1
|
Peacock TP, Moncla L, Dudas G, VanInsberghe D, Sukhova K, Lloyd-Smith JO, Worobey M, Lowen AC, Nelson MI. The global H5N1 influenza panzootic in mammals. Nature 2025; 637:304-313. [PMID: 39317240 DOI: 10.1038/s41586-024-08054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Influenza A viruses have caused more documented global pandemics in human history than any other pathogen1,2. High pathogenicity avian influenza viruses belonging to the H5N1 subtype are a leading pandemic risk. Two decades after H5N1 'bird flu' became established in poultry in Southeast Asia, its descendants have resurged3, setting off a H5N1 panzootic in wild birds that is fuelled by: (1) rapid intercontinental spread, reaching South America and Antarctica for the first time4,5; (2) fast evolution via genomic reassortment6; and (3) frequent spillover into terrestrial7,8 and marine mammals9. The virus has sustained mammal-to-mammal transmission in multiple settings, including European fur farms10,11, South American marine mammals12-15 and US dairy cattle16-19, raising questions about whether humans are next. Historically, swine are considered optimal intermediary hosts that help avian influenza viruses adapt to mammals before jumping to humans20. However, the altered ecology of H5N1 has opened the door to new evolutionary pathways. Dairy cattle, farmed mink or South American sea lions may have the potential to serve as new mammalian gateways for transmission of avian influenza viruses to humans. In this Perspective, we explore the molecular and ecological factors driving the sudden expansion in H5N1 host range and assess the likelihood of different zoonotic pathways leading to an H5N1 pandemic.
Collapse
Affiliation(s)
- Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, UK
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Louise Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gytis Dudas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Ksenia Sukhova
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Martha I Nelson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Verhoeven D, Sponseller BA, Crowe JE, Bangaru S, Webby RJ, Lee BM. Use of equine H3N8 hemagglutinin as a broadly protective influenza vaccine immunogen. NPJ Vaccines 2024; 9:247. [PMID: 39702334 DOI: 10.1038/s41541-024-01037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Development of an efficacious universal influenza vaccines remains a long-sought goal. Current vaccines have shortfalls such as mid/low efficacy and needing yearly strain revisions to account for viral drift/shift. Horses undergo bi-annual vaccines for the H3N8 equine influenza virus, and surveillance of sera from vaccinees demonstrated very broad reactivity and neutralization to many influenza strains. Subsequently, vaccinating mice using the equine A/Kentucky/1/1991 strain or recombinant hemagglutinin (HA) induced similar broadly reactive and neutralizing antibodies to seasonal and high pathogenicity avian influenza strains. Challenge of vaccinated mice protected from lethal virus challenges across H1N1 and H3N2 strains. This protection correlated with neutralizing antibodies to the HA head, esterase, and stem regions. Vaccinated ferrets were also protected after challenge with H1N1 influenza A/07/2009 virus using whole viral or HA. These data suggest that equine H3N8 induces broad protection against multiple influenzas using a unique antigen that diverges from other universal vaccine approaches.
Collapse
Affiliation(s)
- David Verhoeven
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.
| | - Brett A Sponseller
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
- Department of Veterinary Clinical Service, Iowa State University, Ames, IA, USA
| | - James E Crowe
- Department of Pediatrics, Vanderbilt Vaccine Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sandhya Bangaru
- Department of Pediatrics, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude's Children's, Memphis, TN, USA
| | - Brian M Lee
- Department of Chemistry, Coastal Carolina University, Conway, SC, USA
| |
Collapse
|
3
|
Kontowicz E, Moreno-Madriñan M, Clarke Z, Ragland D, Beauvais W. Risk assessment of influenza transmission between workers and pigs on US indoor hog growing units. Prev Vet Med 2024; 230:106232. [PMID: 39053175 DOI: 10.1016/j.prevetmed.2024.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024]
Abstract
On pig farms ample opportunity exists for pig-to-human and human-to-pig (cross-species) influenza transmission. The purpose of this study was to assess the risks of cross-species influenza transmission within an indoor pig grower unit in the United States and to prioritize data gaps. Using the World Organization for Animal Health risk assessment framework we evaluated influenza transmission across two risk pathways: 1. What is the likelihood that based on current conditions on a single typical hog grower-finisher facility in the Midwest (US), during a single production cycle, at least one hog becomes infected with an influenza virus associated with swine (either H1N1, H3N2, or H1N2) [step 1a] and that at least one worker becomes infected as a result [step 1b] and that the worker develops symptoms [step 1c]? And 2. What is the likelihood that, based on current conditions on a single typical hog grower-finisher facility in the Midwest (US), during a single production cycle, at least one worker becomes infected with an influenza virus associated with people (either H1N1, H3N2, or H1N2) [step 2a] and that at least one pig becomes infected as a result [step 2b] and that the pig(s) develop(s) symptoms [step 2c]? Semi-quantitative probability and uncertainty assessments were based on literature review including passive and active influenza surveillance data. We assumed a typical pig-grower farm has capacity for 4,000 pigs, two workers, and minimal influenza control measures. Probability and uncertainty categories were assessed for each risk step and the combined risk pathway. The combined risk assessment for risk pathway one was estimated to be Very Low for H1N1 and H1N2 with an overall High level of uncertainty. The combined risk assessment for risk pathway two was estimated to be Extremely Low for H1N1 and H3N2 with a High degree of uncertainty. Scenario analyses in which influenza control measures were assumed to be implemented separately (implementing vaccinating sows, mass vaccinating incoming pigs or improved personal protective equipment adherence) showed no reduction in the combined risk category. When implementing three influenza control methods altogether, the combined risk could be reduced to Extremely Low for risk pathway one and remained Extremely Low for risk pathway two. This work highlights that multiple influenza control methods are needed to reduce the risks of inter-species influenza transmission on swine farms.
Collapse
Affiliation(s)
- Eric Kontowicz
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Max Moreno-Madriñan
- Global Health Program, DePauw University, Greencastle 46135, Indiana; Department of Global Health, Indiana University, Indianapolis 46202, Indiana
| | - Zenobya Clarke
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Wendy Beauvais
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana.
| |
Collapse
|
4
|
Dias AS, Baker ALV, Baker RB, Zhang J, Zeller MA, Kitikoon P, Gauger PC. Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System. Viruses 2024; 16:626. [PMID: 38675967 PMCID: PMC11054297 DOI: 10.3390/v16040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.
Collapse
MESH Headings
- Animals
- Swine
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Swine Diseases/prevention & control
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/epidemiology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/isolation & purification
- Influenza A virus/classification
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Phylogeny
- Farms
- Animals, Suckling
- Vaccination/veterinary
- Endemic Diseases/veterinary
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- RNA, Viral/genetics
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/immunology
- Genome, Viral
Collapse
Affiliation(s)
- Alessandra Silva Dias
- Department of Preventive Veterinary Medicine, Minas Gerais State University, 6627 Antonio Carlos Avenue, Belo Horizonte 31620-295, MG, Brazil;
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Rodney B. Baker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Michael A. Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Pravina Kitikoon
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
- Phillip Gauger of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
5
|
Tapia R, Brito B, Saavedra M, Mena J, García-Salum T, Rathnasinghe R, Barriga G, Tapia K, García V, Bucarey S, Jang Y, Wentworth D, Torremorell M, Neira V, Medina RA. Novel influenza A viruses in pigs with zoonotic potential, Chile. Microbiol Spectr 2024; 12:e0218123. [PMID: 38446039 PMCID: PMC10986610 DOI: 10.1128/spectrum.02181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.
Collapse
Affiliation(s)
| | - Bárbara Brito
- Universidad de Chile, Santiago, Chile
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University of Technology Sydney, Sydney, New South Wales, Australia
| | - Marco Saavedra
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Mena
- Universidad de Chile, Santiago, Chile
| | - Tamara García-Salum
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raveen Rathnasinghe
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Barriga
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Tapia
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Yunho Jang
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - David Wentworth
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | | | | - Rafael A. Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Experimental Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Wu R, Zeng X, Wu M, Xie L, Xu G, Mao Y, Wang Z, Cheng Y, Wang H, Yan Y, Sun J, Ma J. The Mobility of Eurasian Avian-like M2 Is Determined by Residue E79 Which Is Essential for Pathogenicity of 2009 Pandemic H1N1 Influenza Virus in Mice. Viruses 2023; 15:2365. [PMID: 38140609 PMCID: PMC10747126 DOI: 10.3390/v15122365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In 2009, a novel H1N1 influenza virus caused the first influenza pandemic of the 21st century. Studies have shown that the influenza M gene played important roles in the pathogenicity and transmissibility of the 2009 H1N1 pandemic ((H1N1)pdm09), whilst the underlying mechanism remains unclear. The influenza M gene encodes two proteins, matrix protein 1 and matrix protein 2, which play important roles in viral replication and assembly. In this study, it is found that the M2 protein of the (H1N1)pdm09 virus showed a lower mobility rate than the North America triple-reassortant influenza M2 protein in Polyacrylamide Gel Electrophoresis (PAGE). The site-directed mutations of the amino acids of (H1N1)pdm09 M2 revealed that E79 is responsible for the mobility rate change. Further animal studies showed that the (H1N1)pdm09 containing a single M2-E79K was significantly attenuated compared with the wild-type virus in mice and induced lower proinflammatory cytokines and IFNs in mouse lungs. Further in vitro studies indicated that this mutation also affected NLRP3 inflammasome activation. To reveal the reason why they have different mobility rates, a circular dichroism spectra assay was employed and showed that the two M2 proteins displayed different secondary structures. Overall, our findings suggest that M2 E79 is important for the virus replication and pathogenicity of (H1N1)pdm09 through NLRP3 inflammasome and proinflammatory response.
Collapse
Affiliation(s)
- Rujuan Wu
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
- Ganzhou Polytechnic, Ganzhou 341000, China
| | - Xinyu Zeng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| | - Mingqing Wu
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| | - Lixiang Xie
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing 100081, China; (G.X.); (Y.M.)
| | - Yaqing Mao
- China Institute of Veterinary Drug Control, Beijing 100081, China; (G.X.); (Y.M.)
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| | - Heng’an Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.W.); (X.Z.); (M.W.); (L.X.); (Z.W.); (Y.C.); (H.W.); (Y.Y.)
| |
Collapse
|
7
|
Feng A, Bevins S, Chandler J, DeLiberto TJ, Ghai R, Lantz K, Lenoch J, Retchless A, Shriner S, Tang CY, Tong SS, Torchetti M, Uehara A, Wan XF. Transmission of SARS-CoV-2 in free-ranging white-tailed deer in the United States. Nat Commun 2023; 14:4078. [PMID: 37429851 DOI: 10.1038/s41467-023-39782-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
SARS-CoV-2 is a zoonotic virus with documented bi-directional transmission between people and animals. Transmission of SARS-CoV-2 from humans to free-ranging white-tailed deer (Odocoileus virginianus) poses a unique public health risk due to the potential for reservoir establishment where variants may persist and evolve. We collected 8,830 respiratory samples from free-ranging white-tailed deer across Washington, D.C. and 26 states in the United States between November 2021 and April 2022. We obtained 391 sequences and identified 34 Pango lineages including the Alpha, Gamma, Delta, and Omicron variants. Evolutionary analyses showed these white-tailed deer viruses originated from at least 109 independent spillovers from humans, which resulted in 39 cases of subsequent local deer-to-deer transmission and three cases of potential spillover from white-tailed deer back to humans. Viruses repeatedly adapted to white-tailed deer with recurring amino acid substitutions across spike and other proteins. Overall, our findings suggest that multiple SARS-CoV-2 lineages were introduced, became enzootic, and co-circulated in white-tailed deer.
Collapse
Affiliation(s)
- Aijing Feng
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sarah Bevins
- USDA APHIS Wildlife Services National Wildlife Disease Program, Fort Collins, CO, USA
| | - Jeff Chandler
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO, USA
| | | | - Ria Ghai
- One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kristina Lantz
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Julianna Lenoch
- USDA APHIS Wildlife Services National Wildlife Disease Program, Fort Collins, CO, USA
| | - Adam Retchless
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Susan Shriner
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO, USA
| | - Cynthia Y Tang
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Suxiang Sue Tong
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Anna Uehara
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Han YJ, Lee KM, Wu GH, Gong YN, Dutta A, Shih SR. Targeting influenza A virus by splicing inhibitor herboxidiene reveals the importance of subtype-specific signatures around splice sites. J Biomed Sci 2023; 30:10. [PMID: 36737756 PMCID: PMC9895974 DOI: 10.1186/s12929-023-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The association between M segment splicing and pathogenicity remains ambiguous in human influenza A viruses. In this study, we aimed to investigate M splicing in various human influenza A viruses and characterize its physiological roles by applying the splicing inhibitor, herboxidiene. METHODS We examined the M splicing of human H1N1 and H3N2 viruses by comparing three H1N1 and H3N2 strains, respectively, through reverse transcriptase-polymerase chain reaction (RT-PCR) analyses. We randomly selected M sequences of human H1N1, H2N2, and H3N2 viruses isolated from 1933 to 2020 and examined their phylogenetic relationships. Next, we determined the effects of single nucleotide variations on M splicing by generating mutant viruses harboring the 55C/T variant through reverse genetics. To confirm the importance of M2 splicing in the replication of H1N1 and H3N2, we treated infected cells with splicing inhibitor herboxidiene and analyzed the viral growth using plaque assay. To explore the physiological role of the various levels of M2 protein in pathogenicity, we challenged C57BL/6 mice with the H1N1 WSN wild-type strain, mutant H1N1 (55T), and chimeric viruses including H1N1 + H3wt and H1N1 + H3mut. One-tailed paired t-test was used for virus titer calculation and multiple comparisons between groups were performed using two-way analysis of variance. RESULTS M sequence splice site analysis revealed an evolutionarily conserved single nucleotide variant C55T in H3N2, which impaired M2 expression and was accompanied by collinear M1 and mRNA3 production. Aberrant M2 splicing resulted from splice-site selection rather than a general defect in the splicing process. The C55T substitution significantly reduced both M2 mRNA and protein levels regardless of the virus subtype. Consequently, herboxidiene treatment dramatically decreased both the H1N1 and H3N2 virus titers. However, a lower M2 expression only attenuated H1N1 virus replication and in vivo pathogenicity. This attenuated phenotype was restored by M replacement of H3N2 M in a chimeric H1N1 virus, despite low M2 levels. CONCLUSIONS The discrepancy in M2-dependence emphasizes the importance of M2 in human influenza A virus pathogenicity, which leads to subtype-specific evolution. Our findings provide insights into virus adaptation processes in humans and highlights splicing regulation as a potential antiviral target.
Collapse
Affiliation(s)
- Yi-Ju Han
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Guan-Hong Wu
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDepartment of Laboratory Science, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Avijit Dutta
- grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Science, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Souza CK, Kimble JB, Anderson TK, Arendsee ZW, Hufnagel DE, Young KM, Gauger PC, Lewis NS, Davis CT, Thor S, Vincent Baker AL. Swine-to-Ferret Transmission of Antigenically Drifted Contemporary Swine H3N2 Influenza A Virus Is an Indicator of Zoonotic Risk to Humans. Viruses 2023; 15:331. [PMID: 36851547 PMCID: PMC9962742 DOI: 10.3390/v15020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Human-to-swine transmission of influenza A (H3N2) virus occurs repeatedly and plays a critical role in swine influenza A virus (IAV) evolution and diversity. Human seasonal H3 IAVs were introduced from human-to-swine in the 1990s in the United States and classified as 1990.1 and 1990.4 lineages; the 1990.4 lineage diversified into 1990.4.A-F clades. Additional introductions occurred in the 2010s, establishing the 2010.1 and 2010.2 lineages. Human zoonotic cases with swine IAV, known as variant viruses, have occurred from the 1990.4 and 2010.1 lineages, highlighting a public health concern. If a variant virus is antigenically drifted from current human seasonal vaccine (HuVac) strains, it may be chosen as a candidate virus vaccine (CVV) for pandemic preparedness purposes. We assessed the zoonotic risk of US swine H3N2 strains by performing phylogenetic analyses of recent swine H3 strains to identify the major contemporary circulating genetic clades. Representatives were tested in hemagglutination inhibition assays with ferret post-infection antisera raised against existing CVVs or HuVac viruses. The 1990.1, 1990.4.A, and 1990.4.B.2 clade viruses displayed significant loss in cross-reactivity to CVV and HuVac antisera, and interspecies transmission potential was subsequently investigated in a pig-to-ferret transmission study. Strains from the three lineages were transmitted from pigs to ferrets via respiratory droplets, but there were differential shedding profiles. These data suggest that existing CVVs may offer limited protection against swine H3N2 infection, and that contemporary 1990.4.A viruses represent a specific concern given their widespread circulation among swine in the United States and association with multiple zoonotic cases.
Collapse
Affiliation(s)
- Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - David E. Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Katharine M. Young
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, London NW1 0TU, UK
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sharmi Thor
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| |
Collapse
|
10
|
McBride DS, Nolting JM, Nelson SW, Spurck MM, Bliss NT, Kenah E, Trock SC, Bowman AS. Shortening Duration of Swine Exhibitions to Reduce Risk for Zoonotic Transmission of Influenza A Virus. Emerg Infect Dis 2022; 28:2035-2042. [PMID: 36084650 PMCID: PMC9514346 DOI: 10.3201/eid2810.220649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reducing zoonotic influenza A virus (IAV) risk in the United States necessitates mitigation of IAV in exhibition swine. We evaluated the effectiveness of shortening swine exhibitions to <72 hours to reduce IAV risk. We longitudinally sampled every pig daily for the full duration of 16 county fairs during 2014-2015 (39,768 nasal wipes from 6,768 pigs). In addition, we estimated IAV prevalence at 195 fairs during 2018-2019 to test the hypothesis that <72-hour swine exhibitions would have lower IAV prevalence. In both studies, we found that shortening duration drastically reduces IAV prevalence in exhibition swine at county fairs. Reduction of viral load in the barn within a county fair is critical to reduce the risk for interspecies IAV transmission and pandemic potential. Therefore, we encourage fair organizers to shorten swine shows to protect the health of both animals and humans.
Collapse
|
11
|
Saito T, Sakuma S, Mine J, Uchida Y, Hangalapura BN. Genetic Diversity of the Hemagglutinin Genes of Influenza a Virus in Asian Swine Populations. Viruses 2022; 14:747. [PMID: 35458477 PMCID: PMC9032595 DOI: 10.3390/v14040747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
Swine influenza (SI) is a major respiratory disease of swine; SI is due to the influenza A virus of swine (IAV-S), a highly contagious virus with zoonotic potential. The intensity of IAV-S surveillance varies among countries because it is not a reportable disease and causes limited mortality in swine. Although Asia accounts for half of all pig production worldwide, SI is not well managed in those countries. Rigorously managing SI on pig farms could markedly reduce the economic losses, the likelihood of novel reassortants among IAV-S, and the zoonotic IAV-S infections in humans. Vaccination of pigs is a key control measure for SI, but its efficacy relies on the optimal antigenic matching of vaccine strains with the viral strains circulating in the field. Here, we phylogenetically reviewed the genetic diversity of the hemagglutinin gene among IAVs-S that have circulated in Asia during the last decade. This analysis revealed the existence of country-specific clades in both the H1 and H3 subtypes and cross-border transmission of IAVs-S. Our findings underscore the importance of choosing vaccine antigens for each geographic region according to both genetic and antigenic analyses of the circulating IAV-S to effectively manage SI in Asia.
Collapse
Affiliation(s)
- Takehiko Saito
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Saki Sakuma
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | | |
Collapse
|
12
|
Vaccine-Associated Enhanced Respiratory Disease following Influenza Virus Infection in Ferrets Recapitulates the Model in Pigs. J Virol 2022; 96:e0172521. [PMID: 34985999 DOI: 10.1128/jvi.01725-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy. Whole inactivated virus (WIV) vaccines with adjuvant, utilized by the swine industry, are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil-in-water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) 5 weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD-affected pigs exhibited a 2-fold increase in lung lesions, while VAERD-affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD-affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate that VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. IMPORTANCE We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine-associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed toward a conserved epitope on the HA stalk induced by an oil-in-water, adjuvanted, whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines for humans and the need to consider VAERD when designing and evaluating vaccine strategies.
Collapse
|
13
|
Chen X, Wang W, Qin Y, Zou J, Yu H. Global epidemiology of human infections with variant influenza viruses, 1959-2021: A descriptive study. Clin Infect Dis 2022; 75:1315-1323. [PMID: 35231106 DOI: 10.1093/cid/ciac168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although human case numbers of variant influenza viruses have increased worldwide, the epidemiology of human cases and human-to-human transmissibility of different variant viruses remain uncertain. METHODS We used descriptive statistics to summarize the epidemiologic characteristics of variant virus infections. The hospitalization rate, case-fatality and hospitalization-fatality risks were used to assess disease severity. Transmissibility of variant viruses between humans was determined by the effective reproductive number (Re) and probability of infection following exposure to human cases. RESULTS We identified 707 cases of variant viruses from 1959-2021, and their spatiotemporal/demographic characteristics changed across subtypes. The clinical severity of cases of variant viruses was generally mild; cases older than 18 years with underlying conditions were associated with hospitalization. Of 69 clusters of human infections with variant viruses (median cluster size: 2), the upper limit of Re was 0.09 (H1N1v, H1N2v and H3N2v: 0.20 vs. 0.18 vs. 0.05), while it was not significantly different from the pooled estimates for avian influenza A(H7N9) and A(H5N1) viruses (0.10). Moreover, contacts of H5N1 cases (15.7%) had a significantly higher probability of infection than contacts of individuals with H7N9 (4.2%) and variant virus infections (4.2-7.2%). CONCLUSIONS The epidemiology of cases of variant viruses varied across time periods, geographical regions and subtypes during 1959-2021. The transmissibility of different variant viruses between humans remains limited. However, given the continuous evolution of viruses and the rapidly evolving epidemiology of cases of variant viruses, improving the surveillance systems for human variant virus infections is needed worldwide.
Collapse
Affiliation(s)
- Xinghui Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Ying Qin
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junyi Zou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| |
Collapse
|
14
|
Eurasian Avian-like M1 Plays More Important Role than M2 in Pathogenicity of 2009 Pandemic H1N1 Influenza Virus in Mice. Viruses 2021; 13:v13122335. [PMID: 34960604 PMCID: PMC8707482 DOI: 10.3390/v13122335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Reassortant variant viruses generated between 2009 H1N1 pandemic influenza virus [A(H1N1)pdm09] and endemic swine influenza viruses posed a potential risk to humans. Surprisingly, genetic analysis showed that almost all of these variant viruses contained the M segment from A(H1N1)pdm09, which originated from Eurasian avian-like swine influenza viruses. Studies have shown that the A(H1N1)pdm09 M gene is critical for the transmissibility and pathogenicity of the variant viruses. However, the M gene encodes two proteins, M1 and M2, and which of those plays a more important role in virus pathogenicity remains unknown. In this study, the M1 and M2 genes of A(H1N1)pdm09 were replaced with those of endemic H3N2 swine influenza virus, respectively. The chimeric viruses were rescued and evaluated in vitro and in mice. Both M1 and M2 of H3N2 affected the virus replication in vitro. In mice, the introduction of H3N2 M1 attenuated the chimeric virus, where all the mice survived from the infection, compared with the wild type virus that caused 100 % mortality. However, the chimeric virus containing H3N2 M2 was still virulent to mice, and caused 16.6% mortality, as well as similar body weight loss to the wild type virus infected group. Compared with the wild type virus, the chimeric virus containing H3N2 M1 induced lower levels of inflammatory cytokines and higher levels of anti-inflammatory cytokines, whereas the chimeric virus containing H3N2 M2 induced substantial pro-inflammatory responses, but higher levels of anti-inflammatory cytokines. The study demonstrated that Eurasian avian-like M1 played a more important role than M2 in the pathogenicity of A(H1N1)pdm09 in mice.
Collapse
|
15
|
Kessler S, Harder TC, Schwemmle M, Ciminski K. Influenza A Viruses and Zoonotic Events-Are We Creating Our Own Reservoirs? Viruses 2021; 13:v13112250. [PMID: 34835056 PMCID: PMC8624301 DOI: 10.3390/v13112250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/16/2023] Open
Abstract
Zoonotic infections of humans with influenza A viruses (IAVs) from animal reservoirs can result in severe disease in individuals and, in rare cases, lead to pandemic outbreaks; this is exemplified by numerous cases of human infection with avian IAVs (AIVs) and the 2009 swine influenza pandemic. In fact, zoonotic transmissions are strongly facilitated by manmade reservoirs that were created through the intensification and industrialization of livestock farming. This can be witnessed by the repeated introduction of IAVs from natural reservoirs of aquatic wild bird metapopulations into swine and poultry, and the accompanied emergence of partially- or fully-adapted human pathogenic viruses. On the other side, human adapted IAV have been (and still are) introduced into livestock by reverse zoonotic transmission. This link to manmade reservoirs was also observed before the 20th century, when horses seemed to have been an important reservoir for IAVs but lost relevance when the populations declined due to increasing industrialization. Therefore, to reduce zoonotic events, it is important to control the spread of IAV within these animal reservoirs, for example with efficient vaccination strategies, but also to critically surveil the different manmade reservoirs to evaluate the emergence of new IAV strains with pandemic potential.
Collapse
Affiliation(s)
- Susanne Kessler
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Timm C. Harder
- Friedrich-Loeffler-Institut (FLI), Institute of Diagnostic Virology, 17493 Greifswald-Insel Riems, Germany;
| | - Martin Schwemmle
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Kevin Ciminski
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Correspondence:
| |
Collapse
|
16
|
Kaplan BS, Anderson TK, Chang J, Santos J, Perez D, Lewis N, Vincent AL. Evolution and Antigenic Advancement of N2 Neuraminidase of Swine Influenza A Viruses Circulating in the United States following Two Separate Introductions from Human Seasonal Viruses. J Virol 2021; 95:e0063221. [PMID: 34379513 PMCID: PMC8475526 DOI: 10.1128/jvi.00632-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Two separate introductions of human seasonal N2 neuraminidase genes were sustained in U.S. swine since 1998 (N2-98) and 2002 (N2-02). Herein, we characterized the antigenic evolution of the N2 of swine influenza A virus (IAV) across 2 decades following each introduction. The N2-98 and N2-02 expanded in genetic diversity, with two statistically supported monophyletic clades within each lineage. To assess antigenic drift in swine N2 following the human-to-swine spillover events, we generated a panel of swine N2 antisera against representative N2 and quantified the antigenic distance between wild-type viruses using enzyme-linked lectin assay and antigenic cartography. The antigenic distance between swine and human N2 was smallest between human N2 circulating at the time of each introduction and the archetypal swine N2. However, sustained circulation and evolution in swine of the two N2 lineages resulted in significant antigenic drift, and the N2-98 and N2-02 swine N2 lineages were antigenically distinct. Although intralineage antigenic diversity was observed, the magnitude of antigenic drift did not consistently correlate with the observed genetic differences. These data represent the first quantification of the antigenic diversity of neuraminidase of IAV in swine and demonstrated significant antigenic drift from contemporary human seasonal strains as well as antigenic variation among N2 detected in swine. These data suggest that antigenic mismatch may occur between circulating swine IAV and vaccine strains. Consequently, consideration of the diversity of N2 in swine IAV for vaccine selection may likely result in more effective control and aid public health initiatives for pandemic preparedness. IMPORTANCE Antibodies inhibiting the neuraminidase (NA) of IAV reduce clinical disease, virus shedding, and transmission, particularly in the absence of neutralizing immunity against hemagglutinin. To understand antibody recognition of the genetically diverse NA in U.S. swine IAV, we characterized the antigenic diversity of N2 from swine and humans. N2 detected in swine IAV were derived from two distinct human-to-swine spillovers that persisted, are antigenically distinct, and underwent antigenic drift. These findings highlight the need for continued surveillance and vaccine development in swine with increased focus on the NA. Additionally, human seasonal N2 isolated after 2005 were poorly inhibited by representative swine N2 antisera, suggesting a lack of cross-reactive NA antibody-mediated immunity between contemporary swine and human N2. Bidirectional transmission between humans and swine represents a One Health challenge, and determining the correlates of immunity to emerging IAV strains is critical to mitigating zoonotic and reverse-zoonotic transmission.
Collapse
Affiliation(s)
- Bryan S. Kaplan
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Jennifer Chang
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Jefferson Santos
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniel Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nicola Lewis
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, London, Hertfordshire, UK
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| |
Collapse
|
17
|
Genetic and antigenic evolution of H1 swine influenza A viruses isolated in Belgium and the Netherlands from 2014 through 2019. Sci Rep 2021; 11:11276. [PMID: 34050216 PMCID: PMC8163766 DOI: 10.1038/s41598-021-90512-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Surveillance of swine influenza A viruses (swIAV) allows timely detection and identification of new variants with potential zoonotic risks. In this study, we aimed to identify swIAV subtypes that circulated in pigs in Belgium and the Netherlands between 2014 and 2019, and characterize their genetic and antigenic evolution. We subtyped all isolates and analyzed hemagglutinin sequences and hemagglutination inhibition assay data for H1 swIAV, which were the dominant HA subtype. We also analyzed whole genome sequences (WGS) of selected isolates. Out of 200 samples, 89 tested positive for swIAV. swIAV of H1N1, H1N2 and H3N2 subtypes were detected. Analysis of WGS of 18 H1 swIAV isolates revealed three newly emerged genotypes. The European avian-like H1 swIAV (lineage 1C) were predominant and accounted for 47.2% of the total isolates. They were shown to evolve faster than the European human-like H1 (1B lineage) swIAV, which represented 27% of the isolates. The 2009 pandemic H1 swIAV (lineage 1A) accounted for only 5.6% of the isolates and showed divergence from their precursor virus. These results point to the increasing divergence of swIAV and stress the need for continuous surveillance of swIAV.
Collapse
|
18
|
Liu F, Levine MZ. Heterologous Antibody Responses Conferred by A(H3N2) Variant and Seasonal Influenza Vaccination Against Newly Emerged 2016-2018 A(H3N2) Variant Viruses in Healthy Persons. Clin Infect Dis 2021; 71:3061-3070. [PMID: 31858129 DOI: 10.1093/cid/ciz1203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Swine origin A(H3N2) variant [A(H3N2)v] viruses continue to evolve and remain a public health threat. Recent outbreaks in humans in 2016-2018 were caused by a newly emerged A(H3N2)v cluster 2010.1, which are genetically and antigenically distinct from the previously predominant cluster IV. To address the public health risk, we evaluated the levels of heterologous cross-reactive antibodies to A(H3N2)v cluster 2010.1 viruses induced from an existing cluster IV A(H3N2)v vaccine and several seasonal inactivated influenza vaccines (IIVs) in adults, elderly individuals, and children. METHODS Human vaccine sera and ferret antisera were analyzed by hemagglutination inhibition (HI) and neutralization assays against representative A(H3N2)v viruses from clusters IV and 2010.1 and seasonal A(H3N2) viruses. RESULTS Ferret antisera detected no or little cross-reactivity between the 2 A(H3N2)v clusters or between A(H3N2)v and seasonal A(H3N2) viruses. In humans, cluster IV A(H3N2)v vaccine induced antibodies cross-reactive to cluster 2010.1 viruses in approximately one-third of the 89 adult and elderly vaccinees. Seasonal IIVs did not induce seroprotective antibodies (≥40) to A(H3N2)v viruses in young children, but induced higher antibodies to A(H3N2)v viruses in cluster 2010.1 than those in cluster IV in adults. CONCLUSIONS Cluster IV A(H3N2)v vaccine did not provide sufficient heterologous antibody responses against the new 2010.1 cluster A(H3N2)v viruses. Seasonal IIV could not induce seroprotective antibodies to 2010.1 cluster A(H3N2)v viruses in young children, suggesting that young children are still at high risk to the newly emerged A(H3N2)v viruses. Continued surveillance on A(H3N2)v viruses is critical for risk assessment and pandemic preparedness.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Anderson TK, Chang J, Arendsee ZW, Venkatesh D, Souza CK, Kimble JB, Lewis NS, Davis CT, Vincent AL. Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038737. [PMID: 31988203 PMCID: PMC7919397 DOI: 10.1101/cshperspect.a038737] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza A viruses (IAVs) are the causative agents of one of the most important viral respiratory diseases in pigs and humans. Human and swine IAV are prone to interspecies transmission, leading to regular incursions from human to pig and vice versa. This bidirectional transmission of IAV has heavily influenced the evolutionary history of IAV in both species. Transmission of distinct human seasonal lineages to pigs, followed by sustained within-host transmission and rapid adaptation and evolution, represent a considerable challenge for pig health and production. Consequently, although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, extensive diversity can be found in the hemagglutinin (HA) and neuraminidase (NA) genes, as well as the remaining six genes. We review the complicated global epidemiology of IAV in swine and the inextricably entangled implications for public health and influenza pandemic planning.
Collapse
Affiliation(s)
- Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Jennifer Chang
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Divya Venkatesh
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| |
Collapse
|
20
|
Lorbach JN, Fitzgerald T, Nolan C, Nolting JM, Treanor JJ, Topham DJ, Bowman AS. Gaps in Serologic Immunity against Contemporary Swine-Origin Influenza A Viruses among Healthy Individuals in the United States. Viruses 2021; 13:v13010127. [PMID: 33477472 PMCID: PMC7830885 DOI: 10.3390/v13010127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A Viruses (IAV) in domestic swine (IAV-S) are associated with sporadic zoonotic transmission at the human–animal interface. Previous pandemic IAVs originated from animals, which emphasizes the importance of characterizing human immunity against the increasingly diverse IAV-S. We analyzed serum samples from healthy human donors (n = 153) using hemagglutination-inhibition (HAI) assay to assess existing serologic protection against a panel of contemporary IAV-S isolated from swine in the United States (n = 11). Age-specific seroprotection rates (SPR), which are the proportion of individuals with HAI ≥ 1:40, corresponded with lower or moderate pandemic risk classifications for the multiple IAV-S examined (one H1-δ1, one H1-δ2, three H3-IVA, one H3-IVB, one H3-IVF). Individuals born between 2004 and 2013 had SPRs of 0% for the five classified H3 subtype IAV-S, indicating youth may be particularly predisposed to infection with these viruses. Expansion of existing immunologic gaps over time could increase likelihood of future IAV-S spillover to humans and facilitate subsequent sustained human-to-human transmission resulting in disease outbreaks with pandemic potential.
Collapse
Affiliation(s)
- Joshua N. Lorbach
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.N.L.); (J.M.N.)
| | - Theresa Fitzgerald
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14627, USA; (T.F.); (C.N.); (D.J.T.)
| | - Carolyn Nolan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14627, USA; (T.F.); (C.N.); (D.J.T.)
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.N.L.); (J.M.N.)
| | - John J. Treanor
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14627, USA;
| | - David J. Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14627, USA; (T.F.); (C.N.); (D.J.T.)
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.N.L.); (J.M.N.)
- Correspondence:
| |
Collapse
|
21
|
A Heterogeneous Swine Show Circuit Drives Zoonotic Transmission of Influenza A Viruses in the United States. J Virol 2020; 94:JVI.01453-20. [PMID: 32999022 DOI: 10.1128/jvi.01453-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022] Open
Abstract
Influenza pandemics are associated with severe morbidity, mortality, and social and economic disruption. Every summer in the United States, youths attending agricultural fairs are exposed to genetically diverse influenza A viruses (IAVs) circulating in exhibition swine, resulting in over 450 lab-confirmed zoonotic infections since 2010. Exhibition swine represent a small, defined population (∼1.5% of the U.S. herd), presenting a realistic opportunity to mitigate a pandemic threat by reducing IAV transmission in the animals themselves. Through intensive surveillance and genetic sequencing of IAVs in exhibition swine in six U.S. states in 2018 (n = 212), we characterized how a heterogeneous circuit of swine shows, comprising fairs with different sizes and geographic coverage, facilitates IAV transmission among exhibition swine and into humans. Specifically, we identified the role of an early-season national show in the propagation and spatial dissemination of a specific virus (H1δ-2) that becomes dominant among exhibition swine and is associated with the majority of zoonotic infections in 2018. These findings suggest that a highly targeted mitigation strategy, such as postponing swine shows for 1 to 2 weeks following the early-season national show, could potentially reduce IAV transmission in exhibition swine and spillover into humans, and this merits further study.IMPORTANCE The varying influenza A virus (IAV) exposure and infection status of individual swine facilitates introduction, transmission, and dissemination of diverse IAVs. Since agricultural fairs bring people into intimate contact with swine, they provide a unique interface for zoonotic transmission of IAV. Understanding the dynamics of IAV transmission through exhibition swine is critical to mitigating the high incidence of variant IAV cases reported in association with agricultural fairs. We used genomic sequences from our exhibition swine surveillance to characterize the hemagglutinin and full genotypic diversity of IAV at early-season shows and the subsequent dissemination through later-season agricultural fairs. We were able to identify a critical time point with important implications for downstream IAV and zoonotic transmission. With improved understanding of evolutionary origins of zoonotic IAV, we can inform public health mitigation strategies to ultimately reduce zoonotic IAV transmission and risk of pandemic IAV emergence.
Collapse
|
22
|
Chepkwony S, Parys A, Vandoorn E, Chiers K, Van Reeth K. Efficacy of Heterologous Prime-Boost Vaccination with H3N2 Influenza Viruses in Pre-Immune Individuals: Studies in the Pig Model. Viruses 2020; 12:v12090968. [PMID: 32882956 PMCID: PMC7552030 DOI: 10.3390/v12090968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022] Open
Abstract
In a previous study in influenza-naïve pigs, heterologous prime-boost vaccination with monovalent, adjuvanted whole inactivated vaccines (WIV) based on the European swine influenza A virus (SwIAV) strain, A/swine/Gent/172/2008 (G08), followed by the US SwIAV strain, A/swine/Pennsylvania/A01076777/2010 (PA10), was shown to induce broadly cross-reactive hemagglutination inhibition (HI) antibodies against 12 out of 15 antigenically distinct H3N2 influenza strains. Here, we used the pig model to examine the efficacy of that particular heterologous prime-boost vaccination regimen, in individuals with pre-existing infection-immunity. Pigs were first inoculated intranasally with the human H3N2 strain, A/Nanchang/933/1995. Seven weeks later, they were vaccinated intramuscularly with G08 followed by PA10 or vice versa. We examined serum antibody responses against the hemagglutinin and neuraminidase, and antibody-secreting cell (ASC) responses in peripheral blood, draining lymph nodes, and nasal mucosa (NMC), in ELISPOT assays. Vaccination induced up to 10-fold higher HI antibody titers than in naïve pigs, with broader cross-reactivity, and protection against challenge with an antigenically distant H3N2 strain. It also boosted ASC responses in lymph nodes and NMC. Our results show that intramuscular administration of WIV can lead to enhanced antibody responses and cross-reactivity in pre-immune subjects, and recall of ASC responses in lymph nodes and NMC.
Collapse
Affiliation(s)
- Sharon Chepkwony
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
- Correspondence: ; Tel.: +32-92647369
| |
Collapse
|
23
|
Ayim-Akonor M, Mertens E, May J, Harder T. Exposure of domestic swine to influenza A viruses in Ghana suggests unidirectional, reverse zoonotic transmission at the human-animal interface. Zoonoses Public Health 2020; 67:697-707. [PMID: 32710707 DOI: 10.1111/zph.12751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023]
Abstract
Influenza A viruses (IAVs) have both zoonotic and anthroponotic potential and are of public and veterinary importance. Swine are intermediate hosts and 'mixing vessels' for generating reassortants, progenies of which may harbour pandemic propensity. Swine handlers are at the highest risk of becoming infected with IAVs from swine but there is little information on the ecology of IAVs at the human-animal interface in Africa. We analysed and characterized nasal and throat swabs from swine and farmers respectively, for IAVs using RT-qPCR, from swine farms in the Ashanti region, Ghana. Sera were also analysed for IAVs antibodies and serotyped using ELISA and HI assays. IAV was detected in 1.4% (n = 17/1,200) and 2.0% (n = 2/99) of swine and farmers samples, respectively. Viral subtypes H3N2 and H1N1pdm09 were found in human samples. All virus-positive swine samples were subtyped as H1N1pdm09 phylogenetically clustering closely with H1N1pdm09 that circulated among humans during the study period. Phenotypic markers that confer sensitivity to Oseltamivir were found. Serological prevalence of IAVs in swine and farmers by ELISA was 3.2% (n = 38/1,200) and 18.2% (n = 18/99), respectively. Human H1N1pdm09 and H3N2 antibodies were found in both swine and farmers sera. Indigenous swine influenza A viruses and/or antibodies were not detected in swine or farmers samples. Majority (98%, n = 147/150) of farmers reported of not wearing surgical mask and few (4%, n = 6) reported to wear gloves when working. Most (n = 74, 87.7%) farmers reported of working on the farm when experiencing influenza-like illness. Poor husbandry and biosafety practices of farmers could facilitate virus transmission across the human-swine interface. Farmers should be educated on the importance of good farm practices to mitigate influenza transmission at the human-animal interface.
Collapse
Affiliation(s)
- Matilda Ayim-Akonor
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Animal Health and Food Safety, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Eva Mertens
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Timm Harder
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
24
|
Zhao M, Liu H, Qu S, He L, Campy KS. Factors associated with parental acceptance of influenza vaccination for their children: the evidence from four cities of China. Hum Vaccin Immunother 2020; 17:457-464. [PMID: 32614707 DOI: 10.1080/21645515.2020.1771988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND It is necessary and urgent to vaccinate 245 million Chinese children against influenza pandemics. The main purpose of this study was to evaluate different psychological and demographic factors that influence parental willingness to vaccinate their children against influenza. METHODS A hybrid theoretical framework was expanded and verified with 462 sample data collected from four cities in China. Structural equation models were used to test nine theoretical hypotheses, and the non-standardized coefficient method was used to discuss the moderating effects among demographic variables. RESULTS Knowledge is considered to be the significant factor of performance expectancy (β = 0.228), effort expectancy (β = 0.227) and perceived risk (β = -0.138), and social influence also has the significant impacts on the above three variables, with β values of 0.437, 0.386, and -0.172. Performance expectancy (β = 0.402), effort expectancy (β = 0.343), and perceived risk (β = -0.244) thus significantly affect parental behavioral intention regarding children's influenza vaccination. Gender, education, and kids' gender are demographic variables with significant moderating effects, while age, income, number of kids are not significant. CONCLUSION To improve the acceptability of influenza vaccination among Chinese children, the promoting policies should emphasize on public knowledge and social influence, as well as effectiveness, affordability, and safety of vaccination.
Collapse
Affiliation(s)
- Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University , Changsha, China
| | - Haiyan Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University , Changsha, China
| | - Shujuan Qu
- Department of Pediatrics, Third Xiangya Hospital, Central South University , Changsha, China
| | - Li He
- Department of Pediatrics, Third Xiangya Hospital, Central South University , Changsha, China
| | - Kathryn S Campy
- Center for Public Health Initiatives, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
25
|
A Single Amino Acid at Position 431 of the PB2 Protein Determines the Virulence of H1N1 Swine Influenza Viruses in Mice. J Virol 2020; 94:JVI.01930-19. [PMID: 31996432 PMCID: PMC7108842 DOI: 10.1128/jvi.01930-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses. Genetic reassortments occurred continuously among multiple subtypes or genotypes of influenza viruses prevalent in pigs. Of note, some reassortant viruses bearing the internal genes of the 2009 pandemic H1N1 (2009/H1N1) virus sporadically caused human infection, which highlights their potential threats to human public health. In this study, we performed phylogenetic analysis on swine influenza viruses (SIVs) circulating in Liaoning Province, China. A total of 22 viruses, including 18 H1N1 and 4 H1N2 viruses, were isolated from 5,750 nasal swabs collected from pigs in slaughterhouses from 2014 to 2016. H1N1 viruses formed four genotypes, which included Eurasian avian-like H1N1 (EA H1N1) and double/triple reassortant H1N1 derived from EA H1N1, 2009/H1N1, and triple reassortant H1N2 (TR H1N2) viruses. H1N1 SIVs with different genotypes and even those within the same genotypes represented different pathogenicities in mice. We further characterized two naturally isolated H1N1 SIVs that had similar viral genomes but differed substantially in their virulence in mice and found that a single amino acid at position 431 in the basic polymerase 2 (PB2) protein significantly affected the viral replication capacity and virulence of these two viruses. Taken together, our findings revealed the diverse genomic origins and virulence of the SIVs prevalent in Liaoning Province during 2014 to 2016, which highlights that continuous surveillance is essential to monitor the evolution of SIVs. We identified a naturally occurring amino acid mutation in the PB2 protein of H1N1 SIVs that impacts the viral replication and virulence in mice by altering the viral polymerase activity. IMPORTANCE The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses.
Collapse
|
26
|
Baseline Levels of Influenza-Specific B Cells and T Cell Responses Modulate Human Immune Responses to Swine Variant Influenza A/H3N2 Vaccine. Vaccines (Basel) 2020; 8:vaccines8010126. [PMID: 32183105 PMCID: PMC7157591 DOI: 10.3390/vaccines8010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 11/16/2022] Open
Abstract
The cellular immune responses elicited by an investigational vaccine against an emergent variant of influenza (H3N2v) are not fully understood. Twenty-five subjects, enrolled in an investigational influenza A/H3N2v vaccine study, who received two doses of vaccine 21 days apart, were included in a sub-study of cellular immune responses. H3N2v-specific plasmablasts were determined by ELISpot 8 days after each vaccine dose and H3N2v specific CD4+ T cells were quantified by intracellular cytokine and CD154 (CD40 ligand) staining before vaccination, 8 and 21 days after each vaccine dose. Results: 95% (19/20) and 96% (24/25) subjects had pre-existing H3N2v specific memory B, and T cell responses, respectively. Plasmablast responses at Day 8 after the first vaccine administration were detected against contemporary H3N2 strains and correlated with hemagglutination inhibition HAI (IgG: p = 0.018; IgA: p < 0.001) and Neut (IgG: p = 0.038; IgA: p = 0.021) titers and with memory B cell frequency at baseline (IgA: r = 0.76, p < 0.001; IgG: r = 0.74, p = 0.0001). The CD4+ T cells at Days 8 and 21 expanded after prime vaccination and this expansion correlated strongly with early post-vaccination HAI and Neut titers (p ≤ 0.002). In an adult population, the rapid serological response observed after initial H3N2v vaccination correlates with post-vaccination plasmablasts and CD4+ T cell responses.
Collapse
|
27
|
Affiliation(s)
- Nídia S. Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martha I. Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
28
|
Deng YM, Wong FYK, Spirason N, Kaye M, Beazley R, Grau MLL, Shan S, Stevens V, Subbarao K, Sullivan S, Barr IG, Dhanasekaran V. Locally Acquired Human Infection with Swine-Origin Influenza A(H3N2) Variant Virus, Australia, 2018. Emerg Infect Dis 2020; 26:143-147. [PMID: 31661057 PMCID: PMC6924914 DOI: 10.3201/eid2601.191144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In 2018, a 15-year-old female adolescent in Australia was infected with swine influenza A(H3N2) variant virus. The virus contained hemagglutinin and neuraminidase genes derived from 1990s-like human seasonal viruses and internal protein genes from influenza A(H1N1)pdm09 virus, highlighting the potential risk that swine influenza A virus poses to human health in Australia.
Collapse
|
29
|
Abstract
Influenza A viruses (IAVs) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs and humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health. Bidirection transmission of IAV between pigs and people has altered the evolutionary dynamics of IAV, and a "One Health" approach is required to ameliorate morbidity and mortality in both hosts and improve control strategies. Although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, considerable diversity can be found not only in the hemagglutinin (HA) and neuraminidase (NA) genes but in the remaining six genes as well. Human and swine IAVs have demonstrated a particular propensity for interspecies transmission, leading to regular and sometimes sustained incursions from man to pig and vice versa. The diversity of IAVs in swine remains a critical challenge in the diagnosis and control of this important pathogen for swine health and in turn contributes to a significant public health risk.
Collapse
Affiliation(s)
- Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA.
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| |
Collapse
|
30
|
Deng YM, Wong FY, Spirason N, Kaye M, Beazley R, Grau M, Shan S, Stevens V, Subbarao K, Sullivan S, Barr IG, Dhanasekaran V. Locally Acquired Human Infection with Swine-Origin Influenza A(H3N2) Variant Virus, Australia, 2018. Emerg Infect Dis 2020. [DOI: 10.3201/2601.191144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Nirmala J, Bender JB, Lynfield R, Yang M, Rene Culhane M, Nelson MI, Sreevatsan S, Torremorell M. Genetic diversity of influenza A viruses circulating in pigs between winter and summer in a Minnesota live animal market. Zoonoses Public Health 2019; 67:243-250. [PMID: 31868300 DOI: 10.1111/zph.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 11/26/2022]
Abstract
There has been little surveillance of influenza A viruses (IAVs) circulating in swine at live animal markets, particularly in the United States. To address this gap, we conducted active surveillance of IAVs in pigs, the air, and the environment during a summer and winter season in a live animal market in St. Paul, Minnesota, that had been epidemiologically associated with swine-origin influenza cases in humans previously. High rates of IAV were detected by PCR in swine lungs and oral fluids during both summer and winter seasons. Rates of IAV detection by PCR in the air were similar during summer and winter, although rates of successful virus isolation in the air were lower during summer than in winter (26% and 67%, respectively). H3N2 was the most prevalent subtype in both seasons, followed by H1N2. Genetically diverse viruses with multiple gene constellations were isolated from both winter and summer, with a total of 19 distinct genotypes identified. Comparative phylogenetic analysis of all eight segments of 40 virus isolates from summer and 122 isolates from winter revealed that the summer and winter isolates were genetically distinct, indicating IAVs are not maintained in the market, but rather are re-introduced, likely from commercial swine. These findings highlight the extent of IAV genetic diversity circulating in swine in live animal markets, even during summer months, and the ongoing risk to humans.
Collapse
Affiliation(s)
- Jayaveeramuthu Nirmala
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Jeff B Bender
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.,School of Public Health, Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ruth Lynfield
- Minnesota State Health Department, St. Paul, MN, USA
| | - My Yang
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marie Rene Culhane
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Martha Irene Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
32
|
Ding P, Jin Q, Zhou W, Chai Y, Liu X, Wang Y, Chen X, Guo J, Deng R, Gao GF, Zhang G. A Universal Influenza Nanovaccine for "Mixing Vessel" Hosts Confers Potential Ability to Block Cross-Species Transmission. Adv Healthc Mater 2019; 8:e1900456. [PMID: 31267679 DOI: 10.1002/adhm.201900456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/01/2019] [Indexed: 12/14/2022]
Abstract
Influenza A virus (IAV), a deadly zoonotic pathogen, poses a tremendous threat and burden to global health systems. Pigs act as "mixing vessel" hosts to support and generate new pandemic viruses. Preventing the spread of IAV in pigs effectively can delay or even block cross-species transmission. Universal vaccines based on the highly conserved ectodomain of influenza matrix protein 2 (M2e) have been widely reported, but have not been applied due to inadequate protection. Porcine circovirus type 2 (PCV2) causes immunosuppression and promotes swine influenza virus (SIV) infection. Here, M2e is inserted into capsid protein of PCV2 without burying the neutralizing epitopes and self-assembles to form a bivalent nanovaccine. Inoculation with the nanovaccine induces robust M2e- and PCV2-specific immune responses. The nanovaccine confers protection against lethal challenges of IAV from different species in mice, and significantly reduces SIV titers in pigs' respiratory tract and blocks SIV transmission. These results indicate that the nanovaccine is an economical and promising PCV2 and universal IAV bivalent vaccine, and it will synergistically and powerfully offer potential ability to block IAV cross-species reassortment and transmission.
Collapse
Affiliation(s)
- Peiyang Ding
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Veterinary MedicineNorthwest A&F University Yangling 712100 China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- Jiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou University Yangzhou 225009 China
| | - Wen Zhou
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Veterinary MedicineNorthwest A&F University Yangling 712100 China
| | - Yongxiao Chai
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Animal Science and Veterinary MedicineHenan Agricultural University Zhengzhou 450002 China
| | - Xiao Liu
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Animal Science and Veterinary MedicineHenan Agricultural University Zhengzhou 450002 China
| | - Yao Wang
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Animal Science and Veterinary MedicineHenan Agricultural University Zhengzhou 450002 China
| | - Xinxin Chen
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Junqing Guo
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences Beijing 100101 China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Veterinary MedicineNorthwest A&F University Yangling 712100 China
- Jiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou University Yangzhou 225009 China
- College of Animal Science and Veterinary MedicineHenan Agricultural University Zhengzhou 450002 China
| |
Collapse
|
33
|
Loubet P, Enouf V, Launay O. The risk of a swine influenza pandemic: still a concern? Expert Rev Respir Med 2019; 13:803-805. [DOI: 10.1080/17476348.2019.1645011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Paul Loubet
- CIC Cochin Pasteur, Université Paris Descartes, Sorbonne Paris Cité; Inserm, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France
| | - Vincent Enouf
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), Centre National de Référence des Virus des Infections Respiratoires (dont la grippe), Institut Pasteur, Paris, France
| | - Odile Launay
- CIC Cochin Pasteur, Université Paris Descartes, Sorbonne Paris Cité; Inserm, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France
| |
Collapse
|
34
|
Stewart RJ, Rossow J, Eckel S, Bidol S, Ballew G, Signs K, Conover JT, Burns E, Bresee JS, Fry AM, Olsen SJ, Biggerstaff M. Text-Based Illness Monitoring for Detection of Novel Influenza A Virus Infections During an Influenza A (H3N2)v Virus Outbreak in Michigan, 2016: Surveillance and Survey. JMIR Public Health Surveill 2019; 5:e10842. [PMID: 31025948 PMCID: PMC6658270 DOI: 10.2196/10842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 01/23/2023] Open
Abstract
Background Rapid reporting of human infections with novel influenza A viruses accelerates detection of viruses with pandemic potential and implementation of an effective public health response. After detection of human infections with influenza A (H3N2) variant (H3N2v) viruses associated with agricultural fairs during August 2016, the Michigan Department of Health and Human Services worked with the US Centers for Disease Control and Prevention (CDC) to identify infections with variant influenza viruses using a text-based illness monitoring system. Objective To enhance detection of influenza infections using text-based monitoring and evaluate the feasibility and acceptability of the system for use in future outbreaks of novel influenza viruses. Methods During an outbreak of H3N2v virus infections among agricultural fair attendees, we deployed a text-illness monitoring (TIM) system to conduct active illness surveillance among households of youth who exhibited swine at fairs. We selected all fairs with suspected H3N2v virus infections. For fairs without suspected infections, we selected only those fairs that met predefined criteria. Eligible respondents were identified and recruited through email outreach and/or on-site meetings at fairs. During the fairs and for 10 days after selected fairs, enrolled households received daily, automated text-messages inquiring about illness; reports of illness were investigated by local health departments. To understand the feasibility and acceptability of the system, we monitored enrollment and trends in participation and distributed a Web-based survey to households of exhibitors from five fairs. Results Among an estimated 500 households with a member who exhibited swine at one of nine selected fairs, representatives of 87 (17.4%) households were enrolled, representing 392 household members. Among fairs that were ongoing when the TIM system was deployed, the number of respondents peaked at 54 on the third day of the fair and then steadily declined throughout the rest of the monitoring period; 19 out of 87 household representatives (22%) responded through the end of the 10-day monitoring period. We detected 2 H3N2v virus infections using the TIM system, which represents 17% (2/12) of all H3N2v virus infections detected during this outbreak in Michigan. Of the 70 survey respondents, 16 (23%) had participated in the TIM system. A total of 73% (11/15) participated because it was recommended by fair coordinators and 80% (12/15) said they would participate again. Conclusions Using a text-message system, we monitored for illness among a large number of individuals and households and detected H3N2v virus infections through active surveillance. Text-based illness monitoring systems are useful for detecting novel influenza virus infections when active monitoring is necessary. Participant retention and testing of persons reporting illness are critical elements for system improvement.
Collapse
Affiliation(s)
- Rebekah J Stewart
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John Rossow
- Epidemiology Elective Program, Division of Scientific Education and Professional Development, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, United States.,College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Seth Eckel
- Michigan Department of Health and Human Services, Lansing, MI, United States
| | - Sally Bidol
- Michigan Department of Health and Human Services, Lansing, MI, United States
| | - Grant Ballew
- Compliant Campaign, Scottsdale, AZ, United States
| | - Kimberly Signs
- Michigan Department of Health and Human Services, Lansing, MI, United States
| | | | - Erin Burns
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joseph S Bresee
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sonja J Olsen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Matthew Biggerstaff
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
35
|
Nolting JM, Scheer SD, Bowman AS. Perceptions and attitudes of swine exhibitors towards recommendations for reducing zoonotic transmission of influenza A viruses. Zoonoses Public Health 2019; 66:401-405. [PMID: 30843347 DOI: 10.1111/zph.12574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 11/29/2022]
Abstract
Since 2011, there have been 468 cases of variant influenza A virus (IAV) reported in the United States, many of which were associated with youth swine exhibition. In an effort to mitigate risk associated with exposure to IAV in swine, the "Measures to Minimize Influenza Transmission at Swine Exhibitions" (MtM) was developed for show organizers, volunteers and exhibitors. These recommendations are updated annually; however, it is not clear if youth swine exhibitors are aware of the recommendations; support the recommendations; and would be willing to practise recommended behaviours. Therefore, a cross-sectional survey method was used to assess swine exhibitor perceptions and their adoption of swine production practices aimed at reducing the transmission of IAV at the human-animal interface. In addition, the survey asked participants their state of residence and the number of shows they would attend in 2017. In all, 155 participants who showed swine on a regular basis (x̅ = 11 shows per year), from at least 18 states within the US, completed the survey. At least, 67% of participants believed each statement was a good recommendation, with 6 of 11 recommendations being supported by >90% of participants. When asked if recommendations could be implemented, 65%-94% of respondents agreed, and 21%-89% of participants had already implemented each recommendation, respectively. Although significant efforts have been made to increase signage at swine exhibitions (warning of risks associated with eating/drinking in animal areas), a majority of respondents report eating/drinking in the barn and are unwilling to change their behaviours. This study provides evidence that developing and disseminating static recommendations to reduce zoonotic disease transmission is not enough to change human behaviour to prevent future variant IAV infections associated with swine exhibitions.
Collapse
|
36
|
Rajao DS, Vincent AL, Perez DR. Adaptation of Human Influenza Viruses to Swine. Front Vet Sci 2019; 5:347. [PMID: 30723723 PMCID: PMC6349779 DOI: 10.3389/fvets.2018.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
A large diversity of influenza A viruses (IAV) within the H1N1/N2 and H3N2 subtypes circulates in pigs globally, with different lineages predominating in specific regions of the globe. A common characteristic of the ecology of IAV in swine in different regions is the periodic spillover of human seasonal viruses. Such human viruses resulted in sustained transmission in swine in several countries, leading to the establishment of novel IAV lineages in the swine host and contributing to the genetic and antigenic diversity of influenza observed in pigs. In this review we discuss the frequent occurrence of reverse-zoonosis of IAV from humans to pigs that have contributed to the global viral diversity in swine in a continuous manner, describe host-range factors that may be related to the adaptation of these human-origin viruses to pigs, and how these events could affect the swine industry.
Collapse
Affiliation(s)
- Daniela S Rajao
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Amy L Vincent
- Virus and Prion Research Unit, USDA-ARS, National Animal Disease Center, Ames, IA, United States
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA, United States
| |
Collapse
|
37
|
Elicitation of Protective Antibodies against 20 Years of Future H3N2 Cocirculating Influenza Virus Variants in Ferrets Preimmune to Historical H3N2 Influenza Viruses. J Virol 2019; 93:JVI.00946-18. [PMID: 30429350 DOI: 10.1128/jvi.00946-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023] Open
Abstract
The vast majority of people already have preexisting immune responses to influenza viruses from one or more subtypes. However, almost all preclinical studies evaluate new influenza vaccine candidates in immunologically naive animals. Recently, our group demonstrated that priming naive ferrets with broadly reactive H1 COBRA HA-based vaccines boosted preexisting antibodies induced by wild-type H1N1 virus infections. These H1 COBRA hemagglutinin (HA) antigens induced antibodies with HAI activity against multiple antigenically different H1N1 viral variants. In this study, ferrets, preimmune to historical H3N2 viruses, were vaccinated with virus-like particle (VLP) vaccines expressing either an HA from a wild-type H3 influenza virus or a COBRA H3 HA antigen (T6, T7, T10, or T11). The elicited antisera had the ability to neutralize virus infection against either a panel of viruses representing vaccine strains selected by the World Health Organization or a set of viral variants that cocirculated during the same time period. Preimmune animals vaccinated with H3 COBRA T10 HA antigen elicited sera with higher hemagglutination inhibition (HAI) antibody titers than antisera elicited by VLP vaccines with wild-type HA VLPs in preimmune ferrets. However, while the T11 COBRA vaccine did not elicit HAI activity, the elicited antibodies did neutralize antigenically distinct H3N2 influenza viruses. Overall, H3 COBRA-based HA vaccines were able to neutralize both historical H3 and contemporary, as well as future, H3N2 viruses with higher titers than vaccines with wild-type H3 HA antigens. This is the first report demonstrating the effectiveness of a broadly reactive H3N3 vaccine in a preimmune ferret model.IMPORTANCE After exposure to influenza virus, the host generates neutralizing anti-hemagglutinin (anti-HA) antibodies against that specific infecting influenza strain. These antibodies can also neutralize some, but not all, cocirculating strains. The goal of next-generation influenza vaccines, such as HA head-based COBRA, is to stimulate broadly protective neutralizing antibodies against all strains circulating within a subtype, in particular those that persist over multiple influenza seasons, without requiring an update to the vaccine. To mimic the human condition, COBRA HA virus-like particle vaccines were tested in ferrets that were previously exposed to historical H3N2 influenza viruses. In this model, these vaccines elicited broadly protective antibodies that neutralized cocirculating H3N2 influenza viruses isolated over a 20-year period. This is the first study to show the effectiveness of H3N3 COBRA HA vaccines in a host with preexisting immunity to influenza.
Collapse
|
38
|
Nelson MI, Worobey M. Origins of the 1918 Pandemic: Revisiting the Swine "Mixing Vessel" Hypothesis. Am J Epidemiol 2018; 187:2498-2502. [PMID: 30508193 PMCID: PMC6269246 DOI: 10.1093/aje/kwy150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
How influenza A viruses host-jump from animal reservoir species to humans, which can initiate global pandemics, is a central question in pathogen evolution. The zoonotic and spatial origins of the influenza virus associated with the “Spanish flu” pandemic of 1918 have been debated for decades. Outbreaks of respiratory disease in US swine occurred concurrently with disease in humans, raising the possibility that the 1918 virus originated in pigs. Swine also were proposed as “mixing vessel” intermediary hosts between birds and humans during the 1957 Asian and 1968 Hong Kong pandemics. Swine have presented an attractive explanation for how avian viruses overcome the substantial evolutionary barriers presented by different cellular environments in humans and birds. However, key assumptions underpinning the swine mixing-vessel model of pandemic emergence have been challenged in light of new evidence. Increased surveillance in swine has revealed that human-to-swine transmission actually occurs far more frequently than the reverse, and there is no empirical evidence that swine played a role in the emergence of human influenza in 1918, 1957, or 1968. Swine-to-human transmission occurs periodically and can trigger pandemics, as in 2009. But swine are not necessary to mediate the establishment of avian viruses in humans, which invites new perspectives on the evolutionary processes underlying pandemic emergence.
Collapse
Affiliation(s)
- Martha I Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
39
|
Pathogenesis and Transmission of Genetically Diverse Swine-Origin H3N2 Variant Influenza A Viruses from Multiple Lineages Isolated in the United States, 2011-2016. J Virol 2018; 92:JVI.00665-18. [PMID: 29848587 DOI: 10.1128/jvi.00665-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
While several swine-origin influenza A H3N2 variant (H3N2v) viruses isolated from humans prior to 2011 have been previously characterized for their virulence and transmissibility in ferrets, the recent genetic and antigenic divergence of H3N2v viruses warrants an updated assessment of their pandemic potential. Here, four contemporary H3N2v viruses isolated during 2011 to 2016 were evaluated for their replicative ability in both in vitro and in vivo in mammalian models as well as their transmissibility among ferrets. We found that all four H3N2v viruses possessed similar or enhanced replication capacities in a human bronchial epithelium cell line (Calu-3) compared to a human seasonal influenza virus, suggestive of strong fitness in human respiratory tract cells. The majority of H3N2v viruses examined in our study were mildly virulent in mice and capable of replicating in mouse lungs with different degrees of efficiency. In ferrets, all four H3N2v viruses caused moderate morbidity and exhibited comparable titers in the upper respiratory tract, but only 2 of the 4 viruses replicated in the lower respiratory tract in this model. Furthermore, despite efficient transmission among cohoused ferrets, recently isolated H3N2v viruses displayed considerable variance in their ability to transmit by respiratory droplets. The lack of a full understanding of the molecular correlates of virulence and transmission underscores the need for close genotypic and phenotypic monitoring of H3N2v viruses and the importance of continued surveillance to improve pandemic preparedness.IMPORTANCE Swine-origin influenza viruses of the H3N2 subtype, with the hemagglutinin (HA) and neuraminidase (NA) derived from historic human seasonal influenza viruses, continue to cross species barriers and cause human infections, posing an indelible threat to public health. To help us better understand the potential risk associated with swine-origin H3N2v viruses that emerged in the United States during the 2011-2016 influenza seasons, we use both in vitro and in vivo models to characterize the abilities of these viruses to replicate, cause disease, and transmit in mammalian hosts. The efficient respiratory droplet transmission exhibited by some of the H3N2v viruses in the ferret model combined with the existing evidence of low immunity against such viruses in young children and older adults highlight their pandemic potential. Extensive surveillance and risk assessment of H3N2v viruses should continue to be an essential component of our pandemic preparedness strategy.
Collapse
|
40
|
Tapia R, García V, Mena J, Bucarey S, Medina RA, Neira V. Infection of novel reassortant H1N2 and H3N2 swine influenza A viruses in the guinea pig model. Vet Res 2018; 49:73. [PMID: 30053826 PMCID: PMC6062863 DOI: 10.1186/s13567-018-0572-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022] Open
Abstract
Novel H1N2 and H3N2 swine influenza A viruses (IAVs) were identified in commercial farms in Chile. These viruses contained H1, H3 and N2 sequences, genetically divergent from IAVs described worldwide, associated with pandemic internal genes. Guinea pigs were used as human surrogate to evaluate the infection dynamics of these reassortant viruses, compared with a pandemic H1N1 virus. All viruses replicated and were shed in the upper respiratory tract without prior adaptation although H1N2 viruses showed the highest shedding titers. This could have public health importance, emphasizing the need to carry out further studies to evaluate the zoonotic potential of these viruses.
Collapse
Affiliation(s)
- Rodrigo Tapia
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa, 11735 Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santa Rosa, 11735 Santiago, Chile
| | - Victoria García
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa, 11735 Santiago, Chile
| | - Juan Mena
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa, 11735 Santiago, Chile
| | - Sergio Bucarey
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa, 11735 Santiago, Chile
| | - Rafael A. Medina
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY USA
- Millennium Institute on Immunology and Immunotherapy, 391 Marcoleta, Santiago, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa, 11735 Santiago, Chile
| |
Collapse
|
41
|
Bangaru S, Zhang H, Gilchuk IM, Voss TG, Irving RP, Gilchuk P, Matta P, Zhu X, Lang S, Nieusma T, Richt JA, Albrecht RA, Vanderven HA, Bombardi R, Kent SJ, Ward AB, Wilson IA, Crowe JE. A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nat Commun 2018; 9:2669. [PMID: 29991715 PMCID: PMC6039445 DOI: 10.1038/s41467-018-04704-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
The high rate of antigenic drift in seasonal influenza viruses necessitates frequent changes in vaccine composition. Recent seasonal H3 vaccines do not protect against swine-origin H3N2 variant (H3N2v) strains that recently have caused severe human infections. Here, we report a human VH1-69 gene-encoded monoclonal antibody (mAb) designated H3v-47 that exhibits potent cross-reactive neutralization activity against human and swine H3N2 viruses that circulated since 1989. The crystal structure and electron microscopy reconstruction of H3v-47 Fab with the H3N2v hemagglutinin (HA) identify a unique epitope spanning the vestigial esterase and receptor-binding subdomains that is distinct from that of any known neutralizing antibody for influenza A H3 viruses. MAb H3v-47 functions largely by blocking viral egress from infected cells. Interestingly, H3v-47 also engages Fcγ receptor and mediates antibody dependent cellular cytotoxicity (ADCC). This newly identified conserved epitope can be used in design of novel immunogens for development of broadly protective H3 vaccines. Broadly neutralizing antibodies are potential therapeutics and can aid rational vaccine development. Here, the authors show that the human monoclonal antibody H3v-47 recognizes a highly conserved epitope in HA of H3N2 viruses, inhibits virus replication by blocking egress and other mechanisms, and protects mice from disease.
Collapse
Affiliation(s)
- Sandhya Bangaru
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Heng Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Iuliia M Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Thomas G Voss
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ryan P Irving
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Pavlo Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Pranathi Matta
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shanshan Lang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Travis Nieusma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Juergen A Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Randy A Albrecht
- Department of Microbiology, Global Health and Emerging Pathogens Institute, at Icahn School of Medicine at Mount Sina, New York, NY, 10029, USA
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
42
|
Lauterbach SE, Wright CM, Zentkovich MM, Nelson SW, Lorbach JN, Bliss NT, Nolting JM, Pierson RM, King MD, Bowman AS. Detection of influenza A virus from agricultural fair environment: Air and surfaces. Prev Vet Med 2018; 153:24-29. [PMID: 29653731 PMCID: PMC8611410 DOI: 10.1016/j.prevetmed.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
Abstract
Agricultural fairs facilitate an environment conducive to the spread of influenza A virus with large numbers of pigs from various different locales comingling for several days (5-8 days). Fairs are also associated with zoonotic transmission of influenza A virus as humans have unrestricted contact with potentially infected swine throughout the fair's duration. Since 2005, the Centers for Disease Control and Prevention has reported 468 cases of variant influenza A virus, with most cases having had exposure to swine at agricultural fairs. Many mechanisms have been proposed as potential direct and indirect routes of transmission that may be enhancing intra- and inter-species transmission of influenza A virus at fairs. This study examines airborne respiratory droplets and portable animal-care items as potential routes of transmission that may be contributing to enhanced viral spread throughout the swine barn and the resulting variant cases of influenza A. Air samples were taken from inside swine barns at 25 fairs between the years 2013 and 2014. Influenza A virus was detected molecularly in 11 of 59 (18.6%) air samples, representing 4 of the 25 fairs. Viable H1N1 virus, matching virus recovered from swine at the fair, was recovered from the air at one fair in 2013. During the summer of 2016, 75 of 400 (18.8%) surface samples tested positive for molecular presence of influenza A virus and represented 10 of 20 fairs. Seven viral isolates collected from four fairs were recovered from the surfaces. Whole genome sequences of the viruses recovered from the surfaces are >99% identical to the viruses recovered from individual pigs at each respective fair. The detection and recovery of influenza A virus from both the air and surfaces found within the swine barn at agricultural fairs provide evidence for potential viral transmission through these routes, which may contribute to both intra- and inter-species transmission, threatening public health. These findings reinforce the need for new and improved mitigation strategies at agricultural fairs in order to reduce the risk to animal and public health.
Collapse
Affiliation(s)
- Sarah E Lauterbach
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH, 43201, USA.
| | - Courtney M Wright
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH, 43201, USA.
| | - Michele M Zentkovich
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH, 43201, USA.
| | - Sarah W Nelson
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH, 43201, USA.
| | - Joshua N Lorbach
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH, 43201, USA.
| | - Nola T Bliss
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH, 43201, USA.
| | - Jacqueline M Nolting
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH, 43201, USA.
| | - Raymond M Pierson
- Northrop Grumman ES Homeland Defense Group, 7055 Troy Hill Drive S#300, Elkridge, MD, 21075, USA.
| | - Maria D King
- Texas A&M University, Department of Biological and Agricultural Engineering, 333 Spence Street, MS 2117, College Station, TX, 77843, USA.
| | - Andrew S Bowman
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH, 43201, USA.
| |
Collapse
|
43
|
Meseko C, Globig A, Ijomanta J, Joannis T, Nwosuh C, Shamaki D, Harder T, Hoffman D, Pohlmann A, Beer M, Mettenleiter T, Starick E. Evidence of exposure of domestic pigs to Highly Pathogenic Avian Influenza H5N1 in Nigeria. Sci Rep 2018; 8:5900. [PMID: 29651056 PMCID: PMC5897404 DOI: 10.1038/s41598-018-24371-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Avian influenza viruses (AIV) potentially transmit to swine as shown by experiments, where further reassortment may contribute to the generation of pandemic strains. Associated risks of AIV inter-species transmission are greater in countries like Nigeria with recurrent epidemics of highly pathogenic AI (HPAI) in poultry and significant pig population. Analysis of 129 tracheal swab specimens collected from apparently healthy pigs at slaughterhouse during presence of HPAI virus H5N1 in poultry in Nigeria for influenza A by RT-qPCR yielded 43 positive samples. Twenty-two could be determined by clade specific RT-qPCR as belonging to the H5N1 clade 2.3.2.1c and confirmed by partial hemagglutinin (HA) sequence analysis. In addition, 500 swine sera were screened for antibodies against influenza A virus nucleoprotein and H5 HA using competition ELISAs and hemagglutination inhibition (HI) tests. Serologically, 222 (44.4%) and 42 (8.4%) sera were positive for influenza A virus NP and H5 antibodies, respectively. Sera reacted to H5N1 and A/H1N1pdm09 strains by HI suggesting exposure of the Nigerian domestic pig population to these viruses. We report for the first time in Nigeria, exposure of domestic pigs to H5N1 virus. This poses potential public health and pandemic risk due to interspecies transmission of avian and human influenza viruses.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria.
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
| | - Anja Globig
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Jeremiah Ijomanta
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Tony Joannis
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Chika Nwosuh
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - David Shamaki
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Donata Hoffman
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
44
|
Bailey ES, Fieldhouse JK, Choi JY, Gray GC. A Mini Review of the Zoonotic Threat Potential of Influenza Viruses, Coronaviruses, Adenoviruses, and Enteroviruses. Front Public Health 2018; 6:104. [PMID: 29686984 PMCID: PMC5900445 DOI: 10.3389/fpubh.2018.00104] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/27/2018] [Indexed: 01/16/2023] Open
Abstract
During the last two decades, scientists have grown increasingly aware that viruses are emerging from the human–animal interface. In particular, respiratory infections are problematic; in early 2003, World Health Organization issued a worldwide alert for a previously unrecognized illness that was subsequently found to be caused by a novel coronavirus [severe acute respiratory syndrome (SARS) virus]. In addition to SARS, other respiratory pathogens have also emerged recently, contributing to the high burden of respiratory tract infection-related morbidity and mortality. Among the recently emerged respiratory pathogens are influenza viruses, coronaviruses, enteroviruses, and adenoviruses. As the genesis of these emerging viruses is not well understood and their detection normally occurs after they have crossed over and adapted to man, ideally, strategies for such novel virus detection should include intensive surveillance at the human–animal interface, particularly if one believes the paradigm that many novel emerging zoonotic viruses first circulate in animal populations and occasionally infect man before they fully adapt to man; early detection at the human–animal interface will provide earlier warning. Here, we review recent emerging virus treats for these four groups of viruses.
Collapse
Affiliation(s)
- Emily S Bailey
- Duke Global Health Institute, Duke University, Durham, NC, United States.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States
| | - Jane K Fieldhouse
- Duke Global Health Institute, Duke University, Durham, NC, United States.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States
| | - Jessica Y Choi
- Duke Global Health Institute, Duke University, Durham, NC, United States.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States
| | - Gregory C Gray
- Duke Global Health Institute, Duke University, Durham, NC, United States.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States.,Global Health Research Center, Duke-Kunshan University, Kunshan, China.,Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
45
|
Rajão DS, Pérez DR. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front Microbiol 2018; 9:123. [PMID: 29467737 PMCID: PMC5808216 DOI: 10.3389/fmicb.2018.00123] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches.
Collapse
Affiliation(s)
- Daniela S. Rajão
- Department of Population Health, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
46
|
Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res 2018; 7:1-15. [PMID: 29399575 PMCID: PMC5795040 DOI: 10.7774/cevr.2018.7.1.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/28/2022] Open
Abstract
Influenza A viruses (IAVs) are genetically diverse and variable pathogens that share various hosts including human, swine, and domestic poultry. Interspecies and intercontinental viral spreads make the ecology of IAV more complex. Beside endemic IAV infections, human has been exposed to pandemic and zoonotic threats from avian and swine influenza viruses. Animal health also has been threatened by high pathogenic avian influenza viruses (in domestic poultry) and reverse zoonosis (in swine). Considering its dynamic interplay between species, prevention and control against IAV should be conducted effectively in both humans and animal sectors. Vaccination is one of the most efficient tools against IAV. Numerous vaccines against animal IAVs have been developed by a variety of vaccine technologies and some of them are currently commercially available. We summarize several challenges in control of IAVs faced by human and animals and discuss IAV vaccines for animal use with those application in susceptible populations.
Collapse
Affiliation(s)
- Sung J. Yoo
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Taeyong Kwon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Young S. Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
47
|
Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants. J Virol 2017; 91:JVI.01581-17. [PMID: 28978710 DOI: 10.1128/jvi.01581-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Each influenza season, a set of wild-type viruses, representing one H1N1, one H3N2, and one to two influenza B isolates, are selected for inclusion in the annual seasonal influenza vaccine. In order to develop broadly reactive subtype-specific influenza vaccines, a methodology called computationally optimized broadly reactive antigens (COBRA) was used to design novel hemagglutinin (HA) vaccine immunogens. COBRA technology was effectively used to design HA immunogens that elicited antibodies that neutralized H5N1 and H1N1 isolates. In this report, the development and characterization of 17 prototype H3N2 COBRA HA proteins were screened in mice and ferrets for the elicitation of antibodies with HA inhibition (HAI) activity against human seasonal H3N2 viruses that were isolated over the last 48 years. The most effective COBRA HA vaccine regimens elicited antibodies with broader HAI activity against a panel of H3N2 viruses than wild-type H3 HA vaccines. The top leading COBRA HA candidates were tested against cocirculating variants. These variants were not efficiently detected by antibodies elicited by the wild-type HA from viruses selected as the vaccine candidates. The T-11 COBRA HA vaccine elicited antibodies with HAI and neutralization activity against all cocirculating variants from 2004 to 2007. This is the first report demonstrating broader breadth of vaccine-induced antibodies against cocirculating H3N2 strains compared to the wild-type HA antigens that were represented in commercial influenza vaccines.IMPORTANCE There is a need for an improved influenza vaccine that elicits immune responses that recognize a broader number of influenza virus strains to prevent infection and transmission. Using the COBRA approach, a set of vaccines against influenza viruses in the H3N2 subtype was tested for the ability to elicit antibodies that neutralize virus infection against not only historical vaccine strains of H3N2 but also a set of cocirculating variants that circulated between 2004 and 2007. Three of the H3N2 COBRA vaccines recognized all of the cocirculating strains during this era, but the chosen wild-type vaccine strains were not able to elicit antibodies with HAI activity against these cocirculating strains. Therefore, the COBRA vaccines have the ability to elicit protective antibodies against not only the dominant vaccine strains but also minor circulating strains that can evolve into the dominant vaccine strains in the future.
Collapse
|
48
|
Nolting JM, Midla J, Whittington MS, Scheer SD, Bowman AS. Educating youth swine exhibitors on influenza A virus transmission at agricultural fairs. Zoonoses Public Health 2017; 65:e143-e147. [PMID: 29150910 DOI: 10.1111/zph.12422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 11/28/2022]
Abstract
Influenza A virus (IAV) is a major zoonotic pathogen that threatens global public health. Novel strains of influenza A viruses pose a significant risk to public health due to their pandemic potential, and transmission of influenza A viruses from animals to humans is an important mechanism in the generation and introduction of IAVs that threaten human health. The purpose of this descriptive correlational study was to develop real-life training scenarios to better inform swine exhibitors of the risks they may encounter when influenza A viruses are present in swine. Educational activities were implemented in five Ohio counties where exhibition swine had historically been shedding influenza A viruses during the county fair. A total of 146 youth swine exhibitors participated in the educational programme, and an increase in the knowledge base of these youth was documented. It is expected that educating youth exhibitors about exposure to influenza A virus infections in the swine they are exhibiting will result in altered behaviours and animal husbandry practices that will improve both human and animal health.
Collapse
Affiliation(s)
- J M Nolting
- The Ohio State University, Columbus, OH, USA
| | - J Midla
- The Ohio State University, Columbus, OH, USA
| | | | - S D Scheer
- The Ohio State University, Columbus, OH, USA
| | - A S Bowman
- The Ohio State University, Columbus, OH, USA
| |
Collapse
|
49
|
Stewart RJ, Rossow J, Conover JT, Lobelo EE, Eckel S, Signs K, Stobierski MG, Trock SC, Fry AM, Olsen SJ, Biggerstaff M. Do animal exhibitors support and follow recommendations to prevent transmission of variant influenza at agricultural fairs? A survey of animal exhibitor households after a variant influenza virus outbreak in Michigan. Zoonoses Public Health 2017; 65:195-201. [PMID: 29143461 PMCID: PMC6631301 DOI: 10.1111/zph.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 11/30/2022]
Abstract
Influenza A viruses circulate in swine and can spread rapidly among swine when housed in close proximity, such as at agricultural fairs. Youth who have close and prolonged contact with influenza-infected swine at agricultural fairs may be at increased risk of acquiring influenza virus infection from swine. Animal and human health officials have issued written measures to minimize influenza transmission at agricultural exhibitions; however, there is little information on the knowledge, attitudes, and practice (KAP) of these measures among animal exhibitors. After an August 2016 outbreak of influenza A(H3N2) variant (“H3N2v”) virus infections (i.e., humans infected with swine influenza viruses) in Michigan, we surveyed households of animal exhibitors at eight fairs (including one with known H3N2v infections) to assess their KAP related to variant virus infections and their support for prevention measures. Among 170 households interviewed, most (90%, 151/167) perceived their risk of acquiring influenza from swine to be low or very low. Animal exhibitor households reported high levels of behaviours that put them at increased risk of variant influenza virus infections, including eating or drinking in swine barns (43%, 66/154) and hugging, kissing or snuggling with swine at agricultural fairs (31%, 48/157). Among several recommendations, including limiting the duration of swine exhibits and restricting eating and drinking in the animal barns, the only recommendation supported by a majority of households was the presence of prominent hand-washing stations with a person to monitor hand-washing behaviour (76%, 129/170). This is a unique study of KAP among animal exhibitors and highlights that animal exhibitor households engage in behaviours that could increase their risk of variant virus infections and have low support for currently recommended measures to minimize infection transmission. Further efforts are needed to understand the lack of support for recommended measures and to encourage healthy behaviours at fairs.
Collapse
Affiliation(s)
- R J Stewart
- Epidemic Intelligence Service, CDC, Atlanta, GA, USA.,Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - J Rossow
- Epidemiology Elective Program, Division of Scientific Education and Professional Development, Center for Surveillance, Epidemiology, and Laboratory Services, Atlanta, GA, USA.,University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - J T Conover
- Michigan State University Extension, East Lansing, MI, USA
| | - E E Lobelo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S Eckel
- Michigan Department of Health and Human Services, Lansing, MI, USA
| | - K Signs
- Michigan Department of Health and Human Services, Lansing, MI, USA
| | - M G Stobierski
- Michigan Department of Health and Human Services, Lansing, MI, USA
| | - S C Trock
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - A M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S J Olsen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Biggerstaff
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
50
|
Liu F, Veguilla V, Gross FL, Gillis E, Rowe T, Xu X, Tumpey TM, Katz JM, Levine MZ, Lu X. Effect of Priming With Seasonal Influenza A(H3N2) Virus on the Prevalence of Cross-Reactive Hemagglutination-Inhibition Antibodies to Swine-Origin A(H3N2) Variants. J Infect Dis 2017; 216:S539-S547. [PMID: 28934461 DOI: 10.1093/infdis/jix093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Recent outbreaks of swine-origin influenza A(H3N2) variant (H3N2v) viruses have raised public health concerns. Previous studies indicated that older children and young adults had the highest levels of hemagglutination-inhibition (HI) antibodies to 2010-2011 H3N2v viruses. However, newly emerging 2013 H3N2v have acquired antigenic mutations in the hemagglutinin at amino acid position 145 (N145K/R). We estimated the levels of serologic cross-reactivity among humans primed with seasonal influenza A(H3N2) (sH3N2), using postinfection ferret antisera. We also explored age-related HI antibody responses to 2012-2013 H3N2v viruses. Methods Human and ferret antisera were tested in HI assays against 1 representative 2012 H3N2v (145N) and 2 2013 H3N2v (145K/R) viruses, together with 9 sH3N2 viruses circulating since 1968. Results Low levels of cross-reactivity between the H3N2v and sH3N2 viruses from the 1970s-1990s were observed using postinfection ferret antisera. The overall seroprevalence among the sH3N2-primed population against 2012-2013 H3N2v viruses was >50%, and age-related seroprevalence was observed. Seroprevalence was significantly higher to 2013 H3N2v than to 2012 H3N2v viruses among some children likely to have been primed with A/Sydney/5/97-like (145K) or A/Wuhan/359/95-like viruses (145K). Conclusions A single substitution (N145K/R) was sufficient to affect seropositivity to H3N2v viruses in some individuals. Insight into age-related antibody responses to newly emerging H3N2v viruses is critical for risk assessment and pandemic preparedness.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Vic Veguilla
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - F Liaini Gross
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Gillis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Thomas Rowe
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|