Here, we developed a large-scale strategy to measure the absolute stoichiometries of protein PARylation. By integrating mild cell lysis, boronate enrichment and carefully designed titration experiments, we were able to determine the PARylation stoichiometries for a total of 235 proteins. This approach enables the capture of all PARylation events on various amino acid acceptors. We revealed that PARylation occupancy spans over three orders of magnitude. However, most PARylation events occur at low stoichiometric values (median 0.578%). Notably, we observed that high stoichiometry PARylation (>1%) predominantly targets proteins involved in transcription regulation and chromatin remodeling. Thus, our study provides a systems-scale, quantitative view of PARylation stoichiometries under genotoxic conditions, which serves as invaluable resources for future functional studies of this important protein posttranslational modification.
Collapse
Affiliation(s)
- Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yajie Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
14
|
Wang YT, Branche E, Xie J, McMillan RE, Ana-Sosa-Batiz F, Lu HH, Li QH, Clark AE, Valls Cuevas JM, Viramontes KM, Garretson AF, Dos Santos Alves RP, Heinz S, Benner C, Carlin AF, Shresta S. Zika but not Dengue virus infection limits NF-κB activity in human monocyte-derived dendritic cells and suppresses their ability to activate T cells. Nat Commun 2025; 16:2695. [PMID: 40133263 PMCID: PMC11937581 DOI: 10.1038/s41467-025-57977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Understanding flavivirus immunity is critical for the development of pan-flavivirus vaccines. Dendritic cells (DC) coordinate antiviral innate and adaptive immune responses, and they can be targeted by flaviviruses as a mechanism of immune evasion. Using an unbiased genome-wide approach designed to specifically identify flavivirus-modulated pathways, we found that, while dengue virus (DENV) robustly activates DCs, Zika virus (ZIKV) causes minimal activation of genes involved in DC activation, maturation, and antigen presentation, reducing cytokine secretion and the stimulation of allogeneic and peptide-specific T cell responses. Mechanistically, ZIKV inhibits DC maturation by suppressing NF-κB p65 recruitment and the subsequent transcription of proinflammatory and DC maturation-related genes. Thus, we identify a divergence in the effects of ZIKV and DENV on the host T cell response, highlighting the need to factor such differences into the design of anti-flavivirus vaccines.
Collapse
Affiliation(s)
- Ying-Ting Wang
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Emilie Branche
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jialei Xie
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rachel E McMillan
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, California, USA
| | | | - Hsueh-Han Lu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, California, USA
| | - Qin Hui Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, California, USA
| | - Alex E Clark
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joan M Valls Cuevas
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Karla M Viramontes
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Aaron F Garretson
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Sven Heinz
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Duncan RK, Liu L, Moyer M, Wylie A, Dano R, Cassinotti L. Retinoic acid signaling guides the efficiency of inner ear organoid-genesis and governs sensory-nonsensory fate specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644434. [PMID: 40166165 PMCID: PMC11957153 DOI: 10.1101/2025.03.21.644434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Inner ear organoid development-from germ layer to otocyst formation-relies on timed chemical cues to recapitulate major signals in vivo. In contrast, later stages of differentiation-from otic vesicle (OV) to organoid formation-are self-guided, even though these stages are modulated by several key morphogens in vivo. We sought to elucidate additional morphogens that might improve culture efficiency and influence cell fate decisions. Using a whole-transcriptomic approach, we identified major differences in native and stem cell-derived OVs related to anterior-posterior patterning and retinoic acid (RA) signaling. Increasing the level of RA during OV formation in these cultures modulated organoid efficiency, increased nonsensory markers, decreased sensory markers, and decreased hair cell production. The organoid culture platform mimics the exquisite RA sensitivity found in normal inner ear development and may help identify RA-responsive genes driving organogenesis and cell fate specification.
Collapse
Affiliation(s)
- R. Keith Duncan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology – Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI USA
- Veterans Affairs Ann Arbor Health System, Ann Arbor, MI, USA
- Senior author
| | - Liqian Liu
- Department of Otolaryngology – Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI USA
| | - Mo Moyer
- Department of Otolaryngology – Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI USA
| | - Andrew Wylie
- Department of Otolaryngology – Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI USA
| | - Ranya Dano
- Department of Otolaryngology – Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI USA
| | - Luis Cassinotti
- Department of Otolaryngology – Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
16
|
Li A, Gong Z, Long Y, Li Y, Liu C, Lu X, Li Q, He X, Lu H, Wu K, Nie Y, Tan J, Ye J, You H. Lactylation of LSD1 is an acquired epigenetic vulnerability of BRAFi/MEKi-resistant melanoma. Dev Cell 2025:S1534-5807(25)00121-2. [PMID: 40132584 DOI: 10.1016/j.devcel.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/17/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
BRAFV600E mutant melanomas treated with BRAF inhibitor (BRAFi) and MEK inhibitor (MEKi) almost invariably develop drug resistance, accompanied by restored glucose metabolism. How resumed glycolysis controls acquired resistance remains unknown. Here, we identify that lysine-specific demethylase 1 (LSD1) lactylation, induced by re-accumulated lactate in both human and murine BRAFi/MEKi-resistant melanoma cells, selectively drives survival via epigenetic reprogramming. Mechanistically, lactylation of LSD1 promotes its interaction with Fos-related antigen 1 (FosL1), preventing its degradation by E3 ligase tripartite-motif-containing protein 21 (TRIM21) and selectively enhancing its genomic enrichment. We further demonstrate that lactylated LSD1 co-directs gene transcription with FosL1 to repress ferroptosis via interfering with transferrin receptor protein 1 (TFRC)-mediated iron uptake. LSD1 inhibition activates ferroptosis, resulting in drastic regression of drug-resistant murine melanoma when combined with immunotherapy. Our results highlight a crucial role of metabolic rewiring-induced epigenetic reprogramming as a bypass resistance mechanism in BRAFi/MEKi-resistant melanoma, providing a therapeutically actionable strategy to overcome resistance to targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Aicun Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Yuhan Long
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Chen Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Xiao Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Qing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Xiaoniu He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, P.R. China
| | - Hezhe Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastro intestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastro intestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Jing Ye
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.
| | - Han You
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China.
| |
Collapse
|
17
|
Cui H, Wang S, Fan S, Long H, Lin J, Ding W, Zhang W. Branched-chain amino acid metabolism supports Roseobacteraceae positive interactions in marine biofilms. Appl Environ Microbiol 2025; 91:e0241124. [PMID: 39932299 PMCID: PMC11921356 DOI: 10.1128/aem.02411-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/22/2025] [Indexed: 03/20/2025] Open
Abstract
Interspecies interactions are key factors affecting the stability of microbial communities. However, microbial interactions in marine biofilms, which constitute up to 80% of the microbial biomass in certain marine environments, are not well understood. We addressed this knowledge gap by coculturing four marine biofilm-derived Roseobacteraceae strains (Leisingera aquaemixtae M597, Roseibium aggregatum S1616, Alloyangia pacifica T6124, and Sulfitobacter indolifex W002) in 14 single carbon sources. Overall, 140 coculture experiments revealed 39.3% positive interactions compared to 8.3% negative interactions. When the carbon source was consumed by only one strain, the interaction between the strains was more likely to be positive. The interaction between S1616 and M597, when cultured in D-gluconic acid, was further studied as an example. S1616-M597 coculture displayed a higher D-gluconic acid consumption rate than S1616 monoculture, whereas M597 could not use D-gluconic acid as the sole carbon source. The supernatant of S1616 monoculture supported the growth of M597, and branched-chain amino acids in the supernatant were consumed. Transcriptomic analysis suggested that M597 induced the expression of genes for branched-chain amino acid biosynthesis in S1616. Additionally, metagenomic analysis revealed the wide distribution and a strongly correlated co-occurrence of the four strains in global oceanic biofilms. Together, our findings show that interspecies positive interactions are prevalent among marine-biofilm Roseobacteraceae, and the interactions are likely to be mediated by branched-chain amino acids metabolism. IMPORTANCE Interspecies interactions are crucial for microbial community structure and function. Despite well-studied social behaviors in model microorganisms, species interactions in natural marine biofilms especially Roseobacteraceae with complex metabolic pathways are not well understood. Our findings suggest that positive microbial interactions, which can be mediated by branched-chain amino acid biosynthesis, are common among marine-biofilm Roseobacteraceae. This study provides new insights into microbial interactions and the ecology of marine biofilms.
Collapse
Affiliation(s)
- Han Cui
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shuaitao Wang
- MOE Key Laboratory of Marine Genetics and Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shen Fan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongan Long
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jinshui Lin
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
18
|
Singh AP, Fromandi M, Pimentel-Alarcón D, Werling DM, Gasch AP, Yu JPJ. Intrinsic Gene Expression Correlates of the Biophysically Modeled Diffusion Magnetic Resonance Imaging Signal. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100430. [PMID: 39877746 PMCID: PMC11773484 DOI: 10.1016/j.bpsgos.2024.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 12/01/2024] [Indexed: 01/31/2025] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful tool to identify the structural and functional correlates of neurological illness but provides limited insight into molecular neurobiology. Using rat genetic models of autism spectrum disorder, we show that image texture-processed neurite orientation dispersion and density imaging (NODDI) diffusion MRI possesses an intrinsic relationship with gene expression that corresponds to the biophysically modeled cellular compartments of the NODDI diffusion signal. Specifically, we demonstrate that neurite density index and orientation dispersion index signals are correlated with intracellular and extracellular gene expression, respectively. Moreover, we further demonstrate that these imaging signals correlate with genes specifically relevant to the etiopathogenesis of autism spectrum disorder. In sum, our data suggest fundamental relationships between gene expression and diffusion MRI, implicating the potential of diffusion MRI to probe causal neurobiological mechanisms in neuroimaging phenotypes in autism spectrum disorder.
Collapse
Affiliation(s)
- Ajay P. Singh
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael Fromandi
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Donna M. Werling
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin
| | - John-Paul J. Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
19
|
Marín-Márquez C, Adisa AO, Niklander SE, Kirby J, Hunter KD. Genomic and Transcriptomic Analysis of Ameloblastoma Reveals Distinct Molecularly Aggressive Phenotypes. Mod Pathol 2025; 38:100682. [PMID: 39675431 DOI: 10.1016/j.modpat.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ameloblastoma (AM) is a benign but locally infiltrative epithelial odontogenic neoplasm of the jawbones that may reach grotesque proportions and be highly recurrent if inadequately removed. The BRAFV600E mutation has been demonstrated as a key molecular event in its development; nevertheless, there are many queries about its etiopathogenesis, which are yet to be answered. In this study, we aimed to integrate the results from whole-exome sequencing (WES) and RNA sequencing in AM samples to identify novel candidate genes that may be relevant to its pathogenesis. Thirteen-matched tumors were subjected to WES and RNA-seq, respectively, to detect gene mutations and gene expression profiles, along with the presence of gene fusions. Mutations were validated using Sanger sequencing, whereas transcriptome results were validated using qPCR. The results from both molecular techniques were merged in order to identify novel candidate genes that were biologically validated with immunohistochemistry. BRAFV600E mutation was present in 62% of the analyzed cases, and each AM presented at least 2 or 3 mutations affecting cancer-driver genes. RNA-seq showed different molecular subgroups associated with an aggressive and cancer-related phenotype (epithelial-mesenchymal transition and KRAS gene sets). No gene fusions were detected among the cases. CDH11 and TGM2, novel genes associated with epithelial-mesenchymal transition in AM, were selected and validated in tissues. Both WES and RNA-seq results showed gene alterations related to proliferation, cell differentiation, and metabolic processes. These results show that AM shares many of the hallmarks of cancer secondary to the presence of oncogenic mutations or activation of oncogenic signaling pathways.
Collapse
Affiliation(s)
- Constanza Marín-Márquez
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, UK; Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Puerto Montt, Chile.
| | - Akinyele O Adisa
- Department of Oral Pathology, Faculty of Dentistry, University of Ibadan and University College Hospital Ibadan, Ibadan, Nigeria
| | - Sven E Niklander
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| |
Collapse
|
20
|
Ding M, Wang D, Chen H, Kesner B, Grimm NB, Weissbein U, Lappala A, Jiang J, Rivera C, Lou J, Li P, Lee JT. A biophysical basis for the spreading behavior and limited diffusion of Xist. Cell 2025; 188:978-997.e25. [PMID: 39824183 PMCID: PMC11863002 DOI: 10.1016/j.cell.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 01/20/2025]
Abstract
Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome. HNRNPK droplets pull on Xist and internalize the RNA. Once internalized, Xist induces a further phase transition and "softens" the HNRNPK droplet. Xist alters the condensate's deformability, adhesiveness, and wetting properties in vitro. Other Xist-interacting proteins are internalized and entrapped within the droplet, resulting in a concentration of Xist and protein partners within the condensate. We attribute LLPS to HNRNPK's RGG and Xist's repeat B (RepB) motifs. Mutating these motifs causes Xist diffusion, disrupts polycomb recruitment, and precludes the required mixing of chromosomal compartments for Xist's migration. Thus, we hypothesize that phase transitions in HNRNPK condensates allow Xist to locally concentrate silencing factors and to spread through internal channels of the HNRNPK-encapsulated chromosome.
Collapse
Affiliation(s)
- Mingrui Ding
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hui Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Niklas-Benedikt Grimm
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anna Lappala
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Carlos Rivera
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Challa S, Nandu T, Kim HB, Gong X, Renshaw CW, Li WC, Tan X, Aljardali MW, Camacho CV, Chen J, Kraus WL. RACK1 MARylation regulates translation and stress granules in ovarian cancer cells. J Cell Biol 2025; 224:e202401101. [PMID: 39760726 DOI: 10.1083/jcb.202401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025] Open
Abstract
Mono(ADP-ribosyl)ation (MARylation) is emerging as a critical regulator of ribosome function and translation. Herein, we demonstrate that RACK1, an integral component of the ribosome, is MARylated by the mono(ADP-ribosyl) transferase (MART) PARP14 in ovarian cancer cells. MARylation of RACK1 is required for stress granule formation and promotes the colocalization of RACK1 in stress granules with G3BP1, eIF3η, and 40S ribosomal proteins. In parallel, we observed reduced translation of a subset of mRNAs, including those encoding key cancer regulators (e.g., AKT). Treatment with a PARP14 inhibitor or mutation of the sites of MARylation on RACK1 blocks these outcomes, as well as the growth of ovarian cancer cells in culture and in vivo. To reset the system after prolonged stress and recovery, the ADP-ribosyl hydrolase TARG1 deMARylates RACK1, leading to the dissociation of the stress granules and the restoration of translation. Collectively, our results demonstrate a therapeutically targetable pathway that controls polysome assembly, translation, and stress granule dynamics in ovarian cancer cells.
Collapse
Affiliation(s)
- Sridevi Challa
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tulip Nandu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hyung Bum Kim
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Graduate Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuan Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles W Renshaw
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wan-Chen Li
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinrui Tan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marwa W Aljardali
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cristel V Camacho
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Graduate Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
22
|
Noh JK, Lee MK, Lee Y, Bae M, Min S, Kong M, Lee JW, Kim SI, Lee YC, Ko S, Woo SR, Eun Y. Targeting ferroptosis for improved radiotherapy outcomes in HPV-negative head and neck squamous cell carcinoma. Mol Oncol 2025; 19:540-557. [PMID: 39297393 PMCID: PMC11792990 DOI: 10.1002/1878-0261.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 02/05/2025] Open
Abstract
To enhance the efficacy of radiotherapy (RT) in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC), we explored targeting ferroptosis, a regulated cell death process. We developed a gene signature associated with ferroptosis using Cox proportional hazard modeling in HPV-negative HNSCC patients who underwent RT. This ferroptosis-related gene signature (FRGS) was a significant predictor of overall survival and recurrence-free survival in HPV-negative HNSCC patients who received RT. Subtype B of the FRGS, characterized by decreased expression of ferroptosis inducers [nuclear receptor coactivator 4 (NCOA4) and natural resistance-associated macrophage protein 2 homolog/divalent metal transporter 1 (NRAMP2/DMT1)] and increased expression of suppressors [phospholipid hydroperoxide glutathione peroxidase (GPX4) and ferritin heavy chain (FTH1)], was associated with poorer prognosis, potentially indicating the inhibition of ferroptosis. Furthermore, our in vitro and in vivo studies demonstrated that treatment with statins, such as atorvastatin and simvastatin, induced ferroptosis and sensitized radioresistant HNSCC cells to irradiation, improving radiosensitivity and potentially enhancing the response to RT. Additionally, in xenograft models, the combination of statins and RT led to a significant reduction in tumor initiation. These findings provide valuable insights for enhancing treatment and improving prognosis in HPV-negative HNSCC by targeting ferroptosis and utilizing statins to sensitize tumors to RT-induced cell death.
Collapse
Affiliation(s)
- Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Min Kyeong Lee
- Department of Biomedical Science and Technology, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Yeonseo Lee
- Department of Biomedical Science and Technology, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Minji Bae
- Department of Biomedical Science and Technology, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Soonki Min
- Department of Radiation OncologyKyung Hee University School of Medicine, Kyung Hee University Medical CenterSeoulKorea
| | - Moonkyoo Kong
- Department of Radiation OncologyKyung Hee University School of Medicine, Kyung Hee University Medical CenterSeoulKorea
| | - Jung Woo Lee
- Department of Oral and Maxillofacial Surgery, School of DentistryKyung Hee UniversitySeoulKorea
| | - Su Il Kim
- Department of Otolaryngology‐Head and Neck SurgeryKyung Hee University School of Medicine, Kyung Hee University Medical CenterSeoulKorea
| | - Young Chan Lee
- Department of Otolaryngology‐Head and Neck SurgeryKyung Hee University School of Medicine, Kyung Hee University Medical CenterSeoulKorea
| | - Seong‐Gyu Ko
- Department of Preventive Medicine, College of Korean MedicineKyung Hee UniversitySeoulKorea
| | - Seon Rang Woo
- Department of Otolaryngology‐Head and Neck SurgeryKyung Hee University School of Medicine, Kyung Hee University Medical CenterSeoulKorea
| | - Young‐Gyu Eun
- Department of Biomedical Science and Technology, Graduate SchoolKyung Hee UniversitySeoulKorea
- Department of Otolaryngology‐Head and Neck SurgeryKyung Hee University School of Medicine, Kyung Hee University Medical CenterSeoulKorea
| |
Collapse
|
23
|
Paul MA, Sigoillot SM, Marti L, Urra Quiroz FJ, Delagrange M, Cheung HW, Martinelli DC, Oriol E, Hakim V, Mailly P, Selimi F. Stepwise molecular specification of excitatory synapse diversity onto cerebellar Purkinje cells. Nat Neurosci 2025; 28:308-319. [PMID: 39658623 DOI: 10.1038/s41593-024-01826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/22/2024] [Indexed: 12/12/2024]
Abstract
Brain function relies on the generation of a large variety of morphologically and functionally diverse, but specific, neuronal synapses. Here we show that, in mice, the initial formation of synapses on cerebellar Purkinje cells involves a presynaptic protein-CBLN1, a member of the C1q protein family-that is secreted by all types of excitatory inputs. The molecular program then evolves only in one of the Purkinje cell inputs, the inferior olivary neurons, with the additional expression of the presynaptic secreted proteins C1QL1, CRTAC1 and LGI2. These molecules work in concert to specify the mature connectivity pattern on the Purkinje cell target. These results show that some inputs actively and gradually specify their synaptic molecular identity, while others rely on the 'original molecular code'. Thus, the molecular specification of excitatory synapses, crucial for proper circuit function, is acquired in a stepwise manner during mouse postnatal development and obeys input-specific rules.
Collapse
Affiliation(s)
- Maëla A Paul
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Séverine M Sigoillot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Léa Marti
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Francisco J Urra Quiroz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
- Inovarion, Paris, France
| | - Marine Delagrange
- Plateforme qPCR-HD-GPC, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Hiu W Cheung
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - Elie Oriol
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France
| | - Vincent Hakim
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
24
|
Suppiah J, Md Sani SS, Hassan SS, Nadzar NIF, Ibrahim N'I, Thayan R, Mohd Zain R. Unraveling potential gene biomarkers for dengue infection through RNA sequencing. Virus Genes 2025; 61:26-37. [PMID: 39397194 PMCID: PMC11787201 DOI: 10.1007/s11262-024-02114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Dengue virus hijacks host cell mechanisms and immune responses in order to replicate efficiently. The interaction between the host and the virus affects the host's gene expression, which remains largely unexplored. This pilot study aimed to profile the host transcriptome as a potential strategy for identifying specific biomarkers for dengue prediction and detection. High-throughput RNA sequencing (RNA-seq) was employed to generate host transcriptome profiles in 16 dengue patients and 10 healthy controls. Differentially expressed genes (DEGs) were identified in patients with severe dengue and those with dengue with warning signs compared to healthy individuals. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to elucidate the functions of upregulated and downregulated genes. Compared to healthy controls, 6466 genes were significantly differentially expressed (p < 0.05) in the dengue with warning signs group and 3082 genes in the severe dengue group, with over half being upregulated. The major KEGG pathways implicated included transport and catabolism (14.4%-16.3%), signal transduction (6.6%-7.3%), global and overview maps (6.7%-7.1%), viral diseases (4.6%-4.8%), and the immune system (4.4%-4.6%). Several genes exhibited consistent and significant upregulation across all dengue patients, regardless of severity: Interferon alpha inducible protein 27 (IFI27), Potassium Channel Tetramerization Domain Containing 14 (KCTD14), Syndecan 1 (SDC1), DCC netrin 1 receptor (DCC), Ubiquitin C-terminal hydrolase L1 (UCHL1), Marginal zone B and B1 cell-specific protein (MZB1), Nestin (NES), C-C motif chemokine ligand 2 (CCL2), TNF receptor superfamily member 17 (TNFSF17), and TNF receptor superfamily member 13B (TNFRSF13B). Further analysis revealed potential biomarkers for severe dengue prediction, including TNF superfamily member 15 (TNFSF15), Plasminogen Activator Inhibitor-2 (SERPINB2), motif chemokine ligand 7 (CCL7), aconitate decarboxylase 1 (ACOD1), Metallothionein 1G (MT1G), and Myosin Light Chain Kinase (MYLK2), which were expressed 3.5 times, 2.9 times, 2.3 times, 2.1 times, 1.7 times, and 1.4 times greater, respectively, than dengue patients exhibiting warning signs. The identification of these host biomarkers through RNA-sequencing holds promising implications and potential to augment existing dengue detection algorithms, contributing significantly to improved diagnostic and prognostic capabilities.
Collapse
Affiliation(s)
- Jeyanthi Suppiah
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia.
| | | | - Safiah Sabrina Hassan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Nur Iman Fasohah Nadzar
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ravindran Thayan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Rozainanee Mohd Zain
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
25
|
Mano Y, Igarashi Y, Komori K, Hashimoto I, Watanabe H, Takahashi K, Kano K, Fujikawa H, Yamada T, Himuro H, Kouro T, Wei F, Tsuji K, Horaguchi S, Komahashi M, Oshima T, Sasada T. Characteristics and clinical significance of immune cells in omental milky spots of patients with gastric cancer. Front Immunol 2025; 16:1521278. [PMID: 39949777 PMCID: PMC11821591 DOI: 10.3389/fimmu.2025.1521278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
The omentum is a common site of peritoneal metastasis in various cancers, including gastric cancer. It contains immune cell aggregates known as milky spots, which provide a microenvironment for peritoneal immunity by regulating innate and adaptive immune responses. In this study, we investigated gene expression profiles in cells from omental milky spots of patients with gastric cancer (n = 37) by RNA sequencing analysis and classified the patients into four groups (G1-4). Notably, significant differences were observed between the groups in terms of macroscopic type, lymphatic invasion, venous invasion, and pathological stage (pStage). G3, which was enriched in genes related to acquired immunity, showed earlier tumor stages (macroscopic type 0, Ly0, V0, and pStage I) and a better prognosis. In contrast, G4 showed enrichment of genes related to neutrophils and innate immunity; G1 and G2 showed no enrichment of innate or adaptive immune-related genes, suggesting an immune desert microenvironment. Cytometric analysis revealed significantly more T and B cells and fewer neutrophils in G3. Accordingly, the immune microenvironment in omental milky spots may vary depending on the stage of gastric cancer progression. When univariate Cox proportional hazards regression models were used to search for prognostically relevant genes specific to G3, 23 potential prognostic genes were identified as common genes associated with relapse-free survival and overall survival. In addition, the multivariate Cox proportional hazards model using these prognostic genes and clinicopathological information showed that combining the B cell marker CD19 and Ly had a high predictive accuracy for prognosis. Based on this study's results, it is possible that tumor progression, such as lymphatic and/or venous infiltration of tumor cells, may affect the immune cell composition and proportions in omental milky spots of patients with gastric cancer and analysis of gene expression in omental milky spots may help to predict gastric cancer prognosis.
Collapse
Affiliation(s)
- Yasunobu Mano
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Keisuke Komori
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Itaru Hashimoto
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Hayato Watanabe
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Kosuke Takahashi
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Kazuki Kano
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hirohito Fujikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Taku Kouro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Kayoko Tsuji
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shun Horaguchi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuru Komahashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| |
Collapse
|
26
|
Oguz AK, Oygur CS, Gur Dedeoglu B, Dogan Turacli I, Serin Kilicoglu S, Ergun I. The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:162. [PMID: 39859144 PMCID: PMC11767091 DOI: 10.3390/medicina61010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated, fibroinflammatory, multiorgan disease with an obscure pathogenesis. Findings indicating excessive platelet activation have been reported in systemic sclerosis, which is another autoimmune, multisystemic fibrotic disorder. The immune-mediated, inflammatory, and fibrosing intersections of IgG4-RD and systemic sclerosis raised a question about platelets' role in IgG4-RD. Materials and Methods: By borrowing transcriptomic data from Nakajima et al. (GEO repository, GSE66465) we sought a platelet contribution to the pathogenesis of IgG4-RD. GEO2R and BRB-ArrayTools were used for class comparisons, and WebGestalt for functional enrichment analysis. During the selection of differentially expressed genes (DEGs), the translationally active but significantly low amount of platelet mRNA was specifically considered. The platelet-specific gene signature derived was used for cluster analysis of patient and control groups. Results: When IgG4-RD patients were compared with controls, 268 DEGs (204 with increased and 64 with decreased expression) were detected. Among these, a molecular signature of 22 platelet-specific genes harbored genes important for leukocyte-platelet aggregate formation (i.e., CLEC1B, GP1BA, ITGA2B, ITGB3, SELP, and TREML1) and extracellular matrix synthesis (i.e., CLU, PF4, PPBP, SPARC, and THBS1). Functional enrichment analysis documented significantly enriched terms related to platelets, including but not limited to "platelet reactivity", "platelet degranulation", "platelet aggregation", and "platelet activation". During clustering, the 22 gene signatures successfully discriminated IgG4-RD and the control and the IgG4-RD before and after treatment groups. Conclusions: Patients with IgG4-RD apparently display an activated platelet phenotype with a potential contribution to disease immunopathogenesis. If the platelets' role is validated through further carefully designed research, the therapeutic potentials of selected conventional and/or novel antiplatelet agents remain to be evaluated in patients with IgG4-RD. Transcriptomics and/or proteomics research with platelets should take into account the relatively low amounts of platelet mRNA, miRNA, and protein. Secondary analysis of omics data sets has great potential to reveal new and valuable information.
Collapse
Affiliation(s)
- Ali Kemal Oguz
- Department of Internal Medicine, Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey
| | - Cagdas Sahap Oygur
- Department of Internal Medicine (Rheumatology), Faculty of Medicine, Baskent University, 06490 Ankara, Turkey;
| | - Bala Gur Dedeoglu
- Department of Biotechnology, Biotechnology Institute, Ankara University, 06135 Ankara, Turkey;
| | - Irem Dogan Turacli
- Department of Medical Biology, Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey;
| | - Sibel Serin Kilicoglu
- Department of Histology & Embryology, Faculty of Medicine, Baskent University, 06790 Ankara, Turkey;
| | - Ihsan Ergun
- Department of Internal Medicine (Nephrology), Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey;
| |
Collapse
|
27
|
Avadhanula V, Creighton CJ, Ferlic-Stark L, Nagaraj D, Zhang Y, Sucgang R, Nicholson EG, Rajan A, Menon VK, Doddapaneni H, Muzny DM, Metcalf GA, Cregeen SJJ, Hoffman KL, Gibbs RA, Petrosino JF, Piedra PA. Longitudinal host transcriptional responses to SARS-CoV-2 infection in adults with extremely high viral load. PLoS One 2025; 20:e0317033. [PMID: 39820858 PMCID: PMC11737797 DOI: 10.1371/journal.pone.0317033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time and magnitude of these host responses were significantly correlated to viral load.
Collapse
Affiliation(s)
- Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Laura Ferlic-Stark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Divya Nagaraj
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, United States of America
| | - Richard Sucgang
- Houston Methodist Research Institute, Center for Health Data Science and Analytics, Houston, Texas, United States of America
| | - Erin G. Nicholson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Vipin Kumar Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Harshavardhan Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Donna Marie Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ginger A. Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sara Joan Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Kristi Louise Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
28
|
Hardman-Kavanaugh RE, Storey AJ, Stuecker TN, Hood SE, Barrett-Wilt GA, Krishnamurthi VR, Wang Y, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA. Dynamic global acetylation remodeling during the yeast heat shock response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632339. [PMID: 39935887 PMCID: PMC11812598 DOI: 10.1101/2025.01.10.632339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
All organisms experience stress and must rapidly respond to changing conditions. Thus, cells have evolved sophisticated rapid-response mechanisms such as post-translational protein modification to rapidly and reversibly modulate protein activity. One such post-translational modification is reversible lysine acetylation, where proteomic studies have identified thousands of acetylated proteins across diverse organisms. While the sheer size of the 'acetylome' is striking, the function of acetylation for the vast majority of proteins remains largely obscure. Here, we show that global acetylation plays a previously unappreciated role in the heat shock response of Saccharomyces cerevisiae. We find that dysregulated acetylation renders cells heat sensitive, and moreover, that the acetylome is globally remodeled during heat shock over time. Using quantitative acetyl-proteomics, we identified ~400 high-confidence acetyl marks across ~200 proteins that significantly change in acetylation when cells are shifted to elevated temperature. Proteins with significant changes in lysine acetylation during heat shock strongly overlap with genes induced or repressed by stress. Thus, we hypothesize that protein acetylation augments the heat shock response by activating induced proteins and inactivating repressed proteins. Intriguingly, we find nearly 40 proteins with at least two acetyl marks that significantly change in the opposite directions. These proteins are strongly enriched for chaperones and ribosomal proteins, suggesting that these two key processes are coordinately regulated by protein acetylation during heat shock. Moreover, we hypothesize that the same type of activating and inactivating marks that exist on histones may be a general feature of proteins regulated by acetylation. Overall, this work has identified a new layer of post-translational regulation that likely augments the classic heat shock response.
Collapse
Affiliation(s)
- Rebecca E. Hardman-Kavanaugh
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Tara N. Stuecker
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | - Stephanie E. Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | | | | | - Yong Wang
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
- Department of Physics, University of Arkansas, Fayetteville 72701, AR, United States of America
- Materials Science and Engineering Program, University of Arkansas, Fayetteville 72701, AR, United States of America
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Rick D. Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Jeffrey A. Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| |
Collapse
|
29
|
Biyik-Sit R, Waigel S, Andreeva K, Rouchka E, Clem BF. Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse. Oncol Lett 2025; 29:9. [PMID: 39512505 PMCID: PMC11542166 DOI: 10.3892/ol.2024.14755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
The majority of malignant tumors exhibit an altered metabolic phenotype that ultimately provides the required energy and molecular precursors necessary for unregulated cell division. Within this, phosphoserine aminotransferase 1 (PSAT1) is involved in de novo serine biosynthesis and its activity promotes various biochemical processes, including one-carbon metabolism. It also directly generates α-ketoglutarate (α-KG), a Kreb cycle intermediate and epigenetic-regulating metabolite. Prior studies examining PSAT1 depletion have identified individual affected downstream pathways, such as GSK3β and E2F, in several cancer types, including non-small-cell lung cancer (NSCLC). However, global gene expression examination in response to PSAT1 loss, particularly in EGFR mutant NSCLC, has not been unexplored. Transcriptional profiling of EGFR mutant NSCLC cells with or without stable knock-down of PSAT1 identified differentially expressed genes (DEGs) enriched in several metabolic pathways required for cell division, including amino acid and nucleotide biosynthesis. Supplementation studies involving non-essential amino acids, nucleosides and α-KG partially restored defects in anchorage-independent growth due to the knockdown of PSAT1. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis identified potential impacts on actin cytoskeleton arrangement and β-catenin activity, which were rescued by PSAT1 re-expression. Finally, a comparative analysis of PSAT1 DEGs against transcripts enriched in patient EGFR mutant lung tumors identified a gene signature that is associated with overall and relapse-free survival (RFS) and was able to distinguish low or high-risk populations for RFS in early-stage EGFR mutant NSCLC. Overall, investigating genes altered by PSAT1 loss confirmed known PSAT1-regulated cellular pathways, identified a previously unknown role in the mediation of cytoskeleton arrangement in EGFR mutant NSCLC cells and allowed for the characterization of a gene signature with putative predictive potential for RFS in early-stage disease.
Collapse
Affiliation(s)
- Rumeysa Biyik-Sit
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Brown Cancer Center, Louisville, KY 40202, USA
| | - Sabine Waigel
- Brown Cancer Center, Louisville, KY 40202, USA
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Kalina Andreeva
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40202, USA
| | - Eric Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Brown Cancer Center, Louisville, KY 40202, USA
| |
Collapse
|
30
|
Tai YT, Lin WC, Ye J, Chen DTH, Chen KC, Wang DYT, Tan TZ, Wei LH, Huang RYJ. Spatial Profiling of Ovarian Clear Cell Carcinoma Reveals Immune-Hot Features. Mod Pathol 2025; 38:100630. [PMID: 39395637 DOI: 10.1016/j.modpat.2024.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
Ovarian clear cell carcinoma (OCCC) has a high incidence in Asia, with a frequent occurrence at an early stage, but without sufficient data on molecular stratification for high-risk patients. Recently, immune-hot features have been proposed as indicators of poor prognosis in early stage OCCC. Specific patterns of intratumoral heterogeneity associated with immune-hot features must be defined. NanoString Digital Spatial Profiling technology (Cold spring biotech corp.) was used to decipher the spatial distribution of the 18-plex protein panel. Regions of interest (ROIs) were collected based on the reference hematoxylin and eosin-stained morphology. Areas of illumination (AOIs) were defined according to the ROI segmentation using the fluorescence signals of the visualization markers pan-cytokeratin (PanCK), CD45, or DNA. Unsupervised hierarchical clustering of 595 AOIs from 407 ROIs showed that the PanCK segments expressed different combinations of immune markers, suggestive of immune mimicry. The following 3 immune-hot clusters were identified: granzyme B-high, immune signal-high , and immune-like cells; the following 2 immune-cold clusters were identified: fibronectin-high and immune checkpoint-high cells. In tumor samples at the International Federation of Gynecology and Obstetrics stage IC1/2 experiencing recurrence, there was an increased occurrence of PanCK+ AOIs with immune signal-high and immune-like cell groups in the papillary morphology surrounded by macrophage lineage tumor-infiltrating immune cells (TIIs). In contrast, for tumor samples at the International Federation of Gynecology and Obstetrics stage IC3/II with recurrence, PanCK+ AOIs were prevalent in the fibronectin-high group, particularly in those with a tubulocystic morphology surrounded by lymphoid lineage non-TIIs. Our study on the spatial profiling of early stage OCCC tumors revealed that the immune mimicry of tumor cells, presence of TIIs, and morphologic patterns were associated with recurrence, which switched during tumor progression.
Collapse
Affiliation(s)
- Ya-Ting Tai
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jieru Ye
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Denis T-H Chen
- School of Medicine, College of Medicine, Keele University, Newcastle, United Kingdom
| | - Ko-Chen Chen
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Duncan Y-T Wang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tuan Z Tan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Lin-Hung Wei
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruby Y-J Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Subramanian S, Phongbunchoo Y, Cauchy P, Ramamoorthy S. Comparative Profiling of Regulatory Modules as a Tool for Identifying the Transcription Factor Network Linked to Leukemogenesis. Methods Mol Biol 2025; 2909:179-209. [PMID: 40029523 DOI: 10.1007/978-1-0716-4442-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The dynamic gene expression program of hematopoiesis is controlled by a complex network of regulatory modules consisting of transcription factors, chromatin modifiers, and genomic organizers. Genetic abnormalities or changes in the levels of these factors can disrupt normal development and often lead to malignant transformation into leukemic cells. Open chromatin regions are hallmarks of regulatory elements that can be profiled by their susceptibility to DNase I and Tn5 transposase. Genome-wide comparative profiling of open chromatin regions of normal and malignant cells can identify differentially induced regulatory elements and their associated regulatory modules in disease development. We provide an optimized bioinformatics pipeline for the processing of assay for transposase-accessible chromatin sequencing (ATAC-seq) and comparative profiling of open chromatin regions. The identified differentially induced open chromatin regions are used to investigate the changes in molecular networks that drive disease development through integrative analysis with other multi-OMICS data. Here, we demonstrate the robust application of this methodology to compare murine B-cell acute lymphoblastic leukemia cells with wild-type control, which can be applied to any two biological conditions. This integrative computational methodology can also be used for comparative profiling of genome-wide functional element screening methods such as DNaseI hypersensitive sites seq (DNase-seq) and chromatin immunoprecipitation seq (ChIP-seq).
Collapse
Affiliation(s)
- Swetha Subramanian
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yutthaphong Phongbunchoo
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre Cauchy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Creighton CJ. An Overview of Analytical Approaches to Cancer Proteogenomics. Methods Mol Biol 2025; 2921:93-118. [PMID: 40515986 DOI: 10.1007/978-1-0716-4502-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
The molecular landscape of human cancers involves multiple omics layers of complexity, from genome to proteome and beyond. Cancer proteogenomics involves the integration of protein expression patterns with somatic DNA alterations. Recently, advances in mass spectrometry-based proteomic profiling technologies have enabled the generation of combined proteomic and multi-omic data for thousands of human tumors across dozens of studies. These data in the public domain can be utilized to give us a more complete picture of cancer-specific pathways and processes and identify gene candidates for therapeutic targeting. Many proteogenomic studies are ongoing involving various cancer types according to tissue or cell of origin, including studies to predict response to therapy. In addition, pan-cancer analyses across multiple studies can identify molecular commonalities, differences, and emergent themes across tumor lineages. Data integration can determine which gene alterations at the transcriptome level are translated to the protein level. A wealth of knowledge and analytical approaches developed historically to integrate gene transcription with genomic data can be readily applied to proteogenomic analyses. Here is provided an overview of higher-level analyses of proteogenomic datasets. Such analyses include defining proteomic subtypes of cancer, exploring the impact of somatic mutations and epigenetic modifications on protein expression, cataloging proteomic correlates of more aggressive disease or drug response, and identifying enriched pathways.
Collapse
Affiliation(s)
- Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Kuwayama N, Powers EN, Siketanc M, Sousa CI, Reynaud K, Jovanovic M, Hondele M, Ingolia NT, Brar GA. Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation. Cell Rep 2024; 43:115059. [PMID: 39675003 PMCID: PMC11759133 DOI: 10.1016/j.celrep.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Ded1 and Dbp1 are paralogous conserved DEAD-box ATPases involved in translation initiation in yeast. In long-term starvation states, Dbp1 expression increases and Ded1 decreases, whereas in cycling mitotic cells, Dbp1 is absent. Inserting DBP1 in place of DED1 cannot replace Ded1 function in supporting mitotic translation, partly due to inefficient translation of the DBP1 coding region. Global translation measurements, activity of mRNA-tethered proteins, and growth assays show that-even at matched protein levels-Ded1 is better than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Heat-stressed cells normally downregulate translation of structured housekeeping transcripts and halt growth, but neither occurs in Dbp1-expressing cells. This failure to halt growth in response to heat is not based on deficient stress granule formation or failure to reduce bulk translation. Rather, it depends on heat-triggered loss of Ded1 function mediated by an 11-amino-acid interval within its intrinsically disordered C terminus.
Collapse
Affiliation(s)
- Naohiro Kuwayama
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily Nicole Powers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matej Siketanc
- Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Camila Ines Sousa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kendra Reynaud
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Maria Hondele
- Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Nicholas Thomas Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Liu S, Wu Z, Chen X, Chen Z, Shen Y, Qadir S, Wan H, Zhao H, Yin N, Li J, Qu C, Du H. Evolution and comparative transcriptome analysis of glucosinolate pathway genes in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2024; 15:1483635. [PMID: 39719940 PMCID: PMC11666375 DOI: 10.3389/fpls.2024.1483635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
Glucosinolates (GSLs) are important secondary metabolites abundantly distributed in Brassicaceae plants, whose degradation products benefit plant resistance but are regarded as disadvantageous factors for human health. Thus, reducing GSL content is an important goal in the breeding program in crops, such as Brassica napus. In this study, 1280 genes in the GSL pathway were identified from 14 land plant genomes, which are specifically distributed in Brassicaceae and are extensively expanded in B. napus. Most GSL pathway genes had many positive selection sites, especially the encoding genes of transcription factors (TFs) and structural genes involved in the GSL breakdown process. There are 344 genes in the GSL pathway in the B. napus genome, which are unequally distributed on the 19 chromosomes. Whole-genome duplication mainly contributed to the gene expansion of the GSL pathway in B. napus. The genes in GSL biosynthesis were regulated by various TFs and cis-elements in B. napus and mainly response to abiotic stress and hormone induction. A comparative transcriptome atlas of the roots, stems, leaves, flowers, siliques, and seeds of a high- (ZY821), and a low-GSL-content (ZS11) cultivar was constructed. The features of the two cultivars may be attributed to diverse expression differences in each organ at different stages, especially in seeds. In all, 65 differential expressed genes (DEGs) concentrated on the core structure pathway were inferred to mainly influence the GSL contents between ZY821 and ZS11. This study provides an important RNA-seq dataset and diverse gene resources for future manipulating GSLs biosynthesis and distribution in B. napus using molecular breeding methods.
Collapse
Affiliation(s)
- Shiying Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zexuan Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xingying Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yibing Shen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Salman Qadir
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huiyan Zhao
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Nengwen Yin
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Kumar A, Lakhawat SS, Singh K, Kumar V, Verma KS, Dwivedi UK, Kothari SL, Malik N, Sharma PK. Metagenomic analysis of soil from landfill site reveals a diverse microbial community involved in plastic degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135804. [PMID: 39276741 DOI: 10.1016/j.jhazmat.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In this study, we have investigated microbial communities structure and function using high throughput amplicon sequencing and whole metagenomic sequencing of DNA extracted from different depths of a plastic-laden landfill site. With diverse taxonomic groups inhabiting the plastic-rich soil, our study demonstrates the remarkable adaptability of microbes to use this new substrate as a carbon source. FTIR spectroscopic analysis of soil indicated degradation of plastic as perceived from the carbonyl index of 0.16, 0.72, and 0.44 at 0.6, 0.9 and 1.2 m depth, respectively. Similarly, water contact angles of 108.7 degree, 99.7 degree, 62.7 degree, and 77.8 degree of plastic pieces collected at 0.3, 0.6, 0.9, and 1.2 m depths respectively showed increased wettability and hydrophilicity of the plastic. Amplicon analysis of 16S and 18 S rRNA revealed a high abundance of several plastic-degrading bacterial groups, including Pseudomonas, Rhizobiales, Micrococcaceae, Chaetomium, Methylocaldum, Micromonosporaceae, Rhodothermaceae and fungi, including Trichoderma, Aspergillus, Candida at 0.9 m. The co-existence of specific microbial groups at different depths of landfill site indicates importance of bacterial and fungal interactions for plastic. Whole metagenome analysis of soil sample at 0.9 m depth revealed a high abundance of genes encoding enzymes that participate in the biodegradation of PVC, polyethylene, PET, and polyurethane. Curation of the pathways related to the degradation of these materials provided a blueprint for plastic biodegradation in this ecosystem. Altogether, our study has highlighted the importance of microbial cooperation for the biodegradation of pollutants. Our metagenome-based investigation supports the current perception that consortia of fungi-bacteria are preferable to axenic cultures for effective bioremediation of the environment.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University Chandigarh, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | | | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India; Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
36
|
Kocik RA, Gasch AP. Regulated resource reallocation is transcriptionally hard wired into the yeast stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626567. [PMID: 39677602 PMCID: PMC11642900 DOI: 10.1101/2024.12.03.626567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Many organisms maintain generalized stress responses activated by adverse conditions. Although details vary, a common theme is the redirection of transcriptional and translational capacity away from growth-promoting genes and toward defense genes. Yet the precise roles of these coupled programs are difficult to dissect. Here we investigated Saccharomyces cerevisiae responding to salt as a model stressor. We used molecular, genomic, and single-cell microfluidic methods to examine the interplay between transcription factors Msn2 and Msn4 that induce stress-defense genes and Dot6 and Tod6 that transiently repress growth-promoting genes during stress. Surprisingly, loss of Dot6/Tod6 led to slower acclimation to salt, whereas loss of Msn2/4 produced faster growth during stress. This supports a model where transient repression of growth-promoting genes accelerates the Msn2/4 response, which is essential for acquisition of subsequent peroxide tolerance. Remarkably, we find that Msn2/4 regulate DOT6 mRNA production, influence Dot6 activation dynamics, and are required for full repression of growth-promoting genes. Thus, Msn2/4 directly regulate resource reallocation needed to mount their own response. We discuss broader implications for common stress responses across organisms.
Collapse
Affiliation(s)
- Rachel A. Kocik
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
37
|
Kim HB, Kraus WL. Intracellular Retention of Estradiol is Mediated by GRAM Domain-Containing Protein ASTER-B in Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594581. [PMID: 38826375 PMCID: PMC11142117 DOI: 10.1101/2024.05.16.594581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Elevated blood levels of estrogens have been associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating hormone levels in the blood and intracellular hormone concentrations are not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal. While circulating E2 is sequestered by sex hormone binding globulin (SHBG), the potential mechanisms of intracellular E2 retention are poorly understood. We found that a mislocalization of a steroid-binding GRAM-domain containing protein, ASTER-B, to the nucleus, which is observed in a subset of breast cancer patients, is associated with higher cellular E2 retention. Accumulation and retention of E2 are related to the steroidal properties of E2, and require nuclear localization and steroid binding by ASTER-B, as shown using a panel of mutant ASTER-B proteins. Finally, we observed that nuclear ASTER-B-mediated E2 retention is required for sustained hormone-induced ERα chromatin occupancy at enhancers and gene expression, as well as subsequent cell growth responses. Our results add intracellular hormone retention as a mechanism controlling E2-dependent gene expression and downstream biological outcomes.
Collapse
Affiliation(s)
- Hyung Bum Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida
Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical
Center, Dallas, United States
- Section of Laboratory Research, Department of Obstetrics and
Gynecology, University of Texas Southwestern Medical Center, Dallas, United States
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida
Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical
Center, Dallas, United States
- Section of Laboratory Research, Department of Obstetrics and
Gynecology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
38
|
Klemm C, Ólafsson G, Wood HR, Mellor C, Zabet NR, Thorpe PH. Proteome-wide forced interactions reveal a functional map of cell-cycle phospho-regulation in S. cerevisiae. Nucleus 2024; 15:2420129. [PMID: 39618027 PMCID: PMC11622623 DOI: 10.1080/19491034.2024.2420129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/08/2024] Open
Abstract
Dynamic protein phosphorylation and dephosphorylation play an essential role in cell cycle progression. Kinases and phosphatases are generally highly conserved across eukaryotes, underlining their importance for post-translational regulation of substrate proteins. In recent years, advances in phospho-proteomics have shed light on protein phosphorylation dynamics throughout the cell cycle, and ongoing progress in bioinformatics has significantly improved annotation of specific phosphorylation events to a given kinase. However, the functional impact of individual phosphorylation events on cell cycle progression is often unclear. To address this question, we used the Synthetic Physical Interactions (SPI) method, which enables the systematic recruitment of phospho-regulators to most yeast proteins. Using this method, we identified several putative novel targets involved in chromosome segregation and cytokinesis. The SPI method monitors cell growth and, therefore, serves as a tool to determine the impact of protein phosphorylation on cell cycle progression.
Collapse
Affiliation(s)
- Cinzia Klemm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Guðjón Ólafsson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Henry Richard Wood
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Caitlin Mellor
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Nicolae Radu Zabet
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Harold Thorpe
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
39
|
Zerad L, Gacem N, Gayda F, Day L, Sinigaglia K, Richard L, Parisot M, Cagnard N, Mathis S, Bole-Feysot C, O’Connell MA, Pingault V, Dambroise E, Keegan LP, Vallat JM, Bondurand N. Overexpression of Egr1 Transcription Regulator Contributes to Schwann Cell Differentiation Defects in Neural Crest-Specific Adar1 Knockout Mice. Cells 2024; 13:1952. [PMID: 39682701 PMCID: PMC11639873 DOI: 10.3390/cells13231952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of Adar1 reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of Adar1 mutant phenotypes. By analyzing RNA-Seq data from the sciatic nerves of mouse pups after conditional neural crest deletion of Adar1 (Adar1cKO), we here identified the transcription factors deregulated in Adar1cKO mutants compared to the controls. Through Adar1;Mavs and Adar1cKO;Egr1 double-mutant mouse rescue analyses, we then highlighted that the aberrant activation of the Mavs adapter protein and overexpression of the early growth response 1 (EGR1) transcription factor contribute to the Adar1 deletion associated defects in Schwann cell development in vivo. In silico and in vitro gene regulation studies additionally suggested that EGR1 might mediate this inhibitory effect through the aberrant regulation of EGR2-regulated myelin genes. We thus demonstrate the role of the Mda5/Mavs pathway, but also that of the Schwann cell transcription factors in Adar1-associated peripheral myelination defects.
Collapse
Affiliation(s)
- Lisa Zerad
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Nadjet Gacem
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Fanny Gayda
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Lucie Day
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Ketty Sinigaglia
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Laurence Richard
- Department of Neurology, Centre de Reference “Neuropathies Périphériques Rares”, CHU Limoges, 87000 Limoges, France; (L.R.); (J.M.V.)
| | - Melanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, 75015 Paris, France; (M.P.); (C.B.-F.)
| | - Nicolas Cagnard
- Bioinformatics Platform, Imagine Institute, INSERM UMR 1163, 75015 Paris, France;
| | - Stephane Mathis
- Department of Neurology (Nerve-Muscle Unit) and ‘Grand Sud-Ouest’ National Reference Center for Neuromuscular Disorders, CHU Bordeaux, Pellegrin Hospital, 33000 Bordeaux, France;
| | - Christine Bole-Feysot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, 75015 Paris, France; (M.P.); (C.B.-F.)
| | - Mary A. O’Connell
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Veronique Pingault
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France;
| | - Liam P. Keegan
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Jean Michel Vallat
- Department of Neurology, Centre de Reference “Neuropathies Périphériques Rares”, CHU Limoges, 87000 Limoges, France; (L.R.); (J.M.V.)
| | - Nadege Bondurand
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| |
Collapse
|
40
|
McMiller TL, Besharati S, Yarchoan M, Zhu Q, Ünsal-Kaçmaz K, Xu K, Lee J, Bhaijee F, Engle LL, Taube JM, Berger AE, Anders RA, Topalian SL. Immune microenvironment of Epstein-Barr virus (EBV)-negative compared to EBV-associated gastric cancers: implications for immunotherapy. J Immunother Cancer 2024; 12:e010201. [PMID: 39572160 PMCID: PMC11580252 DOI: 10.1136/jitc-2024-010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Gastric carcinomas (GC) are aggressive malignancies, and only ~15% of patients respond to anti-programmed cell death (ligand) 1 (PD-(L)1) monotherapy. However, Epstein-Barr virus (EBV)-associated GCs (~5-10% of GCs) often harbor PD-L1 and PD-L2 chromosomal amplifications and robust CD8+ T cell infiltrates, and respond at a high rate to anti-PD-1. The current study compares the tumor immune microenvironments (TiMEs) of EBV+ versus EBV(-) GCs. METHODS Over 1000 cases of primary invasive GCs were screened to identify 25 treatment-naïve specimens for study (11 EBV+, 14 EBV(-)). Quantitative immunohistochemistry (IHC) was conducted for markers of immune cell subsets and co-regulatory molecules. Gene expression profiling (GEP) was performed on RNAs isolated from macrodissected areas of CD3+ T cell infiltrates abutting PD-L1+ stromal/tumor cells, using multiplex quantitative reverse transcriptase PCR for a panel of 122 candidate immune-related genes. RESULTS IHC revealed that 17/25 GCs contained PD-L1+ stromal cells, with no significant difference between EBV+/- specimens; however, only 3/25 specimens (all EBV+) contained PD-L1+ tumor cells. CD8+ T cell densities were higher in EBV+ versus EBV(-) tumors (p=0.044). With GEP normalized to the pan-leukocyte marker PTPRC/CD45, EBV+ GCs overexpressed ITGAE (CD103, marking intraepithelial T cells and a dendritic cell subset) and the interferon-inducible genes CXCL9 and IDO1. In contrast, EBV(-) tumors overexpressed several functionally-related gene groups associated with myeloid cells (CD163, IL1A, NOS2, RIGI), immunosuppressive cytokines/chemokines (CXCL2, CXCR4, IL10, IL32), coinhibitory molecules (HAVCR2/TIM-3 and VSIR/VISTA), and adenosine pathway components (ENTPD1/ CD39 and NT5E/CD73). Notably, compared with EBV+ GCs, EBV(-) GCs also overexpressed components of the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway associated with cancer-promoting inflammation, including PTGS2/COX-2 (most highly upregulated gene, 32-fold, p=0.005); prostaglandin receptors PTGER1 (EP1; up 21-fold, p=0.015) and PTGER4 (EP4; up twofold, p=0.022); and the major COX-2-inducing cytokine IL1B (up 11-fold, p=0.019). Consistent with these findings, COX-2 protein expression trended higher in EBV(-) versus EBV+ GCs (p=0.068). CONCLUSIONS While certain markers of immunosuppression are found in the GC TiME regardless of EBV status, EBV(-) GCs, which are much more common than EBV+ GCs, overexpress components of the COX-2/PGE2 pathway. These findings provide novel insights into the immune microenvironments of EBV+ and EBV(-) GC, and offer potential targets to overcome resistance to anti-PD-(L)1 therapies.
Collapse
Affiliation(s)
- Tracee L McMiller
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sepideh Besharati
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qingfeng Zhu
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ke Xu
- Bristol Myers Squibb Co, Princeton, New Jersey, USA
| | - Junghwa Lee
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Feriyl Bhaijee
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Logan L Engle
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janis M Taube
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan E Berger
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert A Anders
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suzanne L Topalian
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Rohatgi N, Fortin JP, Lau T, Ying Y, Zhang Y, Lee BL, Costa MR, Reja R. Seed sequences mediate off-target activity in the CRISPR-interference system. CELL GENOMICS 2024; 4:100693. [PMID: 39510079 PMCID: PMC11605690 DOI: 10.1016/j.xgen.2024.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
The CRISPR interference (CRISPRi) system is a powerful tool for selectively and efficiently silencing genes in functional genomics research applications. However, its off-target activity has not been systematically investigated. Here, we utilized a genome-wide CRISPRi-Cas9 single-guide RNA (sgRNA) library to investigate the presence of off-target activity and its effects on gene expression. Our findings suggest that off-target effects in CRISPRi are quite pervasive and have direct and indirect impacts on gene expression. Most of the identified off-targets can be accounted for by complementarity of the protospacer adjacent motif (PAM)-proximal genomic sequence with the 3' half of the sgRNA spacer sequence, the seed sequence. We also report that while the stability of off-target binding is primarily driven by the PAM-proximal seed sequences, variations in the length of these seed sequences and the degree of mismatch tolerance at various positions can differ across different sgRNAs.
Collapse
Affiliation(s)
- Neha Rohatgi
- Genentech Computational Sciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; Roche Informatics, Hoffman-La Roche Canada, 7070 Mississauga Road, Mississauga, ON, Canada
| | - Jean-Philippe Fortin
- Genentech Computational Sciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ted Lau
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yi Ying
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yue Zhang
- Genentech Computational Sciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bettina L Lee
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Rohit Reja
- Genentech Computational Sciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
42
|
Judy KJ, Pinseel E, Downey KM, Lewis JA, Alverson AJ. The Divergent Responses of Salinity Generalists to Hyposaline Stress Provide Insights Into the Colonisation of Freshwaters by Diatoms. Mol Ecol 2024; 33:e17556. [PMID: 39432060 DOI: 10.1111/mec.17556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Environmental transitions, such as the salinity divide separating marine and fresh waters, shape biodiversity over both shallow and deep timescales, opening up new niches and creating opportunities for accelerated speciation and adaptive radiation. Understanding the genetics of environmental adaptation is central to understanding how organisms colonise and subsequently diversify in new habitats. We used time-resolved transcriptomics to contrast the hyposalinity stress responses of two diatoms. Skeletonema marinoi has deep marine ancestry but has recently invaded brackish waters. Cyclotella cryptica has deep freshwater ancestry and can withstand a much broader salinity range. Skeletonema marinoi is less adept at mitigating even mild salinity stress compared to Cyclotella cryptica, which has distinct mechanisms for rapid mitigation of hyposaline stress and long-term growth in low salinity. We show that the cellular mechanisms underlying low salinity tolerance, which has allowed diversification across freshwater habitats worldwide, includes elements that are both conserved and variable across the diatom lineage. The balance between ancestral and lineage-specific environmental responses in phytoplankton have shaped marine-freshwater transitions on evolutionary timescales and, on contemporary timescales, will affect which lineages survive and adapt to changing ocean conditions.
Collapse
Affiliation(s)
- Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
43
|
Nicolas Mala KL, Skalak J, Zemlyanskaya E, Dolgikh V, Jedlickova V, Robert HS, Havlickova L, Panzarova K, Trtilek M, Bancroft I, Hejatko J. Primary multistep phosphorelay activation comprises both cytokinin and abiotic stress responses: insights from comparative analysis of Brassica type-A response regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6346-6368. [PMID: 39171371 PMCID: PMC11523033 DOI: 10.1093/jxb/erae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Multistep phosphorelay (MSP) signaling integrates hormonal and environmental signals to control both plant development and adaptive responses. Type-A RESPONSE REGULATOR (RRA) genes, the downstream members of the MSP cascade and cytokinin primary response genes, are thought to mediate primarily the negative feedback regulation of (cytokinin-induced) MSP signaling. However, transcriptional data also suggest the involvement of RRA genes in stress-related responses. By employing evolutionary conservation with the well-characterized Arabidopsis thaliana RRA genes, we identified five and 38 novel putative RRA genes in Brassica oleracea and Brassica napus, respectively. Our phylogenetic analysis suggests the existence of gene-specific selective pressure, maintaining the homologs of ARR3, ARR6, and ARR16 as singletons during the evolution of Brassicaceae. We categorized RRA genes based on the kinetics of their cytokinin-mediated up-regulation and observed both similarities and specificities in this type of response across Brassicaceae species. Using bioinformatic analysis and experimental data demonstrating the cytokinin and abiotic stress responsiveness of the A. thaliana-derived TCSv2 reporter, we unveil the mechanistic conservation of cytokinin- and stress-mediated up-regulation of RRA genes in B. rapa and B. napus. Notably, we identify partial cytokinin dependency of cold stress-induced RRA transcription, thus further demonstrating the role of cytokinin signaling in crop adaptive responses.
Collapse
Affiliation(s)
- Katrina Leslie Nicolas Mala
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Jan Skalak
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vladislav Dolgikh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Veronika Jedlickova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Helene S Robert
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | | | - Klara Panzarova
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Martin Trtilek
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Ian Bancroft
- Department of Biology, University of York, York, UK
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| |
Collapse
|
44
|
Eldin P, David A, Hirtz C, Battini JL, Briant L. SARS-CoV-2 Displays a Suboptimal Codon Usage Bias for Efficient Translation in Human Cells Diverted by Hijacking the tRNA Epitranscriptome. Int J Mol Sci 2024; 25:11614. [PMID: 39519170 PMCID: PMC11546939 DOI: 10.3390/ijms252111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Codon bias analysis of SARS-CoV-2 reveals suboptimal adaptation for translation in human cells it infects. The detailed examination of the codons preferentially used by SARS-CoV-2 shows a strong preference for LysAAA, GlnCAA, GluGAA, and ArgAGA, which are infrequently used in human genes. In the absence of an adapted tRNA pool, efficient decoding of these codons requires a 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2) modification at the U34 wobble position of the corresponding tRNAs (tLysUUU; tGlnUUG; tGluUUC; tArgUCU). The optimal translation of SARS-CoV-2 open reading frames (ORFs) may therefore require several adjustments to the host's translation machinery, enabling the highly biased viral genome to achieve a more favorable "Ready-to-Translate" state in human cells. Experimental approaches based on LC-MS/MS quantification of tRNA modifications and on alteration of enzymatic tRNA modification pathways provide strong evidence to support the hypothesis that SARS-CoV-2 induces U34 tRNA modifications and relies on these modifications for its lifecycle. The conclusions emphasize the need for future studies on the evolution of SARS-CoV-2 codon bias and its ability to alter the host tRNA pool through the manipulation of RNA modifications.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| | - Alexandre David
- Institut de Génomique Fonctionnelle (IGF), INSERM U1191, 141 Rue de la Cardonille, 34000 Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB)-Plateforme de Protéomique Clinique (PPC), Institut des Neurosciences de Montpellier (INM), University of Montpellier, CHU Montpellier, INSERM CNRS, 298 Rue du Truel, 34090 Montpellier, France
| | - Christophe Hirtz
- Institute for Regenerative Medicine and Biotherapy (IRMB)-Plateforme de Protéomique Clinique (PPC), Institut des Neurosciences de Montpellier (INM), University of Montpellier, CHU Montpellier, INSERM CNRS, 298 Rue du Truel, 34090 Montpellier, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
45
|
Boucher MJ, Banerjee S, Joshi MB, Wei AL, Huang MY, Lei S, Ciranni M, Condon A, Langen A, Goddard TD, Caradonna I, Goranov AI, Homer CM, Mortensen Y, Petnic S, Reilly MC, Xiong Y, Susa KJ, Pastore VP, Zaro BW, Madhani HD. Phenotypic landscape of a fungal meningitis pathogen reveals its unique biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619677. [PMID: 39484549 PMCID: PMC11526942 DOI: 10.1101/2024.10.22.619677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cryptococcus neoformans is the most common cause of fungal meningitis and the top-ranked W.H.O. priority fungal pathogen. Only distantly related to model fungi, C. neoformans is also a powerful experimental system for exploring conserved eukaryotic mechanisms lost from specialist model yeast lineages. To decipher its biology globally, we constructed 4328 gene deletions and measured-with exceptional precision--the fitness of each mutant under 141 diverse growth-limiting in vitro conditions and during murine infection. We defined functional modules by clustering genes based on their phenotypic signatures. In-depth studies leveraged these data in two ways. First, we defined and investigated new components of key signaling pathways, which revealed animal-like pathways/components not predicted from studies of model yeasts. Second, we identified environmental adaptation mechanisms repurposed to promote mammalian virulence by C. neoformans, which lacks a known animal reservoir. Our work provides an unprecedented resource for deciphering a deadly human pathogen.
Collapse
Affiliation(s)
- Michael J Boucher
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sanjita Banerjee
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Meenakshi B Joshi
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Angela L Wei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Manning Y Huang
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Susan Lei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Massimiliano Ciranni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Andrew Condon
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Andreas Langen
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Thomas D Goddard
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Ippolito Caradonna
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Alexi I Goranov
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Christina M Homer
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yassaman Mortensen
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sarah Petnic
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Morgann C Reilly
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Ying Xiong
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Katherine J Susa
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Vito Paolo Pastore
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Balyn W Zaro
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
46
|
Tsaytler P, Blaess G, Scholze-Wittler M, Meierhofer D, Wittler L, Koch F, Herrmann BG. SRF promotes long-range chromatin loop formation and stem cell pluripotency. Cell Rep 2024; 43:114846. [PMID: 39392751 DOI: 10.1016/j.celrep.2024.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Serum response factor (SRF) is a transcription factor essential for cell proliferation, differentiation, and migration and is required for primitive streak and mesoderm formation in the embryo. The canonical roles of SRF are mediated by a diverse set of context-dependent cofactors. Here, we show that SRF physically interacts with CTCF and cohesin subunits at topologically associating domain (TAD) boundaries and loop anchors. SRF promotes long-range chromatin loop formation and contributes to TAD insulation. In embryonic stem cells (ESCs), SRF associates with SOX2 and NANOG and contributes to the formation of three-dimensional (3D) pluripotency hubs. Our findings reveal additional roles of SRF in higher-order chromatin organization.
Collapse
Affiliation(s)
- Pavel Tsaytler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Gaby Blaess
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Lab, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Lars Wittler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Frederic Koch
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Bernhard G Herrmann
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| |
Collapse
|
47
|
Clemons HJ, Hogan DJ, Brown PO. Depot-specific mRNA expression programs in human adipocytes suggest physiological specialization via distinct developmental programs. PLoS One 2024; 19:e0311751. [PMID: 39401200 PMCID: PMC11472956 DOI: 10.1371/journal.pone.0311751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots. Adipocytes from different depots display distinct gene expression programs, which are most closely shared with anatomically related depots. mRNAs whose expression differs between anatomically diverse groups of depots (e.g., subcutaneous vs. internal) suggest important functional specializations. These depot-specific differences in gene expression were recapitulated when adipocyte progenitor cells from each site were differentiated ex vivo, suggesting that progenitor cells from specific anatomic sites are deterministically programmed to differentiate into depot-specific adipocytes. Many developmental transcription factors show striking depot-specific patterns of expression, suggesting that adipocytes in each anatomic depot are programmed during early development in concert with anatomically related tissues and organs. Our results support the hypothesis that adipocytes from different depots are functionally distinct and that their depot-specific specialization reflects distinct developmental programs.
Collapse
Affiliation(s)
- Heather J. Clemons
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
48
|
Erjavec E, Angée C, Hadjadj D, Passet B, David P, Kostic C, Dodé E, Zanlonghi X, Cagnard N, Nedelec B, Crippa SV, Bole-Feysot C, Zarhrate M, Creuzet S, Castille J, Vilotte JL, Calvas P, Plaisancié J, Chassaing N, Kaplan J, Rozet JM, Fares Taie L. Congenital microcoria deletion in mouse links Sox21 dysregulation to disease and suggests a role for TGFB2 in glaucoma and myopia. Am J Hum Genet 2024; 111:2265-2282. [PMID: 39293448 PMCID: PMC11480854 DOI: 10.1016/j.ajhg.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.
Collapse
Affiliation(s)
- Elisa Erjavec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Clémentine Angée
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Djihad Hadjadj
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, Paris, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Emmanuel Dodé
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Xavier Zanlonghi
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Nicolas Cagnard
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Brigitte Nedelec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Sylvain V Crippa
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Christine Bole-Feysot
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Mohammed Zarhrate
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Patrick Calvas
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Julie Plaisancié
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| | - L Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| |
Collapse
|
49
|
Yuan X, Guo Y, Yi H, Hou X, Zhao Y, Wang Y, Jia H, Baba SS, Li M, Huo F. Hemoglobin α-derived peptides VD-hemopressin (α) and RVD-hemopressin (α) are involved in electroacupuncture inhibition of chronic pain. Front Pharmacol 2024; 15:1439448. [PMID: 39411061 PMCID: PMC11473328 DOI: 10.3389/fphar.2024.1439448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Knee osteoarthritis (KOA) is a chronic degenerative bone metabolic disease that primarily affects older adults, leading to chronic pain and disability that affect patients' daily activities. Electroacupuncture (EA) is a commonly used method for the treatment of chronic pain in clinical practice. Previous studies indicate that the endocannabinoid system is involved in EA analgesia, but whether endocannabinopeptide VD-hemopressin (α) and RVD-hemopressin (α) derived from hemoglobin chains are involved in EA analgesia is unclear. Methods RNA-seq technology was used to screen which genes involved in EA analgesia. The expression of hemoglobin α chain and 26S proteasome were determined by Western blotting. The level of VD-hemopressin (α) and RVD-hemopressin (α) were measured by UPLC-MS/MS. Microinjection VD-Hemopressin (α), RVD-Hemopressin (α) and 26S proteasome inhibitor MG-132 into vlPAG, then observe mechanical and thermal pain thresholds. Results Therefore, we used RNA-seq to obtain differentially expressed genes Hba-a1 and Hba-a2 involved in EA analgesia in the periaqueductal gray (PAG), which were translated into the hemoglobin α chain. EA significantly increased the expression of the hemoglobin α chain and the level of hemopressin (α) and RVD-hemopressin (α). Microinjection of VD-hemopressin (α) and RVD-hemopressin (α) into the ventrolateral periaqueductal gray (vlPAG) mimicked the analgesic effect of EA, while CB1 receptor antagonist AM251 reversed this effect. EA significantly increased the expression of 26S proteasome in KOA mice. Microinjection of 26S proteasome inhibitor MG132 before EA prevented both the anti-allodynic effect and upregulation of the concentration of RVD-hemopressin (α) by EA treatment and upregulated the expression of the hemoglobin α chain. Discussion Our data suggest that EA upregulated the concentration of VD-hemopressin (α) and RVD-hemopressin (α) through enhancement of the hemoglobin α chain degradation by 26S proteasome in the PAG, then activated the CB1 receptor, thereby exerting inhibition of chronic pain in a mouse model of KOA. These results provide new insights into the EA analgesic mechanisms and reveal possible targets for EA treatment of chronic pain.
Collapse
Affiliation(s)
- Xiaocui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Yixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Huiyuan Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Xuemei Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Yulong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Yuying Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Sani Sa’idu Baba
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Neuroscience and pathophysiology unit, Department of Human physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Man Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuquan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
50
|
Güleç Taşkıran AE, Karaoğlu DA, Eylem CC, Ermiş Ç, Güderer İ, Nemutlu E, Demirkol Canlı S, Banerjee S. Glutamine withdrawal leads to the preferential activation of lipid metabolism in metastatic colorectal cancer. Transl Oncol 2024; 48:102078. [PMID: 39111172 PMCID: PMC11362781 DOI: 10.1016/j.tranon.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Glutamine is a non-essential amino acid that is critical for cell growth. However, the differential metabolism of l-glutamine in metastatic versus primary colorectal cancer (CRC) has not been evaluated adequately. MATERIALS AND METHODS Differential expression of glutamine-related genes was determined in primary versus metastatic CRC. Univariate Cox regression and hierarchical clustering were used to generate a gene signature for prognostication. Untargeted metabolomics and 18O based fluxomics were used to identify differential metabolite levels and energy turnover in the paired primary (SW480) and metastatic (SW620) CRC cells. Western blot and qRT-PCR were used to validate differential gene expression. Subcellular localization of E-cadherin was determined by immunocytochemistry. Lipid droplets were visualized with Nile Red. RESULTS The GO term "Glutamine metabolism" was significantly enriched in metastatic versus primary tumors. Supporting this, SW620 cells showed decreased membrane localization of E-cadherin and increased motility upon l-Glutamine withdrawal. A glutamine related signature associated with worse prognosis was identified and validated in multiple datasets. A fluxomics assay revealed a slower TCA cycle in SW480 and SW620 cells upon l-Glutamine withdrawal. SW620 cells, however, could maintain high ATP levels. Untargeted metabolomics indicated the preferential metabolism of fatty acids in SW620 but not SW480 cells. Lipids were mainly obtained from the environment rather than by de novo synthesis. CONCLUSIONS Metastatic CRC cells can display aberrant glutamine metabolism. We show for the first time that upon l-glutamine withdrawal, SW620 (but not SW480) cells were metabolically plastic and could metabolize lipids for survival and cellular motility.
Collapse
Affiliation(s)
- Aliye Ezgi Güleç Taşkıran
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye; Department of Molecular Biology and Genetics, Başkent University, Ankara, Türkiye
| | | | - Cemil Can Eylem
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Çağdaş Ermiş
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye
| | - İsmail Güderer
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Seçil Demirkol Canlı
- Division of Tumor Pathology, Department of Clinical Oncology, Cancer Institute, Hacettepe University, Ankara, Türkiye
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye; Cancer Systems Biology (CanSyL), Orta Doğu Teknik Üniversitesi, Ankara, Türkiye.
| |
Collapse
|