1
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
2
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
3
|
Lemes Dos Santos Sanna P, Bernardes Carvalho L, Cristina Dos Santos Afonso C, de Carvalho K, Aires R, Souza J, Rodrigues Ferreira M, Birbrair A, Martha Bernardi M, Latini A, Foganholi da Silva RA. Adora2A downregulation promotes caffeine neuroprotective effect against LPS-induced neuroinflammation in the hippocampus. Brain Res 2024; 1833:148866. [PMID: 38494098 DOI: 10.1016/j.brainres.2024.148866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1β. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.
Collapse
Affiliation(s)
| | | | | | - Kassia de Carvalho
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Rogério Aires
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Jennyffer Souza
- Laboratory of Bioenergetics and Oxidative Stress - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unity, Botucatu Medical School, São Paulo State University, Brazil.
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Maria Martha Bernardi
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Alexandra Latini
- Laboratory of Bioenergetics and Oxidative Stress - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo A Foganholi da Silva
- Dentistry, University of Taubaté, Taubaté, São Paulo, São Paulo, Brazil; Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
5
|
Aanniz T, Bouyahya A, Balahbib A, El Kadri K, Khalid A, Makeen HA, Alhazmi HA, El Omari N, Zaid Y, Wong RSY, Yeo CI, Goh BH, Bakrim S. Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: Mechanisms insights and efficiencies. Chem Biol Interact 2024; 392:110907. [PMID: 38395253 DOI: 10.1016/j.cbi.2024.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.
Collapse
Affiliation(s)
- Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, B.P, 6203, Morocco.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco.
| | - Kawtar El Kadri
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan.
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco.
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Rebecca Shin-Yee Wong
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Medical Education, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco.
| |
Collapse
|
6
|
Diaz-Garcia H, Vilchis-Gil J, Castro-Cerritos KV, Rivera-Susunaga LE, Klünder-Klünder M, Granados-Riveron JT, Gómez-López J, López-Torres A, Sánchez-Urbina R. Association between maternal diet, smoking, and the placenta MTHFR 677C/T genotype and global placental DNA methylation. Placenta 2024; 146:17-24. [PMID: 38160599 DOI: 10.1016/j.placenta.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The placenta provides nutrients to the fetus, and it has protective effects against harmful substances. Unhealthy maternal diets and toxic agents might increase free radical (FR) production. Elevated FR levels are associated with a high risk of oxidative stress, which may cause DNA damage. DNA might be oxidized in the placenta, occasionally affecting its methylation profile due to 8-hidroxy-2'-deoxyguanosine formation. METHODS This study assessed 130 mothers and their children. The maternal's nutritional patterns were determined using the Food Frequency Questionnaire. Information on smoking and alcohol consumption was collected during the medical examination. Data on placental DNA were obtained to determine the MTHFR 677C/T genotype and the proportion of placental DNA methylation (pDNAm). RESULTS Consumption of vitamins and folic acid was above 85%. The pDNAm was found to be correlated with gestational age and coffee intake. Mothers with a smoking history had a low pDNAm. Placentas with the TT genotype had a higher but not significant pDNAm. In the placentas with the CC/CT genotype, the pDNAm was positively associated with carbohydrate and biotin intake. However, the TT genotype was negatively associated with folate and vegetable intake. DISCUSSION The pDNAm was positively associated with coffee intake, but not with macro-, and micronutrient intake. However, it was negatively associated with cigarette smoking. The placentas with the CC/CT genotype had a lower pDNAm than those with the TT genotype. In the placentas with the CC/CT or TT genotype, methylation was positively, and negatively associated with micro- or macronutrients, respectively.
Collapse
Affiliation(s)
- Hector Diaz-Garcia
- Centro de Investigación en Malformaciones Congénitas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; Escuela Superior de Enfermería y Obstetricia, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Jenny Vilchis-Gil
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Luis E Rivera-Susunaga
- Centro de Investigación en Malformaciones Congénitas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Miguel Klünder-Klünder
- Subdirección de la Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Javier T Granados-Riveron
- Centro de Investigación en Malformaciones Congénitas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Jaqueline Gómez-López
- Hospital Militar de Especialidades de la Mujer y Neonatología, Secretaria de la Defensa Nacional, Mexico City 11200, Mexico
| | - Adolfo López-Torres
- Instituto de Química Aplicada, Universidad del Papaloapan, Tuxtepec, Oaxaca 68301, Mexico
| | - Rocío Sánchez-Urbina
- Centro de Investigación en Malformaciones Congénitas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City 11340, Mexico.
| |
Collapse
|
7
|
Chen P, Wang Y, Chen F, Zhou B. Epigenetics in obesity: Mechanisms and advances in therapies based on natural products. Pharmacol Res Perspect 2024; 12:e1171. [PMID: 38293783 PMCID: PMC10828914 DOI: 10.1002/prp2.1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.
Collapse
Affiliation(s)
- Peng Chen
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central HospitalAffiliated Hospital of Hubei Polytechnic UniversityHuangshiHubeiP.R. China
| | - Fuchao Chen
- Sinopharm Dongfeng General HospitalHubei University of MedicineShiyanHubeiP.R. China
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
8
|
Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7543-7568. [PMID: 37715840 DOI: 10.1007/s10653-023-01749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Today, the rapid development of science and technology and the rapid change in economy and society are changing the way of life of human beings and affecting the natural, living, working, and internal environment on which human beings depend. At the same time, the global incidence of cancer has increased significantly yearly, and cancer has become the number one killer that threatens human health. Studies have shown that diet, living habits, residential environment, mental and psychological factors, intestinal flora, genetics, social factors, and viral and non-viral infections are closely related to human cancer. However, the molecular mechanisms of the environment and cancer development remain to be further explored. In recent years, DNA methylation has become a key hub and bridge for environmental and cancer research. Some environmental factors can alter the hyper/hypomethylation of human cancer suppressor gene promoters, proto-oncogene promoters, and the whole genome, causing low/high expression or gene mutation of related genes, thereby exerting oncogenic or anticancer effects. It is expected to develop early warning markers of cancer environment based on DNA methylation, thereby providing new methods for early detection of cancers, diagnosis, and targeted therapy. This review systematically expounds on the internal mechanism of environmental factors affecting cancer by changing DNA methylation, aiming to help establish the concept of cancer prevention and improve people's health.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Feifei Ding
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China.
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China.
| |
Collapse
|
9
|
Qadir Nanakali NM, Maleki Dana P, Sadoughi F, Asemi Z, Sharifi M, Asemi R, Yousefi B. The role of dietary polyphenols in alternating DNA methylation in cancer. Crit Rev Food Sci Nutr 2023; 63:12256-12269. [PMID: 35848113 DOI: 10.1080/10408398.2022.2100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural products such as curcumin, quercetin, and resveratrol have been shown to have antitumor effectsand several studies have examined their role in treating cancer, either alone or in combination with other chemotherapeutic drugs. These compounds are capable of affecting different cancer-related mechanisms, such as proliferation, inflammation, invasion, and metastasis. Along with all of the benefits of these agents, affecting epigenetic processes is one of the most important aspects of their impact. Epigenetic modifications can be categorized into three main processes that include DNA methylation, histone modification, and regulation of small non-coding RNAs. Therefore, targeting DNA methylation can be used as a cancer treatment strategy by identifying or developing methylation modulators. Herein, we take a look into the studies investigating the role of natural products (e.g. curcumin, resveratrol, epigallocatechin gallate (EGCG), and quercetin) in alternating the DNA methylation status of various cancer cells. We discuss how these compounds reduce the expression of enzymes mediating the methylation of tumor suppressor genes and thereby, increasing the expression of tumor suppressors while reactivating antitumor signaling pathways.
Collapse
Affiliation(s)
- Nadir Mustafa Qadir Nanakali
- Department of Biomedical Science, College of Science, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Dong Y, Wei J, Yang F, Qu Y, Huang J, Shi D. Nutrient-Based Approaches for Melanoma: Prevention and Therapeutic Insights. Nutrients 2023; 15:4483. [PMID: 37892558 PMCID: PMC10609833 DOI: 10.3390/nu15204483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Melanoma, a prevalent and lethal form of skin cancer, remains a formidable challenge in terms of prevention and treatment. While significant progress has been made in understanding its pathogenesis and treatment, the quest for effective prevention strategies and therapeutic approaches remains ongoing. Considering the increased advancements in understanding the dynamic interplay between nutrients and melanoma, we aim to offer a refreshed perspective on nutrient-based approaches for melanoma prevention and adjunctive therapy. In contrast to other studies, we have innovatively provided a detailed exposition of the nutrients' influences on melanoma prognosis and treatment. This review firstly examines various nutrients, including antioxidants (namely vitamins A, D, C, and E; selenium; and caffeine), polyunsaturated fatty acids, and flavonoids, for their effects and underlying mechanisms in reducing melanoma risk. Among these nutrients, caffeine shows the most promising potential, as it is supported by multiple cohort studies for its protective effect against melanoma. In contrast, there is a certain degree of inconsistency in the research of other nutrients, possibly due to inherent differences between animal studies and epidemiological research, as well as variations in the definition of nutrient intake. To comprehensively investigate the impact of nutrients on melanoma progression and therapeutic approaches, the following sections will explore how nutrients influence immune responses and other physiological processes. While there is robust support from cell and animal studies regarding the immunomodulatory attributes of vitamins D and zinc, the anti-angiogenic potential of polyphenols, and the cell growth-inhibitory effects of flavonoids, the limited availability of human-based research substantially constrains their practical relevance in clinical contexts. As for utilizing nutrients in adjuvant melanoma treatments, multiple approaches have garnered clinical research support, including the utilization of vitamin D to decrease the postoperative recurrence rates among melanoma patients and the adoption of a high-fiber diet to enhance the effectiveness of immunotherapy. In general, the effects of most nutrients on reducing the risk of melanoma are not entirely clear. However, several nutrients, including vitamin D and dietary fiber, have demonstrated their potential to improve the melanoma prognosis and enhance the treatment outcomes, making them particularly deserving of clinical attention. A personalized and interdisciplinary approach, involving dermatologists, oncologists, nutritionists, and researchers, holds the promise of optimizing melanoma treatment strategies.
Collapse
Affiliation(s)
- Yucheng Dong
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Jiaxin Wei
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Fan Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Yang Qu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Jiuzuo Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Di Shi
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| |
Collapse
|
11
|
Fangyu Zhou, Chen H, Fan T, Guo Z, Liu F. Fluorescence turn-off strategy for sensitive detection of DNA methyltransferase activity based on DNA-templated gold nanoclusters. Heliyon 2023; 9:e17724. [PMID: 37449164 PMCID: PMC10336507 DOI: 10.1016/j.heliyon.2023.e17724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
DNA methylation results in a variety of human diseases and the DNA methylation process is mediated by DNA methyltransferases, which have therefore become potential targets for disease treatment. In this study, a turn-off nanogold biological probe system was successfully created for determining the activity of DNA methyltransferases (M.SssI MTase). A dumbbell-shaped DNA probe with a site-recognizable region of M. SssI MTase and a fluorescent signal probe based on a DNA-templated gold nanocluster (DNA-AuNC) probe combined for the quantitative detection of M. SssI MTase. This dumbbell-shaped DNA probe was methylated by M. SssI MTase, and the dumbbell-shaped DNA probe with a methyl group was recognized by an endonuclease (GlaI) and cleaved into hairpin DNA. The dGTP was added to the 3'-OH terminus of hairpin DNA fragments in the presence of terminal deoxynucleotidyl transferase (TdT), and the hairpin DNA was extended with a G-rich sequence that can be used as an inactivation probe. When the inactivation probe was combined with the signal probe, the fluorescent signal disappeared due to the photoinduced electron transfer effect. Methyltransferase activity was then detected based on the turn-off principle of the fluorescence signal from the DNA-AuNCs. The bioprobe enabled sensitive detection of M. SssI MTase with a detection limit of 0.178 U mL-1 and good specificity. The bioprobe demonstrated good detection efficiency in both human serum and cell lysates, and its unique fluorescence turn-off mechanism provided good resistance to interference, thus increasing its potential application in complex biological samples. Moreover, it is suitable for screening and assessing the inhibitory activity of M. SssI MTase inhibitors, and therefore has significant potential for disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Fangyu Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zixia Guo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
- National & Local United Engineering Lab for Personalized Anti-Tumor Drugs, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| |
Collapse
|
12
|
Fernandes MYD, Lopes JP, Silva HB, Andrade GM, Cunha RA, Tomé AR. Caffeic acid recovers ischemia-induced synaptic dysfunction without direct effects on excitatory synaptic transmission and plasticity in mouse hippocampal slices. Neurosci Lett 2023; 808:137292. [PMID: 37156440 DOI: 10.1016/j.neulet.2023.137292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Caffeic acid is a polyphenolic compound present in a vast array of dietary components. We previously showed that caffeic acid reduces the burden of brain ischemia joining evidence by others that it can attenuate different brain diseases. However, it is unknown if caffeic acid affects information processing in neuronal networks. Thus, we now used electrophysiological recordings in mouse hippocampal slices to test if caffeic acid directly affected synaptic transmission, plasticity and dysfunction caused by oxygen-glucose deprivation (OGD), an in vitro ischemia model. Caffeic acid (1-10 μM) was devoid of effect on synaptic transmission and paired-pulse facilitation in Schaffer collaterals-CA1 pyramidal synapses. Also, the magnitude of either hippocampal long-term potentiation (LTP) or the subsequent depotentiation were not significantly modified by 10 μM caffeic acid. However, caffeic acid (10 μM) increased the recovery of synaptic transmission upon re-oxygenation following 7 minutes of OGD. Furthermore, caffeic acid (10 μM) also recovered plasticity after OGD, as heralded by the increased magnitude of LTP after exposure. These findings show that caffeic acid does not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of caffeic acid may allow the design of hitherto unrecognized novel neuroprotective strategies.
Collapse
Affiliation(s)
- Mara Yone D Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Physiology and Pharmacology, Faculty of Medicine, Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Geanne M Andrade
- Department of Physiology and Pharmacology, Faculty of Medicine, Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Ding Q, Xu YM, Lau ATY. The Epigenetic Effects of Coffee. Molecules 2023; 28:molecules28041770. [PMID: 36838754 PMCID: PMC9958838 DOI: 10.3390/molecules28041770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 02/16/2023] Open
Abstract
In this review, we discuss the recent knowledge regarding the epigenetic effects of coffee extract and the three essential active ingredients in coffee (caffeine, chlorogenic acid, and caffeic acid). As a popular beverage, coffee has many active ingredients which have a variety of biological functions such as insulin sensitization, improvement of sugar metabolism, antidiabetic properties, and liver protection. However, recent researches have shown that coffee is not only beneficial for human, but also bad, which may be due to its complex components. Studies suggest that coffee extract and its components can potentially impact gene expression via alteration of DNA methylation, histone modifications, and ncRNA expression; thus, exert long lasting impacts on the epigenome. More importantly, coffee consumption during pregnancy has been linked to multiple negative effects on offspring due to epigenetic modifications; on the other hand, it has also been linked to improvements in many diseases, including cancer. Therefore, understanding more about the epigenetic effects associated with coffee components is crucial to finding ways for improving human health.
Collapse
Affiliation(s)
| | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
14
|
Zhang Z, Wang G, Li Y, Lei D, Xiang J, Ouyang L, Wang Y, Yang J. Recent progress in DNA methyltransferase inhibitors as anticancer agents. Front Pharmacol 2022; 13:1072651. [PMID: 37077808 PMCID: PMC10107375 DOI: 10.3389/fphar.2022.1072651] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
DNA methylation mediated by DNA methyltransferase is an important epigenetic process that regulates gene expression in mammals, which plays a key role in silencing certain genes, such as tumor suppressor genes, in cancer, and it has become a promising therapeutic target for cancer treatment. Similar to other epigenetic targets, DNA methyltransferase can also be modulated by chemical agents. Four agents have already been approved to treat hematological cancers. In order to promote the development of a DNA methyltransferase inhibitor as an anti-tumor agent, in the current review, we discuss the relationship between DNA methylation and tumor, the anti-tumor mechanism, the research progress and pharmacological properties of DNA methyltransferase inhibitors, and the future research trend of DNA methyltransferase inhibitors.
Collapse
Affiliation(s)
- Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Yuyan Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dongsheng Lei
- School of Physical Science and Technology, Electron Microscopy Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jin Xiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Science and Technology Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Science and Technology Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yanyan Wang, ; Jinliang Yang,
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- *Correspondence: Yanyan Wang, ; Jinliang Yang,
| |
Collapse
|
15
|
Sharma G, Kamboj M, Narwal A, Bhardwaj R, Yadav P. Cytotoxic Role of Chlorogenic Acid on Oral Squamous Cell Carcinoma Cell Line. Indian J Otolaryngol Head Neck Surg 2022; 74:5773-5781. [PMID: 36742612 PMCID: PMC9895633 DOI: 10.1007/s12070-021-02395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine the cytotoxic, anticancerous and antiproliferative activity of CGA on oral squamous cell carcinoma (OSCC) cell line (KB) and to evaluate expression level of p21 and p53 in these CGA treated OSCC cell line. Different concentrations of CGA varying from 500 to 2500 µM were tested on OSCC cell line. Trypan blue and MTT assay were performed to establish IC50. DNA fragmentation and expression level of p21 and p53 were evaluated with the help of RT-PCR. CGA exerted antiproliferative and cytotoxic effect on OSCC (KB) cell line. Statistically significant results were found regarding effect of different CGA concentrations on KB cell line with IC50 at 1800 µM. No DNA fragmentation was observed. p21 and p53 expression were down regulated after CGA treatment. CGA revealed neither apoptosis nor damage to the nucleus after DNA fragmentation. Antiproliferative role of CGA was hinted by down regulation of p53 and p21 probably through cell cycle arrest at G1-S phase. It was reaffirmed that CGA a natural chemo preventive agent could enhance the treatment modalities with minimal side effects.
Collapse
Affiliation(s)
- Gitika Sharma
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Post Graduate Institute of Dental Sciences, Pt. BD Sharma University of Health Sciences, Rohtak, Haryana India
| | - Mala Kamboj
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Post Graduate Institute of Dental Sciences, Pt. BD Sharma University of Health Sciences, Rohtak, Haryana India
| | - Anjali Narwal
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Post Graduate Institute of Dental Sciences, Pt. BD Sharma University of Health Sciences, Rohtak, Haryana India
| | - Rashmi Bhardwaj
- Department of Centre for Medical Biotechnology, Maharishi Dayanand University, Rohtak, Haryana India
| | - Pooja Yadav
- Department of Centre for Medical Biotechnology, Maharishi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
16
|
Sae-Lee C, Barrow TM, Colicino E, Choi SH, Rabanal-Ruiz Y, Green D, Korolchuk VI, Mathers JC, Byun HM. Genomic targets and selective inhibition of DNA methyltransferase isoforms. Clin Epigenetics 2022; 14:103. [PMID: 35987848 PMCID: PMC9392947 DOI: 10.1186/s13148-022-01325-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background DNA methylation in the human genome is established and maintained by DNA methyltransferases (DNMTs). DNMT isoforms show differential expression by cell lineage and during development, but much remains to be elucidated about their shared and unique genomic targets. Results We examined changes in the epigenome following overexpression of 13 DNMT isoforms in HEK293T cells. We observed increased methylation (Δβ > 0.2) at 43,405 CpG sites, with expression of DNMT3A2, DNMTΔ3B4 and DNMTΔ3B2 associated with the greatest impact. De novo methylation occurred primarily within open sea regions and at loci with intermediate methylation levels (β: 0.2–0.6). 53% of differentially methylated loci showed specificity towards a single DNMT subfamily, primarily DNMTΔ3B and DNMT3A and 39% towards a single isoform. These loci were significantly enriched for pathways related to neuronal development (DNMTΔ3B4), calcium homeostasis (DNMTΔ3B3) and ion transport (DNMT3L). Repetitive elements did not display differential sensitivity to overexpressed DNMTs, but hypermethylation of Alu elements was associated with their evolutionary age following overexpression of DNMT3A2, DNMT3B1, DNMT3B2 and DNMT3L. Differential methylation (Δβ > 0.1) was observed at 121 of the 353 loci associated with the Horvath ‘epigenetic clock’ model of ageing, with 51 showing isoform specificity, and was associated with reduction of epigenetic age by 5–15 years following overexpression of seven isoforms. Finally, we demonstrate the potential for dietary constituents to modify epigenetic marks through isoform-specific inhibition of methylation activity. Conclusions Our results provide insight into regions of the genome methylated uniquely by specific DNMT isoforms and demonstrate the potential for dietary intervention to modify the epigenome. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01325-4.
Collapse
|
17
|
Bakrim S, El Omari N, El Hachlafi N, Bakri Y, Lee LH, Bouyahya A. Dietary Phenolic Compounds as Anticancer Natural Drugs: Recent Update on Molecular Mechanisms and Clinical Trials. Foods 2022; 11:foods11213323. [PMID: 36359936 PMCID: PMC9657352 DOI: 10.3390/foods11213323] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Given the stochastic complexity of cancer diseases, the development of chemotherapeutic drugs is almost limited by problems of selectivity and side effects. Furthermore, an increasing number of protective approaches have been recently considered as the main way to limit these pathologies. Natural bioactive compounds, and particularly dietary phenolic compounds, showed major protective and therapeutic effects against different types of human cancers. Indeed, phenolic substances have functional groups that allow them to exert several anti-cancer mechanisms, such as the induction of apoptosis, autophagy, cell cycle arrest at different stages, and the inhibition of telomerase. In addition, in vivo studies show that these phenolic compounds also have anti-angiogenic effects via the inhibition of invasion and angiogenesis. Moreover, clinical studies have already highlighted certain phenolic compounds producing clinical effects alone, or in combination with drugs used in chemotherapy. In the present work, we present a major advance in research concerning the mechanisms of action of the different phenolic compounds that are contained in food medicinal plants, as well as evidence from the clinical trials that focus on them.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Fes 30000, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Correspondence: (L.-H.L.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (L.-H.L.); (A.B.)
| |
Collapse
|
18
|
Yaghjyan L, McLaughlin E, Lehman A, Neuhouser ML, Rohan T, Lane DS, Snetselaar L, Paskett E. Associations of coffee/caffeine consumption with postmenopausal breast cancer risk and their interactions with postmenopausal hormone use. Eur J Nutr 2022; 61:3449-3459. [PMID: 35583696 PMCID: PMC10227860 DOI: 10.1007/s00394-022-02899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE We investigated the association of coffee and caffeine with breast cancer (BCa) risk, overall and by ER/PR status. We also examined potential interactions of coffee and caffeine with postmenopausal hormone use. METHODS Our study included 77,688 postmenopausal participants from the Women's Health Initiative observational study cohort without a history of any cancer at baseline (except non-melanoma skin) and with valid Food Frequency Questionnaire data and complete data on dietary caffeine. Regular coffee (none, 1, 2-3, 4-5, and ≥ 6 cups/day) and caffeine (tertiles) were assessed at baseline. Information on BCa risk factors was collected at baseline. The associations were examined using survival analysis, accounting for death as a competing risk. RESULTS The median follow-up time for our cohort was 18.3 years. During the follow-up, 5005 women developed invasive breast cancer. In multivariable analysis, coffee was not associated with the overall invasive BCa risk. Higher caffeine intake was mildly associated with increased BCa risk (2nd vs. 1st tertile SHR = 1.10, 95% CI 1.03-1.18, 3rd vs. 1st tertile SHR-1.05, 95% CI 0.98-1.13, overall p = 0.03). We found no interaction of coffee/caffeine with postmenopausal hormone use (p interaction = 0.44 and 0.42, respectively). In the exploratory analysis by ER/PR status, we found a positive association of caffeine with ER+ /PR+ BCa (2nd vs. 1st tertile SHR = 1.17, 95% CI 1.07-1.28, 3rd vs. 1st tertile SHR = 1.13, 95% CI 1.03-1.24, overall p = 0.002); no associations were observed for ER-/PR- tumors. Coffee was not associated with the risk of ER+ /PR+ or ER-/PR- tumors. CONCLUSION We found no associations of coffee with BCa risk, overall and for ER/PR-defined tumor subtypes. The higher caffeine consumption was mildly and positively associated with the overall BCa risk and with ER+ /PR+ tumors.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32610, USA.
| | - Eric McLaughlin
- Center for Biostatistics, Ohio State University, Columbus, OH, USA
| | - Amy Lehman
- Center for Biostatistics, Ohio State University, Columbus, OH, USA
| | - Marian L Neuhouser
- Public Health Sciences Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dorothy S Lane
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, New York, NY, USA
| | - Linda Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Electra Paskett
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Novel epigenetic therapeutic strategies and targets in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166552. [PMID: 36126898 DOI: 10.1016/j.bbadis.2022.166552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The critical role of dysregulated epigenetic pathways in cancer genesis, development, and therapy has typically been established as a result of scientific and technical innovations in next generation sequencing. RNA interference, histone modification, DNA methylation and chromatin remodelling are epigenetic processes that control gene expression without causing mutations in the DNA. Although epigenetic abnormalities are thought to be a symptom of cell tumorigenesis and malignant events that impact tumor growth and drug resistance, physicians believe that related processes might be a key therapeutic target for cancer treatment and prevention due to the reversible nature of these processes. A plethora of novel strategies for addressing epigenetics in cancer therapy for immuno-oncological complications are currently available - ranging from basic treatment to epigenetic editing. - and they will be the subject of this comprehensive review. In this review, we cover most of the advancements made in the field of targeting epigenetics with special emphasis on microbiology, plasma science, biophysics, pharmacology, molecular biology, phytochemistry, and nanoscience.
Collapse
|
20
|
Effect of Coffee on Lipopolysaccharide-Induced Immortalized Human Oral Keratinocytes. Foods 2022; 11:foods11152199. [PMID: 35892784 PMCID: PMC9330743 DOI: 10.3390/foods11152199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is a common inflammatory disease that is strongly influenced by dietary habits. Coffee is one of the most common dietary components; however, current research on the relationship between coffee consumption and periodontitis, as well as its underlying mechanisms, is limited. Based on a previous report, caffeine (CA) and chlorogenic acid (CGA) were formulated into artificial coffee (AC) for this experiment. Cell viability, prostaglandin E2 release, Western blotting, cellular reactive oxygen species (ROS) production, and NF-E2-related factor 2 (Nrf2) translocation analyses were performed to explore the effects of AC on lipopolysaccharide (LPS)-induced immortalized human oral keratinocytes (IHOKs) and elucidate their underlying mechanisms. AC pretreatment attenuated LPS-induced inflammatory mediator release, ROS production, and nuclear factor kappa B translocation in IHOKs. CA and CGA promoted AMP-activated protein kinase phosphorylation and down-regulated the nuclear factor-κB pathways to exert anti-inflammatory effects. Additionally, CGA promoted Nrf2 translocation and heme oxygenase-1 expression and showed anti-oxidative effects. Furthermore, AC, CA, and CGA components showed synergistic effects. Thus, we predict that coffee consumption may be beneficial for alleviating periodontitis. Moreover, the main coffee components CA and CGA seem to play a synergistic role in periodontitis.
Collapse
|
21
|
Alves TDP, Pereira MTM, Charret TS, Thurler-Júnior JC, Wermelinger GF, Baptista AR, Robbs BK, Sawaya ACHF, Pascoal VDB, Pascoal ACRR. Evaluation of the antiproliferative potential of Eugenia pyriformis leaves in cervical cancer cells. Chem Biodivers 2022; 19:e202200114. [PMID: 35798670 DOI: 10.1002/cbdv.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/02/2022] [Indexed: 11/07/2022]
Abstract
Eugenia pyriformis , typically known as uvaia, ubaia, uvaieira, uvalha or uvalha-do-campo, is a plant representative of the Myrtaceae family. E. pyriformis decreased HeLa cells proliferation, can induce cell death and reduce cell migration that may be related to metastasis and induction of cell death by apoptosis in vitro assays. Its leaves are used in folk medicine for hypertension control, decreased cholesterol and uric acid, slimming, astringent, and digestive. In this work, the evaluation of the in vitro anticancer potential Cervical Cancer (HeLa cells) and phytochemical analysis in E. pyriformes was performed. It was possible to quantify phenolic compounds and total flavonoids and identify Chlorogenic acid, Quercetrin, and Myricitrin in this species. The crude extract and ethyl acetate fraction inhibited cell viability by 50% in the dose of 44.42 μg/mL and 40.39 μg/mL, respectively. The induced effector caspase 3/7 activation, which results in apoptosis and the ethyl acetate fraction , decreases cell migration of cancer cell line; it is responsible for the cleavage of several cellular proteins that will result in the classic phenotype of the apoptotic cell.
Collapse
Affiliation(s)
- Thiago De Paula Alves
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Mariana Toledo Martins Pereira
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Fluminense Federal University, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Thiago Sardou Charret
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Júlio César Thurler-Júnior
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Guilherme Freimann Wermelinger
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Andrea Regina Baptista
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Bruno Kaufmann Robbs
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Alexandra C H F Sawaya
- UNICAMP: Universidade Estadual de Campinas, Faculty of Pharmaceutical Sciences, Rua Monteiro Lobato, 255, Campinas, BRAZIL
| | | | | |
Collapse
|
22
|
Castro-Vazquez D, Sánchez-Carranza JN, Alvarez L, Juárez-Mercado KE, Sánchez-Cruz N, Medina-Franco JL, Antunez-Mojica M, González-Maya L. Methyl benzoate and cinnamate analogs as modulators of DNA methylation in hepatocellular carcinoma. Chem Biol Drug Des 2022; 100:245-255. [PMID: 35451561 DOI: 10.1111/cbdd.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Phenolic acids represent a large collection of phytochemical molecules present in the plant kingdom; they have an important role as epigenetic regulators, particularly as inhibitors of DNA methylation. In the present study, 14 methyl benzoate and cinnamate analogs were synthesized (11-24). Their cytotoxic activity on hepatocellular carcinoma cells (Hep3B) and immortalized human hepatocyte cells was then evaluated. In addition, its effect on the inhibition of global DNA methylation in Hep3B was also determined. Our results showed that the cinnamic derivatives 11-14 and 20-22 were more potent than the free caffeic acid (IC50 109.7-364.2 µM), being methyl 3,4-dihydroxycinammate (12) the most active with an IC50 = 109.7 ± 0.8 µM. Furthermore, 11-14, 20-23 compounds decreased overall DNA methylation levels by 63% to 97%. The analogs methyl 4-hydroxycinnamate (11), methyl 3,4,5-trimethoxycinnamate (14), methyl 4-methoxycinnamate (21), and methyl 3,4-dimethoxycinnamate (22) showed relevant activities of both cytotoxicity and global DNA methylation inhibition. The molecular docking of 21 and 14 suggested that they partly bind to the SAH-binding pocket of DNA methyltransferase 1. These results emphasize the importance of natural products and their analogs as potential sources of DNA methylation modulating agents.
Collapse
Affiliation(s)
- Diana Castro-Vazquez
- Centro de Investigaciones Químicas IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.,Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Laura Alvarez
- Centro de Investigaciones Químicas IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Karina Eurídice Juárez-Mercado
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Noberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mayra Antunez-Mojica
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
23
|
Barrero MJ, Cejas P, Long HW, Ramirez de Molina A. Nutritional Epigenetics in Cancer. Adv Nutr 2022; 13:1748-1761. [PMID: 35421212 PMCID: PMC9526851 DOI: 10.1093/advances/nmac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 01/28/2023] Open
Abstract
Alterations in the epigenome are well known to affect cancer development and progression. Epigenetics is highly influenced by the environment, including diet, which is a source of metabolic substrates that influence the synthesis of cofactors or substrates for chromatin and RNA modifying enzymes. In addition, plants are a common source of bioactives that can directly modify the activity of these enzymes. Here, we review and discuss the impact of diet on epigenetic mechanisms, including chromatin and RNA regulation, and its potential implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,Translational Oncology Laboratory, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
24
|
Zhao J, Wei K, Chang C, Xu L, Jiang P, Guo S, Schrodi SJ, He D. DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Front Immunol 2022; 13:863703. [PMID: 35309322 PMCID: PMC8927780 DOI: 10.3389/fimmu.2022.863703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that can cause joint damage and disability. Epigenetic variation, especially DNA methylation, has been shown to be involved in almost all the stages of the pathology of RA, from autoantibody production to various self-effector T cells and the defects of protective T cells that can lead to chronic inflammation and erosion of bones and joints. Given the critical role of T cells in the pathology of RA, the regulatory functions of DNA methylation in T cell biology remain unclear. In this review, we elaborate on the relationship between RA pathogenesis and DNA methylation in the context of different T cell populations. We summarize the relevant methylation events in T cell development, differentiation, and T cell-related genes in disease prediction and drug efficacy. Understanding the epigenetic regulation of T cells has the potential to profoundly translate preclinical results into clinical practice and provide a framework for the development of novel, individualized RA therapeutics.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
25
|
Schuster C, Wolpert N, Moustaid-Moussa N, Gollahon LS. Combinatorial Effects of the Natural Products Arctigenin, Chlorogenic Acid, and Cinnamaldehyde Commit Oxidation Assassination on Breast Cancer Cells. Antioxidants (Basel) 2022; 11:591. [PMID: 35326241 PMCID: PMC8945099 DOI: 10.3390/antiox11030591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Major obstacles in current breast cancer treatment efficacy include the ability of breast cancer cells to develop resistance to chemotherapeutic drugs and the off-target cytotoxicity of these drugs on normal cells, leading to debilitating side effects. One major difference between cancer and normal cells is their metabolism, as cancer cells acquire glycolytic and mitochondrial metabolism alterations throughout tumorigenesis. In this study, we sought to exploit this metabolic difference by investigating alternative breast cancer treatment options based on the application of phytochemicals. Herein, we investigated three phytochemicals, namely cinnamaldehyde (CA), chlorogenic acid (CGA), and arctigenin (Arc), regarding their anti-breast-cancer properties. These phytochemicals were administered alone or in combination to MCF-7, MDA-MB-231, and HCC1419 breast cancer or normal MCF-10A and MCF-12F breast cells. Overall, our results indicated that the combination treatments showed stronger inhibitory effects on breast cancer cells versus single treatments. However, only treatments with CA (35 μM), CGA (250 μg/mL), and the combination of CA + CGA (35 μM + 250 μg/mL) showed no significant cytotoxic effects on normal mammary epithelial cells, suggesting that Arc was the driver of normal cell cytotoxicity in all other treatments. CA + CGA and, to a lesser extent, CGA alone effectively induced breast cancer cell death accompanied by decreases in mitochondrial membrane potential, increased mitochondrial superoxide, reduced mitochondrial and glycolytic ATP production, and led to significant changes in cellular and mitochondrial morphology. Altogether, the combination of CA + CGA was determined as the best anti-breast-cancer treatment strategy due to its strong anti-breast-cancer effects without strong adverse effects on normal mammary epithelial cells. This study provides evidence that targeting the mitochondria may be an effective anticancer treatment, and that using phytochemicals or combinations thereof offers new approaches in treating breast cancer that significantly reduce off-target effects on normal cells.
Collapse
Affiliation(s)
- Caroline Schuster
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Nicholas Wolpert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Naima Moustaid-Moussa
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409, USA;
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren S. Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
26
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
27
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
28
|
Moral R, Escrich E. Influence of Olive Oil and Its Components on Breast Cancer: Molecular Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020477. [PMID: 35056792 PMCID: PMC8780060 DOI: 10.3390/molecules27020477] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most frequent malignant neoplasia and a leading cause of mortality in women worldwide. The Mediterranean diet has been proposed as a healthy dietary pattern with protective effects in several chronic diseases, including breast cancer. This diet is characterized by the consumption of abundant plant foods and olive oil as the principal source of fat, which is considered one of the main components with potential antioxidant, anti-inflammatory and anticancer effects. Extra-virgin olive oil (EVOO) has several bioactive compounds, mainly including monounsaturated fatty acids, triterpenes and polyphenols, such as phenolic alcohols (e.g., hydroxytyrosol), secoiridoids (e.g., oleuropein and oleocanthal), lignans (e.g., pinoresinol) or flavonoids (e.g., luteolin). While epidemiological evidence is still limited, experimental in vivo and in vitro data have shown a protective effect of this oil and its compounds on mammary carcinogenesis. Such effects account through complex and multiple mechanisms, including changes in epigenetics, transcriptome and protein expression that modulate several signaling pathways. Molecular targets of EVOO compounds have a role in the acquisition of cancer hallmarks. Although further research is needed to elucidate their beneficial effects on human prevention and progression of the disease, evidence points to EVOO in the context of the Mediterranean diet as a heathy choice, while EVOO components may be promising adjuvants in anticancer strategies.
Collapse
|
29
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
30
|
Nucci D, Marino A, Realdon S, Nardi M, Fatigoni C, Gianfredi V. Lifestyle, WCRF/AICR Recommendations, and Esophageal Adenocarcinoma Risk: A Systematic Review of the Literature. Nutrients 2021; 13:3525. [PMID: 34684526 PMCID: PMC8538904 DOI: 10.3390/nu13103525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
One of the most notable changes in the epidemiology of esophageal cancer (EC) is the rising incidence and prevalence of esophageal adenocarcinoma (EAC) in developed countries. The aim of this systematic review was to collect and summarize all the available evidence regarding lifestyle, diet, and EAC risk. We searched the PubMed and Scopus databases in January 2021 for studies providing information about lifestyle, diet, WCRF/AICR recommendations, and EAC risk; published in English; without a time filter. The Newcastle-Ottawa Scale was used to assess risk of bias. The results are stratified by risk factor. A total of 106 publications were included. Half of the case-control studies were judged as high quality, whilst practically all cohort studies were judged as high quality. Body mass index and waist circumference were associated with increased EAC risk. Physical activity did not appear to have a significant direct role in EAC risk. A diet rich in fruit, vegetables, and whole grains appeared to be more protective than a Western diet. Alcohol does not seem to be related to EAC, whereas smokers, particularly heavy smokers, have an increased risk of EAC. Prevention remains the best option to avert EAC. Comprehensible and easy to follow recommendations should be provided to all subjects. Protocol ID number: CRD-42021228762, no funds received.
Collapse
Affiliation(s)
- Daniele Nucci
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Alessio Marino
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milan, Italy
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Mariateresa Nardi
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Cristina Fatigoni
- Department of Pharmaceutical Science, University of Perugia, Via del Giochetto 2, 06123 Perugia, Italy
| | - Vincenza Gianfredi
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milan, Italy
- CAPHRI Care and Public Health Research Institute, Maastricht University, 6211 Maastricht, The Netherlands
| |
Collapse
|
31
|
El Omari N, Bakha M, Imtara H, Guaouguaoua FE, Balahbib A, Zengin G, Bouyahya A. Anticancer mechanisms of phytochemical compounds: focusing on epigenetic targets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47869-47903. [PMID: 34308524 DOI: 10.1007/s11356-021-15594-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
It has recently been proven that epigenetic dysregulation is importantly involved in cell transformation and therefore induces cancerous diseases. The development of molecules called epidrugs, which target specifically different epigenetic modifications to restore cellular memory and therefore the treatment, became a real challenge currently. Currently, bioactive compounds of medicinal plants as epidrugs have been can identified and explored in cancer therapy. Indeed, these molecules can target specifically different epigenetic modulators including DNMT, HDAC, HAT, and HMT. Moreover, some compounds exhibit stochastic epigenetic actions on different pathways regulating cell memory. In this work, pharmacodynamic actions of natural epidrugs belonging to cannabinoids, carotenoids, chalcones, fatty acids, lignans, polysaccharides, saponins, secoiridoids, steroids, tannins, tanshinones, and other chemical classes we reported and highlighted. In this review, the effects of several natural bioactive compounds of epigenetic medications on cancerous diseases were highlighted. Numerous active molecules belonging to different chemical classes such as cannabinoids, carotenoids, fatty acids, lignans, polysaccharides, saponins, secoiridoids, steroids, tannins, and tanshinones are discussed in this review.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohamed Bakha
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, BP2121, 93002, Tetouan, Morocco
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University, Jenin, 240, Palestine
| | | | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco.
| |
Collapse
|
32
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
33
|
Milošević M, Arsić A, Cvetković Z, Vučić V. Memorable Food: Fighting Age-Related Neurodegeneration by Precision Nutrition. Front Nutr 2021; 8:688086. [PMID: 34422879 PMCID: PMC8374314 DOI: 10.3389/fnut.2021.688086] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Healthcare systems worldwide are seriously challenged by a rising prevalence of neurodegenerative diseases (NDDs), which mostly, but not exclusively, affect the ever-growing population of the elderly. The most known neurodegenerative diseases are Alzheimer's (AD) and Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, but some viral infections of the brain and traumatic brain injury may also cause NDD. Typical for NDD are the malfunctioning of neurons and their irreversible loss, which often progress irreversibly to dementia and ultimately to death. Numerous factors are involved in the pathogenesis of NDD: genetic variability, epigenetic changes, extent of oxidative/nitrosative stress, mitochondrial dysfunction, and DNA damage. The complex interplay of all the above-mentioned factors may be a fingerprint of neurodegeneration, with different diseases being affected to different extents by particular factors. There is a voluminous body of evidence showing the benefits of regular exercise to brain health and cognitive functions. Moreover, the importance of a healthy diet, balanced in macro- and micro-nutrients, in preventing neurodegeneration and slowing down a progression to full-blown disease is evident. Individuals affected by NDD almost inevitably have low-grade inflammation and anomalies in lipid metabolism. Metabolic and lipid profiles in NDD can be improved by the Mediterranean diet. Many studies have associated the Mediterranean diet with a decreased risk of dementia and AD, but a cause-and-effect relationship has not been deduced. Studies with caloric restriction showed neuroprotective effects in animal models, but the results in humans are inconsistent. The pathologies of NDD are complex and there is a great inter-individual (epi)genetic variance within any population. Furthermore, the gut microbiome, being deeply involved in nutrient uptake and lipid metabolism, also represents a pillar of the gut microbiome-brain axis and is linked with the pathogenesis of NDD. Numerous studies on the role of different micronutrients (omega-3 fatty acids, bioactive polyphenols from fruit and medicinal plants) in the prevention, prediction, and treatment of NDD have been conducted, but we are still far away from a personalized diet plan for individual NDD patients. For this to be realized, large-scale cohorts that would include the precise monitoring of food intake, mapping of genetic variants, epigenetic data, microbiome studies, and metabolome, lipidome, and transcriptome data are needed.
Collapse
Affiliation(s)
- Maja Milošević
- Department of Neuroendocrinology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Arsić
- Department of Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Center Zemun, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Vučić
- Department of Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
Mazumder K, Ruma YN, Akter R, Aktar A, Hossain MM, Shahina Z, Mazumdar S, Kerr PG. Identification of bioactive metabolites and evaluation of in vitro anti-inflammatory and in vivo antinociceptive and antiarthritic activities of endophyte fungi isolated from Elaeocarpus floribundus blume. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113975. [PMID: 33652111 DOI: 10.1016/j.jep.2021.113975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Functional disability associated with rheumatoid arthritis (RA), a chronic inflammatory autoimmune disease is a challenging concern in healthcare systems. Along with environmental factors and epigenetic disorders, multiple pathways are reported as prominent mechanism for the progression of RA symptoms including; pain, swelling and stiffness of joints. Elaeocarpus floribundus Blume has been used as a folklore medicine for RA from ancient times. This plant harbours a suite of endophytic fungi that produce a range of metabolites of potential interest. Thus, for the establishment of a scientific basis for this folklore use, it is essential to find out the involvement, if any, of the endophytic fungi living in this plant and the metabolites they elaborate, for the management of RA. AIM OF THE STUDY This study was designed to isolate, identify and evaluate the in vitro anti-inflammatory and in vivo antinociceptive and antiarthritic activities of the compounds produced by the endophytic fungi living in different parts of Elaeocarpus floribundus Blume. MATERIALS AND METHODS Endophytic fungi from different parts of the plant were isolated and cultured for the production of secondary metabolites. Chromatographically fractionated fungal extracts were assessed for anti-inflammatory and antinociceptive activities. For the evaluation of anti-inflammatory activity, in vitro cyclooxygenase (COX1/COX2) and 5-lipoxygenase (5-LOX) inhibitory assays were performed. For the evaluation of in vivo antinociceptive activity, hot plate acetic acid induced writhing, and formalin induced paw licking methods were adopted, whereas complete Freund's adjuvant (CFA) induced poly-arthritic method was adopted for the evaluation of antiarthritic activity. The most effective fraction was analyzed by liquid chromatography-mass spectroscopy (LC-MS) in search of the bioactive extracellular metabolites. RESULTS Five endophytic fungi viz. Aspergillus fumigatus, Aspergillus niger, Rhizoctonia oryzae, Rhizopus oryzae, and Syncephalastrum racemosum were isolated. COX1/COX2 and 5-LOX inhibitory assays state that the Aspergillus niger fraction possesses the greatest activity against these enzymes of inflammatory process. In vivo antinociceptive showed significant (***P<0.001) reduction of pain in a dose dependent manner. As well, significant (***P<0.001) reduction of paw volume was observed in CFA induce poly-arthritic test. LC/MS analysis of the Aspergillus niger fraction revealed the presence of bioactive compounds including tensyuic acid, hexylitaconic acid, chlorogenic acid, nigragillin, TMC-256C1, asnipyrone B, asperenone, fumaric acid and fusarubin, all having reported pharmacological activities. CONCLUSION The present study demonstrates that secondary metabolites produced by endophytic fungi living in various parts of Elaeocarpus floribundus Blume had potential to relief pain and inflammation. The endophytes were found to contain multiple biomolecules effective in rheumatoid arthritis. These findings provide a rationale for the folklore use of the plant in the management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jessore, 7408, Jashore, Bangladesh; School of Biomedical Science, Charles Sturt University, Booroma St, Wagga Wagga, NSW, Australia.
| | - Yasmeen Nazim Ruma
- Department of Pharmacy, Faculty of Basic Medicine and Health Sciences, University of Science and Technology Chittagong, Foy's Lake, Chittagong, Bangladesh
| | - Rasheda Akter
- Department of Pharmacology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chittagong Cantonment, Chittagong-4220, Bangladesh
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jessore, 7408, Jashore, Bangladesh
| | - Mir Monir Hossain
- Department of Pharmacy, Faculty of Basic Medicine and Health Sciences, University of Science and Technology Chittagong, Foy's Lake, Chittagong, Bangladesh
| | - Zinnat Shahina
- Department of Medical Microbiology, University of Science and Technology Chittagong, Foy's Lake, Chittagong, Bangladesh
| | - Santosh Mazumdar
- Department of Pharmacology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chittagong Cantonment, Chittagong-4220, Bangladesh
| | - Philip G Kerr
- School of Biomedical Science, Charles Sturt University, Booroma St, Wagga Wagga, NSW, Australia
| |
Collapse
|
35
|
Iqubal A, Iqubal MK, Fazal SA, Pottoo FH, Haque SE. Nutraceuticals and their Derived Nano-formulations for the Prevention and Treatment of Alzheimer's disease. Curr Mol Pharmacol 2021; 15:23-50. [PMID: 33687906 DOI: 10.2174/1874467214666210309115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is one of the common chronic neurological disorders and associated with cognitive dysfunction, depression and progressive dementia. Presence of β-amyloid or senile plaques, hyper-phosphorylated tau proteins, neurofibrillary tangle, oxidative-nitrative stress, mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation and derailed neurotransmitter status are the hallmark of AD. Currently, donepezil, memantine, rivastigmine and galantamine are approved by the FDA for symptomatic management. It is well-known that these approved drugs only exert symptomatic relief and possess poor patient-compliance. Additionally, various published evidence shows the neuroprotective potential of various nutraceuticals via their antioxidant, anti-inflammatory and anti-apoptotic effects in the preclinical and clinical studies. These nutraceuticals possess a significant neuroprotective potential and hence, can be a future pharmacotherapeutic for the management and treatment of AD. However, nutraceutical suffers from certain major limitations such as poor solubility, low bioavailability, low stability, fast hepatic-metabolism and larger particle size. These pharmacokinetic attributes restrict their entry into the brain via the blood-brain barrier. Therefore, to over such issues, various nanoformulation of nutraceuticals was developed, that allows their effective delivery into brain owning to reduced particle size, increased lipophilicity increased bioavailability and avoidance of fast hepatic metabolism. Thus, in this review, we have discussed the etiology of AD, focused on the pharmacotherapeutics of nutraceuticals with preclinical and clinical evidence, discussed pharmaceutical limitation and regulatory aspects of nutraceuticals to ensure safety and efficacy. We further explored the latitude of various nanoformulation of nutraceuticals as a novel approach to overcome the existing pharmaceutical limitation and for effective delivery into the brain.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Syed Abul Fazal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441. Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| |
Collapse
|
36
|
Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021; 417:115467. [PMID: 33631231 DOI: 10.1016/j.taap.2021.115467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Owing to the technological advancements, including next generation sequencing, the significance of deregulated epigenetic mechanisms in cancer initiation, progression and treatment has become evident. The accumulating knowledge relating to the epigenetic markers viz. DNA methylation, Histone modifications and non-coding RNAs make them one of the most interesting candidates for developing anti-cancer therapies. The reversibility of deregulated epigenetic mechanisms through environmental and dietary factors opens numerous avenues in the field of chemoprevention and drug development. Recent studies have proven that plant-derived natural products encompass a great potential in targeting epigenetic signatures in cancer and numerous natural products are being explored for their possibility to be considered as "epi-drug". This review intends to highlight the major aberrant epigenetic mechanisms and summarizes the essential functions of natural products like Resveratrol, Quercetin, Genistein, EGCG, Curcumin, Sulforaphane, Apigenin, Parthenolide and Berberine in modulating these aberrations. This knowledge along with the challenges and limitations in this field has potential and wider implications in developing novel and successful therapeutic strategies. The increased focus in the area will possibly provide a better understanding for the development of dietary supplements and/or drugs either alone or in combination. The interaction of epigenetics with different hallmarks of cancer and how natural products can be utilized to target them will also be interesting in the future therapeutic approaches.
Collapse
|
37
|
Ruggiero E, Di Castelnuovo A, Costanzo S, Persichillo M, De Curtis A, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Bonaccio M. Daily Coffee Drinking Is Associated with Lower Risks of Cardiovascular and Total Mortality in a General Italian Population: Results from the Moli-sani Study. J Nutr 2021; 151:395-404. [PMID: 33382422 DOI: 10.1093/jn/nxaa365] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND An inverse relationship between coffee intake and mortality has been observed in several population cohorts, but rarely within Mediterranean countries. Moreover, the biological pathways mediating such an association remain unclear. OBJECTIVES We assessed the associations between coffee consumption and total and cause-specific mortality and examined the mediating roles of N-terminal pro B-type natriuretic peptide (NTproBNP), high-sensitivity Troponin I, blood glucose, lipid metabolism, and selected biomarkers of inflammation and renal function. METHODS We longitudinally analyzed data on 20,487 men and women (35-94 years old at baseline) in the Moli-sani Study, a prospective cohort established in 2005-2010. Individuals were free from cardiovascular disease (CVD) and cancer and were followed-up for a median of 8.3 years. Dietary data were collected by a 188-item semi-quantitative FFQ. Coffee intake was standardized to a 30-mL Italian espresso cup size. HRs with 95% CIs were calculated by multivariable Cox regression. RESULTS In comparison with no/rare coffee consumption (up to 1 cup/d), HRs for all-cause mortality across categories of coffee consumption (>1 to ≤2, >2 to ≤3, >3 to ≤4 and >4 cups/d) were 0.79 (95% CI, 0.65-0.95), 0.84 (95% CI, 0.69-1.03), 0.72 (95% CI, 0.57-0.92), and 0.85 (95% CI, 0.62-1.12), respectively. For CVD mortality, a nonlinear (P for non-linearity = 0.021) J-shaped association was found (magnitude of the relative reduction = 37%; nadir at 3-4 cups/d). Circulating levels of NTproBNP explained up to 26.4% of the association between coffee and all-cause mortality, while systolic blood pressure was likely to be on the pathway between coffee and CVD mortality, although to a lesser extent. CONCLUSIONS In this large cohort of Italian adults, moderate consumption (3-4 cups/d) of Italian-style coffee was associated with lower risks of all-cause and, specifically, of CVD mortality. Among the known biomarkers investigated here, NTproBNP likely mediates the relationship between coffee intake and all-cause mortality.
Collapse
Affiliation(s)
- Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy.,Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine, University of Insubria, Varese-Como, Italy
| | | | | |
Collapse
|
38
|
Abstract
OBJECTIVES To conduct a systematic review with meta-analysis of cohort studies to evaluate the association of coffee consumption with the risk of prostate cancer. DATA SOURCES PubMed, Web of Science and Embase were searched for eligible studies up to September 2020. STUDY SELECTION Cohort studies were included. DATA EXTRACTION AND SYNTHESIS Two researchers independently reviewed the studies and extracted the data. Data synthesis was performed via systematic review and meta-analysis of eligible cohort studies. Meta-analysis was performed with the "metan" and "glst" commands in Stata 14.0. MAIN OUTCOMES AND MEASURES Prostate cancer was the main outcome. It was classified as localised prostate cancer which included localised or non-aggressive cancers; advanced prostate cancer which included advanced or aggressive cancers; or fatal prostate cancer which included fatal/lethal cancers or prostate cancer-specific deaths. RESULTS Sixteen prospective cohort studies were finally included, with 57 732 cases of prostate cancer and 1 081 586 total cohort members. Higher coffee consumption was significantly associated with a lower risk of prostate cancer. Compared with the lowest category of coffee consumption, the pooled relative risk (RR) was 0.91 (95% CI 0.84 to 0.98), I2= 53.2%) for the highest category of coffee consumption. There was a significant linear trend for the association (p=0.006 for linear trend), with a pooled RR of 0.988 (95% CI 0.981 to 0.995) for each increment of one cup of coffee per day. For localised, advanced and fatal prostate cancer, the pooled RRs were 0.93 (95% CI 0.87 to 0.99), 0.88 (95% CI 0.71 to 1.09) and 0.84 (95% CI 0.66 to 1.08), respectively. No evidence of publication bias was indicated in this meta-analysis. CONCLUSIONS This study suggests that a higher intake of coffee may be associated with a lower risk of prostate cancer.
Collapse
Affiliation(s)
- Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
39
|
Kaleem M, Alhosin M, Khan K, Ahmad W, Hosawi S, Nur SM, Choudhry H, Zamzami MA, Al-Abbasi FA, Javed MDN. Epigenetic Basis of Polyphenols in Cancer Prevention and Therapy. POLYPHENOLS-BASED NANOTHERAPEUTICS FOR CANCER MANAGEMENT 2021:189-238. [DOI: 10.1007/978-981-16-4935-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
40
|
Effects of Coffee and Its Components on the Gastrointestinal Tract and the Brain-Gut Axis. Nutrients 2020; 13:nu13010088. [PMID: 33383958 PMCID: PMC7824117 DOI: 10.3390/nu13010088] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most popular beverages consumed worldwide. Roasted coffee is a complex mixture of thousands of bioactive compounds, and some of them have numerous potential health-promoting properties that have been extensively studied in the cardiovascular and central nervous systems, with relatively much less attention given to other body systems, such as the gastrointestinal tract and its particular connection with the brain, known as the brain–gut axis. This narrative review provides an overview of the effect of coffee brew; its by-products; and its components on the gastrointestinal mucosa (mainly involved in permeability, secretion, and proliferation), the neural and non-neural components of the gut wall responsible for its motor function, and the brain–gut axis. Despite in vitro, in vivo, and epidemiological studies having shown that coffee may exert multiple effects on the digestive tract, including antioxidant, anti-inflammatory, and antiproliferative effects on the mucosa, and pro-motility effects on the external muscle layers, much is still surprisingly unknown. Further studies are needed to understand the mechanisms of action of certain health-promoting properties of coffee on the gastrointestinal tract and to transfer this knowledge to the industry to develop functional foods to improve the gastrointestinal and brain–gut axis health.
Collapse
|
41
|
Juárez-Mercado KE, Prieto-Martínez FD, Sánchez-Cruz N, Peña-Castillo A, Prada-Gracia D, Medina-Franco JL. Expanding the Structural Diversity of DNA Methyltransferase Inhibitors. Pharmaceuticals (Basel) 2020; 14:ph14010017. [PMID: 33375520 PMCID: PMC7824300 DOI: 10.3390/ph14010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed extended connectivity interaction features approach, led to an excellent agreement between the experimental IC50 values and docking scores.
Collapse
Affiliation(s)
- K. Eurídice Juárez-Mercado
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Fernando D. Prieto-Martínez
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Andrea Peña-Castillo
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Diego Prada-Gracia
- Research Unit on Computational Biology and Drug Design, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
- Correspondence:
| |
Collapse
|
42
|
Antiobesity effects of phytochemicals from an epigenetic perspective. Nutrition 2020; 84:111119. [PMID: 33476999 DOI: 10.1016/j.nut.2020.111119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Obesity is an important cause of morbidity and mortality due to its close association with metabolic disorders including diabetes, cardiovascular diseases, and certain types of cancer. According to the Developmental Origins of Adult Health and Disease hypothesis, obesity is likely caused by epigenetic changes. Recent studies have shown an association between epigenetic dysregulation of certain genes and obesity. Due to their reversible characteristic, epigenetic dysregulations can be restored. Restoration of epigenetic dysregulation in obesity-related genes by epigenetic modifiers may be a new treatment option for obesity. Certain phytochemicals such as tea polyphenols, curcumin, genistein, isothiocyanates, and citrus isoflavonoids were shown to prevent weight gain. These phytochemicals are known for their antioxidant effects but they also modify epigenetic mechanisms. These phytochemicals may have a therapeutic potential in the management of obesity. The aim of this study was to review the epigenetic effects of certain phytochemicals on the expression of obesity-related genes.
Collapse
|
43
|
Evaluation of the In Vitro Cytotoxic Activity of Caffeic Acid Derivatives and Liposomal Formulation against Pancreatic Cancer Cell Lines. MATERIALS 2020; 13:ma13245813. [PMID: 33352809 PMCID: PMC7766656 DOI: 10.3390/ma13245813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer belongs to the most aggressive group of cancers, with very poor prognosis. Therefore, there is an important need to find more potent drugs that could deliver an improved therapeutic approach. In the current study we searched for selective and effective caffeic acid derivatives. For this purpose, we analyzed twelve compounds and evaluated their in vitro cytotoxic activity against two human pancreatic cancer cell lines, along with a control, normal fibroblast cell line, by the classic MTT assay. Six out of twelve tested caffeic acid derivatives showed a desirable effect. To improve the therapeutic efficacy of such active compounds, we developed a formulation where caffeic acid derivative (7) was encapsulated into liposomes composed of soybean phosphatidylcholine and DSPE-PEG2000. Subsequently, we analyzed the properties of this formulation in terms of basic physical parameters (such as size, zeta potential, stability at 4 °C and morphology), hemolytic and cytotoxic activity and cellular uptake. Overall, the liposomal formulation was found to be stable, non-hemolytic and had activity against pancreatic cancer cells (IC50 19.44 µM and 24.3 µM, towards AsPC1 and BxPC3 cells, respectively) with less toxicity against normal fibroblasts. This could represent a promising alternative to currently available treatment options.
Collapse
|
44
|
Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Front Oncol 2020; 10:605386. [PMID: 33312959 PMCID: PMC7708379 DOI: 10.3389/fonc.2020.605386] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.
Collapse
Affiliation(s)
- Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Marco Antonio Meraz-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
45
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
46
|
Hu J, Cao S, Zhang Z, Wang L, Wang D, Wu Q, Li L. Effects of caffeic acid on epigenetics in the brain of rats with chronic unpredictable mild stress. Mol Med Rep 2020; 22:5358-5368. [PMID: 33173990 PMCID: PMC7647007 DOI: 10.3892/mmr.2020.11609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
The present study hypothesized that caffeic acid (3,4-dihydroxycinnamic acid; CaA) may exert antidepressant-like effects in rats with chronic unpredictable mild stress via epigenetic mechanisms, such as DNA methylation and hydroxymethylation. The chronic unpredictable mild stress (CUMS) model was used to analyze the effects of CaA on behavioral phenotypes, and to evaluate the distribution of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the hippocampus and prefrontal cortex using immunohistochemistry and immunofluorescence. mRNA levels of the genes encoding brain-derived neurotropic factor (BDNF) and catechol-O-methyltransferase (COMT), and key enzymes regulating DNA methylation [DNA methyltransferase (DNMT)1 and DNMT3A] and hydroxymethylation [Ten-eleven translocation (TET)1-3] were examined using quantitative (q)PCR. Furthermore, enrichment of 5mC and 5hmC at the promotor regions of the Bdnf and Comt genes was quantified using chromatin immunoprecipitation-qPCR. Behavioral data showed that CaA exerted a slight antidepressant-like effect. Bdnf and Comt genes showed differential expression patterns due to CUMS. CaA intervention induced different Dnmt1/Dnmt3a and Tet1/Tet2 mRNA levels in the hippocampus and prefrontal cortex, respectively. CaA regulated the ratio of 5mC/5hmC at the promotor region of the Bdnf and Comt genes and therefore influenced gene expression, which may be a valuable therapeutic option for major depressive disorder (MDD). In conclusion, there were epigenetic changes in the hippocampus and prefrontal cortex in CUMS rats, and CaA may function as a modulator of DNA methylation to regulate gene transcription, thus providing a mechanistic basis for the use of this phytochemical agent in the treatment of MDD.
Collapse
Affiliation(s)
- Jinye Hu
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Shuyuan Cao
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhan Zhang
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Li Wang
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Di Wang
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Qian Wu
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Lei Li
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
47
|
Hayakawa S, Ohishi T, Miyoshi N, Oishi Y, Nakamura Y, Isemura M. Anti-Cancer Effects of Green Tea Epigallocatchin-3-Gallate and Coffee Chlorogenic Acid. Molecules 2020; 25:molecules25194553. [PMID: 33027981 PMCID: PMC7582793 DOI: 10.3390/molecules25194553] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Tea and coffee are consumed worldwide and epidemiological and clinical studies have shown their health beneficial effects, including anti-cancer effects. Epigallocatechin gallate (EGCG) and chlorogenic acid (CGA) are the major components of green tea polyphenols and coffee polyphenols, respectively, and believed to be responsible for most of these effects. Although a large number of cell-based and animal experiments have provided convincing evidence to support the anti-cancer effects of green tea, coffee, EGCG, and CGA, human studies are still controversial and some studies have suggested even an increased risk for certain types of cancers such as esophageal and gynecological cancers with green tea consumption and bladder and lung cancers with coffee consumption. The reason for these inconsistent results may have been arisen from various confounding factors. Cell-based and animal studies have proposed several mechanisms whereby EGCG and CGA exert their anti-cancer effects. These components appear to share the common mechanisms, among which one related to reactive oxygen species is perhaps the most attractive. Meanwhile, EGCG and CGA have also different target molecules which might explain the site-specific differences of anti-cancer effects found in human studies. Further studies will be necessary to clarify what is the mechanism to cause such differences between green tea and coffee.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan;
- Correspondence: (S.H.); (M.I.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5920 (M.I.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan;
| | - Noriyuki Miyoshi
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan;
| | - Yoriyuki Nakamura
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
| | - Mamoru Isemura
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
- Correspondence: (S.H.); (M.I.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5920 (M.I.)
| |
Collapse
|
48
|
Wang L, Du H, Chen P. Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomed Pharmacother 2020; 131:110673. [PMID: 32882585 DOI: 10.1016/j.biopha.2020.110673] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
Chlorogenic acid, an important active component of coffee with anti-tumor activities, has been found for a hundred years. However, the lack of understanding about its target proteins greatly limits the exploration of its anti-tumor molecular mechanisms and clinical applications. Here, in vitro and animal experiments showed that chlorogenic acid had a significant inhibitory effect on the proliferation of A549 cells. The ability of chlorogenic acid to naturally emit fluorescence was exploited to screen its target proteins while avoiding false positives brought about by chemical modifications when using fluorescent tags. Consequently, we identified and verified annexin A2 as a covalent binding target of chlorogenic acid in A549 cells. We also discovered that chlorogenic acid inhibits the binding of annexin A2 to p50 subunit thereby inhibiting the expression of downstream anti-apoptotic genes cIAP1 and cIAP2 of the NF-κB signaling pathway in A549 cells in vitro and in vivo. Moreover, we found that chlorogenic acid hindered the binding of annexin A2 to actin possibly causing inhibition of tumor cell cycle and migration. Thus, this work demonstrates that chlorogenic acid binds annexin A2, causing a decrease in the expression of NF-κB downstream anti-apoptotic genes, and inhibiting the proliferation of A549 cells in vivo and in vitro.
Collapse
Affiliation(s)
- Lei Wang
- 112 Lab., School of Chemistry and Biotechnology Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongwu Du
- 112 Lab., School of Chemistry and Biotechnology Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
49
|
Wang P, Yamabe N, Hong CJ, Bai HW, Zhu BT. Caffeic acid phenethyl ester, a coffee polyphenol, inhibits DNA methylation in vitro and in vivo. Eur J Pharmacol 2020; 887:173464. [PMID: 32781171 DOI: 10.1016/j.ejphar.2020.173464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
DNA methylation represents an important epigenetic regulation of the genome. Earlier studies have suggested that dietary phenolic compounds including those contained in coffee, tea and soy products may modulate the level of DNA methylation. In this study, we first characterize the effect of caffeic acid phenethyl ester (CAPE) and other dietary phenolic compounds on DNA methylation in vitro. The IC50 values of CAPE, daidzein, isorhamnetin and genistein are 7.6, 6.9, 6.2, and 4.3 μM, respectively, in an in-vitro enzymatic assay system. Computational analysis indicates that CAPE, daidzein, isorhamnetin and genistein can bind inside the DNA substrate-binding site in human DNMT1 with a favorable binding energy. In an animal study, we find that maternal CAPE treatment shifts the coat color distribution of the 21-day-old Avy/a offspring towards the yellow phenotype, indicating that CAPE inhibits the methylation of the agouti gene promoter sequence in vivo. The results from this study may shed light on the potential epigenetic effect in the offspring resulting from maternal intake of certain coffee phenolics during pregnancy.
Collapse
Affiliation(s)
- Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Can-Jian Hong
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Hyoung-Woo Bai
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 580-185, Republic of Korea
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
50
|
Hernandes LC, Machado ART, Tuttis K, Ribeiro DL, Aissa AF, Dévoz PP, Antunes LMG. Caffeic acid and chlorogenic acid cytotoxicity, genotoxicity and impact on global DNA methylation in human leukemic cell lines. Genet Mol Biol 2020; 43:e20190347. [PMID: 32644097 PMCID: PMC7350414 DOI: 10.1590/1678-4685-gmb-2019-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Dietary phenolic compounds such as caffeic and chlorogenic acid exert an antiproliferative effect and modulate the gene-specific DNA methylation status in human breast tumor cells, but it remains unclear whether they interfere with global DNA methylation in human leukemia cells. We examined whether caffeic and chlorogenic acid (1-250 µM) exert antitumor action in human promyelocytic leukemia cells (HL-60) and human acute T-cell leukemia cells (Jurkat). Caffeic and chlorogenic acid did not reduce cell viability in the two cell lines, as assessed using the neutral red uptake and MTT assays. These phenolic acids (1-100 μM) neither induced DNA damage (comet assay) nor increased the micronuclei frequency (micronucleus assay) in HL-60 and Jurkat cells, indicating that they were not genotoxic or mutagenic. Analysis of global DNA methylation levels using a 5-mC DNA ELISA kit revealed that chlorogenic acid at a non-cytotoxic concentration (100 μM) induced global DNA hypomethylation in Jurkat cells, but not in HL-60 cells, suggesting that it exerts a cell-specific effect. Caffeic acid did not change global DNA methylation. As other phenolic compounds, chlorogenic acid probably modulates DNA methylation by targeting DNA methyltransferases. The hypomethylating action of chlorogenic acid can be beneficial against hematological malignances whose pathogenic processes involve impairment of DNA methylation.
Collapse
Affiliation(s)
- Lívia Cristina Hernandes
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| | - Ana Rita Thomazela Machado
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| | - Katiuska Tuttis
- Universidade de São Paulo USP, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Diego Luís Ribeiro
- Universidade de São Paulo USP, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Alexandre Ferro Aissa
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| | - Paula Pícoli Dévoz
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| |
Collapse
|