1
|
Yang L, Wu J, Zhang F, Zhang L, Zhang X, Zhou J, Pang J, Xie B, Xie H, Jiang Y, Peng J. Microglia aggravate white matter injury via C3/C3aR pathway after experimental subarachnoid hemorrhage. Exp Neurol 2024; 379:114853. [PMID: 38866102 DOI: 10.1016/j.expneurol.2024.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The activation of glial cells is intimately associated with the pathophysiology of neuroinflammation and white matter injury (WMI) during both acute and chronic phases following subarachnoid hemorrhage (SAH). The complement C3a receptor (C3aR) has a dual role in modulating inflammation and contributes to neurodevelopment, neuroplasticity, and neurodegeneration. However, its impact on WMI in the context of SAH remains unclear. In this study, 175 male C57BL/6J mice underwent SAH through endovascular perforation. Oxyhemoglobin (oxy-Hb) was employed to simulate SAH in vitro. A suite of techniques, including immunohistochemistry, transcriptomic sequencing, and a range of molecular biotechnologies, were utilized to evaluate the activation of the C3-C3aR pathway on microglial polarization and WMI. Results revealed that post-SAH abnormal activation of microglia was accompanied by upregulation of complement C3 and C3aR. The inhibition of C3aR decreased abnormal microglial activation, attenuated neuroinflammation, and ameliorated WMI and cognitive deficits following SAH. RNA-Seq indicated that C3aR inhibition downregulated several immune and inflammatory pathways and mitigated cellular injury by reducing p53-induced death domain protein 1 (Pidd1) and Protein kinase RNA-like ER kinase (Perk) expression, two factors mainly function in sensing and responding to cellular stress and endoplasmic reticulum (ER) stress. The deleterious effects of the C3-C3aR axis in the context of SAH may be related to endoplasmic reticulum (ER) stress-dependent cellular injury and inflammasome formation. Agonists of Perk can exacerbate the cellular injury and neuroinflammation, which was attenuated by C3aR inhibition after SAH. Additionally, intranasal administration of C3a during the subacute phase of SAH was found to decrease astrocyte reactivity and alleviate cognitive deficits post-SAH. This research deepens our understanding of the complex pathophysiology of WMI following SAH and underscores the therapeutic potential of C3a treatment in promoting white matter repair and enhancing functional recovery prognosis. These insights pave the way for future clinical application of C3a-based therapies, promising significant benefits in the treatment of SAH and its related complications.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Huangfan Xie
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
3
|
Rosberg R, Smolag KI, Sjölund J, Johansson E, Bergelin C, Wahldén J, Pantazopoulou V, Ceberg C, Pietras K, Blom AM, Pietras A. Hypoxia-induced complement component 3 promotes aggressive tumor growth in the glioblastoma microenvironment. JCI Insight 2024; 9:e179854. [PMID: 39172519 PMCID: PMC11466187 DOI: 10.1172/jci.insight.179854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma with a high rate of relapse despite intensive treatment. Tumor recurrence is tightly linked to radio-resistance, which in turn is associated with hypoxia. Here, we discovered a strong link between hypoxia and local complement signaling using publicly available bulk, single-cell, and spatially resolved transcriptomic data from patients with GBM. Complement component 3 (C3) and the receptor C3AR1 were both associated with aggressive disease and shorter survival in human glioma. In a genetically engineered mouse model of GBM, we found C3 specifically in hypoxic tumor areas. In vitro, we found an oxygen level-dependent increase in C3 and C3AR1 expression in response to hypoxia in several GBM and stromal cell types. C3a induced M2 polarization of cultured microglia and macrophages in a C3aR-dependent fashion. Targeting C3aR using the antagonist SB290157 prolonged survival of glioma-bearing mice both alone and in combination with radiotherapy while reducing the number of M2-polarized macrophages. Our findings establish a strong link between hypoxia and complement pathways in GBM and support a role of hypoxia-induced C3a/C3aR signaling as a contributor to glioma aggressiveness by regulating macrophage polarization.
Collapse
Affiliation(s)
- Rebecca Rosberg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Karolina I. Smolag
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Christina Bergelin
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Julia Wahldén
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Vasiliki Pantazopoulou
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Crister Ceberg
- Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Wu C, Li Y, He X, Sun H, Zhang S, Hou F, Hu M, Lan A, Zhang H, Qi L, Zhang H, Liao H. Chemogenetic activation of astrocytic Gi signaling promotes spinogenesis and motor functional recovery after stroke. Glia 2024; 72:1150-1164. [PMID: 38436489 DOI: 10.1002/glia.24521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Ischemic stroke is the leading cause of adult disability. The rewiring of surviving neurons is the fundamental process for functional recovery. Accumulating evidence implicates astrocytes in synapses and neural circuits formation, but few studies have further studied how to enhance the effects of astrocytes on synapse and circuits after stroke and its impacts on post-stroke functional recovery. In this study, we made use of chemogenetics to specifically activate astrocytic Gi signaling in the peri-infarcted sensorimotor cortex at different time epochs in a mouse model of photothrombotic stroke. We found that early activation of astrocytic hM4Di after stroke by CNO modulates astrocyte activity and upregulates synaptogenic molecules including thrombospondin-1 (TSP1) as revealed by bulk RNA-sequencing, but no significant improvement was observed in dendritic spine density and behavioral performance in grid walking test. Interestingly, when the manipulation was initiated at the subacute phase of stroke, the recovery of spine density and motor function could be effectively promoted, accompanied by increased TSP1 expression. Our data highlight the important role of astrocytes in synapse remodeling during the repair phase of stroke and suggest astrocytic Gi signaling activation as a potential strategy for synapse regeneration, circuit rewiring, and functional recovery.
Collapse
Affiliation(s)
- Chaoran Wu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu Li
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xinran He
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hao Sun
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shiwen Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Fengsheng Hou
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Mengqiu Hu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Aili Lan
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Long Qi
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huibin Zhang
- Center for Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Hong Liao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Duan H, Li S, Hao P, Hao F, Zhao W, Gao Y, Qiao H, Gu Y, Lv Y, Bao X, Chiu K, So KF, Yang Z, Li X. Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke. Neural Regen Res 2024; 19:409-415. [PMID: 37488905 PMCID: PMC10503635 DOI: 10.4103/1673-5374.375344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/04/2023] [Accepted: 04/12/2023] [Indexed: 07/26/2023] Open
Abstract
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation, differentiation, migration, and survival, as well as angiogenesis, in the context of brain injury. However, whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown. In this study, we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats. The gel slowly released basic fibroblast growth factor, which improved the local microenvironment, activated endogenous neural stem/progenitor cells, and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons, while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery. This study revealed the mechanism by which bioactive materials repair ischemic strokes, thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Qiao
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yiming Gu
- Department of Physical Education, Capital University of Economics and Businessm, Beijing, China
| | - Yang Lv
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kin Chiu
- Department of Psychology, State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
6
|
Xiong Y, Cui MY, Li ZL, Fu YQ, Zheng Y, Yu Y, Zhang C, Huang XY, Chen BH. ULK1 confers neuroprotection by regulating microglial/macrophages activation after ischemic stroke. Int Immunopharmacol 2024; 127:111379. [PMID: 38141409 DOI: 10.1016/j.intimp.2023.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Microglial activation and autophagy play a critical role in the progression of ischemic stroke and contribute to the regulation of neuroinflammation. Unc-51-like kinase 1 (ULK1) is the primary autophagy kinase involved in autophagosome formation. However, the impact of ULK1 on neuroprotection and microglial activation after ischemic stroke remains unclear. In this study, we established a photothrombotic stroke model, and administered SBI-0206965 (SBI), an ULK1 inhibitor, and LYN-1604 hydrochloride (LYN), an ULK1 agonist, to modulate ULK1 activity in vivo. We assessed sensorimotor deficits, neuronal apoptosis, and microglial/macrophage activation to evaluate the neurofunctional outcome. Immunofluorescence results revealed ULK1 was primarily localized in the microglia of the infarct area following ischemia. Upregulating ULK1 through LYN treatment significantly reduced infarct volume, improved motor function, promoted the increase of anti-inflammatory microglia. In conclusion, ULK1 facilitated neuronal repair and promoted the formation of anti-inflammatory microglia pathway after ischemic injury.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mai Yin Cui
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Zhuo Li Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yan Qiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yi Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
7
|
Han PP, Han Y, Shen XY, Gao ZK, Bi X. Enriched environment-induced neuroplasticity in ischemic stroke and its underlying mechanisms. Front Cell Neurosci 2023; 17:1210361. [PMID: 37484824 PMCID: PMC10360187 DOI: 10.3389/fncel.2023.1210361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Stroke is a common cerebrovascular disease that can interrupt local blood flow in the brain, causing neuronal damage or even death, resulting in varying degrees of neurological dysfunction. Neuroplasticity is an important neurological function that helps neurons reorganize and regain function after injury. After cerebral ischemia, neuroplasticity changes are critical factors for restoring brain function. An enriched environment promotes increased neuroplasticity, thereby aiding stroke recovery. In this review, we discuss the positive effects of the enriched environment on neuroplasticity after cerebral ischemia, including synaptic plasticity, neurogenesis, and angiogenesis. In addition, we also introduce some studies on the clinical application of enriched environments in the rehabilitation of post-stroke patients, hoping that they can provide some inspiration for doctors and therapists looking for new approaches to stroke rehabilitation.
Collapse
Affiliation(s)
- Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
8
|
Jiang T, Li Y, He S, Huang N, Du M, Zhai Q, Pu K, Wu M, Yan C, Ma Z, Wang Q. Reprogramming astrocytic NDRG2/NF-κB/C3 signaling restores the diabetes-associated cognitive dysfunction. EBioMedicine 2023; 93:104653. [PMID: 37329577 DOI: 10.1016/j.ebiom.2023.104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Dementia is a serious complication in patients with diabetes-associated cognitive dysfunction (DACD). In this study, we aim to explore the protective effect of exercise on DACD in diabetic mice, and the role of NDRG2 as a potential guarder for reversing the pathological structure of neuronal synapses. METHODS Seven weeks of standardized exercise at moderate intensity was carried out using an animal treadmill in the vehicle + Run and STZ + Run groups. Based on quantitative transcriptome and tandem mass tag (TMT) proteome sequencing, weighted gene co-expression analysis (WGCNA) and gene set enrichment analysis (GSEA) were used to investigate the activation of complement cascades to injury neuronal synaptic plasticity. Golgi staining, Western blotting, immunofluorescence staining, and electrophysiology were used to verify the reliability of sequencing data. The role of NDRG2 was assessed by overexpressing or inhibiting the NDRG2 gene in vivo. Moreover, we estimated the cognitive function in diabetic or normal patients using DSST scores. FINDINGS Exercise reversed the injury of neuronal synaptic plasticity and the downregulation of astrocytic NDRG2 in diabetic mice, which succeeded in attenuating DACD. The deficiency of NDRG2 aggravated the activation of complement C3 by accelerating the phosphorylation of NF-κB, ultimately leading to synaptic injury and cognitive dysfunction. Conversely, the overexpression of NDRG2 promoted astrocytic remodeling by inhibiting complement C3, thus attenuating synaptic injury and cognitive dysfunction. Meanwhile, C3aR blockade rescued dendritic spines loss and cognitive deficits in diabetic mice. Moreover, the average DSST score of diabetic patients was significantly lower than that of non-diabetic peers. Levels of complement C3 in human serum were elevated in diabetic patients compared to those in non-diabetic patients. INTERPRETATION Our findings illustrate the effectiveness and integrative mechanism of NDRG2-induced improvement of cognition from a multi-omics perspective. Additionally, they confirm that the expression of NDRG2 is closely related to cognitive function in diabetic mice and the activation of complement cascades accelerated impairment of neuronal synaptic plasticity. NDRG2 acts as a regulator of astrocytic-neuronal interaction via NF-κB/C3/C3aR signaling to restore synaptic function in diabetic mice. FUNDING This study was supported by the National Natural Science Foundation of China (No. 81974540, 81801899, 81971290), the Key Research and Development Program of Shaanxi (Program No. 2022ZDLSF02-09) and Fundamental Research Funds for the Central Universities (Grant No. xzy022019020).
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ning Huang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kairui Pu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Meiyan Wu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhi Ma
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
9
|
Xiong Y, Fu Y, Li Z, Zheng Y, Cui M, Zhang C, Huang XY, Jian Y, Chen BH. Laquinimod Inhibits Microglial Activation, Astrogliosis, BBB Damage, and Infarction and Improves Neurological Damage after Ischemic Stroke. ACS Chem Neurosci 2023. [PMID: 37161270 DOI: 10.1021/acschemneuro.2c00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Glial activation is involved in neuroinflammation and blood-brain barrier (BBB) damage, which plays a key role in ischemic stroke-induced neuronal damage; therefore, regulating glial activation is an important way to inhibit ischemic brain injury. Effects of laquinimod (LAQ) include inhibiting axonal damage and neuroinflammation in multiple neuronal injury diseases. However, whether laquinimod can exert neuroprotective effects after ischemic stroke remains unknown. In this study, we investigated the effect of LAQ on glial activation, BBB damage, and neuronal damage in an ischemic stroke model. Adult ICR mice were used to create a photothrombotic stroke (PT) model. LAQ was administered orally at 30 min after ischemic injury. Neurobehavioral tests, Evans Blue, immunofluorescence, TUNEL, Nissl staining, and western blot were performed to evaluate the neurofunctional outcome. Quantification of immunofluorescence was evaluated by unbiased stereology. LAQ post-treatment significantly reduced infarction and improved forepaw function at 5 days after PT. Interestingly, LAQ treatment significantly promoted anti-inflammatory microglial activation. Moreover, LAQ treatment reduced astrocyte activation, glial scar formation, and BBB breakdown in ischemic brains. Therefore, this study demonstrated that LAQ post-treatment restricted microglial polarization, astrogliosis, and glial scar and improved BBB damage and behavioral function. LAQ may serve as a novel target to develop new therapeutic agents for ischemic stroke.
Collapse
Affiliation(s)
- Ye Xiong
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yanqiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuoli Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Maiyin Cui
- Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, P. R. China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
10
|
Bohlson SS, Tenner AJ. Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and Neuroinflammation. Annu Rev Immunol 2023; 41:431-452. [PMID: 36750318 DOI: 10.1146/annurev-immunol-101921-035639] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.
Collapse
Affiliation(s)
- Suzanne S Bohlson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA; ,
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA; ,
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
11
|
Neuregulin-1/PI3K signaling effects on oligodendrocyte proliferation, remyelination and behaviors deficit in a male mouse model of ischemic stroke. Exp Neurol 2023; 362:114323. [PMID: 36690057 DOI: 10.1016/j.expneurol.2023.114323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.
Collapse
|
12
|
Pekna M, Siqin S, de Pablo Y, Stokowska A, Torinsson Naluai Å, Pekny M. Astrocyte Responses to Complement Peptide C3a are Highly Context-Dependent. Neurochem Res 2023; 48:1233-1241. [PMID: 36097103 PMCID: PMC10030406 DOI: 10.1007/s11064-022-03743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Astrocytes perform a range of homeostatic and regulatory tasks that are critical for normal functioning of the central nervous system. In response to an injury or disease, astrocytes undergo a pronounced transformation into a reactive state that involves changes in the expression of many genes and dramatically changes astrocyte morphology and functions. This astrocyte reactivity is highly dependent on the initiating insult and pathological context. C3a is a peptide generated by the proteolytic cleavage of the third complement component. C3a has been shown to exert neuroprotective effects, stimulate neural plasticity and promote astrocyte survival but can also contribute to synapse loss, Alzheimer's disease type neurodegeneration and blood-brain barrier dysfunction. To test the hypothesis that C3a elicits differential effects on astrocytes depending on their reactivity state, we measured the expression of Gfap, Nes, C3ar1, C3, Ngf, Tnf and Il1b in primary mouse cortical astrocytes after chemical ischemia, after exposure to lipopolysaccharide (LPS) as well as in control naïve astrocytes. We found that C3a down-regulated the expression of Gfap, C3 and Nes in astrocytes after ischemia. Further, C3a increased the expression of Tnf and Il1b in naive astrocytes and the expression of Nes in astrocytes exposed to LPS but did not affect the expression of C3ar1 or Ngf. Jointly, these results provide the first evidence that the complement peptide C3a modulates the responses of astrocytes in a highly context-dependent manner.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
| | - Sumen Siqin
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
- Division of Episomal Persistent DNA in Cancer and Chronic Diseases, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Anna Stokowska
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Åsa Torinsson Naluai
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
- Florey Institute of Neuroscience and and Mental Health, Parkville, Melbourne, Australia.
- University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
13
|
Gillis HL, Kalinina A, Xue Y, Yan K, Turcotte-Cardin V, Todd MAM, Young KG, Lagace D, Picketts DJ. VGF is required for recovery after focal stroke. Exp Neurol 2023; 362:114326. [PMID: 36682400 DOI: 10.1016/j.expneurol.2023.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The high incidence of ischemic stroke worldwide and poor efficacy of neuroprotective drugs has increased the need for novel therapies in stroke recovery. Transcription of the neurosecretory protein VGF (non-acronym) is enhanced following ischemic stroke and proposed to be important for stroke recovery. To determine the requirement for VGF in recovery, we created Vgffl/fl:Nestin-Cre conditional knockout (Vgf cKO) mice and induced a photothrombotic focal ischemic stroke. Naïve Vgf cKO mice had significant less body weight in the absence of gross defects in brain size, cortical lamination, or deficits in locomotor activity compared to wildtype controls. Following a focal stroke, the Vgf cKO mice had greater deficits including impaired recovery of forepaw motor deficits at 2- and 4-weeks post stroke. The increase in deficits occurred in the absence of any difference in lesion size and was accompanied by a striking loss of stroke-induced migration of SVZ-derived immature neurons to the peri-infarct region. Importantly, exogenous adenoviral delivery of VGF (AdVGF) significantly improved recovery in the Vgf cKO mice and was able to rescue the immature neuron migration defect observed. Taken together, our results define a requirement for VGF in post stroke recovery and identify VGF peptides as a potential future therapeutic.
Collapse
Affiliation(s)
- Hannah L Gillis
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada
| | - Alena Kalinina
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yingben Xue
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Valérie Turcotte-Cardin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Matthew A M Todd
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada
| | - Kevin G Young
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Diane Lagace
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada; Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
14
|
Sugiyama S, Sasaki T, Tanaka H, Yan H, Ikegami T, Kanki H, Nishiyama K, Beck G, Gon Y, Okazaki S, Todo K, Tamura A, Tsukita S, Mochizuki H. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci Rep 2023; 13:2892. [PMID: 36806348 PMCID: PMC9938878 DOI: 10.1038/s41598-023-29894-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
Blood-brain barrier (BBB) disruption contributes to brain injury and neurological impairment. Tight junctions (TJs) and cell-cell adhesion complexes develop between endothelial cells in the brain to establish and maintain the BBB. Occludin, the first transmembrane protein identified in TJs, has received intense research interest because numerous in vitro studies have suggested its importance in maintaining BBB integrity. However, its role in maintaining BBB integrity after ischemic stroke is less clear owing to the lack of in vivo evidence. This study aimed to investigate the dynamics and function of occludin across the acute and chronic phases after stroke using occludin-deficient mice. By photochemically induced thrombosis model, the expression of occludin was decreased in brain endothelial cells from ischemic lesions. The neurological function of occludin-deficient mice was continuously impaired compared to that of wild-type mice. BBB integrity evaluated by Evans blue and 0.5-kDa fluorescein in the acute phase and by 10-kDa fluorescein isothiocyanate-labeled dextran in the chronic phase was decreased to a greater extent after stroke in occludin-deficient mice. Furthermore, occludin-deficient mice showed decreased claudin-5 and neovascularization after stroke. Our study reveals that occludin plays an important role from the acute to the chronic phase after ischemic stroke in vivo.
Collapse
Affiliation(s)
- Shintaro Sugiyama
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Hiroo Tanaka
- grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Itabashiku, Tokyo 173-0003 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871 Japan ,grid.264706.10000 0000 9239 9995Department of Pharmacology, Teikyo University School of Medicine, Itabashi-Ku, Tokyo, 173-8605 Japan
| | - Haomin Yan
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Takeshi Ikegami
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Hideaki Kanki
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Kumiko Nishiyama
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Goichi Beck
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Yasufumi Gon
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Shuhei Okazaki
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Kenichi Todo
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Atsushi Tamura
- grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Itabashiku, Tokyo 173-0003 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871 Japan ,grid.264706.10000 0000 9239 9995Department of Pharmacology, Teikyo University School of Medicine, Itabashi-Ku, Tokyo, 173-8605 Japan
| | - Sachiko Tsukita
- grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Itabashiku, Tokyo 173-0003 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Hideki Mochizuki
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| |
Collapse
|
15
|
Rudkowski K, Waszczuk K, Tyburski E, Rek-Owodziń K, Plichta P, Podwalski P, Bielecki M, Mak M, Michalczyk A, Tarnowski M, Sielatycka K, Budkowska M, Łuczkowska K, Dołęgowska B, Ratajczak MZ, Samochowiec J, Kucharska-Mazur J, Sagan L. Complement Activation Products in Patients with Chronic Schizophrenia. J Clin Med 2023; 12:jcm12041577. [PMID: 36836111 PMCID: PMC9967657 DOI: 10.3390/jcm12041577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Evidence suggests a role of the immune system in the pathogenesis of a number of mental conditions, including schizophrenia (SCH). In terms of physiology, aside from its crucial protective function, the complement cascade (CC) is a critical element of the regeneration processes, including neurogenesis. Few studies have attempted to define the function of the CC components in SCH. To shed more light on this topic, we compared the levels of complement activation products (CAP) (C3a, C5a and C5b-9) in the peripheral blood of 62 patients with chronic SCH and disease duration of ≥ 10 years with 25 healthy controls matched for age, sex, BMI and smoking status. Concentrations of all the investigated CAP were elevated in SCH patients. However, after controlling for potential confounding factors, significant correlations were observed between SCH and C3a (M = 724.98 ng/mL) and C5a (M = 6.06 ng/mL) levels. In addition, multivariate logistic regression showed that C3a and C5b-9 were significant predictors of SCH. There were no significant correlations between any CAP and SCH symptom severity or general psychopathology in SCH patients. However, two significant links emerged between C3a and C5b-9 and global functioning. Increased levels of both complement activation products in the patient group as compared to healthy controls raise questions concerning the role of the CC in the etiology of SCH and further demonstrate dysregulation of the immune system in SCH patients.
Collapse
Affiliation(s)
- Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
- Correspondence: ; Tel./Fax: +48-(91)-3511306
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Felczaka 3c, 71-415 Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkoposlkich 72, 70-110 Szczecin, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
16
|
Burgelman M, Dujardin P, Vandendriessche C, Vandenbroucke RE. Free complement and complement containing extracellular vesicles as potential biomarkers for neuroinflammatory and neurodegenerative disorders. Front Immunol 2023; 13:1055050. [PMID: 36741417 PMCID: PMC9896008 DOI: 10.3389/fimmu.2022.1055050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023] Open
Abstract
The complement system is implicated in a broad range of neuroinflammatory disorders such as Alzheimer's disease (AD) and multiple sclerosis (MS). Consequently, measuring complement levels in biofluids could serve as a potential biomarker for these diseases. Indeed, complement levels are shown to be altered in patients compared to controls, and some studies reported a correlation between the level of free complement in biofluids and disease progression, severity or the response to therapeutics. Overall, they are not (yet) suitable as a diagnostic tool due to heterogeneity of reported results. Moreover, measurement of free complement proteins has the disadvantage that information on their origin is lost, which might be of value in a multi-parameter approach for disease prediction and stratification. In light of this, extracellular vesicles (EVs) could provide a platform to improve the diagnostic power of complement proteins. EVs are nanosized double membrane particles that are secreted by essentially every cell type and resemble the (status of the) cell of origin. Interestingly, EVs can contain complement proteins, while the cellular origin can still be determined by the presence of EV surface markers. In this review, we summarize the current knowledge and future opportunities on the use of free and EV-associated complement proteins as biomarkers for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium,*Correspondence: Roosmarijn E. Vandenbroucke,
| |
Collapse
|
17
|
Evidence of Chronic Complement Activation in Asymptomatic Pediatric Brain Injury Patients: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010045. [PMID: 36670596 PMCID: PMC9856304 DOI: 10.3390/children10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
Physical insult from a mild Traumatic Brain Injury (mTBI) leads to changes in blood flow in the brain and measurable changes in white matter, suggesting a physiological basis for chronic symptom presentation. Post-traumatic headache (PTH) is frequently reported by persons after an mTBI that may persist beyond the acute period (>3 months). It remains unclear whether ongoing inflammation may contribute to the clinical trajectory of PTH. We recruited a cohort of pediatric subjects with PTH who had an acute or a persistent clinical trajectory, each around the 3-month post-injury time point, as well as a group of age and sex-matched healthy controls. We collected salivary markers of mRNA expression as well as brain imaging and psychological testing. The persistent PTH group showed the highest levels of psychological burden and pain symptom reporting. Our data suggest that the acute and persistent PTH cohort had elevated levels of complement factors relative to healthy controls. The greatest change in mRNA expression was found in the acute-PTH cohort wherein the complement cascade and markers of vascular health showed a prominent role for C1Q in PTH pathophysiology. These findings (1) underscore a prolonged engagement of what is normally a healthy response and (2) show that a persistent PTH symptom trajectory may parallel a poorly regulated inflammatory response.
Collapse
|
18
|
Fava-Felix PE, Bonome-Vanzelli SRC, Ribeiro FS, Santos FH. Systematic review on post-stroke computerized cognitive training: Unveiling the impact of confounding factors. Front Psychol 2022; 13:985438. [PMID: 36578681 PMCID: PMC9792177 DOI: 10.3389/fpsyg.2022.985438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Background Stroke is a highly incapacitating disease that can lead to disabilities due to cognitive impairment, physical, emotional, and social sequelae, and a decrease in the quality of life of those affected. Moreover, it has been suggested that cognitive reserve (patients' higher levels of education or having a skilled occupation), for instance, can promote faster cognitive recovery after a stroke. For this reason, this review aims to identify the cognitive, functional, and behavioral effects of computerized rehabilitation in patients aged 50 years or older who had a stroke, considering cognitive reserve proxies. Methods We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis-PRISMA, and performed the search for peer-reviewed randomized controlled trials without a date restriction on CINAHL, LILACS, PubMed, Scopus, and Web of Science databases were chosen. Results We screened 780 papers and found 19 intervention studies, but only 4 met the inclusion criteria and shared data. These studies included computerized tools for motor and cognitive rehabilitation in the experimental groups. In all studies, computerized training was combined with other interventions, such as standard therapy, occupational therapy, and aerobic exercises. There were 104 participants affected by ischemic or hemorrhagic stroke, predominantly male (57.69%), and all with cognitive impairment. Conclusion Despite a limited number of studies, varied methods and insufficient information available, schooling as a CR proxy combined with high-intensity computerized cognitive training was key to mediating cognitive improvement. The systematic review also identified that the associated ischemic stroke and shorter time of onset for rehabilitation contribute to the cognitive evolution of patients. Findings do not support a greater benefit of computerized cognitive training compared to conventional cognitive therapies. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=296193], identifier [CRD42022296193].
Collapse
Affiliation(s)
| | | | - Fabiana S. Ribeiro
- Department of Social Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Flávia H. Santos
- School of Psychology, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Bhatia K, Kindelin A, Nadeem M, Khan MB, Yin J, Fuentes A, Miller K, Turner GH, Preul MC, Ahmad AS, Mufson EJ, Waters MF, Ahmad S, Ducruet AF. Complement C3a Receptor (C3aR) Mediates Vascular Dysfunction, Hippocampal Pathology, and Cognitive Impairment in a Mouse Model of VCID. Transl Stroke Res 2022; 13:816-829. [PMID: 35258803 DOI: 10.1007/s12975-022-00993-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/12/2023]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) secondary to chronic mild-moderate cerebral ischemia underlie a significant percentage of cases of dementia. We previously reported that either genetic deficiency of the complement C3a receptor (C3aR) or its pharmacological inhibition protects against cerebral ischemia in rodents, while others have implicated C3aR in the pathogenesis seen in rodent transgenic models of Alzheimer's disease. In the present study, we evaluated the role of complement C3a-C3aR signaling in the onset and progression of VCID. We utilized the bilateral common carotid artery stenosis (BCAS) model to induce VCID in male C57BL/6 wild-type and C3aR-knockout (C3aR-/-) mice. Cerebral blood flow (CBF) changes, hippocampal atrophy (HA), white matter degeneration (WMD), and ventricular size were assessed at 4 months post-BCAS using laser speckle contrast analysis (LSCI) and magnetic resonance imaging (MRI). Cognitive function was evaluated using the Morris water maze (MWM), and novel object recognition (NOR), immunostaining, and western blot were performed to assess the effect of genetic C3aR deletion on post-VCID outcomes. BCAS resulted in decreased CBF and increased HA, WMD, and neurovascular inflammation in WT (C57BL/6) compared to C3aR-/- (C3aR-KO) mice. Moreover, C3aR-/- mice exhibited improved cognitive function on NOR and MWM relative to WT controls. We conclude that over-activation of the C3a/C3aR axis exacerbates neurovascular inflammation leading to poor VCID outcomes which are mitigated by C3aR deletion. Future studies are warranted to dissect the role of cell-specific C3aR in VCID.
Collapse
Affiliation(s)
- Kanchan Bhatia
- Department of Neurosurgery, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, USA
| | - Adam Kindelin
- Department of Neurosurgery, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Muhammad Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | | | - Junxiang Yin
- Department of Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
- Department of Neurology, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Alberto Fuentes
- Barrow Neurological Institute/Arizona State University Center for Preclinical Imaging, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Karis Miller
- Department of Neurosurgery, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
- Department of Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Gregory H Turner
- Barrow Neurological Institute/Arizona State University Center for Preclinical Imaging, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Abdullah S Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
- Department of Neurology, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Michael F Waters
- Department of Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
- Department of Neurology, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA
| | - Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA.
- Department of Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85013, USA.
| | - Andrew F Ducruet
- Departments of Neurosurgery & Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ, 85086, USA.
| |
Collapse
|
20
|
Dong X, Fan J, Lin D, Wang X, Kuang H, Gong L, Chen C, Jiang J, Xia N, He D, Shen W, Jiang P, Kuang R, Zeng L, Xie Y. Captopril alleviates epilepsy and cognitive impairment by attenuation of C3-mediated inflammation and synaptic phagocytosis. J Neuroinflammation 2022; 19:226. [PMID: 36104755 PMCID: PMC9476304 DOI: 10.1186/s12974-022-02587-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractEvidence from experimental and clinical studies implicates immuno-inflammatory responses as playing an important role in epilepsy-induced brain injury. Captopril, an angiotensin-converting enzyme inhibitor (ACEi), has previously been shown to suppress immuno-inflammatory responses in a variety of neurological diseases. However, the therapeutic potential of captopril on epilepsy remains unclear. In the present study, Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to establish a status epilepticus. Captopril (50 mg/kg, i.p.) was administered daily following the KA administration from day 3 to 49. We found that captopril efficiently suppressed the KA-induced epilepsy, as measured by electroencephalography. Moreover, captopril ameliorated the epilepsy-induced cognitive deficits, with improved performance in the Morris water maze, Y-maze and novel objective test. RNA sequencing (RNA-seq) analysis indicated that captopril reversed a wide range of epilepsy-related biological processes, particularly the glial activation, complement system-mediated phagocytosis and the production of inflammatory factors. Interestingly, captopril suppressed the epilepsy-induced activation and abnormal contact between astrocytes and microglia. Immunohistochemical experiments demonstrated that captopril attenuated microglia-dependent synaptic remodeling presumably through C3–C3ar-mediated phagocytosis in the hippocampus. Finally, the above effects of captopril were partially blocked by an intranasal application of recombinant C3a (1.3 μg/kg/day). Our findings demonstrated that captopril reduced the occurrence of epilepsy and cognitive impairment by attenuation of inflammation and C3-mediated synaptic phagocytosis. This approach can easily be adapted to long-term efficacy and safety in clinical practice.
Graphical Abstract
Collapse
|
21
|
Westacott LJ, Wilkinson LS. Complement Dependent Synaptic Reorganisation During Critical Periods of Brain Development and Risk for Psychiatric Disorder. Front Neurosci 2022; 16:840266. [PMID: 35600620 PMCID: PMC9120629 DOI: 10.3389/fnins.2022.840266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
We now know that the immune system plays a major role in the complex processes underlying brain development throughout the lifespan, carrying out a number of important homeostatic functions under physiological conditions in the absence of pathological inflammation or infection. In particular, complement-mediated synaptic pruning during critical periods of early life may play a key role in shaping brain development and subsequent risk for psychopathology, including neurodevelopmental disorders such as schizophrenia and autism spectrum disorders. However, these disorders vary greatly in their onset, disease course, and prevalence amongst sexes suggesting complex interactions between the immune system, sex and the unique developmental trajectories of circuitries underlying different brain functions which are yet to be fully understood. Perturbations of homeostatic neuroimmune interactions during different critical periods in which regional circuits mature may have a plethora of long-term consequences for psychiatric phenotypes, but at present there is a gap in our understanding of how these mechanisms may impact on the structural and functional changes occurring in the brain at different developmental stages. In this article we will consider the latest developments in the field of complement mediated synaptic pruning where our understanding is beginning to move beyond the visual system where this process was first described, to brain areas and developmental periods of potential relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Laura J. Westacott
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Pozo-Rodrigálvarez A, Li Y, Stokowska A, Wu J, Dehm V, Sourkova H, Steinbusch H, Mallard C, Hagberg H, Pekny M, Pekna M. C3a Receptor Signaling Inhibits Neurodegeneration Induced by Neonatal Hypoxic-Ischemic Brain Injury. Front Immunol 2022; 12:768198. [PMID: 34975856 PMCID: PMC8718687 DOI: 10.3389/fimmu.2021.768198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxic-ischemic neonatal encephalopathy due to perinatal asphyxia is the leading cause of brain injury in newborns. Clinical data suggest that brain inflammation induced by perinatal insults can persist for years. We previously showed that signaling through the receptor for complement peptide C3a (C3aR) protects against cognitive impairment induced by experimental perinatal asphyxia. To investigate the long-term neuropathological effects of hypoxic-ischemic injury to the developing brain and the role of C3aR signaling therein, we subjected wildtype mice, C3aR deficient mice, and mice expressing biologically active C3a in the CNS to mild hypoxic-ischemic brain injury on postnatal day 9. We found that such injury triggers neurodegeneration and pronounced reactive gliosis in the ipsilesional hippocampus both of which persist long into adulthood. Transgenic expression of C3a in reactive astrocytes reduced hippocampal neurodegeneration and reactive gliosis. In contrast, neurodegeneration and microglial cell density increased in mice lacking C3aR. Intranasal administration of C3a for 3 days starting 1 h after induction of hypoxia-ischemia reduced neurodegeneration and reactive gliosis in the hippocampus of wildtype mice. We conclude that neonatal hypoxic-ischemic brain injury leads to long-lasting neurodegeneration. This neurodegeneration is substantially reduced by treatment with C3aR agonists, conceivably through modulation of reactive gliosis.
Collapse
Affiliation(s)
- Andrea Pozo-Rodrigálvarez
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - YiXian Li
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Stokowska
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jingyun Wu
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Verena Dehm
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Hana Sourkova
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Harry Steinbusch
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, Netherlands.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Carina Mallard
- Centre of Perinatal Medicine & Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for the Developing Brain, King's College, London, United Kingdom
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Abstract
Inflammation and its myriad pathways are now recognized to play both causal and consequential roles in vascular brain health. From acting as a trigger for vascular brain injury, as evidenced by the coronavirus disease 2019 (COVID-19) pandemic, to steadily increasing the risk for chronic cerebrovascular disease, distinct inflammatory cascades play differential roles in varying states of cerebrovascular injury. New evidence is regularly emerging that characterizes the role of specific inflammatory pathways in these varying states including those at risk for stroke and chronic cerebrovascular injury as well as during the acute, subacute, and repair phases of stroke. Here, we aim to highlight recent basic science and clinical evidence for many distinct inflammatory cascades active in these varying states of cerebrovascular injury. The role of cerebrovascular infections, spotlighted by the severe acute respiratory syndrome coronavirus 2 pandemic, and its association with increased stroke risk is also reviewed. Rather than converging on a shared mechanism, these emerging studies implicate varied and distinct inflammatory processes in vascular brain injury and repair. Recognition of the phasic nature of inflammatory cascades on varying states of cerebrovascular disease is likely essential to the development and implementation of an anti-inflammatory strategy in the prevention, treatment, and repair of vascular brain injury. Although advances in revascularization have taught us that time is brain, targeting inflammation for the treatment of cerebrovascular disease will undoubtedly show us that timing is brain.
Collapse
Affiliation(s)
- Katherine T Mun
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
24
|
Reactive Astrocytes Prevent Maladaptive Plasticity after Ischemic Stroke. Prog Neurobiol 2021; 209:102199. [PMID: 34921928 DOI: 10.1016/j.pneurobio.2021.102199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
Abstract
Restoration of functional connectivity is a major contributor to functional recovery after stroke. We investigated the role of reactive astrocytes in functional connectivity and recovery after photothrombotic stroke in mice with attenuated reactive gliosis (GFAP-/-Vim-/-). Infarct volume and longitudinal functional connectivity changes were determined by in vivo T2-weighted magnetic resonance imaging (MRI) and resting-state functional MRI. Sensorimotor function was assessed with behavioral tests, and glial and neural plasticity responses were quantified in the peri-infarct region. Four weeks after stroke, GFAP-/-Vim-/- mice showed impaired recovery of sensorimotor function and aberrant restoration of global neuronal connectivity. These mice also exhibited maladaptive plasticity responses, shown by higher number of lost and newly formed functional connections between primary and secondary targets of cortical stroke regions and increased peri-infarct expression of the axonal plasticity marker Gap43. We conclude that reactive astrocytes modulate recovery-promoting plasticity responses after ischemic stroke.
Collapse
|
25
|
Xu J, Wang C, Xu P. Effects of hydroxyapatite extract on rats with transient ischemia: Long-term potentiation and axon regeneration. Exp Ther Med 2021; 22:1486. [PMID: 34765027 DOI: 10.3892/etm.2021.10921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/10/2021] [Indexed: 11/05/2022] Open
Abstract
Hydroxyapatite (HA) has been extensively used as a reconstructive and prosthetic material for osseous tissue. The present study aimed to determine whether HA extract exerted effects on central nervous system injury following transient cerebral ischemia/reperfusion in rats. Male Wistar rats were treated with HA following bilateral common carotid artery clamping (two-vessel occlusion). The results demonstrated that treatment with HA extract attenuated the inhibition of long-term potential in a rat model of transient cerebral ischemia/reperfusion. Furthermore, HA extract improved axon regeneration, which was confirmed via the immunohistochemical analysis of growth associated protein 43 and glial fibrillary acidic protein. Taken together, the results of the present study provided preliminary evidence of the protective effect of HA on neuronal damage.
Collapse
Affiliation(s)
- Jing Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunyang Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Pengjuan Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
26
|
Westacott LJ, Haan N, Evison C, Marei O, Hall J, Hughes TR, Zaben M, Morgan BP, Humby T, Wilkinson LS, Gray WP. Dissociable effects of complement C3 and C3aR on survival and morphology of adult born hippocampal neurons, pattern separation, and cognitive flexibility in male mice. Brain Behav Immun 2021; 98:136-150. [PMID: 34403734 DOI: 10.1016/j.bbi.2021.08.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) is a form of ongoing plasticity in the brain that supports specific aspects of cognition. Disruptions in AHN have been observed in neuropsychiatric conditions presenting with inflammatory components and are associated with impairments in cognition and mood. Recent evidence highlights important roles of the complement system in synaptic plasticity and neurogenesis during neurodevelopment and in acute learning and memory processes. In this work we investigated the impact of the complement C3/C3aR pathway on AHN and its functional implications for AHN-related behaviours. In C3-/- mice, we found increased numbers and accelerated migration of adult born granule cells, indicating that absence of C3 leads to abnormal survival and distribution of adult born neurons. Loss of either C3 or C3aR affected the morphology of immature neurons, reducing morphological complexity, though these effects were more pronounced in the absence of C3aR. We assessed functional impacts of the cellular phenotypes in an operant spatial discrimination task that assayed AHN sensitive behaviours. Again, we observed differences in the effects of manipulating C3 or C3aR, in that whilst C3aR-/- mice showed evidence of enhanced pattern separation abilities, C3-/- mice instead demonstrated impaired behavioural flexibility. Our findings show that C3 and C3aR manipulation have distinct effects on AHN that impact at different stages in the development and maturation of newly born neurons, and that the dissociable cellular phenotypes are associated with specific alterations in AHN-related behaviours.
Collapse
Affiliation(s)
- Laura J Westacott
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Niels Haan
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Claudia Evison
- National Centre for Mental Health, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Omar Marei
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Timothy R Hughes
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, CF14 4XW Cardiff, UK
| | - Malik Zaben
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; Brain Repair and Intracranial Neurotherapeutics (BRAIN), Biomedical Research Unit, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CF24 4HQ, UK
| | - B Paul Morgan
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, CF14 4XW Cardiff, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; UK Dementia Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor Humby
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff CF10 3AT, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff CF10 3AT, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - William P Gray
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; Brain Repair and Intracranial Neurotherapeutics (BRAIN), Biomedical Research Unit, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CF24 4HQ, UK.
| |
Collapse
|
27
|
Yuan J, Li L, Yang Q, Ran H, Wang J, Hu K, Pu W, Huang J, Wen L, Zhou L, Jiang Y, Xiong X, Zhang J, Zhou Z. Targeted Treatment of Ischemic Stroke by Bioactive Nanoparticle-Derived Reactive Oxygen Species Responsive and Inflammation-Resolving Nanotherapies. ACS NANO 2021; 15:16076-16094. [PMID: 34606239 DOI: 10.1021/acsnano.1c04753] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stroke is a primary cause of death and disability worldwide, while effective and safe drugs remain to be developed for its clinical treatment. Herein, we report bioactive nanoparticle-derived multifunctional nanotherapies for ischemic stroke, which are engineered from a pharmacologically active oligosaccharide material (termed as TPCD) prepared by covalently conjugating a radical-scavenging compound (Tempol) and a hydrogen-peroxide-eliminating moiety of phenylboronic acid pinacol ester (PBAP) on β-cyclodextrin. Of note, combined functional moieties of Tempol and PBAP on β-cyclodextrin contribute to antioxidative and anti-inflammatory activities of TPCD. Cellularly, TPCD nanoparticles (i.e., TPCD NPs) reduced oxygen-glucose deprivation-induced overproduction of oxidative mediators, increased antioxidant enzyme expression, and suppressed microglial-mediated inflammation, thereby inhibiting neuronal apoptosis. After intravenous (i.v.) delivery, TPCD NPs could efficiently accumulate at the cerebral ischemic injury site of mice with middle cerebral artery occlusion (MCAO), showing considerable distribution in cells relevant to the pathogenesis of stroke. Therapeutically, TPCD NPs significantly decreased infarct volume and accelerated recovery of neurological function in MCAO mice. Mechanistically, efficacy of TPCD NPs is achieved by its antioxidative, anti-inflammatory, and antiapoptotic effects. Furthermore, TPCD NPs can function as a reactive oxygen species labile nanovehicle to efficiently load and triggerably release an inflammation-resolving peptide Ac2-26, giving rise to an inflammation-resolving nanotherapy (i.e., ATPCD NP). Compared to TPCD NP, ATPCD NP demonstrated notably enhanced in vivo efficacies, largely resulting from its additional inflammation-resolving activity. Consequently, TPCD NP-derived nanomedicines can be further developed as promising targeted therapies for stroke and other inflammation-associated cerebrovascular diseases.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qinghua Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong Ran
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Wen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Linke Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Jiang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
28
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
29
|
Liu Y, Long L, Zhang F, Hu X, Zhang J, Hu C, Wang Y, Xu J. Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke. J Control Release 2021; 338:610-622. [PMID: 34481025 DOI: 10.1016/j.jconrel.2021.08.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke is still the major cause of disability worldwide. Although vascular endothelial growth factor (VEGF) is able to promote both angiogenesis and functional recovery, its use is limited by needle-induced injury, nonhomogenous VEGF distribution, and limited VEGF retention in the brain after intracranial or intravenous injection. Here, we first present a gelatin methacryloyl (GelMA) microneedle (MN)-based platform for the sustained and controlled local delivery of an adeno-associated virus (AAV) expressing human VEGF (AAV-VEGF) that achieves homogenous distribution and high transfection efficiency in ischemic brains. An ischemic stroke model was established in adult rats, and MNs loaded with AAV-VEGF were epicortically inserted into both the ischemic core and penumbra of these rats one day after the onset of ischemia. One week later, the inflammatory response and microneedle biocompatibility were assessed by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. Eight weeks later, angiogenesis and neural stem cell proliferation and migration were assessed. GelMA MN implantation did not elicit an obvious inflammatory response and had good biocompatibility in the brain. AAV-green fluorescent protein (GFP)-loaded MNs could achieve successful transfection and homogeneous distribution in the brain cortex three weeks postoperatively. MNs loaded with AAV-VEGF increased VEGF expression and enhanced functional angiogenesis and neurogenesis. In summary, MNs might emerge as a promising platform for delivering various therapeutics to treat ischemic stroke and repair other neurologically diseased tissues.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linyu Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Effects of Different Intervention Time Points of Early Rehabilitation on Patients with Acute Ischemic Stroke: A Single-Center, Randomized Control Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1940549. [PMID: 34493977 PMCID: PMC8418926 DOI: 10.1155/2021/1940549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
Objective To investigate effects of different intervention time points of early rehabilitation on patients with acute ischemic stroke. Methods We enrolled patients diagnosed with acute ischemic stroke in our hospital's rehabilitation ward from November 2013 to December 2015. Patients were randomly assigned to an ultraearly rehabilitation program (started within 72 hours of onset) or an early rehabilitation program (started from 72 hours to 7 days after onset). The efficacy was assessed by the NIH Stroke Scale (NIHSS) International, Barthel Index, and Fugl-Meyer Assessment at one and three months after rehabilitation. Data were analyzed by variance analysis of two-factor repeated measurement. Covariance analysis was used to adjust confounding factors for the determination of statistical differences. Results 41 patients were enrolled in the ultraearly rehabilitation group, while 45 patients were in the early rehabilitation group. There were no differences between the two groups at baseline data. Compared with the early rehabilitation group, patients in the ultraearly rehabilitation group have significantly improved NIHSS score, BMI score, and FMA score at one month and three months (P < 0.001). After adjusting for confounding factors (gender, age, severity of NIHSS score, location of stroke, hypertension, diabetes, atrial fibrillation, and coronary heart disease), the significant difference still existed between the two groups at one month and three months (P < 0.001). Conclusion Our study indicated a higher efficacy in the ultraearly rehabilitation group than the early rehabilitation group. The result suggests an important practical significance in favor of the clinical treatment of stroke.
Collapse
|
31
|
DeKorver NW, Chaudoin TR, Zhao G, Wang D, Arikkath J, Bonasera SJ. Complement Component C3 Loss leads to Locomotor Deficits and Altered Cerebellar Internal Granule Cell In Vitro Synaptic Protein Expression in C57BL/6 Mice. Mol Neurobiol 2021; 58:5857-5875. [PMID: 34415487 DOI: 10.1007/s12035-021-02480-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023]
Abstract
Complement component 3 (C3) expression is increased in the cerebellum of aging mice that demonstrate locomotor impairments and increased excitatory synapse density. However, C3 regulation of locomotion, as well as C3 roles in excitatory synapse function, remains poorly understood. Here, we demonstrate that constitutive loss of C3 function in mice evokes a locomotor phenotype characterized by decreased speed, increased active state locomotor probability, and gait ataxia. C3 loss does not alter metabolism or body mass composition. No evidence of significant muscle weakness or degenerative arthritis was found in C3 knockout mice to explain decreased gait speeds. In an enriched primary cerebellar granule cell culture model, loss of C3 protein results in increased excitatory synaptic density and increased response to KCl depolarization. Our analysis of excitatory synaptic density in the cerebellar internal granule cell and molecular layers did not demonstrate increased synaptic density in vivo, suggesting the presence of compensatory mechanisms regulating synaptic development. Functional deficits in C3 knockout mice are therefore more likely to result from altered synaptic function and/or connectivity than gross synaptic deficits. Our data demonstrate a novel role for complement proteins in cerebellar regulation of locomotor output and control.
Collapse
Affiliation(s)
- Nicholas W DeKorver
- Department of Internal Medicine, Division of Geriatrics, University of Nebraska Medical Center, 3028 Durham Research Center II, Omaha, NE, 68198-5039, USA
| | - Tammy R Chaudoin
- Department of Internal Medicine, Division of Geriatrics, University of Nebraska Medical Center, 3028 Durham Research Center II, Omaha, NE, 68198-5039, USA
| | - Gang Zhao
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986125 Nebraska Medical Center, PDD 3020, Omaha, NE, 68198-6125, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986125 Nebraska Medical Center, PDD 3020, Omaha, NE, 68198-6125, USA
| | - Jyothi Arikkath
- Monroe-Meyer Institute, University of Nebraska Medical Center, 3031 Durham Research Center II, Omaha, NE, 68198-5960, USA
| | - Stephen J Bonasera
- Department of Internal Medicine, Division of Geriatrics, University of Nebraska Medical Center, 3028 Durham Research Center II, Omaha, NE, 68198-5039, USA.
| |
Collapse
|
32
|
The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem 2021; 297:101085. [PMID: 34411562 PMCID: PMC8446806 DOI: 10.1016/j.jbc.2021.101085] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.
Collapse
|
33
|
Targeting Complement C3a Receptor to Improve Outcome After Ischemic Brain Injury. Neurochem Res 2021; 46:2626-2637. [PMID: 34379293 PMCID: PMC8437837 DOI: 10.1007/s11064-021-03419-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is a major cause of disability. No efficient therapy is currently available, except for the removal of the occluding blood clot during the first hours after symptom onset. Loss of function after stroke is due to cell death in the infarcted tissue, cell dysfunction in the peri-infarct region, as well as dysfunction and neurodegeneration in remote brain areas. Plasticity responses in spared brain regions are a major contributor to functional recovery, while secondary neurodegeneration in remote regions is associated with depression and impedes the long-term outcome after stroke. Hypoxic-ischemic encephalopathy due to birth asphyxia is the leading cause of neurological disability resulting from birth complications. Despite major progress in neonatal care, approximately 50% of survivors develop complications such as mental retardation, cerebral palsy or epilepsy. The C3a receptor (C3aR) is expressed by many cell types including neurons and glia. While there is a body of evidence for its deleterious effects in the acute phase after ischemic injury to the adult brain, C3aR signaling contributes to better outcome in the post-acute and chronic phase after ischemic stroke in adults and in the ischemic immature brain. Here we discuss recent insights into the novel roles of C3aR signaling in the ischemic brain with focus on the therapeutic opportunities of modulating C3aR activity to improve the outcome after ischemic stroke and birth asphyxia.
Collapse
|
34
|
Shinjyo N, Kagaya W, Pekna M. Interaction Between the Complement System and Infectious Agents - A Potential Mechanistic Link to Neurodegeneration and Dementia. Front Cell Neurosci 2021; 15:710390. [PMID: 34408631 PMCID: PMC8365172 DOI: 10.3389/fncel.2021.710390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
As part of the innate immune system, complement plays a critical role in the elimination of pathogens and mobilization of cellular immune responses. In the central nervous system (CNS), many complement proteins are locally produced and regulate nervous system development and physiological processes such as neural plasticity. However, aberrant complement activation has been implicated in neurodegeneration, including Alzheimer's disease. There is a growing list of pathogens that have been shown to interact with the complement system in the brain but the short- and long-term consequences of infection-induced complement activation for neuronal functioning are largely elusive. Available evidence suggests that the infection-induced complement activation could be protective or harmful, depending on the context. Here we summarize how various infectious agents, including bacteria (e.g., Streptococcus spp.), viruses (e.g., HIV and measles virus), fungi (e.g., Candida spp.), parasites (e.g., Toxoplasma gondii and Plasmodium spp.), and prion proteins activate and manipulate the complement system in the CNS. We also discuss the potential mechanisms by which the interaction between the infectious agents and the complement system can play a role in neurodegeneration and dementia.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
35
|
Pekna M, Pekny M. The Complement System: A Powerful Modulator and Effector of Astrocyte Function in the Healthy and Diseased Central Nervous System. Cells 2021; 10:cells10071812. [PMID: 34359981 PMCID: PMC8303424 DOI: 10.3390/cells10071812] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The complement system, an effector arm of the innate immune system that plays a critical role in tissue inflammation, the elimination of pathogens and the clearance of dead cells and cell debris, has emerged as a regulator of many processes in the central nervous system, including neural cell genesis and migration, control of synapse number and function, and modulation of glial cell responses. Complement dysfunction has also been put forward as a major contributor to neurological disease. Astrocytes are neuroectoderm-derived glial cells that maintain water and ionic homeostasis, and control cerebral blood flow and multiple aspects of neuronal functioning. By virtue of their expression of soluble as well as membrane-bound complement proteins and receptors, astrocytes are able to both send and receive complement-related signals. Here we review the current understanding of the multiple functions of the complement system in the central nervous system as they pertain to the modulation of astrocyte activity, and how astrocytes use the complement system to affect their environment in the healthy brain and in the context of neurological disease.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
- Correspondence: ; Tel.: +46-31-786-3581
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden;
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
| |
Collapse
|
36
|
Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int 2021; 148:105080. [PMID: 34048845 DOI: 10.1016/j.neuint.2021.105080] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Astrocytes play a pivotal role in maintaining the central nervous system (CNS) homeostasis and function. In response to CNS injuries and diseases, reactive astrocytes are triggered. By purifying and genetically profiling reactive astrocytes, it has been now found that astrocytes can be activated into two polarization states: the neurotoxic or pro-inflammatory phenotype (A1) and the neuroprotective or anti-inflammatory phenotype (A2). Although the simple dichotomy of the A1/A2 phenotypes does not reflect the wide range of astrocytic phenotypes, it facilitates our understanding of the reactive state of astrocytes in various CNS disorders. This article reviews the recent evidences regarding A1/A2 astrocytes, including (a) the specific markers and morphological characteristics, (b) the effects of A1/A2 astrocytes on the neurovascular unit, and (c) the molecular mechanisms involved in the phenotypic switch of astrocytes. Although many questions remain, a deeper understanding of different phenotypic astrocytes will eventually help us to explore effective strategies for neurological disorders by targeting astrocytes.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
37
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
38
|
Zhao C, Deng Y, He Y, Huang X, Wang C, Li W. Decreased Level of Exosomal miR-5121 Released from Microglia Suppresses Neurite Outgrowth and Synapse Recovery of Neurons Following Traumatic Brain Injury. Neurotherapeutics 2021; 18:1273-1294. [PMID: 33475953 PMCID: PMC8423926 DOI: 10.1007/s13311-020-00999-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022] Open
Abstract
Activated microglia can suppress neurite outgrowth and synapse recovery in the acute stage following traumatic brain injury (TBI). However, the underlying mechanism has not been clearly elucidated. Exosomes derived from microglia have been reported to play a critical role in microglia-neuron interaction in healthy and pathological brains. Here, we aimed to investigate the role of microglia-derived exosomes in regulating neurite outgrowth and synapse recovery following TBI. In our study, exosomes derived from microglia were co-cultured with stretch-injured neurons in vitro and intravenously injected into mice that underwent fluid percussion injury (FPI) by tail vein injection in vivo. The results showed that microglia-derived exosomes could be absorbed by neurons in vitro and in vivo. Moreover, exosomes derived from stretch-injured microglia decreased the protein levels of GAP43, PSD-95, GluR1, and Synaptophysin and dendritic complexity in stretch-injured neurons in vitro, and reduced GAP43+ NEUN cell percentage and apical dendritic spine density in the pericontusion region in vivo. Motor coordination was also impaired in mice treated with stretch-injured microglia-derived exosomes after FPI. A microRNA microarray showed that the level of miR-5121 was decreased most greatly in exosomes derived from stretch-injured microglia. Overexpression of miR-5121 in stretch-injured microglia-derived exosomes partly reversed the suppression of neurite outgrowth and synapse recovery of neurons both in vitro and in vivo. Moreover, motor coordination in miR-5121 overexpressed exosomes treated mice was significantly improved after FPI. Following mechanistic study demonstrated that miR-5121 might promote neurite outgrowth and synapse recovery by directly targeting RGMa. In conclusion, our finding revealed a novel exosome-mediated mechanism of microglia-neuron interaction that suppressed neurite outgrowth and synapse recovery of neurons following TBI.
Collapse
Affiliation(s)
- Chengcheng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi He
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
| | - Xianjian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
| | - Chuanfang Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong, China.
| | - Weiping Li
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China.
| |
Collapse
|
39
|
White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 2021; 17:199-214. [PMID: 33504979 PMCID: PMC8880688 DOI: 10.1038/s41582-020-00447-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Intraventricular haemorrhage (IVH) continues to be a major complication of prematurity that can result in cerebral palsy and cognitive impairment in survivors. No optimal therapy exists to prevent IVH or to treat its consequences. IVH varies in severity and can present as a bleed confined to the germinal matrix, small-to-large IVH or periventricular haemorrhagic infarction. Moderate-to-severe haemorrhage dilates the ventricle and damages the periventricular white matter. This white matter injury results from a constellation of blood-induced pathological reactions, including oxidative stress, glutamate excitotoxicity, inflammation, perturbed signalling pathways and remodelling of the extracellular matrix. Potential therapies for IVH are currently undergoing investigation in preclinical models and evidence from clinical trials suggests that stem cell treatment and/or endoscopic removal of clots from the cerebral ventricles could transform the outcome of infants with IVH. This Review presents an integrated view of new insights into the mechanisms underlying white matter injury in premature infants with IVH and highlights the importance of early detection of disability and immediate intervention in optimizing the outcomes of IVH survivors.
Collapse
|
40
|
O'Connell KS, Sønderby IE, Frei O, van der Meer D, Athanasiu L, Smeland OB, Alnæs D, Kaufmann T, Westlye LT, Steen VM, Andreassen OA, Hughes T, Djurovic S. Association between complement component 4A expression, cognitive performance and brain imaging measures in UK Biobank. Psychol Med 2021; 52:1-11. [PMID: 33653435 PMCID: PMC9772918 DOI: 10.1017/s0033291721000179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Abstract. BACKGROUND Altered expression of the complement component C4A gene is a known risk factor for schizophrenia. Further, predicted brain C4A expression has also been associated with memory function highlighting that altered C4A expression in the brain may be relevant for cognitive and behavioral traits. METHODS We obtained genetic information and performance measures on seven cognitive tasks for up to 329 773 individuals from the UK Biobank, as well as brain imaging data for a subset of 33 003 participants. Direct genotypes for variants (n = 3213) within the major histocompatibility complex region were used to impute C4 structural variation, from which predicted expression of the C4A and C4B genes in human brain tissue were predicted. We investigated if predicted brain C4A or C4B expression were associated with cognitive performance and brain imaging measures using linear regression analyses. RESULTS We identified significant negative associations between predicted C4A expression and performance on select cognitive tests, and significant associations with MRI-based cortical thickness and surface area in select regions. Finally, we observed significant inconsistent partial mediation of the effects of predicted C4A expression on cognitive performance, by specific brain structure measures. CONCLUSIONS These results demonstrate that the C4 risk locus is associated with the central endophenotypes of cognitive performance and brain morphology, even when considered independently of other genetic risk factors and in individuals without mental or neurological disorders.
Collapse
Affiliation(s)
- Kevin S. O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ida E. Sønderby
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Lavinia Athanasiu
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Olav B. Smeland
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dag Alnæs
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Lars T. Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Vidar M. Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Dr Einar Martens' Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
41
|
Asgari Taei A, Dargahi L, Nasoohi S, Hassanzadeh G, Kadivar M, Farahmandfar M. The conditioned medium of human embryonic stem cell-derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. J Cell Physiol 2021; 236:1967-1979. [PMID: 32730642 DOI: 10.1002/jcp.29981] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
The transplantation of mesenchymal stem cells (MSCs) is of main approaches in regenerative therapy for stroke. Due to the potential tumorigenicity and low survival rate of transplanted cells, focuses have been shifted from cell replacement to their paracrine effects. Therefore, stem cell-conditioned medium (CM) therapy has emerged as an alternative candidate. Here, we investigated the effect of CM derived from human embryonic MSCs on experimental ischemic stroke. Wistar rats underwent ischemic stroke by the right middle cerebral artery occlusion (MCAO). CM was infused either one time (1 hr post-MCAO) or three times (1, 24, and 48 hr post-MCAO) through guide cannula into the left lateral ventricle. Neurological functions were evaluated using Bederson's test and modified Neurological Severity Score on Days 1, 3, and 7 following MCAO. Infarction volumes and cerebral edema were measured on Days 3 and 7. growth-associated protein-43, synaptophysin, cAMP response element-binding protein, and phosphorylated-cAMP response element-binding protein levels were also assessed in peri-ischemic cortical tissue on Day 7 postsurgery. Our results indicated that three times injections of CM could significantly reduce body weight loss, mortality rate, infarct volumes, cerebral edema, and improve neurological deficits in MCAO rats. Moreover, three injections of CM could restore decreased levels of synaptic markers in MCAO rats up to its normal levels observed in the sham group. Our data suggest that using the CM obtained from embryonic stem cells-MSCs could be a potent therapeutic approach to attenuate cerebral ischemia insults which may be partly mediated through modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Pozo-Rodrigálvarez A, Ollaranta R, Skoog J, Pekny M, Pekna M. Hyperactive Behavior and Altered Brain Morphology in Adult Complement C3a Receptor Deficient Mice. Front Immunol 2021; 12:604812. [PMID: 33692783 PMCID: PMC7937871 DOI: 10.3389/fimmu.2021.604812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The C3a receptor (C3aR) is a seven trans-membrane domain G-protein coupled receptor with a range of immune modulatory functions. C3aR is activated by the third complement component (C3) activation derived peptide C3a and a neuropeptide TLQP-21. In the central nervous system (CNS), C3aR is expressed by neural progenitors, neurons as well as glial cells. The non-immune functions of C3aR in the adult CNS include regulation of basal neurogenesis, injury-induced neural plasticity, and modulation of glial cell activation. In the developing brain, C3aR and C3 have been shown to play a role in neural progenitor cell proliferation and neuronal migration with potential implications for autism spectrum disorder, and adult C3aR deficient (C3aR−/−) mice were reported to exhibit subtle deficit in recall memory. Here, we subjected 3 months old male C3aR−/− mice to a battery of behavioral tests and examined their brain morphology. We found that the C3aR−/− mice exhibit a short-term memory deficit and increased locomotor activity, but do not show any signs of autistic behavior as assessed by self-grooming behavior. We also found regional differences between the C3aR−/− and wild-type (WT) mice in the morphology of motor and somatosensory cortex, as well as amygdala and hippocampus. In summary, constitutive absence of C3aR signaling in mice leads to neurodevelopmental abnormalities that persist into adulthood and are associated with locomotive hyperactivity and altered cognitive functions.
Collapse
Affiliation(s)
- Andrea Pozo-Rodrigálvarez
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Roosa Ollaranta
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jenny Skoog
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
43
|
Shah TA, Pallera HK, Kaszowski CL, Bass WT, Lattanzio FA. Therapeutic Hypothermia Inhibits the Classical Complement Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Front Neurosci 2021; 15:616734. [PMID: 33642979 PMCID: PMC7907466 DOI: 10.3389/fnins.2021.616734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Complement activation is instrumental in the pathogenesis of Hypoxic-ischemic encephalopathy (HIE), a significant cause of neonatal mortality and disability worldwide. Therapeutic hypothermia (HT), the only available treatment for HIE, only modestly improves outcomes. Complement modulation as a therapeutic adjunct to HT has been considered, but is challenging due to the wide-ranging role of the complement system in neuroinflammation, homeostasis and neurogenesis in the developing brain. We sought to identify potential therapeutic targets by measuring the impact of treatment with HT on complement effector expression in neurons and glia in neonatal HIE, with particular emphasis on the interactions between microglia and C1q. METHODS The Vannucci model was used to induce HIE in term-equivalent rat pups. At P10-12, pups were randomly assigned to three different treatment groups: Sham (control), normothermia (NT), and hypothermia (HT) treatment. Local and systemic complement expression and neuronal apoptosis were measured by ELISA, TUNEL and immunofluorescence labeling, and differences compared between groups. RESULTS Treatment with HT is associated with decreased systemic and microglial expression of C1q, decreased systemic C5a levels, and decreased microglial and neuronal deposition of C3 and C9. The effect of HT on cytokines was variable with decreased expression of pro and anti-inflammatory effectors. HT treatment was associated with decreased C1q binding on cells undergoing apoptosis. CONCLUSION Our data demonstrate the extreme complexity of the immune response in neonatal HIE. We propose modulation of downstream effectors C3a and C5a as a therapeutic adjunct to HT to enhance neuroprotection in the developing brain.
Collapse
Affiliation(s)
- Tushar A. Shah
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Haree K. Pallera
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - William Thomas Bass
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Frank A. Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
44
|
Shinjyo N, Hikosaka K, Kido Y, Yoshida H, Norose K. Toxoplasma Infection Induces Sustained Up-Regulation of Complement Factor B and C5a Receptor in the Mouse Brain via Microglial Activation: Implication for the Alternative Complement Pathway Activation and Anaphylatoxin Signaling in Cerebral Toxoplasmosis. Front Immunol 2021; 11:603924. [PMID: 33613523 PMCID: PMC7892429 DOI: 10.3389/fimmu.2020.603924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is a neurotropic protozoan parasite, which is linked to neurological manifestations in immunocompromised individuals as well as severe neurodevelopmental sequelae in congenital toxoplasmosis. While the complement system is the first line of host defense that plays a significant role in the prevention of parasite dissemination, Toxoplasma artfully evades complement-mediated clearance via recruiting complement regulatory proteins to their surface. On the other hand, the details of Toxoplasma and the complement system interaction in the brain parenchyma remain elusive. In this study, infection-induced changes in the mRNA levels of complement components were analyzed by quantitative PCR using a murine Toxoplasma infection model in vivo and primary glial cells in vitro. In addition to the core components C3 and C1q, anaphylatoxin C3a and C5a receptors (C3aR and C5aR1), as well as alternative complement pathway components properdin (CFP) and factor B (CFB), were significantly upregulated 2 weeks after inoculation. Two months post-infection, CFB, C3, C3aR, and C5aR1 expression remained higher than in controls, while CFP upregulation was transient. Furthermore, Toxoplasma infection induced significant increase in CFP, CFB, C3, and C5aR1 in mixed glial culture, which was abrogated when microglial activation was inhibited by pre-treatment with minocycline. This study sheds new light on the roles for the complement system in the brain parenchyma during Toxoplasma infection, which may lead to the development of novel therapeutic approaches to Toxoplasma infection-induced neurological disorders.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/metabolism
- Brain/parasitology
- Cells, Cultured
- Complement Factor B/genetics
- Complement Factor B/metabolism
- Complement Pathway, Alternative
- Disease Models, Animal
- Host-Parasite Interactions
- Male
- Mice, Inbred C57BL
- Microglia/immunology
- Microglia/metabolism
- Microglia/parasitology
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Time Factors
- Toxoplasma/immunology
- Toxoplasma/pathogenicity
- Toxoplasmosis, Animal/genetics
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/metabolism
- Toxoplasmosis, Animal/parasitology
- Toxoplasmosis, Cerebral/genetics
- Toxoplasmosis, Cerebral/immunology
- Toxoplasmosis, Cerebral/metabolism
- Toxoplasmosis, Cerebral/parasitology
- Up-Regulation
- Mice
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasutoshi Kido
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazumi Norose
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
CREB Coactivator CRTC2 Plays a Crucial Role in Endothelial Function. J Neurosci 2020; 40:9533-9546. [PMID: 33127851 DOI: 10.1523/jneurosci.0407-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
The cAMP pathway is known to stabilize endothelial barrier function and maintain vascular physiology. The family of cAMP-response element binding (CREB)-regulated transcription coactivators (CRTC)1-3 activate transcription by targeting the basic leucine zipper domain of CREB. CRTC2 is a master regulator of glucose metabolism in liver and adipose tissue. However, the role of CRTC2 in endothelium remains unknown. The aim of this study was to evaluate the effect of CRTC2 on endothelial function. We focused the effect of CRTC2 in endothelial cells and its relationship with p190RhoGAP-A. We examined the effect of CRTC2 on endothelial function using a mouse aorta ring assay ex vivo and with photothrombotic stroke in endothelial cell-specific CRTC2-knock-out male mice in vivo CRTC2 was highly expressed in endothelial cells and related to angiogenesis. Among CRTC1-3, only CRTC2 was activated under ischemic conditions at endothelial cells, and CRTC2 maintained endothelial barrier function through p190RhoGAP-A expression. Ser171 was a pivotal regulatory site for CRTC2 intracellular localization, and Ser307 functioned as a crucial phosphorylation site. Endothelial cell-specific CRTC2-knock-out mice showed reduced angiogenesis ex vivo, exacerbated stroke via endothelial dysfunction, and impaired neurologic recovery via reduced vascular beds in vivo These findings suggest that CRTC2 plays a crucial protective role in vascular integrity of the endothelium via p190RhoGAP-A under ischemic conditions.SIGNIFICANCE STATEMENT Previously, the role of CRTC2 in endothelial cells was unknown. In this study, we firstly clarified that CRTC2 was expressed in endothelial cells and among CRTC1-3, only CRTC2 was related to endothelial function. Most importantly, only CRTC2 was activated under ischemic conditions at endothelial cells and maintained endothelial barrier function through p190RhoGAP-A expression. Ser307 in CRTC2 functioned as a crucial phosphorylation site. Endothelial cell-specific CRTC2-knock-out mice showed reduced angiogenesis ex vivo, exacerbated stroke via endothelial dysfunction, and impaired neurologic recovery via reduced vascular beds in vivo These results suggested that CRTC2 maybe a potential therapeutic target for reducing blood-brain barrier (BBB) damage and improving recovery.
Collapse
|
46
|
Ma Y, Jiang L, Wang L, Li Y, Liu Y, Lu W, Shi R, Zhang L, Fu Z, Qu M, Liu Y, Wang Y, Zhang Z, Yang GY. Endothelial progenitor cell transplantation alleviated ischemic brain injury via inhibiting C3/C3aR pathway in mice. J Cereb Blood Flow Metab 2020; 40:2374-2386. [PMID: 31865842 PMCID: PMC7820683 DOI: 10.1177/0271678x19892777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial progenitor cell transplantation is a potential therapeutic approach in brain ischemia. However, whether the therapeutic effect of endothelial progenitor cells is via affecting complement activation is unknown. We established a mouse focal ischemia model (n = 111) and transplanted endothelial progenitor cells into the peri-infarct region immediately after brain ischemia. Neurological outcomes and brain infarct/atrophy volume were examined after ischemia. Expression of C3, C3aR and pro-inflammatory factors were further examined to explore the role of endothelial progenitor cells in ischemic brain. We found that endothelial progenitor cells improved neurological outcomes and reduced brain infarct/atrophy volume after 1 to 14 days of ischemia compared to the control (p < 0.05). C3 and C3aR expression in the brain was up-regulated at 1 day up to 14 days (p < 0.05). Endothelial progenitor cells reduced astrocyte-derived C3 (p < 0.05) and C3aR expression (p < 0.05) after ischemia. Endothelial progenitor cells also reduced inflammatory response after ischemia (p < 0.05). Endothelial progenitor cell transplantation reduced astrocyte-derived C3 expression in the brain after ischemic stroke, together with decreased C3aR and inflammatory response contributing to neurological function recovery. Our results indicate that modulating complement C3/C3aR pathway is a novel therapeutic target for the ischemic stroke.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenjing Lu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linyuan Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zongjie Fu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingling Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongting Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Schartz ND, Tenner AJ. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation 2020; 17:354. [PMID: 33239010 PMCID: PMC7690210 DOI: 10.1186/s12974-020-02024-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The complement cascade is a critical effector mechanism of the innate immune system that contributes to the rapid clearance of pathogens and dead or dying cells, as well as contributing to the extent and limit of the inflammatory immune response. In addition, some of the early components of this cascade have been clearly shown to play a beneficial role in synapse elimination during the development of the nervous system, although excessive complement-mediated synaptic pruning in the adult or injured brain may be detrimental in multiple neurogenerative disorders. While many of these later studies have been in mouse models, observations consistent with this notion have been reported in human postmortem examination of brain tissue. Increasing awareness of distinct roles of C1q, the initial recognition component of the classical complement pathway, that are independent of the rest of the complement cascade, as well as the relationship with other signaling pathways of inflammation (in the periphery as well as the central nervous system), highlights the need for a thorough understanding of these molecular entities and pathways to facilitate successful therapeutic design, including target identification, disease stage for treatment, and delivery in specific neurologic disorders. Here, we review the evidence for both beneficial and detrimental effects of complement components and activation products in multiple neurodegenerative disorders. Evidence for requisite co-factors for the diverse consequences are reviewed, as well as the recent studies that support the possibility of successful pharmacological approaches to suppress excessive and detrimental complement-mediated chronic inflammation, while preserving beneficial effects of complement components, to slow the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
| | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
- Department of Neurobiology and Behavior, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
| |
Collapse
|
48
|
Zheng JM, Wang SS, Tian X, Che DJ. Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Mol Med Rep 2020; 22:5326-5338. [PMID: 33174024 PMCID: PMC7646996 DOI: 10.3892/mmr.2020.11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
The C3a receptor (C3aR) has been reported to be involved in various physiological and pathological processes, including the regulation of cellular structure development. Expression of C3aR has been reported in podocytes; however, data concerning the role of C3aR in podocyte morphology is scarce. The aim of the present study was to examine the effect of C3aR activation on the architectural development of podocytes. An immortal human podocyte line (HPC) was transfected with a C3a expression lentivirus vector or recombinant C3a. SB290157 was used to block the activation of C3aR. The expression of C3a in HPC cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and ELISAs. Phase contrast and fluorescence microscopy were used to observe the morphology of the podocytes. The adhesive ability of HPC cells was analyzed using an attachment assay. RT-qPCR, cyto-immunofluorescence and western blotting were used to determine the expression levels of the adhesion-associated genes. The expression levels of carboxypeptidases in HPC cells was also detected by RT-qPCR. Compared with the untransfected and control virus-transfected HPC cells, the C3a-overexpressing cells (HPC-C3a) failed to expand their cell bodies and develop an arborized appearance in the process of maturation, which the control cells exhibited. In addition, HPC-C3a cells presented with decreased adhesive capacity, altered focal adhesion (FA) plaques and decreased expression of FA-associated genes. These effects were blocked by a C3aR antagonist; however, the addition of purified C3a could not completely mimic the effects of C3a overexpression. Furthermore, HPC cells expressed carboxypeptidases, which have been reported to be able to inactivate C3a. In summary, the results demonstrated that sustained C3aR activation impaired the morphological maturation of HPC cells, which may be associated with the altered expression of FA-associated genes and impaired FA. Since chronic complement activation has been reported in renal diseases, which indicate sustained C3aR activation in renal cells, including podocytes and podocyte progenitors, the possible role of C3aR in the dysregulation of podocyte architecture and podocyte regeneration requires further research.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Sha-Sha Wang
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xiong Tian
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - De-Jun Che
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
49
|
Kanmogne M, Klein RS. Neuroprotective versus Neuroinflammatory Roles of Complement: From Development to Disease. Trends Neurosci 2020; 44:97-109. [PMID: 33190930 DOI: 10.1016/j.tins.2020.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Complement proteins are ancient components of innate immunity that have emerged as crucial regulators of neural networks. We discuss these roles in the context of the CNS development, acute CNS viral infections, and post-infectious and noninfectious CNS disorders, with an emphasis on microglia-mediated loss of synapses. Despite extensive examples that implicate classical complement proteins and their receptors in CNS dysfunction, recent data suggest that they exert neuroprotective roles in CNS homeostasis through continued refinement of synaptic connections. Thorough understanding of the mechanisms involved in these processes may lead to novel targets for the treatment of CNS diseases involving aberrant complement-mediated synapse loss.
Collapse
Affiliation(s)
- Marlene Kanmogne
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
50
|
Hussein O, Abd Elazim A, Sawalha K, Salam S, Saba K, Hamed M, Peng J, Hinduja A. Role of Non-Perfusion Factors in Mildly Symptomatic Large Vessel Occlusion Stroke. J Stroke Cerebrovasc Dis 2020; 29:105172. [PMID: 32912550 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Uncertainty regarding reperfusion of mildly-symptomatic (minor) large vessel occlusion (LVO)-strokes exists. Recently, benefits from reperfusion were suggested. However, there is still no strong data to support this. Furthermore, a proportion of those patients don't improve even after non-hemorrhagic reperfusion. Our study evaluated whether or not non-perfusion factors account for such persistent deconditioning. METHODS Patients with identified minor LVO-strokes (NIHSS ≤ 8) from our stroke alert registry between January-2016 and May-2018 were included. Variables/ predictors of outcome were tested using univariate/multivariate logistic and linear regression analyses. Three month-modified ranking scale (mRS) was used to differentiate between favorable (mRS = 0-2) and unfavorable outcomes (mRS = 3-6). RESULTS Eighty-one patients were included. Significant differences between the two outcome groups regarding admission-NIHSS and discharge-NIHSS existed (OR = 0.47, 0.49 / p = 0.0005, <0.0001 respectively).The two groups had matching perfusion measures. In the poor outcome group, discharge-NIHSS was unchanged from the admission-NIHSS while in the good outcome group, discharge-NIHSS significantly improved. CONCLUSION Admission and discharge NIHSS are independent predictors of outcome in patients with minor-LVO strokes. Unchanged discharge-NIHSS predicts worse outcomes while improved discharge-NIHSS predicts good outcomes. Unchanged NIHSS in the poor outcome group was independent of the perfusion parameters. In literature, complement activation and pro-inflammatory responses to ischemia might account for the progression of stroke symptoms in major-strokes. Our study concludes similar phenomena might be present in minor-strokes. Therefore, discharge-NIHSS may be useful as a clinical marker for future therapies.
Collapse
Affiliation(s)
- Omar Hussein
- University of New Mexico Health Sciences Center, Department of Neurology, Albuquerque, New Mexico, USA.
| | - Ahmed Abd Elazim
- University of New Mexico Health Sciences Center, Department of Neurology, Albuquerque, New Mexico, USA
| | - Khalid Sawalha
- University of Massachusetts-Baystate Medical Center - Department of Internal-Medicine, 3601 Main St, Springfield, MA 01107, USA
| | - Smeer Salam
- The Ohio State University Wexner Medical Center, Department of Neurology, 410 W 10th Ave, Columbus, USA
| | - Kasser Saba
- Atrium Health, Department of Neurology, Charlotte, North Carolina, USA
| | - Mohammad Hamed
- The Ohio State University Wexner Medical Center, Department of Neurology, 410 W 10th Ave, Columbus, USA
| | - Juan Peng
- The Ohio State University, Department of Biostatistics, 410 W 10th Ave, Columbus, USA
| | - Archana Hinduja
- The Ohio State University Wexner Medical Center, Department of Neurology, 410 W 10th Ave, Columbus, USA
| |
Collapse
|