1
|
Low VF, Lin C, Su S, Osanlouy M, Khan M, Safaei S, Maso Talou G, Curtis MA, Mombaerts P. Visualizing the human olfactory projection and ancillary structures in a 3D reconstruction. Commun Biol 2024; 7:1467. [PMID: 39516237 PMCID: PMC11549439 DOI: 10.1038/s42003-024-07017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Visualizing in 3D the histological microanatomy of the human olfactory projection from the olfactory mucosa in the nasal cavity to the olfactory bulbs in the cranial cavity necessitates a workflow for handling a great many sections. Here, we assembled a 3D reconstruction of a 7.45 cm3 en-bloc specimen extracted from an embalmed human cadaver. A series of 10 µm coronal sections was stained with quadruple fluorescence histology and scanned in four channels. A trained anatomist manually segmented six structures of interest in a subset of the sections to generate the ground truth. Six convolutional neural networks were then trained for automatic segmentation of these structures in 1234 sections. A high-performance computing solution was engineered to register the sections based on the fluorescence signal and segmented structures. The resulting 3D visualization offers several novel didactic opportunities of interactive exploration and virtual manipulation. By extrapolating manual counts of OSNs in a subset of sections to the calculated volume of the envelope of the entire olfactory epithelium, we computed a total of ~2.7 million OSNs in the specimen. Such empirically derived information helps assess the extent to which the organizational principles of the human olfactory projection may differ from those in mice.
Collapse
Affiliation(s)
- Victoria F Low
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Chinchien Lin
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shan Su
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mahyar Osanlouy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Soroush Safaei
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Gonzalo Maso Talou
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand.
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| |
Collapse
|
2
|
Chen YN, Kostka JK. Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders. Front Neurosci 2024; 18:1502779. [PMID: 39539496 PMCID: PMC11557544 DOI: 10.3389/fnins.2024.1502779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Olfactory dysfunction has emerged as a hallmark feature shared among several neurological conditions, including both neurodevelopmental and neurodegenerative disorders. While diseases of both categories have been extensively studied for decades, their association with olfaction has only recently gained attention. Olfactory deficits often manifest already during prodromal stages of these diseases, yet it remains unclear whether common pathophysiological changes along olfactory pathways cause such impairments. Here we probe into the intricate relationship between olfactory dysfunction and neurodegenerative and neurodevelopmental disorders, shedding light on their commonalities and underlying mechanisms. We begin by providing a brief overview of the olfactory circuit and its connections to higher-associated brain areas. Additionally, we discuss olfactory deficits in these disorders, focusing on potential common mechanisms that may contribute to olfactory dysfunction across both types of disorders. We further debate whether olfactory deficits contribute to the disease propagation or are simply an epiphenomenon. We conclude by emphasizing the significance of olfactory function as a potential pre-clinical diagnostic tool to identify individuals with neurological disorders that offers the opportunity for preventive intervention before other symptoms manifest.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Katharina Kostka
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Gorskaya AV, Vasilev DS. Problems in the Diagnosis of Dysfunctions of the Olfactory Analyzer in Laboratory Animals Based on Behavioral and Electrophysiological Study Methods. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2024; 54:990-1002. [DOI: 10.1007/s11055-024-01702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2025]
|
4
|
Tremblay C, Aslam S, Walker JE, Lorenzini I, Intorcia AJ, Arce RA, Choudhury P, Adler CH, Shill HA, Driver-Dunckley E, Mehta S, Piras IS, Belden CM, Atri A, Beach TG, Serrano GE. RNA sequencing of olfactory bulb in Parkinson's disease reveals gene alterations associated with olfactory dysfunction. Neurobiol Dis 2024; 196:106514. [PMID: 38663633 PMCID: PMC11132317 DOI: 10.1016/j.nbd.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.
Collapse
Affiliation(s)
| | - Sidra Aslam
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | | | | | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Erika Driver-Dunckley
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Shyamal Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
5
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Guo Q, Wang Y, Yu L, Guan L, Ji X, Li X, Pang G, Ren Z, Ye L, Cheng H. Nicotine restores olfactory function by activation of prok2R/Akt/FoxO3a axis in Parkinson's disease. J Transl Med 2024; 22:350. [PMID: 38609979 PMCID: PMC11015622 DOI: 10.1186/s12967-024-05171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Olfactory dysfunction occurs frequently in Parkinson's disease (PD). In this study, we aimed to explore the potential biomarkers and underlying molecular pathways of nicotine for the treatment of olfactory dysfunction in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. METHODS MPTP was introduced into C57BL/6 male mice to generate a PD model. Regarding in vivo experiments, we performed behavioral tests to estimate the protective effects of nicotine in MPTP-induced PD mice. RNA sequencing and traditional molecular methods were used to identify molecules, pathways, and biological processes in the olfactory bulb of PD mouse models. Then, in vitro experiments were conducted to evaluate whether nicotine can activate the prok2R/Akt/FoxO3a signaling pathway in both HEK293T cell lines and primary olfactory neurons treated with 1-methyl-4-phenylpyridinium (MPP+). Next, prok2R overexpression (prok2R+) and knockdown (prok2R-) were introduced with lentivirus, and the Akt/FoxO3a signaling pathway was further explored. Finally, the damaging effects of MPP+ were evaluated in prok2R overexpression (prok2R+) HEK293T cell lines. RESULTS Nicotine intervention significantly alleviated olfactory and motor dysfunctions in mice with PD. The prok2R/Akt/FoxO3a signaling pathway was activated after nicotine treatment. Consequently, apoptosis of olfactory sensory neurons was significantly reduced. Furthermore, prok2R+ and prok2R- HEK293T cell lines exhibited upregulation and downregulation of the Akt/FoxO3a signaling pathway, respectively. Additionally, prok2R+ HEK293T cells were resistant to MPP+-induced apoptosis. CONCLUSIONS This study showed the effectiveness and underlying mechanisms of nicotine in improving hyposmia in PD mice. These improvements were correlated with reduced apoptosis of olfactory sensory neurons via activated prok2R/Akt/FoxO3a axis. These results explained the potential protective functions of nicotine in PD patients.
Collapse
Affiliation(s)
- Qinglong Guo
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China
| | - Yi Wang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China
| | - Liangchen Yu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China
| | - Liao Guan
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China
| | - Xuefei Ji
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China
| | - Xiaohui Li
- Department of Anatomy, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Meishan Road 81, Hefei, 230032, China
| | - Gang Pang
- Department of Anatomy, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Meishan Road 81, Hefei, 230032, China
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Meishan Road 81, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Meishan Road 81, Hefei, 230032, China.
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China.
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China.
| |
Collapse
|
7
|
Wiseman JA, Murray HC, Faull RLMF, Dragunow M, Turner CP, Dieriks BV, Curtis MA. Aggregate-prone brain regions in Parkinson's disease are rich in unique N-terminus α-synuclein conformers with high proteolysis susceptibility. NPJ Parkinsons Dis 2024; 10:1. [PMID: 38167744 PMCID: PMC10762179 DOI: 10.1038/s41531-023-00614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
In Parkinson's disease (PD), and other α-synucleinopathies, α-synuclein (α-Syn) aggregates form a myriad of conformational and truncational variants. Most antibodies used to detect and quantify α-Syn in the human brain target epitopes within the C-terminus (residues 96-140) of the 140 amino acid protein and may fail to capture the diversity of α-Syn variants present in PD. We sought to investigate the heterogeneity of α-Syn conformations and aggregation states in the PD human brain by labelling with multiple antibodies that detect epitopes along the entire length of α-Syn. We used multiplex immunohistochemistry to simultaneously immunolabel tissue sections with antibodies mapping the three structural domains of α-Syn. Discrete epitope-specific immunoreactivities were visualised and quantified in the olfactory bulb, medulla, substantia nigra, hippocampus, entorhinal cortex, middle temporal gyrus, and middle frontal gyrus of ten PD cases, and the middle temporal gyrus of 23 PD, and 24 neurologically normal cases. Distinct Lewy neurite and Lewy body aggregate morphologies were detected across all interrogated regions/cases. Lewy neurites were the most prominent in the olfactory bulb and hippocampus, while the substantia nigra, medulla and cortical regions showed a mixture of Lewy neurites and Lewy bodies. Importantly, unique N-terminus immunoreactivity revealed previously uncharacterised populations of (1) perinuclear, (2) glial (microglial and astrocytic), and (3) neuronal lysosomal α-Syn aggregates. These epitope-specific N-terminus immunoreactive aggregate populations were susceptible to proteolysis via time-dependent proteinase K digestion, suggesting a less stable oligomeric aggregation state. Our identification of unique N-terminus immunoreactive α-Syn aggregates adds to the emerging paradigm that α-Syn pathology is more abundant and complex in human brains with PD than previously realised. Our findings highlight that labelling multiple regions of the α-Syn protein is necessary to investigate the full spectrum of α-Syn pathology and prompt further investigation into the functional role of these N-terminus polymorphs.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.
| | - Helen C Murray
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Richard L M F Faull
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, 1023, New Zealand
| | - Clinton P Turner
- LabPlus, Department of Anatomical Pathology, Te Whatu Ora, Auckland, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|
8
|
Meng L, Liu C, Li Y, Chen G, Xiong M, Yu T, Pan L, Zhang X, Zhou L, Guo T, Yuan X, Liu C, Zhang Z, Zhang Z. The yeast prion protein Sup35 initiates α-synuclein pathology in mouse models of Parkinson's disease. SCIENCE ADVANCES 2023; 9:eadj1092. [PMID: 37910610 PMCID: PMC10619926 DOI: 10.1126/sciadv.adj1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Parkinson's disease (PD) is characterized by the pathologic aggregation and prion-like propagation of α-synuclein (α-syn). Emerging evidence shows that fungal infections increase the incidence of PD. However, the molecular mechanisms by which fungi promote the onset of PD are poorly understood. Here, we show that nasal infection with Saccharomyces cerevisiae (S. cerevisiae) in α-syn A53T transgenic mice accelerates the aggregation of α-syn. Furthermore, we found that Sup35, a prion protein from S. cerevisiae, is the key factor initiating α-syn pathology induced by S. cerevisiae. Sup35 interacts with α-syn and accelerates its aggregation in vitro. Notably, injection of Sup35 fibrils into the striatum of wild-type mice led to α-syn pathology and PD-like motor impairment. The Sup35-seeded α-syn fibrils showed enhanced seeding activity and neurotoxicity compared with pure α-syn fibrils in vitro and in vivo. Together, these observations indicate that the yeast prion protein Sup35 initiates α-syn pathology in PD.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tao Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
9
|
Brand G, Bontempi C, Jacquot L. Impact of deep brain stimulation (DBS) on olfaction in Parkinson's disease: Clinical features and functional hypotheses. Rev Neurol (Paris) 2023; 179:947-954. [PMID: 37301657 DOI: 10.1016/j.neurol.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 06/12/2023]
Abstract
Deep brain stimulation (DBS) is a surgical therapy typically applied in Parkinson's disease (PD). The efficacity of DBS on the control of motor symptoms in PD is well grounded while the efficacity on non-motor symptoms is more controversial, especially on olfactory disorders (ODs). The present review shows that DBS does not improve hyposmia but can affect positively identification/discrimination scores in PD. The functional hypotheses suggest complex mechanisms in terms of cerebral connectivity and neurogenesis process which could act indirectly on the olfactory bulb and olfactory pathways related to specific cognitive olfactory tasks. The functional hypotheses also suggest complex mechanisms of cholinergic neurotransmitter interactions involved in these pathways. Finally, the impact of DBS on general cognitive functions in PD could also be beneficial to identification/discrimination tasks in PD.
Collapse
Affiliation(s)
- G Brand
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France.
| | - C Bontempi
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France
| | - L Jacquot
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France
| |
Collapse
|
10
|
Yuan Y, Ma X, Mi X, Qu L, Liang M, Li M, Wang Y, Song N, Xie J. Dopaminergic neurodegeneration in the substantia nigra is associated with olfactory dysfunction in mice models of Parkinson's disease. Cell Death Discov 2023; 9:388. [PMID: 37865662 PMCID: PMC10590405 DOI: 10.1038/s41420-023-01684-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Olfactory dysfunction represents a prodromal stage in Parkinson's disease (PD). However, the mechanisms underlying hyposmia are not specified yet. In this study, we first observed an early olfactory dysfunction in mice with intragastric rotenone administration, consistent with dopaminergic neurons loss and α-synuclein pathology in the olfactory bulb. However, a much severer olfactory dysfunction was observed without severer pathology in olfactory bulb when the loss of dopaminergic neurons in the substantia nigra occurred. Then, we established the mice models by intrastriatal α-synuclein preformed fibrils injection and demonstrated the performance in the olfactory discrimination test was correlated to the loss of dopaminergic neurons in the substantia nigra, without any changes in the olfactory bulb analyzed by RNA-sequence. In mice with intranasal ferric ammonium citrate administration, we observed olfactory dysfunction when dopaminergic neurodegeneration in substantia nigra occurred and was restored when dopaminergic neurons were rescued. Finally we demonstrated that chemogenetic inhibition of dopaminergic neurons in the substantia nigra was sufficient to cause hyposmia and motor incoordination. Taken together, this study shows a direct relationship between nigral dopaminergic neurodegeneration and olfactory dysfunction in PD models and put forward the understandings that olfactory dysfunction represents the early stage of neurodegeneration in PD progression.
Collapse
Affiliation(s)
- Yu Yuan
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Lingang Laboratory, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Le Qu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Meiyu Liang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Mengyu Li
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Youcui Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Torres-Pasillas G, Chi-Castañeda D, Carrillo-Castilla P, Marín G, Hernández-Aguilar ME, Aranda-Abreu GE, Manzo J, García LI. Olfactory Dysfunction in Parkinson's Disease, Its Functional and Neuroanatomical Correlates. NEUROSCI 2023; 4:134-151. [PMID: 39483318 PMCID: PMC11523736 DOI: 10.3390/neurosci4020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 11/03/2024] Open
Abstract
Parkinson's disease (PD) is known for its motor alterations, but the importance of non-motor symptoms (NMSs), such as olfactory dysfunction (OD), is increasingly recognized. OD may manifest during the prodromal period of the disease, even before motor symptoms appear. Therefore, it is suggested that this symptom could be considered a marker of PD. This article briefly describes PD, the evolution of the knowledge about OD in PD, the prevalence of this NMS and its role in diagnosis and as a marker of PD progression, the assessment of olfaction in patients with PD, the role of α-synuclein and its aggregates in the pathophysiology of PD, and then describes some functional, morphological, and histological alterations observed in different structures related to the olfactory system, such as the olfactory epithelium, olfactory bulb, anterior olfactory nucleus, olfactory tract, piriform cortex, hippocampus, orbitofrontal cortex, and amygdala. In addition, considering the growing evidence that suggests that the cerebellum is also involved in the olfactory system, it has also been included in this work. Comprehending the existing functional and neuroanatomical alterations in PD could be relevant for a better understanding of the mechanisms behind OD in patients with this neurodegenerative disorder.
Collapse
Affiliation(s)
| | - Donají Chi-Castañeda
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Gerardo Marín
- Neural Dynamics and Modulation Lab, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | - Luis I. García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
12
|
Araújo B, Caridade-Silva R, Soares-Guedes C, Martins-Macedo J, Gomes ED, Monteiro S, Teixeira FG. Neuroinflammation and Parkinson's Disease-From Neurodegeneration to Therapeutic Opportunities. Cells 2022; 11:cells11182908. [PMID: 36139483 PMCID: PMC9497016 DOI: 10.3390/cells11182908] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by a progressive degeneration of dopaminergic neurons (DAn), resulting in severe motor complications. Preclinical and clinical studies have indicated that neuroinflammation can play a role in PD pathophysiology, being associated with its onset and progression. Nevertheless, several key points concerning the neuroinflammatory process in PD remain to be answered. Bearing this in mind, in the present review, we cover the impact of neuroinflammation on PD by exploring the role of inflammatory cells (i.e., microglia and astrocytes) and the interconnections between the brain and the peripheral system. Furthermore, we discuss both the innate and adaptive immune responses regarding PD pathology and explore the gut–brain axis communication and its influence on the progression of the disease.
Collapse
Affiliation(s)
- Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Caridade-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Soares-Guedes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Martins-Macedo
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Eduardo D. Gomes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
13
|
Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer's disease: mutual risks and mechanisms. Transl Neurodegener 2022; 11:40. [PMID: 36089575 PMCID: PMC9464468 DOI: 10.1186/s40035-022-00316-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a life-threatening disease, especially in elderly individuals and those with comorbidities. The predominant clinical manifestation of COVID-19 is respiratory dysfunction, while neurological presentations are increasingly being recognized. SARS-CoV-2 invades host cells primarily via attachment of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor expressed on cell membranes. Patients with Alzheimer's disease (AD) are more susceptible to SARS-CoV-2 infection and prone to severe clinical outcomes. Recent studies have revealed some common risk factors for AD and COVID-19. An understanding of the association between COVID-19 and AD and the potential related mechanisms may lead to the development of novel approaches to treating both diseases. In the present review, we first summarize the mechanisms by which SARS-CoV-2 invades the central nervous system (CNS) and then discuss the associations and potential shared key factors between COVID-19 and AD, with a focus on the ACE2 receptor, apolipoprotein E (APOE) genotype, age, and neuroinflammation.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
14
|
Fitzek M, Patel PK, Solomon PD, Lin B, Hummel T, Schwob JE, Holbrook EH. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. J Comp Neurol 2022; 530:2154-2175. [PMID: 35397118 PMCID: PMC9232960 DOI: 10.1002/cne.25325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Olfactory epithelium (OE) is capable of lifelong regeneration due to presence of basal progenitor cells that respond to injury or neuronal loss with increased activity. However, this capability diminishes with advancing age and a decrease in odor perception in older individuals is well established. To characterize changes associated with age in the peripheral olfactory system, an in-depth analysis of the OE and its neuronal projections onto the olfactory bulb (OB) as a function of age was performed. Human olfactory tissue autopsy samples from 36 subjects with an average age of 74.1 years were analyzed. Established cell type-specific antibodies were used to identify OE component cells in whole mucosal sheets and epithelial sections as well as glomeruli and periglomerular structures in OB sections. With age, a reduction in OE area occurs across the mucosa progressing in a posterior-dorsal direction. Deterioration of the olfactory system is accompanied with diminution of neuron-containing OE, mature olfactory sensory neurons (OSNs) and OB innervation. On an individual level, the neuronal density within the epithelium appears to predict synapse density within the OB. The innervation of the OB is uneven with higher density at the ventral half that decreases with age as opposed to stable innervation at the dorsal half. Respiratory metaplasia, submucosal cysts, and neuromata, were commonly identified in aged OE. The finding of respiratory metaplasia and aneuronal epithelium with reduction in global basal cells suggests a progression of stem cell quiescence as an underlying pathophysiology of age-related smell loss in humans. KEY POINTS: A gradual loss of olfactory sensory neurons with age in human olfactory epithelium is also reflected in a reduction in glomeruli within the olfactory bulb. This gradual loss of neurons and synaptic connections with age occurs in a specific, spatially inhomogeneous manner. Decreasing mitotically active olfactory epithelium basal cells may contribute to age-related neuronal decline and smell loss in humans.
Collapse
Affiliation(s)
- Mira Fitzek
- Department of Otorhinolaryngology, Smell and Taste Clinic, University of Dresden Medical School, Dresden, Germany.,Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Parthkumar K Patel
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter D Solomon
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, University of Dresden Medical School, Dresden, Germany
| | - James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Murray HC, Johnson K, Sedlock A, Highet B, Dieriks BV, Anekal PV, Faull RLM, Curtis MA, Koretsky A, Maric D. Lamina-specific immunohistochemical signatures in the olfactory bulb of healthy, Alzheimer's and Parkinson's disease patients. Commun Biol 2022; 5:88. [PMID: 35075270 PMCID: PMC8786934 DOI: 10.1038/s42003-022-03032-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Traditional neuroanatomy immunohistology studies involve low-content analyses of a few antibodies of interest, typically applied and compared across sequential tissue sections. The efficiency, consistency, and ultimate insights of these studies can be substantially improved using high-plex immunofluorescence labelling on a single tissue section to allow direct comparison of many markers. Here we present an expanded and efficient multiplexed fluorescence-based immunohistochemistry (MP-IHC) approach that improves throughput with sequential labelling of up to 10 antibodies per cycle, with no limitation on the number of cycles, and maintains versatility and accessibility by using readily available commercial reagents and standard epifluorescence microscopy imaging. We demonstrate this approach by cumulatively screening up to 100 markers on formalin-fixed paraffin-embedded sections of human olfactory bulb sourced from neurologically normal (no significant pathology), Alzheimer's (AD), and Parkinson's disease (PD) patients. This brain region is involved early in the symptomology and pathophysiology of AD and PD. We also developed a spatial pixel bin analysis approach for unsupervised analysis of the high-content anatomical information from large tissue sections. Here, we present a comprehensive immunohistological characterisation of human olfactory bulb anatomy and a summary of differentially expressed biomarkers in AD and PD using the MP-IHC labelling and spatial protein analysis pipeline.
Collapse
Affiliation(s)
- Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand.
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Kory Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Blake Highet
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Praju Vikas Anekal
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
- Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
The Shape of the Olfactory Bulb Predicts Olfactory Function. Brain Sci 2022; 12:brainsci12020128. [PMID: 35203892 PMCID: PMC8870545 DOI: 10.3390/brainsci12020128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The olfactory bulb (OB) plays a key role in the processing of olfactory information. A large body of research has shown that OB volumes correlate with olfactory function, which provides diagnostic and prognostic information in olfactory dysfunction. Still, the potential value of the OB shape remains unclear. Based on our clinical experience we hypothesized that the shape of the OB predicts olfactory function, and that it is linked to olfactory loss, age, and gender. The aim of this study was to produce a classification of OB shape in the human brain, scalable to clinical and research applications. Results from patients with the five most frequent causes of olfactory dysfunction (n = 192) as well as age/gender-matched healthy controls (n = 77) were included. Olfactory function was examined in great detail using the extended “Sniffin’ Sticks” test. A high-resolution structural T2-weighted MRI scan was obtained for all. The planimetric contours (surface in mm2) of OB were delineated manually, and then all surfaces were added and multiplied to obtain the OB volume in mm3. OB shapes were outlined manually and characterized on a selected slice through the posterior coronal plane tangential to the eyeballs. We looked at OB shapes in terms of convexity and defined two patterns/seven categories based on OB contours: convex (olive, circle, and plano-convex) and non-convex (banana, irregular, plane, and scattered). Categorization of OB shapes is possible with a substantial inter-rater agreement (Cohen’s Kappa = 0.73). Our results suggested that non-convex OB patterns were significantly more often observed in patients than in controls. OB shapes were correlated with olfactory function in the whole group, independent of age, gender, and OB volume. OB shapes seemed to change with age in healthy subjects. Importantly, the results indicated that OB shapes were associated with certain causes of olfactory disorders, i.e., an irregular OB shape was significantly more often observed in post-traumatic olfactory loss. Our study provides evidence that the shape of the OB can be used as a biomarker for olfactory dysfunction.
Collapse
|
17
|
Dabbour AH, Tan S, Kim SH, Guild SJ, Heppner P, McCormick D, Wright BE, Leung D, Gallichan R, Budgett D, Malpas SC. The Safety of Micro-Implants for the Brain. Front Neurosci 2021; 15:796203. [PMID: 34955740 PMCID: PMC8695845 DOI: 10.3389/fnins.2021.796203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Technological advancements in electronics and micromachining now allow the development of discrete wireless brain implantable micro-devices. Applications of such devices include stimulation or sensing and could enable direct placement near regions of interest within the brain without the need for electrode leads or separate battery compartments that are at increased risk of breakage and infection. Clinical use of leadless brain implants is accompanied by novel risks, such as migration of the implant. Additionally, the encapsulation material of the implants plays an important role in mitigating unwanted tissue reactions. These risks have the potential to cause harm or reduce the service of life of the implant. In the present study, we have assessed post-implantation tissue reaction and migration of borosilicate glass-encapsulated micro-implants within the cortex of the brain. Twenty borosilicate glass-encapsulated devices (2 × 3.5 × 20 mm) were implanted into the parenchyma of 10 sheep for 6 months. Radiographs were taken directly post-surgery and at 3 and 6 months. Subsequently, sheep were euthanized, and GFAP and IBA-1 histological analysis was performed. The migration of the implants was tracked by reference to two stainless steel screws placed in the skull. We found no significant difference in fluoroscopy intensity of GFAP and a small difference in IBA-1 between implanted tissue and control. There was no glial scar formation found at the site of the implant’s track wall. Furthermore, we observed movement of up to 4.6 mm in a subset of implants in the first 3 months of implantation and no movement in any implant during the 3–6-month period of implantation. Subsequent histological analysis revealed no evidence of a migration track or tissue damage. We conclude that the implantation of this discrete micro-implant within the brain does not present additional risk due to migration.
Collapse
Affiliation(s)
- Abdel-Hameed Dabbour
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Sheryl Tan
- Centre for Brain Research, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Sang Ho Kim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Sarah-Jane Guild
- Auckland Bioengineering Institute, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Peter Heppner
- Auckland District Health Board, Auckland, New Zealand
| | - Daniel McCormick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Bryon E Wright
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Dixon Leung
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Robert Gallichan
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David Budgett
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Simon C Malpas
- Auckland Bioengineering Institute, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Khan M, Yoo SJ, Clijsters M, Backaert W, Vanstapel A, Speleman K, Lietaer C, Choi S, Hether TD, Marcelis L, Nam A, Pan L, Reeves JW, Van Bulck P, Zhou H, Bourgeois M, Debaveye Y, De Munter P, Gunst J, Jorissen M, Lagrou K, Lorent N, Neyrinck A, Peetermans M, Thal DR, Vandenbriele C, Wauters J, Mombaerts P, Van Gerven L. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021; 184:5932-5949.e15. [PMID: 34798069 PMCID: PMC8564600 DOI: 10.1016/j.cell.2021.10.027] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.
Collapse
Affiliation(s)
- Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Seung-Jun Yoo
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marnick Clijsters
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
| | - Wout Backaert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Kato Speleman
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Charlotte Lietaer
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | | | - Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Andrew Nam
- NanoString Technologies Inc., Seattle, WA, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA, USA
| | | | - Pauline Van Bulck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hai Zhou
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marc Bourgeois
- Department of Anesthesiology and Intensive Care Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Yves Debaveye
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Paul De Munter
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Mark Jorissen
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Anesthesia, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marijke Peetermans
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| | - Laura Van Gerven
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Son G, Steinbusch HWM, López-Iglesias C, Moon C, Jahanshahi A. Severe histomorphological alterations in post-mortem olfactory glomeruli in Alzheimer's disease. Brain Pathol 2021; 32:e13033. [PMID: 34704631 PMCID: PMC8877757 DOI: 10.1111/bpa.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Key AD symptoms include memory and cognitive decline; however, comorbid symptoms such as depression and sensory‐perceptual dysfunction are often reported. Among these, a deterioration of olfactory sensation is observed in approximately 90% of AD patients. However, the precise pathophysiological basis underlying olfactory deficits because of AD remains elusive. The olfactory glomeruli in the olfactory bulb (OB) receive sensory information in the olfactory processing pathway. Maintaining the structural and functional integrity of the olfactory glomerulus is critical to olfactory signalling. Herein, we conducted an in‐depth histopathological assessment to reveal detailed structural alterations in the olfactory glomeruli in AD patients. Fresh frozen post‐mortem OB specimens obtained from six AD patients and seven healthy age‐matched individuals were examined. We used combined immunohistochemistry and stereology to assess the gross morphology and histological alterations, such as those in the expression of Aβ protein, microglia, and neurotransmitters in the OB. Electron microscopy was employed to study the ultrastructural features in the glomeruli. Significant accumulation of Aβ, morphologic damage, altered neurotransmitter levels, and microgliosis in the olfactory glomeruli of AD patients suggests that glomerular damage could affect olfactory function. Moreover, greater neurodegeneration was observed in the ventral olfactory glomeruli of AD patients. The synaptic ultrastructure revealed distorted postsynaptic densities and a decline in presynaptic vesicles in AD specimens. These findings show that the primary olfactory pathway is affected by the pathogenesis of AD, and may provide clues to identifying the mechanism involved in olfactory dysfunction in AD.
Collapse
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Harry W M Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, FHML, Maastricht University, Maastricht, The Netherlands
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Lu R, Aziz NA, Reuter M, Stöcker T, Breteler MMB. Evaluation of the Neuroanatomical Basis of Olfactory Dysfunction in the General Population. JAMA Otolaryngol Head Neck Surg 2021; 147:855-863. [PMID: 34436517 DOI: 10.1001/jamaoto.2021.2026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Importance Olfactory dysfunction is a prodromal manifestation of many neurodegenerative disorders, including Alzheimer and Parkinson disease. However, its neuroanatomical basis is largely unknown. Objective To assess the association between olfactory brain structures and olfactory function in adults 30 years or older and to examine the extent to which olfactory bulb volume (OBV) mediates the association between central olfactory structures and olfactory function. Design, Setting, and Participants This cross-sectional study analyzed baseline data from the first 639 participants with brain magnetic resonance imaging (MRI) in the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Participants were enrolled between March 7, 2016, and October 31, 2017, and underwent brain MRI and olfactory assessment. Data were analyzed from March 1, 2018, to June 30, 2021. Exposure Volumetric measures were derived from 3-T MRI T1-weighted brain scans, and OBV was manually segmented on T2-weighted images. The mean volumetric brain measures from the right and left sides were calculated, adjusted by head size, and normalized to all participants. Main Outcomes and Measures Performance on the 12-item smell identification test (SIT-12) was used as a proxy for olfactory function. Results A total of 541 participants with complete data on MRI-derived measures and SIT-12 scores were included. This population had a mean (SD) age of 53.6 (13.1) years and comprised 306 women (56.6%). Increasing age (difference in SIT-12 score, -0.04; 95% CI, -0.05 to -0.03), male sex (-0.26; 95% CI, -0.54 to 0.02), and nasal congestion (-0.28; 95% CI, -0.66 to 0.09) were associated with worse olfactory function (SIT-12 scores). Conversely, larger OBV was associated with better olfactory function (difference in SIT-12 score, 0.46; 95% CI, 0.29-0.64). Larger volumes of amygdala (difference in OBV, 0.12; 95% CI, 0.01-0.24), hippocampus (0.16; 95% CI, 0.04-0.28), insular cortex (0.12; 95% CI, 0.01-0.24), and medial orbitofrontal cortex (0.10; 95% CI, 0.00-0.20) were associated with larger OBV. Larger volumes of amygdala (volume × age interaction effect, 0.17; 95% CI, 0.03-0.30), parahippocampal cortex (0.17; 95% CI, 0.03-0.31), and hippocampus (0.21; 95% CI, 0.08-0.35) were associated with better olfactory function only in older age groups. The age-modified association between volumes of central olfactory structures and olfactory function was largely mediated through OBV. Conclusions and Relevance This cross-sectional study found that olfactory bulb volume was independently associated with odor identification function and was a robust mediator of the age-dependent association between volumes of central olfactory structures and olfactory function. Thus, neurodegeneration-associated olfactory dysfunction may primarily originate from the pathology of peripheral olfactory structures, suggesting that OBV may serve as a preclinical marker for the identification of individuals who are at an increased risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran Lu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Martin Reuter
- Image Analysis, DZNE, Bonn, Germany.,A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Tony Stöcker
- MR Physics, DZNE, Bonn, Germany.,Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Glover A, Pillai L, Dhall R, Virmani T. Olfactory Deficits in the Freezing of Gait Phenotype of Parkinson's Disease. Front Neurol 2021; 12:656379. [PMID: 34456839 PMCID: PMC8397477 DOI: 10.3389/fneur.2021.656379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Olfactory dysfunction often occurs before motor onset in Parkinson's disease (PD) and can be detected with the University of Pennsylvania Smell Identification Test (UPSIT). Based on the Braak hypothesis, the olfactory bulb is one of two sites where disease pathology may start and spread to deeper brain structures. Objective: To evaluate whether a specific pattern of odorant identification on the UPSIT discriminated Parkinson's disease patients with and without freezing of gait. Methods: One hundred and twenty four consecutive participants (33 controls, 31 non-freezers, and 60 freezers) were administered the UPSIT. Using the chi-square test, each odorant on the UPSIT was ranked based on the differential ability of freezers and non-freezers to identify them correctly. Using predictive statistics and confusion matrices, the best combination of odorants and a cut-off score was determined. Results: Freezers had a shift toward a more severe hyposmia classification based on age and sex based normative values. The correct identification of nine odors (bubblegum, chocolate, smoke, wintergreen, paint thinner, orange, strawberry, grass, and peanut) was significantly worse in freezers compared to non-freezers. Correctly identifying ≤ 2 out of 3-odorants (bubblegum, chocolate, and smoke) had a 77% sensitivity and 61% specificity for categorizing freezers. The 3-odorant score was not correlated with disease duration, motor or total UPDRS scores, MoCA scores or age at testing. The predictive statistics were similar when sexes were separately categorized. Conclusions: A 3-odorant score helped categorize freezers and non-freezers with similar sensitivity and specificity to short odorant Parkinson's disease identification batteries.
Collapse
Affiliation(s)
- Aliyah Glover
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lakshmi Pillai
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rohit Dhall
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tuhin Virmani
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
22
|
Walker IM, Fullard ME, Morley JF, Duda JE. Olfaction as an early marker of Parkinson's disease and Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:317-329. [PMID: 34266602 DOI: 10.1016/b978-0-12-819973-2.00030-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Olfactory impairment is a common and early sign of Parkinson's disease (PD) and Alzheimer's disease (AD), the two most prevalent neurodegenerative conditions in the elderly. This phenomenon corresponds to pathologic processes emerging in the olfactory system prior to the onset of typical clinical manifestations. Clinically available tests can establish hyposmia through odor identification assessment, discrimination, and odor detection threshold. There are significant efforts to develop preventative or disease-modifying therapies that slow down or halt the progression of PD and AD. Due to the convenience and low cost of its assessment, olfactory impairment could be used in these studies as a screening instrument. In the clinical setting, loss of smell may also help to differentiate PD and AD from alternative causes of Parkinsonism and cognitive impairment, respectively. Here, we discuss the pathophysiology of olfactory dysfunction in PD and AD and how it can be assessed in the clinical setting to aid in the early and differential diagnosis of these disorders.
Collapse
Affiliation(s)
- Ian M Walker
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michelle E Fullard
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - James F Morley
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
23
|
Son G, Jahanshahi A, Yoo SJ, Boonstra JT, Hopkins DA, Steinbusch HWM, Moon C. Olfactory neuropathology in Alzheimer's disease: a sign of ongoing neurodegeneration. BMB Rep 2021. [PMID: 34162463 PMCID: PMC8249876 DOI: 10.5483/bmbrep.2021.54.6.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Seung-Jun Yoo
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Korea
| | - Jackson T. Boonstra
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - David A. Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax B3H 4R2, Canada
| | - Harry W. M. Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Korea
| |
Collapse
|
24
|
Son G, Jahanshahi A, Yoo SJ, Boonstra JT, Hopkins DA, Steinbusch HWM, Moon C. Olfactory neuropathology in Alzheimer's disease: a sign of ongoing neurodegeneration. BMB Rep 2021; 54:295-304. [PMID: 34162463 PMCID: PMC8249876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 11/08/2023] Open
Abstract
Olfactory neuropathology is a cause of olfactory loss in Alzheimer's disease (AD). Olfactory dysfunction is also associated with memory and cognitive dysfunction and is an incidental finding of AD dementia. Here we review neuropathological research on the olfactory system in AD, considering both structural and functional evidence. Experimental and clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, amyloid-β production and neuroinflammation are related to underlying causes of impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest the evidence of ongoing neurodegeneration. Our aim in this review is to examine olfactory pathology findings essential to identifying mechanisms of olfactory dysfunction in the development of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods and causes of early pathogenesis in the olfactory system. [BMB Reports 2021; 54(6): 295-304].
Collapse
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Seung-Jun Yoo
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Korea
| | - Jackson T. Boonstra
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - David A. Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax B3H 4R2, Canada
| | - Harry W. M. Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Korea
| |
Collapse
|
25
|
Chen Y, Wu W, Zhao S, Lv X, Hu J, Han C, Wang G, Wang S, Bo P, Zhang J, Gui W, Tang Q, Liu Q, Zhu S, Yu F. Increased Accumulation of α-Synuclein in Inflamed Appendices of Parkinson's Disease Patients. Mov Disord 2021; 36:1911-1918. [PMID: 33876851 DOI: 10.1002/mds.28553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The accumulation of α-synuclein (α-Syn) aggregates that leads to the onset of Parkinson's disease (PD) has been postulated to begin in the gastrointestinal tract. The normal human appendix contains pathogenic forms of α-Syn, and appendectomy has been reported to affect the incidence of PD. OBJECTIVE This study investigated appendix abnormality in patients with PD. METHODS We assessed appendix morphology in 100 patients with PD and 50 control subjects by multislice spiral computed tomography. We analyzed the clinical characteristics of patients with PD with diseased appendices, which was confirmed in seven patients by histopathological analysis. RESULTS Chronic appendicitis-like lesions were detected in 53% of patients with PD, but these were not associated with the duration of motor symptoms. Appendicitis-like lesions, impaired olfaction, and rapid eye movement sleep behavior disorder were risk factors for PD. The following clinical symptoms could be used to identify patients with PD with appendicitis-like lesions: first motor symptoms were bradykinesia/rigidity, onset of motor symptoms in the central axis or left limb, prodromal constipation, high ratio of Unified Parkinson's Disease Rating Scale Part III score to symptom duration, low Montreal Cognitive Assessment score, and high Epworth Sleepiness Scale score. The seven patients with PD who were diagnosed with chronic appendicitis underwent appendectomy, and histopathological analysis revealed structural changes associated with chronic appendicitis and α-Syn aggregation. CONCLUSIONS These results indicate an association between chronic appendicitis-like lesions and PD, and suggest that α-Syn accumulation in the diseased appendix occurs in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wu
- Department of Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuli Zhao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ji Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Han
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shicun Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Pan Bo
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Zhang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Gui
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Liu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shu Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Yu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
26
|
Zapiec B, Mombaerts P. The Zonal Organization of Odorant Receptor Gene Choice in the Main Olfactory Epithelium of the Mouse. Cell Rep 2021; 30:4220-4234.e5. [PMID: 32209480 DOI: 10.1016/j.celrep.2020.02.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
A mature olfactory sensory neuron (OSN) of the main olfactory epithelium (MOE) typically expresses one allele of one odorant receptor (OR) gene. It is widely thought that the great majority of the 1,141 intact mouse OR genes are expressed in one of four MOE zones (or bands or stripes), which are largely non-overlapping. Here, we develop a multiplex method to map, in 3D and MOE-wide, the expression areas of multiple OR genes in individual, non-genetically modified mice by three-color fluorescence in situ hybridization, semi-automated image segmentation, and 3D reconstruction. We classify the expression areas of 68 OR genes into 9 zones. These zones are highly overlapping and strikingly complex when viewed in 3D reconstructions. There could well be more zones. We propose that zones reflect distinct OSN types that are each restricted in their choice to a subset of the OR gene repertoire.
Collapse
Affiliation(s)
- Bolek Zapiec
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
27
|
Dolatshahi M, Sabahi M, Aarabi MH. Pathophysiological Clues to How the Emergent SARS-CoV-2 Can Potentially Increase the Susceptibility to Neurodegeneration. Mol Neurobiol 2021; 58:2379-2394. [PMID: 33417221 PMCID: PMC7791539 DOI: 10.1007/s12035-020-02236-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Along with emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, a myriad of neurologic symptoms, associated with structural brain changes, were reported. In this paper, we provide evidence to critically discuss the claim that the survived patients could possibly be at increased risk for neurodegenerative diseases via various mechanisms. This virus can directly invade the brain through olfactory bulb, retrograde axonal transport from peripheral nerve endings, or via hematogenous or lymphatic routes. Infection of the neurons along with peripheral leukocytes activation results in pro-inflammatory cytokine increment, rendering the brain to neurodegenerative changes. Also, occupation of the angiotensin-converting enzyme 2 (ACE-2) with the virus may lead to a decline in ACE-2 activity, which acts as a neuroprotective factor. Furthermore, acute respiratory distress syndrome (ARDS) and septicemia induce hypoxemia and hypoperfusion, which are locally exacerbated due to the hypercoagulable state and micro-thrombosis in brain vessels, leading to oxidative stress and neurodegeneration. Common risk factors for COVID-19 and neurodegenerative diseases, such as metabolic risk factors, genetic predispositions, and even gut microbiota dysbiosis, can contribute to higher occurrence of neurodegenerative diseases in COVID-19 survivors. However, it should be considered that severity of the infection, the extent of neurologic symptoms, and the persistence of viral infection consequences are major determinants of this association. Importantly, whether this pandemic will increase the overall incidence of neurodegeneration is not clear, as a high percentage of patients with severe form of COVID-19 might probably not survive enough to develop neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran. .,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
28
|
Son G, Yoo SJ, Kang S, Rasheed A, Jung DH, Park H, Cho B, Steinbusch HWM, Chang KA, Suh YH, Moon C. Region-specific amyloid-β accumulation in the olfactory system influences olfactory sensory neuronal dysfunction in 5xFAD mice. ALZHEIMERS RESEARCH & THERAPY 2021; 13:4. [PMID: 33397474 PMCID: PMC7784287 DOI: 10.1186/s13195-020-00730-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023]
Abstract
Background Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-β (Aβ), which is one of the toxic factors upregulated early in AD, has been identified in many studies, even in the peripheral areas of the olfactory system, the pathology involving olfactory sensory neurons (OSNs) remains poorly understood. Methods Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also confirmed histologically the pathological changes in 3-month-old 5xFAD mouse models, which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of the anatomical plane. Results We observed the odorant group that the 5xFAD mice showed reduced responses to odorants. These also did not physiologically activate OSNs that propagate their axons to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-β (Aβ) was high in the OSNs located in the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli. We also observed irreversible damage to the ectoturbinate of the olfactory epithelium by measuring the impaired neuronal turnover ratio from the basal cells to the matured OSNs. Conclusions Our results showed that partial and asymmetrical accumulation of Aβ coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely associated with peripheral OSN’s loss could be a leading cause of AD-related hyposmia, a characteristic of early AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-020-00730-2.
Collapse
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Seung-Jun Yoo
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Ameer Rasheed
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Da Hae Jung
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Bongki Cho
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Harry W M Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Yoo-Hun Suh
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea. .,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea. .,Korea Brain Research Institute, Daegu, Republic of Korea.
| |
Collapse
|
29
|
Gabrielyan L, Liang H, Minalyan A, Hatami A, John V, Wang L. Behavioral Deficits and Brain α-Synuclein and Phosphorylated Serine-129 α-Synuclein in Male and Female Mice Overexpressing Human α-Synuclein. J Alzheimers Dis 2021; 79:875-893. [PMID: 33361597 PMCID: PMC8577576 DOI: 10.3233/jad-200983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alpha-synuclein (α-syn) is involved in pathology of Parkinson's disease, and 90% of α-syn in Lewy bodies is phosphorylated at serine 129 (pS129 α-syn). OBJECTIVE To assess behavior impairments and brain levels of α-syn and pS129 α-syn in mice overexpressing human α-syn under Thy1 promoter (Thy1-α-syn) and wild type (wt) littermates. METHODS Motor and non-motor behaviors were monitored, brain human α-syn levels measured by ELISA, and α-syn and pS129 α-syn mapped by immunohistochemistry. RESULTS Male and female wt littermates did not show differences in the behavioral tests. Male Thy1-α-syn mice displayed more severe impairments than female counterparts in cotton nesting, pole tests, adhesive removal, finding buried food, and marble burying. Concentrations of human α-syn in the olfactory regions, cortex, nigrostriatal system, and dorsal medulla were significantly increased in Thy1-α-syn mice, higher in males than females. Immunoreactivity of α-syn was not simply increased in Thy1-α-syn mice but had altered localization in somas and fibers in a few brain areas. Abundant pS129 α-syn existed in many brain areas of Thy1-α-syn mice, while there was none or only a small amount in a few brain regions of wt mice. The substantia nigra, olfactory regions, amygdala, lateral parabrachial nucleus, and dorsal vagal complex displayed different distribution patterns between wt and transgenic mice, but not between sexes. CONCLUSION The severer abnormal behaviors in male than female Thy1-α-syn mice may be related to higher brain levels of human α-syn, in the absence of sex differences in the altered brain immunoreactivity patterns of α-syn and pS129 α-syn.
Collapse
Affiliation(s)
- Lilit Gabrielyan
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Honghui Liang
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Artem Minalyan
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Asa Hatami
- Drug Discovery Lab, Department of Neurology, UCLA
| | | | - Lixin Wang
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
- VA Great Los Angeles Health System
| |
Collapse
|
30
|
Caminati G, Procacci P. Mounting evidence of FKBP12 implication in neurodegeneration. Neural Regen Res 2020; 15:2195-2202. [PMID: 32594030 PMCID: PMC7749462 DOI: 10.4103/1673-5374.284980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Intrinsically disordered proteins, such as tau or α-synuclein, have long been associated with a dysfunctional role in neurodegenerative diseases. In Alzheimer's and Parkinson's' diseases, these proteins, sharing a common chemical-physical pattern with alternating hydrophobic and hydrophilic domains rich in prolines, abnormally aggregate in tangles in the brain leading to progressive loss of neurons. In this review, we present an overview linking the studies on the implication of the peptidyl-prolyl isomerase domain of immunophilins, and notably FKBP12, to a variety of neurodegenerative diseases, focusing on the molecular origin of such a role. The involvement of FKBP12 dysregulation in the aberrant aggregation of disordered proteins pinpoints this protein as a possible therapeutic target and, at the same time, as a predictive biomarker for early diagnosis in neurodegeneration, calling for the development of reliable, fast and cost-effective detection methods in body fluids for community-based screening campaigns.
Collapse
Affiliation(s)
- Gabriella Caminati
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, Italy
| | - Piero Procacci
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Biju KC, Shen Q, Hernandez ET, Mader MJ, Clark RA. Reduced cerebral blood flow in an α-synuclein transgenic mouse model of Parkinson's disease. J Cereb Blood Flow Metab 2020; 40:2441-2453. [PMID: 31856640 PMCID: PMC7820695 DOI: 10.1177/0271678x19895432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is increasing evidence that widespread cortical cerebral blood flow deficits occur early in the course of Parkinson's disease. Although cerebral blood flow measurement has been suggested as a potential biomarker for early diagnosis of Parkinson's disease, as well as a means for tracking response to treatment, the relationship of cerebral blood flow to α-synucleinopathy, a major pathological hallmark of Parkinson's disease, remains unclear. Therefore, we performed arterial spin-labeling magnetic resonance imaging and diffusion tensor imaging on transgenic mice overexpressing human wild-type α-synuclein and age-matched controls to measure cerebral blood flow and degenerative changes. As reported for early-stage Parkinson's disease, α-synuclein mice exhibited a significant reduction in cortical cerebral blood flow, which was accompanied by motor coordination deficits and olfactory dysfunction. Although no overt degenerative changes were apparent in diffusion tensor imaging images, magnetic resonance imaging volumetric analysis revealed a significant reduction in olfactory bulb volume, similar to that seen in Parkinson's disease patients. Our data, representing the first report of cerebral blood flow deficit in an animal model of Parkinson's disease, suggest a causative role for α-synucleinopathy in cerebral blood flow deficits in Parkinson's disease. Thus, α-synuclein transgenic mice comprise a promising model to study Parkinson's disease-related mechanisms of cerebral blood flow deficits and to investigate further its utility as a potential biomarker for Parkinson's disease.
Collapse
Affiliation(s)
- K C Biju
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Qiang Shen
- Research Imaging Institute, UT Health San Antonio, San Antonio, TX, USA.,Department of Radiology, UT Health San Antonio, San Antonio, TX, USA
| | | | - Michael J Mader
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Robert A Clark
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
32
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
33
|
Sasaki S, Horie Y. Association Between Olfactory Impairment and Disease Severity and Duration in Parkinson's Disease. Mov Disord Clin Pract 2020; 7:820-826. [PMID: 33043078 DOI: 10.1002/mdc3.13028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/17/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023] Open
Abstract
Background The association between olfactory dysfunction and disease duration and severity in Parkinson's disease (PD) remains controversial. Objective The objective of this study was to examine the relationship between olfactory dysfunction and disease severity and duration in patients with recently diagnosed parkinsonism and patients with PD with a previous diagnosis. Methods Olfactory function was evaluated in 79 patients with recently diagnosed parkinsonism, 71 patients with PD with a previous diagnosis-with patients in both groups free of cognitive impairment-and 128 age-matched controls. The Odor-Stick Identification Test for Japanese score was counted as the numbers of correct answers, responses of indistinguishable, and responses of odorless. Parkinsonism was evaluated using the Movement Disorder Society Criteria, the Unified Parkinson Disease Rating Scale (UPDRS) Part III, and 123iodine-labeled N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane single photon emission computed tomography (DaTscan). Results In the patients with recently diagnosed parkinsonism having the UPDRS Part III score ≥5 (mean [standard deviation: SD] score: 6.3 [1.9]) and with a positive DaTscan, the mean (SD) numbers of correct answers, responses of indistinguishable and responses of odorless were 4.3 (2.2), 1.6 (2.0), and 1.2 (2.2), respectively. In patients with PD with a previous diagnosis (mean [SD] UPDRS Part III score: 10.9 [3.2]), these numbers were 2.5 (2.2), 2.2 (2.5), and 3.8 (4.6), respectively. The patients with PD with a previous diagnosis showed more significant deterioration than the patients with recently diagnosed parkinsonism in the numbers of correct answers and responses of odorless (P < 0.0001). Olfaction in the combined patient group was significantly impaired compared with age-matched controls in each category (P < 0.0001). Conclusions These findings imply a close association between olfactory dysfunction and disease severity and duration in PD.
Collapse
Affiliation(s)
- Shoichi Sasaki
- Department of Neurology Agano City Hospital Agano-shi Japan.,Department of Neurology Toyosaka Hospital Niigata Japan
| | - Yoshiharu Horie
- Data Science, Medical Division AstraZeneca Osaka Japan.,Department of Social and Environmental Medicine, Graduate School of Medicine Osaka University Suita Japan
| |
Collapse
|
34
|
Highet B, Dieriks BV, Murray HC, Faull RLM, Curtis MA. Huntingtin Aggregates in the Olfactory Bulb in Huntington's Disease. Front Aging Neurosci 2020; 12:261. [PMID: 33013352 PMCID: PMC7461834 DOI: 10.3389/fnagi.2020.00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/31/2020] [Indexed: 12/03/2022] Open
Abstract
Olfactory deficits are an early and prevalent non-motor symptom of Huntington's disease (HD). In other neurodegenerative diseases where olfactory deficits occur, such as Alzheimer's disease and Parkinson's disease, pathological protein aggregates (tau, β-amyloid, α-synuclein) accumulate in the anterior olfactory nucleus (AON) of the olfactory bulb (OFB). Therefore, in this study we determined whether aggregates are also present in HD OFBs; 13 HD and five normal human OFBs were stained for mutant huntingtin (mHtt), tau, β-amyloid, TDP-43, and α-synuclein. Our results show that mHtt aggregates detected with 1F8 antibody are present within all HD OFBs, and mHtt aggregate load in the OFB does not correlate with Vonsattel grading scores. The majority of the aggregates were located in the AON and in similar abundance in each anatomical segment of the AON. No mHtt aggregates were found in controls; 31% of HD cases also contained tau neurofibrillary tangles within the AON. This work demonstrates HD pathology in the OFB and indicates that disease-specific protein aggregation in the AON is a common feature of neurodegenerative diseases that show olfactory deficits.
Collapse
Affiliation(s)
- Blake Highet
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Helen C. Murray
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Murray HC, Dieriks BV, Swanson MEV, Anekal PV, Turner C, Faull RLM, Belluscio L, Koretsky A, Curtis MA. The unfolded protein response is activated in the olfactory system in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:109. [PMID: 32665027 PMCID: PMC7362534 DOI: 10.1186/s40478-020-00986-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Olfactory dysfunction is an early and prevalent symptom of Alzheimer’s disease (AD) and the olfactory bulb is a nexus of beta-amyloid plaque and tau neurofibrillary tangle (NFT) pathology during early AD progression. To mitigate the accumulation of misfolded proteins, an endoplasmic reticulum stress response called the unfolded protein response (UPR) occurs in the AD hippocampus. However, chronic UPR activation can lead to apoptosis and the upregulation of beta-amyloid and tau production. Therefore, UPR activation in the olfactory system could be one of the first changes in AD. In this study, we investigated whether two proteins that signal UPR activation are expressed in the olfactory system of AD cases with low or high amounts of aggregate pathology. We used immunohistochemistry to label two markers of UPR activation (p-PERK and p-eIF2α) concomitantly with neuronal markers (NeuN and PGP9.5) and pathology markers (beta-amyloid and tau) in the olfactory bulb, piriform cortex, entorhinal cortex and the CA1 region of the hippocampus in AD and normal cases. We show that UPR activation, as indicated by p-PERK and p-eIF2α expression, is significantly increased throughout the olfactory system in AD cases with low (Braak stage III-IV) and high-level (Braak stage V-VI) pathology. We further show that UPR activation occurs in the mitral cells and in the anterior olfactory nucleus of the olfactory bulb where tau and amyloid pathology is abundant. However, UPR activation is not present in neurons when they contain NFTs and only rarely occurs in neurons containing diffuse tau aggregates. We conclude that UPR activation is prevalent in all regions of the olfactory system and support previous findings suggesting that UPR activation likely precedes NFT formation. Our data indicate that chronic UPR activation in the olfactory system might contribute to the olfactory dysfunction that occurs early in the pathogenesis of AD.
Collapse
|
36
|
Kumar R, Donakonda S, Müller SA, Lichtenthaler SF, Bötzel K, Höglinger GU, Koeglsperger T. Basic Fibroblast Growth Factor 2-Induced Proteome Changes Endorse Lewy Body Pathology in Hippocampal Neurons. iScience 2020; 23:101349. [PMID: 32707433 PMCID: PMC7381695 DOI: 10.1016/j.isci.2020.101349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Hippocampal Lewy body pathology (LBP) is associated with changes in neurotrophic factor signaling and neuronal energy metabolism. LBP progression is attributed to the aggregation of α-synuclein (α-Syn) and its cell-to-cell transmission via extracellular vehicles (EVs). We recently discovered an enhanced EV release in basic fibroblast growth factor (bFGF)-treated hippocampal neurons. Here, we examined the EV and cell lysate proteome changes in bFGF-treated hippocampal neurons. We identified n = 2,310 differentially expressed proteins (DEPs) induced by bFGF. We applied weighted protein co-expression network analysis (WPCNA) to generate protein modules from DEPs and mapped them to published LBP datasets. This approach revealed n = 532 LBP-linked DEPs comprising key α-Syn-interacting proteins, LBP-associated RNA-binding proteins (RBPs), and neuronal ion channels and receptors that can impact LBP onset and progression. In summary, our deep proteomic analysis affirms the potential influence of bFGF signaling on LBP-related proteome changes and associated molecular interactions.
Collapse
Affiliation(s)
- Rohit Kumar
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany; Faculty of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Department of Neurology, Ludwig Maximilian University, 81377 Munich, Germany.
| | - Sainitin Donakonda
- Institute of Immunology and Experimental Oncology, Technical University of Munich, 81675 Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany; Faculty of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Department of Neurology, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Thomas Koeglsperger
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany; Department of Neurology, Ludwig Maximilian University, 81377 Munich, Germany.
| |
Collapse
|
37
|
Chase BA, Markopoulou K. Olfactory Dysfunction in Familial and Sporadic Parkinson's Disease. Front Neurol 2020; 11:447. [PMID: 32547477 PMCID: PMC7273509 DOI: 10.3389/fneur.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
This minireview discusses our current understanding of the olfactory dysfunction that is frequently observed in sporadic and familial forms of Parkinson's disease and parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction in these conditions, discussing its prevalence and characteristics, how neuronal processes and circuits are altered in Parkinson's disease, and what is assessed by clinically used measures of olfactory function. We highlight how studies of monogenic Parkinson's disease and investigations in ethnically diverse populations have contributed to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we discuss how imaging and system-level approaches have been used to understand the pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in understanding the basis of olfactory dysfunction in neurodegeneration. We propose that insights could be obtained by following longitudinal cohorts with familial forms of Parkinson's disease using a combination of approaches: a multifaceted longitudinal assessment of olfactory function during disease progression is essential to identify not only how dysfunction arises, but also to address its relationship to motor and non-motor Parkinson's disease symptoms. An assessment of cohorts having monogenic forms of Parkinson's disease, available within the Genetic Epidemiology of Parkinson's Disease (GEoPD), as well as other international consortia, will have heuristic value in addressing the complexity of olfactory dysfunction in the context of the neurodegenerative process. This will inform our understanding of Parkinson's disease as a multisystem disorder and facilitate the more effective use of olfactory dysfunction assessment in identifying prodromal Parkinson's disease and understanding disease progression.
Collapse
Affiliation(s)
- Bruce A. Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
38
|
Stevenson TJ, Murray HC, Turner C, Faull RLM, Dieriks BV, Curtis MA. α-synuclein inclusions are abundant in non-neuronal cells in the anterior olfactory nucleus of the Parkinson's disease olfactory bulb. Sci Rep 2020; 10:6682. [PMID: 32317654 PMCID: PMC7174302 DOI: 10.1038/s41598-020-63412-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Reduced olfactory function (hyposmia) is one of the most common non-motor symptoms experienced by those living with Parkinson's disease (PD), however, the underlying pathology of the dysfunction is unclear. Recent evidence indicates that α-synuclein (α-syn) pathology accumulates in the anterior olfactory nucleus of the olfactory bulb years before the motor symptoms are present. It is well established that neuronal cells in the olfactory bulb are affected by α-syn, but the involvement of other non-neuronal cell types is unknown. The occurrence of intracellular α-syn inclusions were quantified in four non-neuronal cell types - microglia, pericytes, astrocytes and oligodendrocytes as well as neurons in the anterior olfactory nucleus of post-mortem human PD olfactory bulbs (n = 11) and normal olfactory bulbs (n = 11). In the anterior olfactory nucleus, α-syn inclusions were confirmed to be intracellular in three of the four non-neuronal cell types, where 7.78% of microglia, 3.14% of pericytes and 1.97% of astrocytes were affected. Neurons containing α-syn inclusions comprised 8.60% of the total neuron population. Oligodendrocytes did not contain α-syn. The data provides evidence that non-neuronal cells in the PD olfactory bulb contain α-syn inclusions, suggesting that they may play an important role in the progression of PD.
Collapse
Affiliation(s)
- Taylor J Stevenson
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Deparment of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
39
|
Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020; 329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
40
|
Kim JY, Choe J, Moon C. Distinct Developmental Features of Olfactory Bulb Interneurons. Mol Cells 2020; 43:215-221. [PMID: 32208366 PMCID: PMC7103883 DOI: 10.14348/molcells.2020.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/20/2023] Open
Abstract
The olfactory bulb (OB) has an extremely higher proportionof interneurons innervating excitatory neurons than otherbrain regions, which is evolutionally conserved across species.Despite the abundance of OB interneurons, little is knownabout the diversification and physiological functions ofOB interneurons compared to cortical interneurons. In thisreview, an overview of the general developmental processof interneurons from the angles of the spatial and temporalspecifications was presented. Then, the distinct featuresshown exclusively in OB interneurons development andmolecular machinery recently identified were discussed.Finally, we proposed an evolutionary meaning for thediversity of OB interneurons.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology, Daegu 4988, Korea
- Korea Brain Research Institute, Daegu 41062, Korea
| |
Collapse
|
41
|
Chen Y, Zhu G, Liu D, Liu Y, Yuan T, Zhang X, Jiang Y, Du T, Zhang J. Brain morphological changes in hypokinetic dysarthria of Parkinson's disease and use of machine learning to predict severity. CNS Neurosci Ther 2020; 26:711-719. [PMID: 32198848 PMCID: PMC7298984 DOI: 10.1111/cns.13304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/13/2020] [Accepted: 03/01/2020] [Indexed: 01/26/2023] Open
Abstract
Background Up to 90% of patients with Parkinson's disease (PD) eventually develop the speech and voice disorder referred to as hypokinetic dysarthria (HD). However, the brain morphological changes associated with HD have not been investigated. Moreover, no reliable model for predicting the severity of HD based on neuroimaging has yet been developed. Methods A total of 134 PD patients were included in this study and divided into a training set and a test set. All participants underwent a structural magnetic resonance imaging (MRI) scan and neuropsychological evaluation. Individual cortical thickness, subcortical structure, and white matter volume were extracted, and their association with HD severity was analyzed. After feature selection, a machine‐learning model was established using a support vector machine in the training set. The severity of HD was then predicted in the test set. Results Atrophy of the right precentral cortex and the right fusiform gyrus was significantly associated with HD. No association was found between HD and volume of white matter or subcortical structures. Favorable and optimal performance of machine learning on HD severity prediction was achieved using feature selection, giving a correlation coefficient (r) of .7516 and a coefficient of determination (R2) of .5649 (P < .001). Conclusion The brain morphological changes were associated with HD. Excellent prediction of the severity of HD was achieved using machine learning based on neuroimaging.
Collapse
Affiliation(s)
- Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
42
|
Sasaki S. A Case of Logopenic Variant of Primary Progressive Aphasia with Parkinsonism and Anosmia. J Alzheimers Dis Rep 2020; 4:61-66. [PMID: 32328564 PMCID: PMC7175926 DOI: 10.3233/adr-190158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 69-year-old right-handed woman developed difficulty naming objects and word-finding. The clinical features of language disorder and predominant atrophy on MRI and predominant hypoperfusion on 123I-IMP SPECT in the left temporo-parietal junction area were consistent with the diagnostic criteria for the logopenic variant of primary progressive aphasia (lvPPA). Neurological examination showed slight right-side rigidity and resting tremor (UPDRS-III: 4). 123I-FP-CIT SPECT showed presynaptic dopamine transporter reduction in the posterior putamina with left-side predominance. The odor-stick identification test for Japanese exhibited complete loss of the sense of smell (anosmia). These findings suggest that lvPPA may be accompanied by parkinsonism and anosmia.
Collapse
Affiliation(s)
- Shoichi Sasaki
- Department of Neurology, Agano City Hospital, Niigata, Japan
- Department of Neurology, Toyosaka Hospital, Niigata, Japan
| |
Collapse
|
43
|
Liu J, Liu C, Zhang J, Zhang Y, Liu K, Song JX, Sreenivasmurthy SG, Wang Z, Shi Y, Chu C, Zhang Y, Wu C, Deng X, Liu X, Song J, Zhuang R, Huang S, Zhang P, Li M, Wen L, Zhang YW, Liu G. A Self-Assembled α-Synuclein Nanoscavenger for Parkinson's Disease. ACS NANO 2020; 14:1533-1549. [PMID: 32027482 DOI: 10.1021/acsnano.9b06453] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although emerging evidence suggests that the pathogenesis of Parkinson's disease (PD) is closely related to the aggregation of alpha-synuclein (α-syn) in the midbrain, the clearance of α-syn remains an unmet clinical need. Here, we develop a simple and efficient strategy for fabricating the α-syn nanoscavenger for PD via a reprecipitation self-assembly procedure. The curcumin analogue-based nanoscavenger (NanoCA) is engineered to be capable of a controlled-release property to stimulate nuclear translocation of the major autophagy regulator, transcription factor EB (TFEB), triggering both autophagy and calcium-dependent exosome secretion for the clearance of α-syn. Pretreatment of NanoCA protects cell lines and primary neurons from MPP+-induced neurotoxicity. More importantly, a rapid arousal intranasal delivery system (RA-IDDS) was designed and applied for the brain-targeted delivery of NanoCA, which affords robust neuroprotection against behavioral deficits and promotes clearance of monomer, oligomer, and aggregates of α-syn in the midbrain of an MPTP mouse model of PD. Our findings provide a clinically translatable therapeutic strategy aimed at neuroprotection and disease modification in PD.
Collapse
Affiliation(s)
- Jingyi Liu
- School of Medicine , Xiamen University , Xiamen 361102 , China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences , Beijing Institute of Technology , Beijing 100081 , China
| | - Yunming Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Keyin Liu
- School of Medicine , Xiamen University , Xiamen 361102 , China
| | - Ju-Xian Song
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | | | - Ziying Wang
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Caisheng Wu
- Laboratory Animal Center , Xiamen University , Xiamen 361102 , China
- School of Pharmaceutical Sciences , Xiamen University , Xiamen 361102 , China
| | - Xianhua Deng
- School of Medicine , Xiamen University , Xiamen 361102 , China
| | - Xingyang Liu
- School of Medicine , Xiamen University , Xiamen 361102 , China
| | - Jing Song
- Laboratory Animal Center , Xiamen University , Xiamen 361102 , China
- School of Pharmaceutical Sciences , Xiamen University , Xiamen 361102 , China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Shuqiong Huang
- School of Medicine , Xiamen University , Xiamen 361102 , China
| | - Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Lei Wen
- School of Medicine , Xiamen University , Xiamen 361102 , China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience , Xiamen University , Xiamen 361102 , China
| | - Yun Wu Zhang
- School of Medicine , Xiamen University , Xiamen 361102 , China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience , Xiamen University , Xiamen 361102 , China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience , Xiamen University , Xiamen 361102 , China
| |
Collapse
|
44
|
Pisa D, Alonso R, Carrasco L. Parkinson's Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue. Int J Biol Sci 2020; 16:1135-1152. [PMID: 32174790 PMCID: PMC7053320 DOI: 10.7150/ijbs.42257] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by motor disorders and the destruction of dopaminergic neurons in the substantia nigra pars compacta. In addition to motor disability, many patients with PD present a spectrum of clinical symptoms, including cognitive decline, psychiatric alterations, loss of smell and bladder dysfunction, among others. Neuroinflammation is one of the most salient features of PD, but the nature of the trigger remains unknown. A plausible mechanism to explain inflammation and the range of clinical symptoms in these patients is the presence of systemic microbial infection. Accordingly, the present study provides extensive evidence for the existence of mixed microbial infections in the central nervous system (CNS) of patients with PD. Assessment of CNS sections by immunohistochemistry using specific antibodies revealed the presence of both fungi and bacteria. Moreover, different regions of the CNS were positive for a variety of microbial morphologies, suggesting infection by a number of microorganisms. Identification of specific fungal and bacterial species in different CNS regions from six PD patients was accomplished using nested PCR analysis and next-generation sequencing, providing compelling evidence of polymicrobial infections in the CNS of PD. Most of the fungal species identified belong to the genera Botrytis, Candida, Fusarium and Malassezia. Some relevant bacterial genera were Streptococcus and Pseudomonas, with most bacterial species belonging to the phyla Actinobacteria and Proteobacteria. Interestingly, we noted similarities and differences between the microbiota present in the CNS of patients with PD and that in other neurodegenerative diseases. Overall, our observations lend strong support to the concept that mixed microbial infections contribute to or are a risk factor for the neuropathology of PD. Importantly, these results provide the basis for effective treatments of this disease using already approved and safe antimicrobial therapeutics.
Collapse
Affiliation(s)
| | | | - Luis Carrasco
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM). c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| |
Collapse
|
45
|
Walkden H, Delbaz A, Nazareth L, Batzloff M, Shelper T, Beacham IR, Chacko A, Shah M, Beagley KW, Tello Velasquez J, St John JA, Ekberg JAK. Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Negl Trop Dis 2020; 14:e0008017. [PMID: 31978058 PMCID: PMC7002012 DOI: 10.1371/journal.pntd.0008017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.
Collapse
Affiliation(s)
- Heidi Walkden
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ali Delbaz
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Todd Shelper
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Anu Chacko
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Kenneth W. Beagley
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - James A. St John
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jenny A. K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
46
|
Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, Gabilondo I. Contribution of the GABAergic System to Non-Motor Manifestations in Premotor and Early Stages of Parkinson's Disease. Front Pharmacol 2019; 10:1294. [PMID: 31736763 PMCID: PMC6831739 DOI: 10.3389/fphar.2019.01294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Non-motor symptoms are common in Parkinson’s disease (PD) and they represent a major source of disease burden. Several non-motor manifestations, such as rapid eye movement sleep behavior disorder, olfactory loss, gastrointestinal abnormalities, visual alterations, cognitive and mood disorders, are known to precede the onset of motor signs. Nonetheless, the mechanisms mediating these alterations are poorly understood and probably involve several neurotransmitter systems. The dysregulation of GABAergic system has received little attention in PD, although the spectrum of non-motor symptoms might be linked to this pathway. This Mini Review aims to provide up-to-date information about the involvement of the GABAergic system for explaining non-motor manifestations in early stages of PD. Therefore, special attention is paid to the clinical data derived from patients with isolated REM sleep behavior disorder or drug-naïve patients with PD, as they represent prodromal and early stages of the disease, respectively. This, in combination with animal studies, might help us to understand how the disturbance of the GABAergic system is related to non-motor manifestations of PD.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Andikoetxea
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
47
|
Abstract
Olfaction plays a critical role in several aspects of life. Olfactory disorders are very common in the general population, and can lead to malnutrition, weight loss, food poisoning, depression, and other disturbances. Odorants are first detected in the upper region of the nose by the main olfactory epithelium (OE). In this region, millions of olfactory sensory neurons (OSNs) interact with odor molecules through the odorant receptors (ORs), which belong to the superfamily of G protein-coupled receptors. The binding of odors to the ORs initiates an electrical signal that travels along the axons to the main olfactory bulb of the brain. The information is then transmitted to other regions of the brain, leading to odorant perception and emotional and behavioral responses. In the OE, OSNs die and are continuously replaced from stem cells localized in the epithelium's basal region. Damage to this epithelium can be caused by multiple factors, leading to anosmia (smell loss). In this chapter, we introduce the basic organization of the OE and focus on the molecular mechanisms involved in odorant perception. We also describe recent experiments that address the mechanisms of OSNs regeneration in response to neuronal injury.
Collapse
Affiliation(s)
- Isaías Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
48
|
Novel targets for parkinsonism-depression comorbidity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:1-24. [DOI: 10.1016/bs.pmbts.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Doty RL, Hawkes CH. Chemosensory dysfunction in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:325-360. [PMID: 31604557 DOI: 10.1016/b978-0-444-63855-7.00020-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of neurodegenerative diseases are accompanied by disordered smell function. The degree of dysfunction can vary among different diseases, such that olfactory testing can aid in differentiating, for example, Alzheimer's disease (AD) from major affective disorder and Parkinson's disease (PD) from progressive supranuclear palsy. Unfortunately, altered smell function often goes unrecognized by patients and physicians alike until formal testing is undertaken. Such testing uniquely probes brain regions not commonly examined in physical examinations and can identify, in some cases, patients who are already in the "preclinical" stage of disease. Awareness of this fact is one reason why the Quality Standards Committee of the American Academy of Neurology has designated smell dysfunction as one of the key diagnostic criteria for PD. The same recommendation has been made by the Movement Disorder Society for both the diagnosis of PD and identification of prodromal PD. Similar suggestions are proposed to include olfactory dysfunction as an additional research criterion for the diagnosis of AD. Although taste impairment, i.e., altered sweet, sour, bitter, salty, and umami perception, has also been demonstrated in some disorders, taste has received much less scientific attention than smell. In this review, we assess what is known about the smell and taste disorders of a wide range of neurodegenerative diseases and describe studies seeking to understand their pathologic underpinnings.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | | |
Collapse
|
50
|
Invited Review: From nose to gut – the role of the microbiome in neurological disease. Neuropathol Appl Neurobiol 2018; 45:195-215. [DOI: 10.1111/nan.12520] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/29/2018] [Indexed: 12/14/2022]
|