1
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2024:10.1007/s12035-024-04543-4. [PMID: 39446217 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
2
|
Kang W, Lu Y, Etaka JC, Salsbury FR, Derreumaux P. Structural Insight into Melatonin's Influence on the Conformation of Aβ42 Dimer Studied by Molecular Dynamics Simulation. J Phys Chem B 2024; 128:9947-9958. [PMID: 39364725 DOI: 10.1021/acs.jpcb.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of amyloid-beta (Aβ) oligomers is recognized as a potential culprit in Alzheimer's disease (AD). Experimental studies show that melatonin, a hormone that mainly regulates circadian rhythm and sleep, can interact with Aβ peptides and disrupt the formation of oligomers. However, how melatonin inhibits the oligomerization of soluble Aβ is unclear. Here, by computational simulations, we investigate the effect of different levels of melatonin on the conformation of the Aβ42 dimer. We find that the conformation of the Aβ42 dimer is dependent on melatonin levels. When melatonin is absent, the dimer mainly forms a parallel β-sheet in the CHC region. When one melatonin molecule is present, the overall conformation of the dimer does not change much, but the N-terminal of the dimer tends to adopt antiparallel β-sheets. When two melatoinin molecules are present, the Aβ42 dimer exhibits significant structural change, especially in its central region, resulting in a more compact conformation, and forms parallel β-sheets in the C-terminal. This conformational difference induced by different levels of melatoinin can shed light on the protective role of melatonin.
Collapse
Affiliation(s)
- Wei Kang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- School of Physics, Xidian University, Xi'an 710071, China
| | - Yan Lu
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- School of Physics, Xidian University, Xi'an 710071, China
| | - Judith C Etaka
- School of Physics, Xidian University, Xi'an 710071, China
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States
| | - Philippe Derreumaux
- UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, Paris 75005, France
- Institut Universitaire de France (IUF), Université Paris Cité, Paris 75005, France
| |
Collapse
|
3
|
Sanagavarapu K, Meisl G, Lattanzi V, Bernfur K, Frohm B, Olsson U, Knowles TPJ, Malmendal A, Linse S. Serine phosphorylation mimics of Aβ form distinct, non-cross-seeding fibril morphs. Chem Sci 2024:d3sc06343g. [PMID: 39494375 PMCID: PMC11529392 DOI: 10.1039/d3sc06343g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
The self-assembly of amyloid-β peptide (Aβ) into fibrils and oligomers is linked to Alzheimer's disease (AD). Fibrillar aggregates in AD patient's brains contain several post-translational modifications, including phosphorylation at positions 8 and 26. These play a key role in modifying the aggregation propensity of Aβ, yet how they affect the mechanism of aggregation is only poorly understood. Here we elucidate the aggregation mechanism of Aβ42 peptides with phosphomimic mutations at these positions, with glutamine mimicking the size, and glutamate mimicking both the size and charge effect. We find that all variants are less aggregation-prone than wild-type Aβ42 with the glutamate mutants showing the largest reduction. Secondary nucleation is the dominant nucleation route for all variants, as confirmed using seeding experiments; however, its rate is reduced by about an order of magnitude or more for all variants relative to wild-type. S26Q and S26E fibrils fail to catalyse nucleation of wild-type monomers and vice versa, while the S8 variants co-aggregate more readily with wild-type. Ultrastructural analyses by cryo-electron microscopy and small angle X-ray scattering reveal an altered structure with longer node-to-node distance and smaller cross-section dimensions of S26Q fibrils. These results imply that structural compatibility between fibrils and monomer is a key determinant in secondary nucleation, and that small modifications can alter the preferred fibril structure, and thus its potential to induce aggregation of other variants. Overall, our results indicate that phosphorylation could play a key role in controlling aggregation propensity and may lead to the formation of distinct, non-cross-seeding fibril populations.
Collapse
Affiliation(s)
- Kalyani Sanagavarapu
- Biochemistry and Structural Biology, Department of Chemistry, Lund University Lund Sweden
| | - Georg Meisl
- Yusuf Hamied Chemistry Department, University of Cambridge Lensfield Road Cambridge UK
| | - Veronica Lattanzi
- Biochemistry and Structural Biology, Department of Chemistry, Lund University Lund Sweden
- Physical Chemistry, Department of Chemistry, Lund University Lund Sweden
| | - Katja Bernfur
- Biochemistry and Structural Biology, Department of Chemistry, Lund University Lund Sweden
| | - Birgitta Frohm
- Biochemistry and Structural Biology, Department of Chemistry, Lund University Lund Sweden
| | - Ulf Olsson
- Physical Chemistry, Department of Chemistry, Lund University Lund Sweden
| | - Tuomas P J Knowles
- Yusuf Hamied Chemistry Department, University of Cambridge Lensfield Road Cambridge UK
- Cavendish Laboratory, Department of Physics, University of Cambridge JJ Thomson Avenue Cambridge UK
| | - Anders Malmendal
- Biochemistry and Structural Biology, Department of Chemistry, Lund University Lund Sweden
- Department of Science and Environment, Roskilde University Roskilde Denmark
| | - Sara Linse
- Biochemistry and Structural Biology, Department of Chemistry, Lund University Lund Sweden
| |
Collapse
|
4
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
5
|
Wang L, Tang Z, Li B, Peng Y, Yang X, Xiao Y, Ni R, Qi XL. Myricetin ameliorates cognitive impairment in 3×Tg Alzheimer's disease mice by regulating oxidative stress and tau hyperphosphorylation. Biomed Pharmacother 2024; 177:116963. [PMID: 38889642 DOI: 10.1016/j.biopha.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease is characterized by abnormal β-amyloid (Aβ) plaque accumulation, tau hyperphosphorylation, reactive oxidative stress, mitochondrial dysfunction and synaptic loss. Myricetin, a dietary flavonoid, has been shown to exert neuroprotective effects in vitro and in vivo. Here, we aimed to elucidate the mechanism and pathways involved in the protective effect of myricetin. METHODS The effect of myricetin was assessed on Aβ42 oligomer-treated neuronal SH-SY5Y cells and in 3×Tg mice. Behavioral tests were performed to assess the cognitive effects of myricetin (14 days, ip) in 3×Tg mice. The levels of beta-amyloid precursor protein (APP), synaptic and mitochondrial proteins, glycogen synthase kinase3β (GSK3β) and extracellular regulated kinase (ERK) 2 were assessed via Western blotting. Flow cytometry assays, immunofluorescence staining, and transmission electron microscopy were used to assess mitochondrial dysfunction and reactive oxidative stress. RESULTS We found that, compared with control treatment, myricetin treatment improved spatial cognition and learning and memory in 3×Tg mice. Myricetin ameliorated tau phosphorylation and the reduction in pre- and postsynaptic proteins in Aβ42 oligomer-treated neuronal SH-SY5Y cells and in 3×Tg mice. In addition, myricetin reduced reactive oxygen species generation, lipid peroxidation, and DNA oxidation, and rescued mitochondrial dysfunction via the associated GSK3β and ERK 2 signalling pathways. CONCLUSIONS This study provides new insight into the neuroprotective mechanism of myricetin in vitro in cell culture and in vivo in a mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Bo Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Xi Yang
- Guiyang Healthcare Vocational University, Guizhou ERC for Medical Resources & Healthcare Products (Guizhou Engineering Research Center for Medical Resources and Healthcare Products), Guiyang, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Constructed by the Province and Ministry, Guiyang, China.
| |
Collapse
|
6
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Gomes Moreira D, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. eLife 2024; 12:RP90690. [PMID: 39027984 PMCID: PMC11259434 DOI: 10.7554/elife.90690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Maria Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Ann Becker
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
- Medical Faculty, Heidelberg UniversityHeidelbergGermany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityHeidelbergGermany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - William Mobley
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | | |
Collapse
|
7
|
Rao S, Madhu LN, Babu RS, Nagarajan A, Upadhya R, Narvekar E, Shetty AK. Extracellular Vesicles from hiPSC-derived NSCs Protect Human Neurons against Aβ-42 Oligomers Induced Neurodegeneration, Mitochondrial Dysfunction and Tau Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603159. [PMID: 39071270 PMCID: PMC11275725 DOI: 10.1101/2024.07.11.603159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aβ-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aβ-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced pathological changes. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons derived from two distinct hiPSC lines from Aβ-42o-induced neurodegeneration. Methods We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aβ-42 oligomers (Aβ-42o) alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aβ-42o-induced neurodegeneration, increased oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. Results Significant neurodegeneration was observed when human neurons were exposed to Aβ-42o alone. Notably, neurodegeneration was associated with elevated levels of oxidative stress markers malondialdehyde (MDA) and protein carbonyls (PCs), increased expression of proapoptotic Bax and Bad genes and proteins, reduced expression of the antiapoptotic gene and protein Bcl-2, increased expression of genes encoding mitochondrial complex proteins, decreased expression of autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3B, and increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 x 10 9 EVs) to human neuronal cultures exposed to Aβ-42o significantly reduced the extent of neurodegeneration, along with diminished levels of MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. Conclusions The findings demonstrate that an optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aβ-42o. The results also support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.
Collapse
|
8
|
Zott B, Nästle L, Grienberger C, Unger F, Knauer MM, Wolf C, Keskin-Dargin A, Feuerbach A, Busche MA, Skerra A, Konnerth A. β-amyloid monomer scavenging by an anticalin protein prevents neuronal hyperactivity in mouse models of Alzheimer's Disease. Nat Commun 2024; 15:5819. [PMID: 38987287 PMCID: PMC11237084 DOI: 10.1038/s41467-024-50153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Hyperactivity mediated by synaptotoxic β-amyloid (Aβ) oligomers is one of the earliest forms of neuronal dysfunction in Alzheimer's disease. In the search for a preventive treatment strategy, we tested the effect of scavenging Aβ peptides before Aβ plaque formation. Using in vivo two-photon calcium imaging and SF-iGluSnFR-based glutamate imaging in hippocampal slices, we demonstrate that an Aβ binding anticalin protein (Aβ-anticalin) can suppress early neuronal hyperactivity and synaptic glutamate accumulation in the APP23xPS45 mouse model of β-amyloidosis. Our results suggest that the sole targeting of Aβ monomers is sufficient for the hyperactivity-suppressing effect of the Aβ-anticalin at early disease stages. Biochemical and neurophysiological analyses indicate that the Aβ-anticalin-dependent depletion of naturally secreted Aβ monomers interrupts their aggregation to neurotoxic oligomers and, thereby, reverses early neuronal and synaptic dysfunctions. Thus, our results suggest that Aβ monomer scavenging plays a key role in the repair of neuronal function at early stages of AD.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study, Garching, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Lea Nästle
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany
| | - Christine Grienberger
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Biology and Volen National Center of Complex Systems, Brandeis University, Waltham, MA, USA
| | - Felix Unger
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study, Garching, Germany
| | - Manuel M Knauer
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Christian Wolf
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany
| | | | - Anna Feuerbach
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany
| | - Marc Aurel Busche
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Arne Skerra
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
9
|
van den Berg E, Kersten I, Brinkmalm G, Johansson K, de Kort AM, Klijn CJ, Schreuder FH, Gobom J, Stoops E, Portelius E, Gkanatsiou E, Zetterberg H, Blennow K, Kuiperij HB, Verbeek MM. Profiling amyloid-β peptides as biomarkers for cerebral amyloid angiopathy. J Neurochem 2024; 168:1254-1264. [PMID: 38362804 PMCID: PMC11260253 DOI: 10.1111/jnc.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Brain amyloid-β (Aβ) deposits are key pathological hallmarks of both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Microvascular deposits in CAA mainly consist of the Aβ40 peptide, whereas Aβ42 is the predominant variant in parenchymal plaques in AD. The relevance in pathogenesis and diagnostic accuracy of various other Aβ isoforms in CAA remain understudied. We aimed to investigate the biomarker potential of various Aβ isoforms in cerebrospinal fluid (CSF) to differentiate CAA from AD pathology. We included 25 patients with probable CAA, 50 subjects with a CSF profile indicative of AD pathology (AD-like), and 23 age- and sex-matched controls. CSF levels of Aβ1-34, Aβ1-37, Aβ1-38, Aβ1-39, Aβ1-40, and Aβ1-42 were quantified by liquid chromatography mass spectrometry. Lower CSF levels of all six Aβ peptides were observed in CAA patients compared with controls (p = 0.0005-0.03). Except for Aβ1-42 (p = 1.0), all peptides were decreased in CAA compared with AD-like subjects (p = 0.007-0.03). Besides Aβ1-42, none of the Aβ peptides were decreased in AD-like subjects compared with controls. All Aβ peptides combined differentiated CAA from AD-like subjects better (area under the curve [AUC] 0.84) than individual peptide levels (AUC 0.51-0.75). Without Aβ1-42 in the model (since decreased Aβ1-42 served as AD-like selection criterion), the AUC was 0.78 for distinguishing CAA from AD-like subjects. CAA patients and AD-like subjects showed distinct disease-specific CSF Aβ profiles. Peptides shorter than Aβ1-42 were decreased in CAA patients, but not AD-like subjects, which could suggest different pathological mechanisms between vascular and parenchymal Aβ accumulation. This study supports the potential use of this panel of CSF Aβ peptides to indicate presence of CAA pathology with high accuracy.
Collapse
Affiliation(s)
- Emma van den Berg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kjell Johansson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anna M. de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H.B.M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Gobom
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H. Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Fu Z, Crooks EJ, Irizarry BA, Zhu X, Chowdhury S, Van Nostrand WE, Smith SO. An electrostatic cluster guides Aβ40 fibril formation in sporadic and Dutch-type cerebral amyloid angiopathy. J Struct Biol 2024; 216:108092. [PMID: 38615725 PMCID: PMC11162928 DOI: 10.1016/j.jsb.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is associated with the accumulation of fibrillar Aβ peptides upon and within the cerebral vasculature, which leads to loss of vascular integrity and contributes to disease progression in Alzheimer's disease (AD). We investigate the structure of human-derived Aβ40 fibrils obtained from patients diagnosed with sporadic or familial Dutch-type (E22Q) CAA. Using cryo-EM, two primary structures are identified containing elements that have not been observed in in vitro Aβ40 fibril structures. One population has an ordered N-terminal fold comprised of two β-strands stabilized by electrostatic interactions involving D1, E22, D23 and K28. This charged cluster is disrupted in the second population, which exhibits a disordered N-terminus and is favored in fibrils derived from the familial Dutch-type CAA patient. These results illustrate differences between human-derived CAA and AD fibrils, and how familial CAA mutations can guide fibril formation.
Collapse
Affiliation(s)
- Ziao Fu
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States; Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065, United States
| | - Elliot J Crooks
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States
| | - Brandon A Irizarry
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States
| | - Xiaoyue Zhu
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Saikat Chowdhury
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States; CSIR-Centre for Cellular & Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Kamala Nehru Nagar, Gaziabad 201 002, Uttar Pradesh, India
| | - William E Van Nostrand
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States.
| | - Steven O Smith
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States
| |
Collapse
|
11
|
Golota NC, Michael B, Saliba EP, Linse S, Griffin RG. Structural characterization of E22G Aβ 1-42 fibrils via1H detected MAS NMR. Phys Chem Chem Phys 2024; 26:14664-14674. [PMID: 38715538 PMCID: PMC11110645 DOI: 10.1039/d4cp00553h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Amyloid fibrils have been implicated in the pathogenesis of several neurodegenerative diseases, the most prevalent example being Alzheimer's disease (AD). Despite the prevalence of AD, relatively little is known about the structure of the associated amyloid fibrils. This has motivated our studies of fibril structures, extended here to the familial Arctic mutant of Aβ1-42, E22G-Aβ1-42. We found E22G-AβM0,1-42 is toxic to Escherichia coli, thus we expressed E22G-Aβ1-42 fused to the self-cleavable tag NPro in the form of its EDDIE mutant. Since the high surface activity of E22G-Aβ1-42 makes it difficult to obtain more than sparse quantities of fibrils, we employed 1H detected magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments to characterize the protein. The 1H detected 13C-13C methods were first validated by application to fully protonated amyloidogenic nanocrystals of GNNQQNY, and then applied to fibrils of the Arctic mutant of Aβ, E22G-Aβ1-42. The MAS NMR spectra indicate that the biosynthetic samples of E22G-Aβ1-42 fibrils comprise a single conformation with 13C chemical shifts extracted from hCH, hNH, and hCCH spectra that are very similar to those of wild type Aβ1-42 fibrils. These results suggest that E22G-Aβ1-42 fibrils have a structure similar to that of wild type Aβ1-42.
Collapse
Affiliation(s)
- Natalie C Golota
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brian Michael
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward P Saliba
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sara Linse
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, SE 22100, Sweden
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Moreira DG, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551596. [PMID: 37577527 PMCID: PMC10418207 DOI: 10.1101/2023.08.02.551596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75 and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular -homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - María Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - William Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | | |
Collapse
|
13
|
Blömeke L, Rehn F, Kraemer‐Schulien V, Kutzsche J, Pils M, Bujnicki T, Lewczuk P, Kornhuber J, Freiesleben SD, Schneider L, Preis L, Priller J, Spruth EJ, Altenstein S, Lohse A, Schneider A, Fliessbach K, Wiltfang J, Hansen N, Rostamzadeh A, Düzel E, Glanz W, Incesoy EI, Butryn M, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann B, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Sanzenbacher C, Spottke A, Roy‐Kluth N, Heneka MT, Brosseron F, Wagner M, Wolfsgruber S, Kleineidam L, Stark M, Schmid M, Jessen F, Bannach O, Willbold D, Peters O. Aβ oligomers peak in early stages of Alzheimer's disease preceding tau pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12589. [PMID: 38666085 PMCID: PMC11044868 DOI: 10.1002/dad2.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Soluble amyloid beta (Aβ) oligomers have been suggested as initiating Aβ related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aβ and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS Across groups, highest Aβ oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aβ oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE ε4 allele carriers showed significantly higher Aβ oligomer levels. No differences in tau oligomers were detected. DISCUSSION The accumulation of Aβ oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aβ oligomers might have the highest therapeutic effect in these disease stages. Highlights Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aβ oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAβ oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aβ oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.
Collapse
|
14
|
Lv Z, Chen L, Chen P, Peng H, Rong Y, Hong W, Zhou Q, Li N, Li B, Paolicelli RC, Zhan Y. Clearance of β-amyloid and synapses by the optogenetic depolarization of microglia is complement selective. Neuron 2024; 112:740-754.e7. [PMID: 38295790 DOI: 10.1016/j.neuron.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 10/31/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
Microglia actively monitor the neighboring brain microenvironments and constantly contact synapses with their unique ramified processes. In neurodegenerative diseases, including Alzheimer's disease (AD), microglia undergo morphological and functional alterations. Whether the direct manipulation of microglia can selectively or concurrently modulate synaptic function and the response to disease-associated factors remains elusive. Here, we employ optogenetic methods to stimulate microglia in vitro and in vivo. Membrane depolarization rapidly changes microglia morphology and leads to enhanced phagocytosis. We found that the optogenetic stimulation of microglia can efficiently promote β-amyloid (Aβ) clearance in the brain parenchyma, but it can also enhance synapse elimination. Importantly, the inhibition of C1q selectively prevents synapse loss induced by microglia depolarization but does not affect Aβ clearance. Our data reveal independent microglia-mediated phagocytosis pathways toward Aβ and synapses. Our results also shed light on a synergistic strategy of depolarizing microglia and inhibiting complement functions for the clearance of Aβ while sparing synapses.
Collapse
Affiliation(s)
- Zezhong Lv
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixi Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Chen
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huipai Peng
- Shenzhen Institute of Synthetic Biology, CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Rong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Hong
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Nan Li
- Shenzhen Institute of Synthetic Biology, CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
15
|
Kreutzer AG, Parrocha CMT, Haerianardakani S, Guaglianone G, Nguyen JT, Diab MN, Yong W, Perez-Rosendahl M, Head E, Nowick JS. Antibodies Raised Against an Aβ Oligomer Mimic Recognize Pathological Features in Alzheimer's Disease and Associated Amyloid-Disease Brain Tissue. ACS CENTRAL SCIENCE 2024; 10:104-121. [PMID: 38292607 PMCID: PMC10823522 DOI: 10.1021/acscentsci.3c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Antibodies that target the β-amyloid peptide (Aβ) and its associated assemblies are important tools in Alzheimer's disease research and have emerged as promising Alzheimer's disease therapies. This paper reports the creation and characterization of a triangular Aβ trimer mimic composed of Aβ17-36 β-hairpins and the generation and study of polyclonal antibodies raised against the Aβ trimer mimic. The Aβ trimer mimic is covalently stabilized by three disulfide bonds at the corners of the triangular trimer to create a homogeneous oligomer. Structural, biophysical, and cell-based studies demonstrate that the Aβ trimer mimic shares characteristics with oligomers of full-length Aβ. X-ray crystallography elucidates the structure of the trimer and reveals that four copies of the trimer assemble to form a dodecamer. SDS-PAGE, size exclusion chromatography, and dynamic light scattering reveal that the trimer also forms higher-order assemblies in solution. Cell-based toxicity assays show that the trimer elicits LDH release, decreases ATP levels, and activates caspase-3/7 mediated apoptosis. Immunostaining studies on brain slices from people who lived with Alzheimer's disease and people who lived with Down syndrome reveal that the polyclonal antibodies raised against the Aβ trimer mimic recognize pathological features including different types of Aβ plaques and cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Adam G. Kreutzer
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Chelsea Marie T. Parrocha
- Department
of Pharmaceutical Sciences, University of
California Irvine, Irvine, California 92697, United States
| | - Sepehr Haerianardakani
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Gretchen Guaglianone
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jennifer T. Nguyen
- Department
of Pharmaceutical Sciences, University of
California Irvine, Irvine, California 92697, United States
| | - Michelle N. Diab
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - William Yong
- Department
of Pathology and Laboratory Medicine, University
of California Irvine, Irvine, California 92697, United States
| | - Mari Perez-Rosendahl
- Department
of Pathology and Laboratory Medicine, University
of California Irvine, Irvine, California 92697, United States
| | - Elizabeth Head
- Department
of Pathology and Laboratory Medicine, University
of California Irvine, Irvine, California 92697, United States
| | - James S. Nowick
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California Irvine, Irvine, California 92697, United States
| |
Collapse
|
16
|
Samdin TD, Jones CR, Guaglianone G, Kreutzer AG, Freites JA, Wierzbicki M, Nowick JS. A β-barrel-like tetramer formed by a β-hairpin derived from Aβ. Chem Sci 2023; 15:285-297. [PMID: 38131075 PMCID: PMC10732006 DOI: 10.1039/d3sc05185d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
β-Hairpins formed by the β-amyloid peptide Aβ are building blocks of Aβ oligomers. Three different alignments of β-hairpins have been observed in the structures of Aβ oligomers or fibrils. Differences in β-hairpin alignment likely contribute to the heterogeneity of Aβ oligomers and thus impede their study at high-resolution. Here, we designed, synthesized, and studied a series of β-hairpin peptides derived from Aβ12-40 in one of these three alignments and investigated their solution-phase assembly and folding. These assays reveal the formation of tetramers and octamers that are stabilized by intermolecular hydrogen bonding interactions between Aβ residues 12-14 and 38-40 as part of an extended β-hairpin conformation. X-ray crystallographic studies of one peptide from this series reveal the formation of β-barrel-like tetramers and octamers that are stabilized by edge-to-edge hydrogen bonding and hydrophobic packing. Dye-leakage and caspase 3/7 activation assays using tetramer and octamer forming peptides from this series reveal membrane-damaging and apoptotic properties. A molecular dynamics simulation of the β-barrel-like tetramer embedded in a lipid bilayer shows membrane disruption and water permeation. The tetramers and octamers described herein provide additional models of how Aβ may assemble into oligomers and supports the hypothesis that β-hairpin alignment and topology may contribute directly to oligomer heterogeneity.
Collapse
Affiliation(s)
- Tuan D Samdin
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Chelsea R Jones
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Gretchen Guaglianone
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Adam G Kreutzer
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - J Alfredo Freites
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Michał Wierzbicki
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - James S Nowick
- Department of Chemistry, University of California Irvine California 92697-2025 USA
- Department of Pharmaceutical Sciences, University of California, Irvine Irvine California 92697-2025 USA
| |
Collapse
|
17
|
Hu J, Linse S, Sparr E. Ganglioside Micelles Affect Amyloid β Aggregation by Coassembly. ACS Chem Neurosci 2023; 14:4335-4343. [PMID: 38050745 PMCID: PMC10739608 DOI: 10.1021/acschemneuro.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Amyloid β peptide (Aβ) is the crucial protein component of extracellular plaques in Alzheimer's disease. The plaques also contain gangliosides lipids, which are abundant in membranes of neuronal cells and in cell-derived vesicles and exosomes. When present at concentrations above its critical micelle concentration (cmc), gangliosides can occur as mixed micelles. Here, we study the coassembly of the ganglioside GM1 and the Aβ peptides Aβ40 and 42 by means of microfluidic diffusional sizing, confocal microscopy, and cryogenic transmission electron microscopy. We also study the effects of lipid-peptide interactions on the amyloid aggregation process by fluorescence spectroscopy. Our results reveal coassembly of GM1 lipids with both Aβ monomers and Aβ fibrils. The results of the nonseeded kinetics experiments show that Aβ40 aggregation is delayed with increasing GM1 concentration, while that of Aβ42 is accelerated. In seeded aggregation reactions, the addition of GM1 leads to a retardation of the aggregation process of both peptides. Thus, while the effect on nucleation differs between the two peptides, GM1 may inhibit the elongation of both types of fibrils. These results shed light on glycolipid-peptide interactions that may play an important role in Alzheimer's pathology.
Collapse
Affiliation(s)
- Jing Hu
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sara Linse
- Division
of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
18
|
Sanchis I, Spinelli R, Siano A. Acetylcholine hydrolytic activity of fibrillated β-amyloid (1-40) peptide. Amino Acids 2023; 55:1991-1997. [PMID: 37904049 DOI: 10.1007/s00726-023-03349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023]
Abstract
Alzheimer's disease is characterized by the presence of senile plaques composed of β-amyloid peptide (Aβ) aggregates with toxic effects that are still not fully understood. Recently, it was discovered that Aβ(1-42) fibrils possess catalytic activity on acetylcholine hydrolysis. Catalytic amyloids are an emerging and exciting field of research. In this study, we examined the catalytic activity of the fibrils formed by Aβ(1-40), the most abundant Aβ variant, on acetylcholine hydrolysis. Our findings reveal that Aβ(1-40) fibrils exhibit moderate enzymatic activity, indicating that natural peptide aggregates could serve as biocatalysts and provide new insights into the potential role of Aβ in neurological disorders.
Collapse
Affiliation(s)
- Ivan Sanchis
- Laboratory of Bioactive Peptides, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- Ministry of Science, Technology and Innovation, National Scientific and Technical Research Council (CONICET), Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Roque Spinelli
- Laboratory of Bioactive Peptides, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- Ministry of Science, Technology and Innovation, National Scientific and Technical Research Council (CONICET), Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Alvaro Siano
- Laboratory of Bioactive Peptides, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina.
- Ministry of Science, Technology and Innovation, National Scientific and Technical Research Council (CONICET), Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
19
|
Frankel R, Sparr E, Linse S. Retardation of Aβ42 fibril formation by apolipoprotein A-I and recombinant HDL particles. J Biol Chem 2023; 299:105273. [PMID: 37739034 PMCID: PMC10616404 DOI: 10.1016/j.jbc.2023.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The double nucleation mechanism of amyloid β (Aβ) peptide aggregation is retained from buffer to cerebrospinal fluid (CSF) but with reduced rate of all microscopic processes. Here, we used a bottom-up approach to identify retarding factors in CSF. We investigated the Aβ42 fibril formation as a function of time in the absence and presence of apolipoprotein A-I (ApoA-I), recombinant high-density lipoprotein (rHDL) particles, or lipid vesicles. A retardation was observed in the presence of ApoA-I or rHDL particles, most pronounced with ApoA-I, but not with lipid vesicles. Global kinetic analysis implies that rHDL interferes with secondary nucleation. The effect of ApoA-I could best be described as an interference with secondary and to a smaller extent primary nucleation. Using surface plasmon resonance and microfluidics diffusional sizing analyses, we find that both rHDL and ApoA-I interact with Aβ42 fibrils but not Aβ42 monomer, thus the effect on kinetics seems to involve interference with the catalytic surface for secondary nucleation. The Aβ42 fibrils were imaged using cryogenic-electron microscopy and found to be longer when formed in the presence of ApoA-I or rHDL, compared to formation in buffer. A retarding effect, as observed in CSF, could be replicated using a simpler system, from key components present in CSF but purified from a CSF-free host. However, the effect of CSF is stronger implying the presence of additional retarding factors.
Collapse
Affiliation(s)
- Rebecca Frankel
- Biochemistry and Structural Biology, Lund University, Lund, Sweden; Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
20
|
Upadhyay A, Chhangani D, Rao NR, Kofler J, Vassar R, Rincon-Limas DE, Savas JN. Amyloid fibril proteomics of AD brains reveals modifiers of aggregation and toxicity. Mol Neurodegener 2023; 18:61. [PMID: 37710351 PMCID: PMC10503190 DOI: 10.1186/s13024-023-00654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The accumulation of amyloid beta (Aβ) peptides in fibrils is prerequisite for Alzheimer's disease (AD). Our understanding of the proteins that promote Aβ fibril formation and mediate neurotoxicity has been limited due to technical challenges in isolating pure amyloid fibrils from brain extracts. METHODS To investigate how amyloid fibrils form and cause neurotoxicity in AD brain, we developed a robust biochemical strategy. We benchmarked the success of our purifications using electron microscopy, amyloid dyes, and a large panel of Aβ immunoassays. Tandem mass-spectrometry based proteomic analysis workflows provided quantitative measures of the amyloid fibril proteome. These methods allowed us to compare amyloid fibril composition from human AD brains, three amyloid mouse models, transgenic Aβ42 flies, and Aβ42 seeded cultured neurons. RESULTS Amyloid fibrils are primarily composed by Aβ42 and unexpectedly harbor Aβ38 but generally lack Aβ40 peptides. Multidimensional quantitative proteomics allowed us to redefine the fibril proteome by identifying 20 new amyloid-associated proteins. Notably, we confirmed 57 previously reported plaque-associated proteins. We validated a panel of these proteins as bona fide amyloid-interacting proteins using antibodies and orthogonal proteomic analysis. One metal-binding chaperone metallothionein-3 is tightly associated with amyloid fibrils and modulates fibril formation in vitro. Lastly, we used a transgenic Aβ42 fly model to test if knock down or over-expression of fibril-interacting gene homologues modifies neurotoxicity. Here, we could functionally validate 20 genes as modifiers of Aβ42 toxicity in vivo. CONCLUSIONS These discoveries and subsequent confirmation indicate that fibril-associated proteins play a key role in amyloid formation and AD pathology.
Collapse
Affiliation(s)
- Arun Upadhyay
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32611, USA
| | - Nalini R Rao
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Julia Kofler
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32611, USA
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
21
|
Ondrejcak T, Klyubin I, Hu NW, O'Malley TT, Corbett GT, Winters R, Perkinton MS, Billinton A, Prenderville JA, Walsh DM, Rowan MJ. Tau and Amyloid β Protein in Patient-Derived Aqueous Brain Extracts Act Concomitantly to Disrupt Long-Term Potentiation in Vivo. J Neurosci 2023; 43:5870-5879. [PMID: 37491315 PMCID: PMC10423043 DOI: 10.1523/jneurosci.0082-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Amyloid β protein (Aβ) and tau, the two main proteins implicated in causing Alzheimer's disease (AD), are posited to trigger synaptic dysfunction long before significant synaptic loss occurs in vulnerable circuits. Whereas soluble Aβ aggregates from AD brain are well recognized potent synaptotoxins, less is known about the synaptotoxicity of soluble tau from AD or other tauopathy patient brains. Minimally manipulated patient-derived aqueous brain extracts contain the more diffusible native forms of these proteins. Here, we explore how intracerebral injection of Aβ and tau present in such aqueous extracts of patient brain contribute to disruption of synaptic plasticity in the CA1 area of the male rat hippocampus. Aqueous extracts of certain AD brains acutely inhibited long-term potentiation (LTP) of synaptic transmission in a manner that required both Aβ and tau. Tau-containing aqueous extracts of a brain from a patient with Pick's disease (PiD) also impaired LTP, and diffusible tau from either AD or PiD brain lowered the threshold for AD brain Aβ to inhibit LTP. Remarkably, the disruption of LTP persisted for at least 2 weeks after a single injection. These findings support a critical role for diffusible tau in causing rapid onset, persistent synaptic plasticity deficits, and promoting Aβ-mediated synaptic dysfunction.SIGNIFICANCE STATEMENT The microtubule-associated protein tau forms relatively insoluble fibrillar deposits in the brains of people with neurodegenerative diseases including Alzheimer's and Pick's diseases. More soluble aggregates of disease-associated tau may diffuse between cells and could cause damage to synapses in vulnerable circuits. We prepared aqueous extracts of diseased cerebral cortex and tested their ability to interfere with synaptic function in the brains of live rats. Tau in these extracts rapidly and persistently disrupted synaptic plasticity and facilitated impairments caused by amyloid β protein, the other major pathologic protein in Alzheimer's disease. These findings show that certain diffusible forms of tau can mediate synaptic dysfunction and may be a target for therapy.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Róisín Winters
- Transpharmation Ireland, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Michael S Perkinton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca UK, Cambridge, CB21 6GH, United Kingdom
| | - Andy Billinton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca UK, Cambridge, CB21 6GH, United Kingdom
| | - Jack A Prenderville
- Transpharmation Ireland, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology, School of Medicine, Trinity College, Dublin 2, Ireland
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
22
|
Stern AM, Yang Y, Jin S, Yamashita K, Meunier AL, Liu W, Cai Y, Ericsson M, Liu L, Goedert M, Scheres SHW, Selkoe DJ. Abundant Aβ fibrils in ultracentrifugal supernatants of aqueous extracts from Alzheimer's disease brains. Neuron 2023; 111:2012-2020.e4. [PMID: 37167969 PMCID: PMC10330525 DOI: 10.1016/j.neuron.2023.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023]
Abstract
Soluble oligomers of amyloid β-protein (Aβ) have been defined as aggregates in supernatants following ultracentrifugation of aqueous extracts from Alzheimer's disease (AD) brains and are believed to be upstream initiators of synaptic dysfunction, but little is known about their structures. We now report the unexpected presence of Aβ fibrils in synaptotoxic high-speed supernatants from AD brains extracted by soaking in an aqueous buffer. The fibrils did not appear to form during preparation, and their counts by EM correlated with Aβ ELISA quantification. Cryo-EM structures of aqueous Aβ fibrils were identical to those from sarkosyl-insoluble homogenates. The fibrils in aqueous extracts were labeled by lecanemab, an Aβ aggregate-directed antibody reported to improve AD cognitive outcomes. Lecanemab provided protection against aqueous fibril synaptotoxicity. We conclude that fibrils are abundant in aqueous extracts from AD brains and have the same structures as those from plaques. These findings have implications for AD pathogenesis and drug design.
Collapse
Affiliation(s)
- Andrew M Stern
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Shanxue Jin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Keitaro Yamashita
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Angela L Meunier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Wen Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yuqi Cai
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Maria Ericsson
- Harvard Medical School Electron Microscopy Facility, Boston, MA 02115, USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
24
|
Kreutzer AG, Guaglianone G, Yoo S, Parrocha CMT, Ruttenberg SM, Malonis RJ, Tong K, Lin YF, Nguyen JT, Howitz WJ, Diab MN, Hamza IL, Lai JR, Wysocki VH, Nowick JS. Probing differences among Aβ oligomers with two triangular trimers derived from Aβ. Proc Natl Acad Sci U S A 2023; 120:e2219216120. [PMID: 37216514 PMCID: PMC10235986 DOI: 10.1073/pnas.2219216120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The assembly of the β-amyloid peptide (Aβ) to form oligomers and fibrils is closely associated with the pathogenesis and progression of Alzheimer's disease. Aβ is a shape-shifting peptide capable of adopting many conformations and folds within the multitude of oligomers and fibrils the peptide forms. These properties have precluded detailed structural elucidation and biological characterization of homogeneous, well-defined Aβ oligomers. In this paper, we compare the structural, biophysical, and biological characteristics of two different covalently stabilized isomorphic trimers derived from the central and C-terminal regions Aβ. X-ray crystallography reveals the structures of the trimers and shows that each trimer forms a ball-shaped dodecamer. Solution-phase and cell-based studies demonstrate that the two trimers exhibit markedly different assembly and biological properties. One trimer forms small soluble oligomers that enter cells through endocytosis and activate capase-3/7-mediated apoptosis, while the other trimer forms large insoluble aggregates that accumulate on the outer plasma membrane and elicit cellular toxicity through an apoptosis-independent mechanism. The two trimers also exhibit different effects on the aggregation, toxicity, and cellular interaction of full-length Aβ, with one trimer showing a greater propensity to interact with Aβ than the other. The studies described in this paper indicate that the two trimers share structural, biophysical, and biological characteristics with oligomers of full-length Aβ. The varying structural, assembly, and biological characteristics of the two trimers provide a working model for how different Aβ trimers can assemble and lead to different biological effects, which may help shed light on the differences among Aβ oligomers.
Collapse
Affiliation(s)
- Adam G. Kreutzer
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | | | - Stan Yoo
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | | | | | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Yu-Fu Lin
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH43210
| | - Jennifer T. Nguyen
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA92697
| | - William J. Howitz
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Michelle N. Diab
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Imane L. Hamza
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH43210
| | - James S. Nowick
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA92697
| |
Collapse
|
25
|
Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:24-34. [PMID: 35337739 DOI: 10.1016/j.semcdb.2022.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic β-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
26
|
Wang Z, Jin M, Hong W, Liu W, Reczek D, Lagomarsino VN, Hu Y, Weeden T, Frosch MP, Young-Pearse TL, Pradier L, Selkoe D, Walsh DM. Learnings about Aβ from human brain recommend the use of a live-neuron bioassay for the discovery of next generation Alzheimer's disease immunotherapeutics. Acta Neuropathol Commun 2023; 11:39. [PMID: 36899414 PMCID: PMC10007750 DOI: 10.1186/s40478-023-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/10/2023] [Indexed: 03/12/2023] Open
Abstract
Despite ongoing debate, the amyloid β-protein (Aβ) remains the prime therapeutic target for the treatment of Alzheimer's disease (AD). However, rational drug design has been hampered by a lack of knowledge about neuroactive Aβ. To help address this deficit, we developed live-cell imaging of iPSC-derived human neurons (iNs) to study the effects of the most disease relevant form of Aβ-oligomeric assemblies (oAβ) extracted from AD brain. Of ten brains studied, extracts from nine caused neuritotoxicity, and in eight cases this was abrogated by Aβ immunodepletion. Here we show that activity in this bioassay agrees relatively well with disruption of hippocampal long-term potentiation, a correlate of learning and memory, and that measurement of neurotoxic oAβ can be obscured by more abundant non-toxic forms of Aβ. These findings indicate that the development of novel Aβ targeting therapeutics may benefit from unbiased activity-based discovery. To test this principle, we directly compared 5 clinical antibodies (aducanumab, bapineuzumab, BAN2401, gantenerumab, and SAR228810) together with an in-house aggregate-preferring antibody (1C22) and established relative EC50s in protecting human neurons from human Aβ. The results yielded objective numerical data on the potency of each antibody in neutralizing human oAβ neuritotoxicity. Their relative efficacies in this morphological assay were paralleled by their functional ability to rescue oAβ-induced inhibition of hippocampal synaptic plasticity. This novel paradigm provides an unbiased, all-human system for selecting candidate antibodies for advancement to human immunotherapy.
Collapse
Affiliation(s)
- Zemin Wang
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ming Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - David Reczek
- Sanofi-Genzyme Corporation, Framingham, MA, 01701, USA
| | - Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Hu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Tim Weeden
- Sanofi-Genzyme Corporation, Framingham, MA, 01701, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Porosk L, Härk HH, Bicev RN, Gaidutšik I, Nebogatova J, Armolik EJ, Arukuusk P, da Silva ER, Langel Ü. Aggregation Limiting Cell-Penetrating Peptides Derived from Protein Signal Sequences. Int J Mol Sci 2023; 24:ijms24054277. [PMID: 36901707 PMCID: PMC10002422 DOI: 10.3390/ijms24054277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-β (Aβ) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aβ. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aβ interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aβ aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aβ-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.
Collapse
Affiliation(s)
- Ly Porosk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Correspondence:
| | - Heleri Heike Härk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Renata Naporano Bicev
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ilja Gaidutšik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Eger-Jasper Armolik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department Biochemistry and Biophysics, Stockholm University, S.Arrheniusv. 16B, Room C472, 106 91 Stockholm, Sweden
| |
Collapse
|
28
|
Matthes D, de Groot BL. Molecular dynamics simulations reveal the importance of amyloid-beta oligomer β-sheet edge conformations in membrane permeabilization. J Biol Chem 2023; 299:103034. [PMID: 36806684 PMCID: PMC10033322 DOI: 10.1016/j.jbc.2023.103034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Oligomeric aggregates of the amyloid-beta peptide(1-42) (Aβ42) are regarded as a primary cause of cytotoxicity related to membrane damage in Alzheimer's disease. However, a dynamical and structural characterization of pore-forming Aβ42 oligomers at atomic detail has not been feasible. Here, we used Aβ42 oligomer structures previously determined in a membrane-mimicking environment as putative model systems to study the pore formation process in phospholipid bilayers with all-atom molecular dynamics simulations. Multiple Aβ42 oligomer sizes, conformations, and N-terminally truncated isoforms were investigated on the multi-μs time scale. We found that pore formation and ion permeation occur via edge conductivity and exclusively for β-sandwich structures that feature exposed side-by-side β-strand pairs formed by residues 9 to 21 of Aβ42. The extent of pore formation and ion permeation depends on the insertion depth of hydrophilic residues 13 to 16 (HHQK domain) and thus on subtle differences in the overall stability, orientation, and conformation of the aggregates in the membrane. Additionally, we determined that backbone carbonyl and polar side-chain atoms from the edge strands directly contribute to the coordination sphere of the permeating ions. Furthermore, point mutations that alter the number of favorable side-chain contacts correlate with the ability of the Aβ42 oligomer models to facilitate ion permeation in the bilayer center. Our findings suggest that membrane-inserted, layered β-sheet edges are a key structural motif in pore-forming Aβ42 oligomers independent of their size and play a pivotal role in aggregate-induced membrane permeabilization.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
29
|
Hong W, Liu W, Desousa AO, Young-Pearse T, Walsh DM. Methods for the isolation and analysis of Aβ from postmortem brain. Front Neurosci 2023; 17:1108715. [PMID: 36777642 PMCID: PMC9909698 DOI: 10.3389/fnins.2023.1108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Amyloid β-protein (Aβ) plays an initiating role in Alzheimer's disease (AD), but only a small number of groups have studied Aβ extracted from human brain. Most prior studies have utilized synthetic Aβ peptides, but the relevance of these test tube experiments to the conditions that prevail in AD is uncertain. Here, we describe three distinct methods for studying Aβ from cortical tissue. Each method allows the analysis of different ranges of species thus enabling the examination of different questions. The first method allows the study of readily diffusible Aβ with a relatively high specific activity. The second enables the analysis of readily solubilized forms of Aβ the majority of which are inactive. The third details the isolation of true Aβ dimers which have disease-related activity. We also describe a bioassay to study the effects of Aβ on the neuritic integrity of iPSC-derived human neurons. The combined use of this bioassay and the described extraction procedures provides a platform to investigate the activity of different forms and mixtures of Aβ species, and offers a tractable system to identify strategies to mitigate Aβ mediated neurotoxicity.
Collapse
Affiliation(s)
- Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexandra O. Desousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Tracy Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
31
|
Wang B, Guo C. Concentration-Dependent Effects of Cholesterol on the Dimerization of Amyloid-β Peptides in Lipid Bilayers. ACS Chem Neurosci 2022; 13:2709-2718. [PMID: 36082607 DOI: 10.1021/acschemneuro.2c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Membrane disruption mediated by the accumulation of amyloid-β (Aβ) on cell membranes is central to the pathogenesis of Alzheimer's disease (AD). Cholesterol, an important component of membranes, is well-recognized as a risk factor in AD. It can affect the aggregation and pore formation of Aβ on membranes whereas the specific effects are rather complex, particularly regarding the non-linear response to cholesterol concentrations. Yet, the mechanistic understanding of the role of cholesterol in Aβ-membrane interactions remains incomplete. Herein, we employed microsecond-scale molecular dynamics simulations to investigate the effects of cholesterol on Aβ dimerization in a lipid bilayer containing different molar ratios of cholesterol (0, 20, and 40 mol %). Cholesterol reduces the time required for the formation of stable dimers and exerts dual effects on Aβ-membrane interactions. First, cholesterol promotes the extraction of the C-terminal region from the membrane to water. Consequently, at the ratios of 0 and 20 mol %, peptides are anchored at the membrane-water interface, but they are repelled to water at a ratio of 40 mol % with high structural flexibility. Second, cholesterol weakens Aβ-membrane interactions, thereby enhancing inter-peptide interactions. The former is favorable for dimerization while the latter is not. The balance between two factors eventually leads to a non-monotonic effect on the degree of dimerization, whereby the number of inter-peptide contacts is the largest at a cholesterol ratio of 20 mol %. These results provide atomistic insights into the regulation mechanism of Aβ42 aggregation by cholesterol and help to understand the pathological link between cholesterol and AD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
32
|
Onder S, Biberoglu K, Tacal O, Schopfer LM. Chlorpyrifos oxon crosslinking of amyloid beta 42 peptides is a new route for generation of self-aggregating amyloidogenic oligomers that promote Alzheimer's disease. Chem Biol Interact 2022; 363:110029. [PMID: 35779611 DOI: 10.1016/j.cbi.2022.110029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Epidemiological evidence suggests that people chronically exposed to organophosphorus pesticides are at increased risk of neurodegenerative disease. Covalently linked amyloid beta dimers have been isolated from the brains of Alzheimer's patients. The toxic forms of amyloid beta are amyloid dimers that spontaneously oligomerize. In the present report we treated recombinant and synthetic amyloid beta (1-42) with 1 mM chlorpyrifos oxon or 1 mM paraoxon. The trypsin-digested samples were analyzed by liquid chromatography tandem mass spectrometry on an Orbitrap Fusion Lumos mass spectrometer. Data were searched with Protein Prospector software. We found two new types of crosslinks in amyloid dimers. An isopeptide Asp-Asp link occurred between the N-terminal amine of Asp 1 in one peptide and the beta carboxyl group of Asp 1 in another peptide. An Asp-Arg link occurred between the guanidino group of Arg 5 in one peptide and the beta carboxyl group of Asp 1 in another peptide. These results show that the active metabolites of the pesticides chlorpyrifos and parathion catalyze the crosslinking of amyloid beta (1-42) into toxic dimers. It was concluded that the increased risk of neurodegenerative disease in people exposed to organophosphorus pesticides could be explained by the crosslinking activity of these chemicals. Data are available via ProteomeXchange with identifier PXD034163.
Collapse
Affiliation(s)
- Seda Onder
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, 06100, Turkey.
| | - Kevser Biberoglu
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, 06100, Turkey.
| | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, 06100, Turkey.
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
33
|
Dichlorvos-induced formation of isopeptide crosslinks between proteins in SH-SY5Y cells. Anal Biochem 2022; 655:114844. [PMID: 35961399 PMCID: PMC10368009 DOI: 10.1016/j.ab.2022.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 11/01/2022]
Abstract
Chlorpyrifos oxon catalyzes the crosslinking of proteins via an isopeptide bond between lysine and glutamic acid or aspartic acid in studies with purified proteins. Our goal was to determine the crosslinking activity of the organophosphorus pesticide, dichlorvos. We developed a protocol for examining crosslinks in a complex protein mixture consisting of human SH-SY5Y cells exposed to 10 μM dichlorvos. The steps in our protocol included immunopurification of crosslinked peptides by binding to anti-isopeptide antibody 81D1C2, stringent washing of the immobilized complex, release of bound peptides from Protein G agarose with 50% acetonitrile 1% formic acid, liquid chromatography tandem mass spectrometry on an Orbitrap Fusion Lumos mass spectrometer, Protein Prospector searches of mass spectrometry data, and manual evaluation of candidate crosslinked dipeptides. We report a low quantity of dichlorvos-induced KD and KE crosslinked proteins in human SH-SY5Y cells exposed to dichlorvos. Cells not treated with dichlorvos had no detectable KD and KE crosslinked proteins. Proteins in the crosslink were low abundance proteins. In conclusion, we provide a protocol for testing complex protein mixtures for the presence of crosslinked proteins. Our protocol could be useful for testing the association between neurodegenerative disease and exposure to organophosphorus pesticides.
Collapse
|
34
|
Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Mol Psychiatry 2022; 27:3182-3191. [PMID: 35484241 DOI: 10.1038/s41380-022-01589-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
Abstract
The accumulation of amyloid-β protein (Aβ) plays an early role in the pathogenesis of Alzheimer's disease (AD). The precise mechanism of how Aβ accumulation leads to synaptic dysfunction and cognitive impairment remains unclear but is likely due to small soluble oligomers of Aβ (oAβ). Most studies have used chemical synthetic or cell-secreted Aβ oligomers to study their pathogenic mechanisms, but the Aβ derived from human AD brain tissue is less well characterized. Here we review updated knowledge on the extraction and characterization of bioactive human AD brain oAβ and the mechanisms by which they cause hippocampal synaptic dysfunction. Human AD brain-derived oAβ can impair hippocampal long-term potentiation (LTP) and enhance long-term depression (LTD). Many studies suggest that oAβ may directly disrupt neuronal NMDA receptors, AMPA receptors and metabotropic glutamate receptors (mGluRs). oAβ also impairs astrocytic synaptic functions, including glutamate uptake, D-serine release, and NMDA receptor function. We also discuss oAβ-induced neuronal hyperexcitation. These results may suggest a multi-target approach for the treatment of AD, including both oAβ neutralization and reversal of glutamate-mediated excitotoxicity.
Collapse
|
35
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
36
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
37
|
Braun GA, Dear AJ, Sanagavarapu K, Zetterberg H, Linse S. Amyloid-β peptide 37, 38 and 40 individually and cooperatively inhibit amyloid-β 42 aggregation. Chem Sci 2022; 13:2423-2439. [PMID: 35310497 PMCID: PMC8864715 DOI: 10.1039/d1sc02990h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/22/2022] [Indexed: 12/22/2022] Open
Abstract
The pathology of Alzheimer's disease is connected to the aggregation of β-amyloid (Aβ) peptide, which in vivo exists as a number of length-variants. Truncations and extensions are found at both the N- and C-termini, relative to the most commonly studied 40- and 42-residue alloforms. Here, we investigate the aggregation of two physiologically abundant alloforms, Aβ37 and Aβ38, as pure peptides and in mixtures with Aβ40 and Aβ42. A variety of molar ratios were applied in quaternary mixtures to investigate whether a certain ratio is maximally inhibiting of the more toxic alloform Aβ42. Through kinetic analysis, we show that both Aβ37 and Aβ38 self-assemble through an autocatalytic secondary nucleation reaction to form fibrillar β-sheet-rich aggregates, albeit on a longer timescale than Aβ40 or Aβ42. Additionally, we show that the shorter alloforms co-aggregate with Aβ40, affecting both the kinetics of aggregation and the resulting fibrillar ultrastructure. In contrast, neither Aβ37 nor Aβ38 forms co-aggregates with Aβ42; however, both short alloforms reduce the rate of Aβ42 aggregation in a concentration-dependent manner. Finally, we show that the aggregation of Aβ42 is more significantly impeded by a combination of Aβ37, Aβ38, and Aβ40 than by any of these alloforms independently. These results demonstrate that the aggregation of any given Aβ alloform is significantly perturbed by the presence of other alloforms, particularly in heterogeneous mixtures, such as is found in the extracellular fluid of the brain.
Collapse
Affiliation(s)
- Gabriel A Braun
- Biochemistry and Structural Biology, Lund University Lund Sweden
| | - Alexander J Dear
- Biochemistry and Structural Biology, Lund University Lund Sweden
- Department of Cell Biology, Harvard Medical School Boston MA USA
- Paulson School of Engineering and Applied Science, Harvard University Cambridge MA USA
- Department of Chemistry, University of Cambridge Cambridge UK
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square London UK
- UK Dementia Research Institute at UCL London UK
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University Lund Sweden
| |
Collapse
|
38
|
Zhang S, Yoo S, Snyder DT, Katz BB, Henrickson A, Demeler B, Wysocki VH, Kreutzer AG, Nowick JS. A Disulfide-Stabilized Aβ that Forms Dimers but Does Not Form Fibrils. Biochemistry 2022; 61:252-264. [PMID: 35080857 PMCID: PMC9083094 DOI: 10.1021/acs.biochem.1c00739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aβ dimers are a basic building block of many larger Aβ oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimer's disease. Homogeneous Aβ dimers are difficult to prepare, characterize, and study because Aβ forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AβC18C33 as a disulfide-stabilized analogue of Aβ42 that forms stable homogeneous dimers in lipid environments but does not aggregate to form insoluble fibrils. The AβC18C33 peptide is readily expressed in Escherichia coli and purified by reverse-phase HPLC to give ca. 8 mg of pure peptide per liter of bacterial culture. SDS-PAGE establishes that AβC18C33 forms homogeneous dimers in the membrane-like environment of SDS and that conformational stabilization of the peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. Mass spectrometric (MS) studies in the presence of dodecyl maltoside (DDM) further confirm the formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes that AβC18C33 adopts a β-sheet conformation in detergent solutions and supports a model in which the intramolecular disulfide bond induces β-hairpin folding and dimer formation in lipid environments. Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM) studies indicate that AβC18C33 does not undergo fibril formation in aqueous buffer solutions and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently published NMR structure of an Aβ42 tetramer (PDB: 6RHY) provides a working model for the AβC18C33 dimer, in which two β-hairpins assemble through hydrogen bonding to form a four-stranded antiparallel β-sheet. It is anticipated that AβC18C33 will serve as a stable, nonfibrilizing, and noncovalent Aβ dimer model for amyloid and Alzheimer's disease research.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Stan Yoo
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin B. Katz
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta, Canada T1K 3M4
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta, Canada T1K 3M4
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Adam G. Kreutzer
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States,Corresponding Authors: James S. Nowick – Department of Chemistry, University of California, Irvine, California 92697-2025, United States; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-2025, United States. , Adam G. Kreutzer – Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
| | - James S. Nowick
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States,Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California 92697-2025, United States,Corresponding Authors: James S. Nowick – Department of Chemistry, University of California, Irvine, California 92697-2025, United States; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-2025, United States. , Adam G. Kreutzer – Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
| |
Collapse
|
39
|
Bahri S, Silvers R, Michael B, Jaudzems K, Lalli D, Casano G, Ouari O, Lesage A, Pintacuda G, Linse S, Griffin RG. 1H detection and dynamic nuclear polarization-enhanced NMR of Aβ 1-42 fibrils. Proc Natl Acad Sci U S A 2022; 119:e2114413119. [PMID: 34969859 PMCID: PMC8740738 DOI: 10.1073/pnas.2114413119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments-namely, 1H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on 13C,15N-enriched, and fully protonated samples of M0Aβ1-42 fibrils by high-field 1H-detected NMR at 23.4 T and 18.8 T, and 13C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M0Aβ1-42 (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than 1H detection. These results suggest that 1H detection and DNP may be the spectroscopic approaches of choice for future studies of Aβ and other amyloid systems.
Collapse
Affiliation(s)
- Salima Bahri
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Brian Michael
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kristaps Jaudzems
- Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
| | - Daniela Lalli
- Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
| | - Gilles Casano
- Institut de Chimie Radicalaire, CNRS/Aix Marseille Université, Marseille 13013, France
| | - Olivier Ouari
- Institut de Chimie Radicalaire, CNRS/Aix Marseille Université, Marseille 13013, France
| | - Anne Lesage
- Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
| | - Sara Linse
- Department of Chemistry, Lund University, Lund SE 22362, Sweden
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
40
|
Stern AM, Liu L, Jin S, Liu W, Meunier AL, Ericsson M, Miller MB, Batson M, Sun T, Kathuria S, Reczek D, Pradier L, Selkoe DJ. OUP accepted manuscript. Brain 2022; 145:2528-2540. [PMID: 35084489 PMCID: PMC9337809 DOI: 10.1093/brain/awac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Aqueously soluble oligomers of amyloid-β peptide may be the principal neurotoxic forms of amyloid-β in Alzheimer’s disease, initiating downstream events that include tau hyperphosphorylation, neuritic/synaptic injury, microgliosis and neuron loss. Synthetic oligomeric amyloid-β has been studied extensively, but little is known about the biochemistry of natural oligomeric amyloid-β in human brain, even though it is more potent than simple synthetic peptides and comprises truncated and modified amyloid-β monomers. We hypothesized that monoclonal antibodies specific to neurotoxic oligomeric amyloid-β could be used to isolate it for further study. Here we report a unique human monoclonal antibody (B24) raised against synthetic oligomeric amyloid-β that potently prevents Alzheimer’s disease brain oligomeric amyloid-β-induced impairment of hippocampal long-term potentiation. B24 binds natural and synthetic oligomeric amyloid-β and a subset of amyloid plaques, but only in the presence of Ca2+. The amyloid-β N terminus is required for B24 binding. Hydroxyapatite chromatography revealed that natural oligomeric amyloid-β is highly avid for Ca2+. We took advantage of the reversible Ca2+-dependence of B24 binding to perform non-denaturing immunoaffinity isolation of oligomeric amyloid-β from Alzheimer’s disease brain-soluble extracts. Unexpectedly, the immunopurified material contained amyloid fibrils visualized by electron microscopy and amenable to further structural characterization. B24-purified human oligomeric amyloid-β inhibited mouse hippocampal long-term potentiation. These findings identify a calcium-dependent method for purifying bioactive brain oligomeric amyloid-β, at least some of which appears fibrillar.
Collapse
Affiliation(s)
- Andrew M Stern
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, 60 Fenwood Road Rm 10002Q, Boston, MA 02115, USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, 60 Fenwood Road Rm 10002Q, Boston, MA 02115, USA
| | - Shanxue Jin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, 60 Fenwood Road Rm 10002Q, Boston, MA 02115, USA
| | - Wen Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, 60 Fenwood Road Rm 10002Q, Boston, MA 02115, USA
| | - Angela L Meunier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, 60 Fenwood Road Rm 10002Q, Boston, MA 02115, USA
| | - Maria Ericsson
- Harvard Medical School Electron Microscopy Facility, Goldenson Building 323, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael B Miller
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Megan Batson
- Sanofi Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| | - Tingwan Sun
- Sanofi Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| | - Sagar Kathuria
- Sanofi Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| | - David Reczek
- Sanofi Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| | - Laurent Pradier
- Sanofi Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| | - Dennis J Selkoe
- Correspondence to: Dennis J. Selkoe Ann Romney Center for Neurologic Diseases Department of Neurology, Brigham and Women’s Hospital 60 Fenwood Road Rm 10002Q Boston, MA 02115, USA E-mail:
| |
Collapse
|
41
|
Brazilin: Biological activities and therapeutic potential in chronic degenerative diseases and cancer. Pharmacol Res 2021; 175:106023. [PMID: 34883212 DOI: 10.1016/j.phrs.2021.106023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
Caesalpinia sappan and Haematoxylum brasiletto belong to the Fabaceae family, predominantly distributed in Southeast Asia and America. The isoflavonoid brazilin has been identified from the bark and heartwood of these plants. This review summarizes the studies describing the biological activities of these plants and brazilin. Mainly, brazilin protects cells from oxidative stress, shows anti-inflammatory and antibacterial properties, and hypoglycemic effect. In addition, it has a biological impact on various pathologies such as Alzheimer's disease, Parkinson's disease, fibrillogenesis, and osteoarthritis. Interestingly, most of the antecedents are related to the anticancer effect of brazilin. In several cancers such as osteosarcoma, neuroblastoma, multiple myeloma, glioblastoma, bladder, melanoma, breast, tongue, colon, cervical, head, and neck squamous cell carcinoma, brazilin induces autophagy by increasing the levels of the LC3-II protein. Furthermore, it inhibits cell proliferation and induces apoptosis through increased expression of Bcl-2, Bcl-XL, p21, p27, activation of caspase-3 and -7, and the cleavage of PARP and inhibiting the expression of Bax. In addition, it blocks the expression of JNK and regulates the nuclear translocation of Nrf2. Together, these data positions brazilin as a compound of natural origin with multiple bioactivities and therapeutic potential in various chronic degenerative diseases and cancer.
Collapse
|
42
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 595] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
43
|
Fatafta H, Khaled M, Owen MC, Sayyed-Ahmad A, Strodel B. Amyloid-β peptide dimers undergo a random coil to β-sheet transition in the aqueous phase but not at the neuronal membrane. Proc Natl Acad Sci U S A 2021; 118:e2106210118. [PMID: 34544868 PMCID: PMC8488611 DOI: 10.1073/pnas.2106210118] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Mounting evidence suggests that the neuronal cell membrane is the main site of oligomer-mediated neuronal toxicity of amyloid-β peptides in Alzheimer's disease. To gain a detailed understanding of the mutual interference of amyloid-β oligomers and the neuronal membrane, we carried out microseconds of all-atom molecular dynamics (MD) simulations on the dimerization of amyloid-β (Aβ)42 in the aqueous phase and in the presence of a lipid bilayer mimicking the in vivo composition of neuronal membranes. The dimerization in solution is characterized by a random coil to β-sheet transition that seems on pathway to amyloid aggregation, while the interactions with the neuronal membrane decrease the order of the Aβ42 dimer by attenuating its propensity to form a β-sheet structure. The main lipid interaction partners of Aβ42 are the surface-exposed sugar groups of the gangliosides GM1. As the neurotoxic activity of amyloid oligomers increases with oligomer order, these results suggest that GM1 is neuroprotective against Aβ-mediated toxicity.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Mohammed Khaled
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Michael C Owen
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | | | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany;
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Liu L, Kwak H, Lawton TL, Jin SX, Meunier AL, Dang Y, Ostaszewski B, Pietras AC, Stern AM, Selkoe DJ. An ultra-sensitive immunoassay detects and quantifies soluble Aβ oligomers in human plasma. Alzheimers Dement 2021; 18:1186-1202. [PMID: 34550630 DOI: 10.1002/alz.12457] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/02/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Evidence strongly suggests that soluble oligomers of amyloid beta protein (oAβ) help initiate the pathogenic cascade of Alzheimer's disease (AD). To date, there have been no validated assays specific for detecting and quantifying oAβ in human blood. METHODS We developed an ultrasensitive oAβ immunoassay using a novel capture antibody (71A1) with N-terminal antibody 3D6 for detection that specifically quantifies soluble oAβ in the human brain, cerebrospinal fluid (CSF), and plasma. RESULTS Two new antibodies (71A1; 1G5) are oAβ-selective, label Aβ plaques in non-fixed AD brain sections, and potently neutralize the synaptotoxicity of AD brain-derived oAβ. The 71A1/3D6 assay showed excellent dilution linearity in CSF and plasma without matrix effects, good spike recovery, and specific immunodepletion. DISCUSSION We have created a sensitive, high throughput, and inexpensive method to quantify synaptotoxic oAβ in human plasma for analyzing large cohorts of aged and AD subjects to assess the dynamics of this key pathogenic species and response to therapy.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Hyunchang Kwak
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Trebor L Lawton
- Abyssinia Biologics, LLC, 23 Cedar Point Rd, Durham, New Hampshire, 03824, USA
| | - Shan-Xue Jin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Angela L Meunier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Yifan Dang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Beth Ostaszewski
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Alison C Pietras
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Andrew M Stern
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| |
Collapse
|
45
|
Gkanatsiou E, Nilsson J, Toomey CE, Vrillon A, Kvartsberg H, Portelius E, Zetterberg H, Blennow K, Brinkmalm A, Lashley T, Brinkmalm G. Amyloid pathology and synaptic loss in pathological aging. J Neurochem 2021; 159:258-272. [PMID: 34473357 DOI: 10.1111/jnc.15487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid β (Aβ) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and Aβ peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion Aβ peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of Aβ40 was higher in AD while for Aβ42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of Aβ40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of Aβ.
Collapse
Affiliation(s)
- Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Agathe Vrillon
- Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, University of Paris Diderot, Paris, France
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
46
|
Michno W, Blennow K, Zetterberg H, Brinkmalm G. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. J Neurochem 2021; 159:234-257. [PMID: 34245565 DOI: 10.1111/jnc.15466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Since its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aβ peptide (Aβ42) in cerebrospinal fluid (CSF) was put forward as reflective of Aβ peptide aggregation in the brain. With time, Aβ oligomers-the proposed toxic Aβ intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aβ peptide backbone, makes the characterization of Aβ aggregates and their role in AD progression challenging. In this review, we revisit the history of Aβ discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aβ peptide, and how MS is aiding the characterization of higher order Aβ assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aβ as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aβ in AD research.
Collapse
Affiliation(s)
- Wojciech Michno
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
47
|
New insights into the mechanisms of age-related protein-protein crosslinking in the human lens. Exp Eye Res 2021; 209:108679. [PMID: 34147508 DOI: 10.1016/j.exer.2021.108679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Although protein crosslinking is often linked with aging as well as some age-related diseases, very few molecular details are available on the nature of the amino acids involved, or mechanisms that are responsible for crosslinking. Recent research has shown that several amino acids are able to generate reactive intermediates that ultimately lead to covalent crosslinking through multiple non-enzymatic mechanisms. This information has been derived from proteomic investigations on aged human lenses and the mechanisms of crosslinking, in each case, have been elucidated using model peptides. Residues involved in spontaneous protein-protein crosslinking include aspartic acid, asparagine, cysteine, lysine, phosphoserine, phosphothreonine, glutamic acid and glutamine. It has become clear, therefore, that several amino acids can act as potential sites for crosslinking in the long-lived proteins that are present in aged individuals. Moreover, the lens has been an invaluable model tissue and source of crosslinked proteins from which to determine crosslinking mechanisms that may lead to crosslinking in other human tissues.
Collapse
|
48
|
Wiatrak B, Piasny J, Kuźniarski A, Gąsiorowski K. Interactions of Amyloid-β with Membrane Proteins. Int J Mol Sci 2021; 22:6075. [PMID: 34199915 PMCID: PMC8200087 DOI: 10.3390/ijms22116075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
In developing and developed countries, an increasing elderly population is observed. This affects the growing percentage of people struggling with neurodegenerative diseases, including Alzheimer's disease. Nevertheless, the pathomechanism of this disease is still unknown. This contributes to problems with early diagnosis of the disease as well as with treatment. One of the most popular hypotheses of Alzheimer's disease is related to the pathological deposition of amyloid-β (Aβ) in the brain of ill people. In this paper, we discuss issues related to Aβ and its relationship in the development of Alzheimer's disease. The structure of Aβ and its interaction with the cell membrane are discussed. Not only do the extracellular plaques affect nerve cells, but other forms of this peptide as well.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
49
|
Gkanatsiou E, Sahlin C, Portelius E, Johannesson M, Söderberg L, Fälting J, Basun H, Möller C, Odergren T, Zetterberg H, Blennow K, Lannfelt L, Brinkmalm G. Characterization of monomeric and soluble aggregated Aβ in Down's syndrome and Alzheimer's disease brains. Neurosci Lett 2021; 754:135894. [PMID: 33848613 DOI: 10.1016/j.neulet.2021.135894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
The major characteristics of Alzheimer's disease (AD) are amyloid plaques, consisting of aggregated beta amyloid (Aβ) peptides, together with tau pathology (tangles, neuropil treads and dystrophic neurites surrounding the plaques), in the brain. Down's syndrome (DS) individuals are at increased risk to develop AD-type pathology; most DS individuals have developed substantial pathology already at the age of 40. DS individuals have an extra copy of chromosome 21, harbouring the amyloid precursor protein gene (APP). Our aim was to investigate the Aβ peptide pattern in DS and AD brains to investigate differences in their amyloid deposition and aggregation, respectively. Cortical tissue from patients with DS (with amyloid pathology), sporadic AD and controls were homogenized and fractionated into TBS (water soluble) and formic acid (water insoluble) fractions. Immunoprecipitation (IP) was performed using a variety of antibodies targeting different Aβ species including oligomeric Aβ. Mass spectrometry was then used to evaluate the presence of Aβ species in the different patient groups. A large number of Aβ peptides were identified including Aβ1-X, 2-X, 3-X, 4-X, 5-X, 11-X, and Aβ peptides extended N terminally of the BACE1 cleavage site and ending at amino 15 in the Aβ sequence APP/Aβ(-X to 15), as well as peptides post-translationally modified by pyroglutamate formation. Most Aβ peptides had higher abundance in AD and DS compared to controls, except the APP/Aβ(-X to 15) peptides which were most abundant in DS followed by controls and AD. Furthermore, the abundancies of AβX-40 and AβX-34 were increased in DS compared with AD. Aβ1-40, Aβ1-42, and Aβ4-42 were identified as the main constitutes of protofibrils (IP'd using mAb158) and higher relative Aβ1-42 signals were obtained compared with samples IP'd with 6E10 + 4G8, indicating that the protofibrils/oligomers were enriched with peptides ending at amino acid 42. All Aβ peptides found in AD were also present in DS indicating similar pathways of Aβ peptide production, degradation and accumulation, except for APP/Aβ(-X to 15). Likewise, the Aβ peptides forming protofibrils/oligomers in both AD and DS were similar, implying the possibility that treatment with clinical benefit in sporadic AD might also be beneficial for subjects with DS.
Collapse
Affiliation(s)
- Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Charlotte Sahlin
- BioArctic AB, Stockholm, Sweden; Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Erik Portelius
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | | | | | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lars Lannfelt
- BioArctic AB, Stockholm, Sweden; Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
50
|
Banchelli M, Cascella R, D’Andrea C, La Penna G, Li MS, Machetti F, Matteini P, Pizzanelli S. Probing the Structure of Toxic Amyloid-β Oligomers with Electron Spin Resonance and Molecular Modeling. ACS Chem Neurosci 2021; 12:1150-1161. [PMID: 33724783 PMCID: PMC9284516 DOI: 10.1021/acschemneuro.0c00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural models of the toxic species involved in the development of Alzheimer's disease are of utmost importance to understand the molecular mechanism and to describe early biomarkers of the disease. Among toxic species, soluble oligomers of amyloid-β (Aβ) peptides are particularly important, because they are responsible for spreading cell damages over brain regions, thus rapidly impairing brain functions. In this work we obtain structural information on a carefully prepared Aβ(1-42) sample, representing a toxic state for cell cultures, by combining electron spin resonance spectroscopy and computational models. We exploited the binding of Cu2+ to Aβ(1-42) and used copper as a probe for estimating Cu-Cu distances in the oligomers by applying double electron-electron resonance (DEER) pulse sequence. The DEER trace of this sample displays a unique feature that fits well with structural models of oligomers formed by Cu-cross-linked peptide dimers. Because Cu is bound to the Aβ(1-42) N-terminus, for the first time structural constraints that are missing in reported studies are provided at physiological conditions for the Aβ N-termini. These constraints suggest the Aβ(1-42) dimer as the building block of soluble oligomers, thus changing the scenario for any kinetic model of Aβ(1-42) aggregation.
Collapse
Affiliation(s)
- Martina Banchelli
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Roberta Cascella
- University of Florence, Department of Experimental and Clinical Biomedical Sciences, I-50134 Firenze, Italy
| | - Cristiano D’Andrea
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- National Institute for Nuclear Physics (INFN),
Section of Roma-Tor Vergata, I-00133 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Fabrizio Machetti
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- University of Florence, Department of Chemistry “Ugo Schiff”, Sesto Fiorentino, I-50019 FI, Italy
| | - Paolo Matteini
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Silvia Pizzanelli
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), I-56124 Pisa, Italy
| |
Collapse
|