1
|
Boonroumkaew P, Janwan P, Sadaow L, Rodpai R, Sanpool O, Thanchomnang T, Intapan PM, Maleewong W. Evaluation of an Innovative Rapid Diagnostic Test for Human Strongyloidiasis to Detect Specific IgG Antibody in Whole-Blood Samples. Am J Trop Med Hyg 2025; 112:571-576. [PMID: 39626276 PMCID: PMC11884293 DOI: 10.4269/ajtmh.24-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 12/06/2024] Open
Abstract
Human strongyloidiasis is an important intestinal parasitic disease that affects public health globally and is transmitted through contact with infective larvae on contaminated soil. Immunocompromised hosts can experience hyperinfection, which can lead to fatal systemic strongyloidiasis. Here, an innovative point-of-care (POC) test kit, the strongyloidiasis immunochromatographic blood test (the NIE-SsIR whole-blood ICT) kit is described. The kit was used to detect anti-Strongyloides IgG antibody in whole-blood samples (WBSs) instead of serum to diagnose strongyloidiasis. The kit is based on a mixture of two recombinant Strongyloides stercoralis protein antigens (NIE and SsIR) and colloidal-gold-labeled conjugates of anti-human IgG antibody to evaluate diagnostic values with simulated and fresh anticoagulated WBSs. The NIE-SsIR whole-blood ICT kit showed potentially high diagnostic values with simulated WBSs, obtained by spiking patients' sera with red blood cells. The sensitivity, specificity, and positive and negative predictive values were 93.0%, 93.7%, 88.6%, and 96.2%, respectively, at the prevalence of disease simulated under the laboratory conditions of 34.5%. In addition, 18 of 20 fresh anticoagulated WBSs from strongyloidiasis cases were positive, and all 15 WBSs from healthy volunteers were negative. The NIE-SsIR whole-blood ICT kit is a simple and convenient POC testing tool and can possibly be used with fingerstick blood samples, thereby not requiring the drawing of venous blood and separation of the serum. The NIE-SsIR whole-blood ICT kit can assist clinical diagnosis in remote areas and field settings without sophisticated equipment.
Collapse
Affiliation(s)
- Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Penchom Janwan
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Rutchanee Rodpai
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Nakhonratchasima College, Nakhon Ratchasima, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Tongjit Thanchomnang
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Restrepo-Cano V, García-Huertas P, Caraballo-Guzmán A, Sánchez-Jiménez MM, Torres-Lindarte G. Back to Basics: Unraveling the Fundamentals of Lateral Flow Assays. J Appl Lab Med 2025; 10:476-492. [PMID: 39657687 DOI: 10.1093/jalm/jfae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/09/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Lateral flow assay (LFA) is a rapid analytical technique that has been implemented as a point-of-care approach for analyte detection. Given the rapid expansion of the use of LFA as a point-of-care testing strategy, LFA development has been subjected to extensive research, which has resulted in upgraded designs and technologies, improving levels of specificity and costs associated with manufacturing. This has allowed LFA to become an important option in rapid testing while maintaining appropriate limits of detection for accurate diagnoses. CONTENT This review focuses on the theoretical basis of LFA, its components, formats, multiparametric possibilities, labels, and applications. Also, challenges associated with the technique and possible solutions are explored. SUMMARY We explore LFA as a detection technique, its benefits, opportunities for improvement, and applications, and how challenges to its design can be approached.
Collapse
Affiliation(s)
| | - Paola García-Huertas
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia, Colombia
| | - Arley Caraballo-Guzmán
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia, Colombia
| | | | | |
Collapse
|
3
|
Wen CY, Yang X, Zhao TY, Qu J, Tashpulatov K, Zeng J. Dual-mode and multiplex lateral flow immunoassay: A powerful technique for simultaneous screening of respiratory viruses. Biosens Bioelectron 2025; 271:117030. [PMID: 39653011 DOI: 10.1016/j.bios.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Respiratory viral infectious usually exhibit similar clinical symptoms, making a great challenge for their accurate diagnostic in early stages. Herein, we developed a dual-mode and multiplex lateral flow immunoassay (LFIA), in which near-infrared (NIR)-responsive Janus Aushell-Fe3O4 nanoparticles (NPs) were synthesized as new reporters for highly sensitive colorimetric/photothermal detection of H3N2 influenza and SARS-CoV-2 viruses in a single assay. The Janus Aushell-Fe3O4 well combined the NIR responsiveness and high molar absorption coefficient of Aushell and magnetic properties of Fe3O4. In the detection, two test (T) lines were arranged on the strip, which could capture corresponding virus antigen-Aushell-Fe3O4 complexes, forming color bands. Hence, according to the position of color bands and their photothermal signals, the type and amount of virus could be quickly determined. The naked-eye limits of detection (LODs) for H3N2 and SARS-CoV-2 were both 50 ng/mL. The photothermal quantitative ranges were from 10 to 106 pg/mL with LODs of 2 pg/mL (H3N2) and 7 pg/mL (SARS-CoV-2), which were nearly 10000 times lower than naked-eye detection. Moreover, this multiplex LFIA showed good specificity and anti-interference ability, which was applied to complex samples with satisfactory results. Thus, this Aushell-Fe3O4 LFIA showed great application potential in rapid virus screening and early detection.
Collapse
Affiliation(s)
- Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xianning Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Tian-Yu Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jianbo Qu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | | | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
4
|
Che X, Ivanov N, Krylova SM, Krylov SN. Single-Reservoir Electrophoresis to Facilitate Layer-by-Layer Assembly of Gold Nanoparticles in Lateral Flow Immunoassay. Anal Chem 2025; 97:3920-3925. [PMID: 39937443 DOI: 10.1021/acs.analchem.4c05082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Electrophoretically facilitated layer-by-layer assembly of gold nanoparticles (GNPs) in lateral flow immunoassays (LFIAs) significantly enhances the signal-to-background ratio and, consequently, the diagnostic sensitivity of these tests. However, conventional two-reservoir electrophoresis on paper is limited by counterflow induced by capillary action, which disrupts the electrophoretic migration of GNPs toward the anode. This counterflow necessitates manual intervention to facilitate the movement of GNP-labeled immunocomplexes from the membrane to the absorption pad, complicating the assay workflow. To address this challenge, we propose a nonconventional single-reservoir electrophoresis system on paper, which inherently eliminates counterflow. In this configuration, the loading side of the paper strip and the cathode reside within the buffer reservoir, while the anode is directly affixed to the opposite end of the paper strip. We demonstrate the efficacy of this single-reservoir system in driving layer-by-layer assembly, while presenting favorable spatial temperature profiles as a side benefit. By eliminating the need for manual steps, this design streamlines the electrophoresis process and enhances the usability of electrophoretically facilitated LFIA assays.
Collapse
Affiliation(s)
- Xingzhi Che
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Nikita Ivanov
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Svetlana M Krylova
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
5
|
Domingos EL, Souza DA, Alves FMS, Gorski D, Tonin FS, Ferreira LM, Pontarolo R. Accuracy of diagnostic tests for feline sporotrichosis: a systematic review and meta-analysis. Acta Trop 2025; 263:107549. [PMID: 39933645 DOI: 10.1016/j.actatropica.2025.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Feline sporotrichosis is a subcutaneous infection caused by fungi of the Sporothrix genus, particularly concerning in endemic regions of South America, where cats are important vectors. Traditional diagnosis through fungal culture is time-consuming, which can delay the start of treatment. OBJECTIVE Our goal was to synthesize the evidence on the accuracy of alternative diagnostic methods for feline sporotrichosis. METHODS A systematic review was conducted following the Cochrane Collaboration recommendations and the PRISMA-DTA checklist (CRD42023456520). Searches for observational studies were performed in PubMed, Embase, and Web of Science. Using a random-effects model, bivariate meta-analysis was employed to estimate combined sensitivity, specificity, and diagnostic odds ratio (DOR) with 95% confidence intervals. The results were presented in forest plots and Summary Receiver Operating Characteristic (SROC) curves; heterogeneity was assessed using Tau² and I² statistics (R-software). RESULTS Eight studies, totaling 1,920 cats, evaluated five diagnostic methods. PCR tests had the highest accuracy (90% sensitivity, 94% specificity, area under the curve 0.950), while cytological methods demonstrated moderate diagnostic accuracy (89%, 22% and 0.879, respectively). The findings highlight the need for faster, more accurate, and cost-effective diagnostic alternatives, especially in resource-limited regions, and underscore the importance of advancing techniques to improve early detection and treatment of sporotrichosis.
Collapse
Affiliation(s)
- Eric L Domingos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Dalton A Souza
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Fernando M S Alves
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Daniela Gorski
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Fernanda S Tonin
- Social and Legal Pharmacy Section, University of Granada, Granada, Spain
| | - Luana M Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil; Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil; Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
6
|
Ming W, Zhu Y, Jiang W, Zhang J, Liu J, Wu L, Qin Y. Advanced point-of-care biomarker testing for the diagnosis of cardiovascular diseases. SENSING AND BIO-SENSING RESEARCH 2025; 47:100747. [DOI: 10.1016/j.sbsr.2025.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2025] Open
|
7
|
Ghadin N, Baharum SN, Ahmad Raston NH, Low CF. Truncation-Enhanced Aptamer Binding Affinity and Its Potential as a Sensor for Macrobrachium rosenbergii Nodavirus Detection. JOURNAL OF FISH DISEASES 2025:e14093. [PMID: 39887434 DOI: 10.1111/jfd.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
White tail disease in Macrobrachium rosenbergii is caused by M. rosenbergii nodavirus (MrNV) infection, resulting in up to 100% mortality in larvae and post-larvae stages, severely impacting aquaculture production. Existing genome-based detection methods for MrNV are costly and time-consuming, highlighting the need for rapid and cost-effective diagnostic tests. This study evaluated the effects of truncating selected aptamer on its binding affinity to the MrNV capsid protein. The previously isolated and identified aptamer through magnetic-capture SELEX and Next Generation Sequencing demonstrated high binding affinity to the MrNV capsid protein. Truncation at the primer overhang was found to improve binding affinity, reducing the dissociation constant from 347 nM to 30.1 nM. The calculated limit of detection for the truncated aptamer decreased from 5.64 nM to 1.7 nM, while the limit of quantification decreased from 17.1 nM to 5.16 nM. These reductions indicate that the truncated aptamer has higher sensitivity compared to the full-length aptamer. In tests with MrNV-infected M. rosenbergii samples, both the enzyme-linked aptamer assay and the gold nanoparticle aptasensor assay showed consistent results when 0.5 μg of total protein lysate was used. This indicates that the prawn protein concentration interferes with the detection of the viral protein. These findings suggest the potential application of the truncated aptamer as a sensor in the development of a practical aptamer-based diagnostic kit. For instance, an aptamer-based lateral flow assay test kit could provide a user-friendly, cost-effective solution that eliminates the need for sophisticated instrumentation for diagnosis or data interpretation, making it ideal for detecting MrNV infection in M. rosenbergii aquaculture.
Collapse
Affiliation(s)
- Norazli Ghadin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
Van Der Pol B. Overview of point-of-care diagnostic options for detection of chlamydia trachomatis: current technology and implementation considerations. Expert Rev Mol Diagn 2025:1-12. [PMID: 39817803 DOI: 10.1080/14737159.2025.2453505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Chlamydia trachomatis continues to be the most common bacterial infection worldwide and rates continue to increase despite long-standing control efforts. Point of care (POC) testing options may offer improvements in case finding that lead to improved control of this sexually transmitted infection (STI). AREAS COVERED This review will provide information on the three tests that have US Food and Drug Administration (FDA) clearance and describe assays in the developmental pipeline. The review will also provide implementation evaluations of the existing tests and offer suggestions about factors to consider prior to adoption of these or newer tests as they become available. EXPERT OPINION Technology is developing rapidly and may soon offer many choices of rapid diagnostic tools which can be used in clinical settings to detect chlamydial infections, particularly in underserved populations. The key to successful deployment of new tests will rest on data generated by implementation research to identify the features that create barriers or facilitate adoption of a new clinical paradigm.
Collapse
Affiliation(s)
- Barbara Van Der Pol
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Dong Y, Zhu J, Pan N. Recent advances in rapid detection of Helicobacter pylori by lateral flow assay. Arch Microbiol 2025; 207:35. [PMID: 39820420 DOI: 10.1007/s00203-025-04239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Infection with H. pylori (Helicobacter pylori) is the most prevalent human infection worldwide and is strongly associated with many gastrointestinal disorders, including gastric cancer. Endoscopy is mainly used to diagnose H. pylori infection in gastric biopsies. However, this approach is invasive, time-consuming and expensive. On the other hand, serology-based methods can be considered as a non-invasive approach to detecting H. pylori infection. The LFA (lateral flow assay) serves as a rapid point-of-care diagnostic tool. This paper-based platform facilitates the detection and quantification of analytes within human fluids such as blood, serum and urine. Due to ease of production, rapid results, and low costs, LFAs have a wide application in clinical laboratories and hospitals. In this comprehensive review, we examined LFA-based approaches for detection of H. pylori infection from human fluids and compare them with other high-sensitivity methods like ELISA (Enzyme-linked immunosorbent assay). Furthermore, we reviewed methods to elevate LFA sensitivity during H. pylori infection including, CRISPR/Cas system and isothermal amplification approaches. The development and optimization of novel labeling agents such as nanozyme to enhance the performance of LFA devices in detecting H. pylori were reviewed. These innovations aim to improve signal amplification and stability, thereby increasing the diagnostic accuracy of LFA devices. A combination of advances in LFA technology and molecular insight could significantly improve diagnostic accuracy, resulting in a significant improvement in clinical and remote diagnostic accuracy.
Collapse
Affiliation(s)
- Yanjin Dong
- Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China
| | - Jie Zhu
- Department of Laboratory Medicine, Shandong First Medical University Affiliated Provincial Hospital (East Hospital), No. 9677, Jingshi Road, Lixia District, Jinan, 250098, Shandong, China
| | - Ning Pan
- Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China.
| |
Collapse
|
10
|
Muramatsu S, Kato D, Takada A. Immunochromatographic Lateral Flow Assays to Detect Filovirus Nucleoproteins. Methods Mol Biol 2025; 2877:421-430. [PMID: 39585638 DOI: 10.1007/978-1-0716-4256-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The recent large outbreaks of Ebola virus disease in West Africa and the Democratic Republic of the Congo have highlighted the need for rapid diagnostic tests to control this disease. In this chapter, the development of immunochromatographic lateral flow assays to detect filovirus nucleoproteins is described as an example of designing rapid diagnostic tests.
Collapse
Affiliation(s)
| | | | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.
| |
Collapse
|
11
|
Laurent R, Hinnant B, Talbott MD, Kim K. Automation for lateral flow rapid tests: Protocol for an open-source fluid handler and applications to dengue and African swine fever tests. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002625. [PMID: 39585872 PMCID: PMC11588214 DOI: 10.1371/journal.pgph.0002625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/17/2024] [Indexed: 11/27/2024]
Abstract
Lateral flow rapid diagnostic tests (RDTs, RTs) are cost-effective with low infrastructure requirements for limited-resource settings, and in any setting can represent a bridge between early disease monitoring at outbreak onset and fully-scaled molecular testing for human or animal diseases. However, the potential of RTs to handle higher throughput testing is hampered by the need for manual processing. Here we review dengue virus and African swine fever virus rapid tests, and present a novel protocol that employs an open-source fluid handler to automate the execution of up to 42 RTs per run. A publicly accessible website, rtWIZARD.lji.org, provides printouts for correctly spacing cassettes, worksheets for sample organization, and test-specific fluid handler protocols to accurately deliver samples from a 48-tube rack to each cassette's sample and running buffer wells. An optional QR-coded sheet allows for de-identified sample-to-result traceability by producing a unique printable label for each cassette, enabling results to be entered via a scanner. This work describes a highly cost-effective model for increasing outbreak diagnostic efficiency and of increasing RT throughput for other applications including workplace testing, food safety, environmental testing, and defense applications.
Collapse
Affiliation(s)
- Rohan Laurent
- Histopathology Core, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Benjamin Hinnant
- Histopathology Core, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Michael D. Talbott
- La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Kenneth Kim
- Histopathology Core, La Jolla Institute for Immunology, La Jolla, California, United States of America
| |
Collapse
|
12
|
Zhao Y, Wei Y, Ye C, Cao J, Zhou X, Xie M, Qing J, Chen Z. Application of recombinase polymerase amplification with lateral flow assay to pathogen point-of-care diagnosis. Front Cell Infect Microbiol 2024; 14:1475922. [PMID: 39624267 PMCID: PMC11609166 DOI: 10.3389/fcimb.2024.1475922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/24/2024] [Indexed: 01/03/2025] Open
Abstract
Since the outbreak of the new coronavirus, point-of-care diagnostics based on nucleic acid testing have become a requirement for the development of pathogen diagnostics, which require the ability to accurately, rapidly, and conveniently detect pathogens. Conventional nucleic acid amplification techniques no longer meet the requirements for pathogen detection in low-resource, low-skill environments because they require specialist equipment, complex operations, and long detection times. Therefore, recombinant polymerase amplification (RPA) is becoming an increasingly important method in today's nucleic acid detection technology because it can amplify nucleic acids in 20-30 minutes at a constant temperature, greatly reducing the dependence on specialist equipment and technicians. RPA products are primarily detected through methods such as real-time fluorescence, gel electrophoresis, lateral flow assays (LFAs), and other techniques. Among these, LFAs allow for the rapid detection of amplification products within minutes through the visualization of results, offering convenient operation and low cost. Therefore, the combination of RPA with LFA technology has significant advantages and holds broad application prospects in point-of-care (POC) diagnostics, particularly in low-resource settings. Here, we focus on the principles of RPA combined with LFAs, their application to pathogen diagnosis, their main advantages and limitations, and some improvements in the methods.
Collapse
Affiliation(s)
- Yilian Zhao
- The First Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Yan Wei
- Precision Joint Inspection Centre, The People’s Hospital Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
- Graduate College, Guangxi University of Chinese Medicine, Nanning, China
| | - Chao Ye
- Precision Joint Inspection Centre, The People’s Hospital Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Jinmeng Cao
- Department of Scientific Research, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiaoxing Zhou
- Precision Joint Inspection Centre, The People’s Hospital Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Mengru Xie
- The First Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Jilin Qing
- Center for Reproductive Medicine and Genetics, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhizhong Chen
- Precision Joint Inspection Centre, The People’s Hospital Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
13
|
Li G, Wang X, Guo J, Wang Y, Liu X, Wei Q, Zhang Y, Sun Y, Fan L, Xing Y, Li Q, Zhang G. Differential detection of SARS-CoV-2 variants and influenza A viruses utilizing a dual lateral flow strip based on colloidal gold-labeled monoclonal antibodies. Int J Biol Macromol 2024; 280:136067. [PMID: 39341304 DOI: 10.1016/j.ijbiomac.2024.136067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the seasonal influenza virus are spreading among humans concurrently, especially with the ongoing replacement of mutant strains. It is challenging to differentiate between symptoms for therapy due to the comparable symptoms following infection with the SARS-CoV-2 variants and influenza viruses. Meanwhile, in order to achieve rapid point-of-care testing (POCT) to manage the spread of the disease, we developed a dual lateral flow strip based on colloidal gold-labeled monoclonal antibodies that can perform differential detection of SARS-CoV-2 variants and influenza A viruses (IAV) in this study. High-affinity monoclonal antibodies (mAbs) targeting SARS-CoV-2 and IAV were prepared to capture antigens and labeled with colloidal gold nanoparticles (AuNPs). Based on high-affinity mAbs, two targets were immobilized on one nitrocellulose (NC) membrane to establish the lateral flow strip (LFS) for differential diagnosis of SARS-CoV-2 and IAV. With no reactivity to other viruses, this LFS is extremely specific and can only identify SARS-CoV-2 and IAV. The LFS showed a limit of detection (LOD) of 4.88 ng/mL for the Omicron BA.2 RBD protein and 2.44 ng/mL for the nucleoprotein (NP) protein of H1N1. When analyzing 16 SARS-CoV-2 positive clinical samples, eight IAV positive clinical samples, and six negative samples that had already been pre-confirmed by commercial kits, its clinical application is effectively and accurately proven. These results demonstrated that the LFS integrated with AuNPs has great potential to facilitate quick, easy, and reliable POCT diagnosis for promoting the control of infectious diseases.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xun Wang
- College of Food and Drug, Luoyang Polytechnic, Luoyang 471023, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xiao Liu
- Henan Medical College, Zhengzhou 451191, China
| | - Qiang Wei
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yaning Sun
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lu Fan
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunrui Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingmei Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
14
|
Thome CP, Fowle JP, McDonnell P, Zultak J, Jayaram K, Neumann AK, López GP, Shields CW. Acoustic pipette and biofunctional elastomeric microparticle system for rapid picomolar-level biomolecule detection in whole blood. SCIENCE ADVANCES 2024; 10:eado9018. [PMID: 39413177 PMCID: PMC11482303 DOI: 10.1126/sciadv.ado9018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Most biosensing techniques require complex processing steps that generate prolonged workflows and introduce potential points of error. Here, we report an acoustic pipette to purify and label biomarkers in 70 minutes. A key aspect of this technology is the use of functional negative acoustic contrast particles (fNACPs), which display biorecognition motifs for the specific capture of biomarkers from whole blood. Because of their large size and compressibility, the fNACPs robustly trap along the pressure antinodes of a standing wave and separate from blood components in under 60 seconds with >99% efficiency. fNACPs are subsequently fluorescently labeled in the pipette and are analyzed by both a custom, portable fluorimeter and flow cytometer. We demonstrate the detection of anti-ovalbumin antibodies from blood at picomolar levels (35 to 60 pM) with integrated controls showing minimal nonspecific adsorption. Overall, this system offers a simple and versatile approach for the rapid, sensitive, and specific capture of biomolecules.
Collapse
Affiliation(s)
- Cooper P. Thome
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - John P. Fowle
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Parker McDonnell
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Johanna Zultak
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kaushik Jayaram
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Aaron K. Neumann
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Gabriel P. López
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
15
|
A N B, O D H, N S K, A V Z, B B D. Immunodetection of Poorly Soluble Substances: Limitations and Their Overcoming. Crit Rev Anal Chem 2024:1-26. [PMID: 39360478 DOI: 10.1080/10408347.2024.2402835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Immunoassays based on the specific antigen-antibody interactions are efficient tools to detect various compounds and estimate their content. Usually, these assays are implemented in water-saline media with composition close to physiological conditions. However, many substances are insoluble or cannot be molecularly dispersed in such media, which objectively creates problems when interacting in aquatic environments. Thus, obtaining immunoreactants and implementing immunoassays of these substances need special methodological solutions. Hydrophobicity of antigens as well as their limited ability to functionalization and conjugation are often overlooked when developing immunoassays for these compounds. The main key finding is the possibility to influence the behavior of hydrophobic compounds for immunoassays, which requires specific approaches summarized in the review. Using the examples of two groups of compounds-surfactants (alkyl- and bisphenols) and fullerenes, we systematized the existing knowledge and experience in the development of immunoassays. This review addresses the challenges of immunodetection of poorly soluble substances and proposes solutions such as the use of hydrotropes, other solubilization techniques, and alternative receptors (aptamers and molecularly imprinted polymers).
Collapse
Affiliation(s)
- Berlina A N
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Hendrickson O D
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Komova N S
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Zherdev A V
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Dzantiev B B
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| |
Collapse
|
16
|
Kakkar S, Gupta P, Singh Yadav SP, Raj D, Singh G, Chauhan S, Mishra MK, Martín-Ortega E, Chiussi S, Kant K. Lateral flow assays: Progress and evolution of recent trends in point-of-care applications. Mater Today Bio 2024; 28:101188. [PMID: 39221210 PMCID: PMC11364909 DOI: 10.1016/j.mtbio.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.
Collapse
Affiliation(s)
- Saloni Kakkar
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Shiv Pratap Singh Yadav
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Garima Singh
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Sakshi Chauhan
- Dept. of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Elena Martín-Ortega
- IFCAE, Research Institute of Physics and Aerospace Science, Universidade de Vigo, Ourense, 32004, Spain
| | - Stefano Chiussi
- CINTECX, Universidade de Vigo, New Materials Group, Vigo, 36310, Spain
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo, 36310, Spain
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, U.P., India
| |
Collapse
|
17
|
Yu D, Zi M, Dou Y, Tashpulatov K, Zeng JB, Wen CY. An Fe 3O 4-Au heterodimer nanoparticle-based lateral flow assay for rapid and simultaneous detection of multiple influenza virus nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5777-5784. [PMID: 39145405 DOI: 10.1039/d4ay01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Sensitive, convenient and rapid detection and subtyping of influenza viruses are crucial for timely treatment and management of infected people. Compared with antigen detection, nucleic acid detection has higher specificity and can shorten the detection window. Hence, in this work, we improved the lateral flow assay (LFA, one of the most promising user-friendly and on-site methods) to achieve detection and subtyping of H1N1, H3N2 and H9N2 influenza virus nucleic acids. Firstly, the antigen-antibody recognition mode was transformed into a nucleic acid hybridization reaction. Secondly, Fe3O4-Au heterodimer nanoparticles were prepared to replace frequently used Au nanoparticles to obtain better coloration. Thirdly, four lines were arranged on the LFA strip, which were three test (T) lines and one control (C) line. Three T lines were respectively sprayed by the DNA sequences complementary to one end of H1N1, H3N2 and H9N2 influenza virus nucleic acids, while Fe3O4-Au nanoparticles were respectively coupled with the DNA sequences complementary to the other end of H1N1, H3N2 and H9N2 nucleic acids to construct three kinds of probes. The C line was sprayed by the complementary sequences to the DNAs on all three kinds of probes. In the detection, by hybridization reaction, the probes were combined with their target nucleic acids which were captured by the corresponding T lines to form color bands. Finally, according to the position of the color bands and their grey intensity, simultaneous qualitative and semi-quantitative detection of the three influenza virus nucleic acids was realized. The detection results showed that this multi-channel LFA had good specificity, and there was no significant cross reactivity among the three subtypes of influenza viruses. The simultaneous detection achieved comparable detection limits with individual detections. Therefore, this multi-channel LFA had good application potential for sensitive and rapid detection and subtyping of influenza viruses.
Collapse
Affiliation(s)
- Dong Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Min Zi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Yue Dou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | | | - Jing-Bin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| |
Collapse
|
18
|
Reuter C, Hauswald W, Burgold-Voigt S, Hübner U, Ehricht R, Weber K, Popp J. Imaging Diffractometric Biosensors for Label-Free, Multi-Molecular Interaction Analysis. BIOSENSORS 2024; 14:398. [PMID: 39194627 DOI: 10.3390/bios14080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Biosensors are used for the specific and sensitive detection of biomolecules. In conventional approaches, the suspected target molecules are bound to selected capture molecules and successful binding is indicated by additional labelling to enable optical readout. This labelling requires additional processing steps tailored to the application. While numerous label-free interaction assays exist, they often compromise on detection characteristics. In this context, we introduce a novel diffractometric biosensor, comprising a diffractive biosensor chip and an associated optical reader assembly. This innovative system can capture an entire assay, detecting various types of molecules in a label-free manner and present the results within in a single, comprehensive image. The applicability of the biosensor is assessed for the detection of viral DNA as well as proteins directly in human plasma, investigating different antigens. In our experiments, we achieve a detection limit of 4.2 pg/mm², which is comparable to other label-free optical biosensors. The simplicity and robustness of the method make it a compelling option for advancing biosensing technologies. This work contributes to the development of an imaging diffractometric biosensor with the potential for multiple applications in molecular interaction analysis.
Collapse
Affiliation(s)
- Cornelia Reuter
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Sindy Burgold-Voigt
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Karina Weber
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
19
|
Shao S, Wang X, Sorial C, Sun X, Xia X. Sensitive Colorimetric Lateral Flow Assays Enabled by Platinum-Group Metal Nanoparticles with Peroxidase-Like Activities. Adv Healthc Mater 2024:e2401677. [PMID: 39108051 PMCID: PMC11799360 DOI: 10.1002/adhm.202401677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/07/2024] [Indexed: 02/07/2025]
Abstract
The last several decades have witnessed the success and popularity of colorimetric lateral flow assay (CLFA) in point-of-care testing. Driven by increasing demand, great efforts have been directed toward enhancing the detection sensitivity of CLFA. Recently, platinum-group metal nanoparticles (PGM NPs) with peroxidase-like activities have emerged as a type of promising colorimetric labels for enhancing the sensitivity of CLFA. By incorporating a simple and rapid post-treatment process, the PGM NP-based CLFAs are orders of magnitude more sensitive than conventional gold nanoparticle-based CLFAs. In this perspective, the study begins with introducing the design, synthesis, and characterization of PGM NPs with peroxidase-like activities. The current techniques for surface modification of PGM NPs are then discussed, followed by operation and optimization of PGM NP-based CLFAs. Afterward, opinions are provided on the social impact of PGM NP-based CLFAs. Lastly, this perspective is concluded with an outlook of future research directions in this emerging field, where the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Shikuan Shao
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaochuan Wang
- School of Social Work, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Caroline Sorial
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohan Sun
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
20
|
Wen C, Dou Y, Liu Y, Jiang X, Tu X, Zhang R. Au Nanoshell-Based Lateral Flow Immunoassay for Colorimetric and Photothermal Dual-Mode Detection of Interleukin-6. Molecules 2024; 29:3683. [PMID: 39125086 PMCID: PMC11313806 DOI: 10.3390/molecules29153683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Interleukin-6 (IL-6) detection and monitoring are of great significance for evaluating the progression of many diseases and their therapeutic efficacy. Lateral flow immunoassay (LFIA) is one of the most promising point-of-care testing (POCT) methods, yet suffers from low sensitivity and poor quantitative ability, which greatly limits its application in IL-6 detection. Hence, in this work, we integrated Aushell nanoparticles (NPs) as new LFIA reporters and achieved the colorimetric and photothermal dual-mode detection of IL-6. Aushell NPs were conveniently prepared using a galvanic exchange process. By controlling the shell thickness, their localized surface plasmon resonance (LSPR) peak was easily tuned to near-infrared (NIR) range, which matched well with the NIR irradiation light. Thus, the Aushell NPs were endowed with good photothermal effect. Aushell NPs were then modified with IL-6 detection antibody to construct Aushell probes. In the LFIA detection, the Aushell probes were combined with IL-6, which were further captured by the capture IL-6 antibody on the test line of the strip, forming a colored band. By observation with naked eyes, the colorimetric qualitative detection of IL-6 was achieved with limit of 5 ng/mL. By measuring the temperature rise of the test line with a portable infrared thermal camera, the photothermal quantitative detection of IL-6 was performed from 1~1000 ng/mL. The photothermal detection limit reached 0.3 ng/mL, which was reduced by nearly 20 times compared with naked-eye detection. Therefore, this Aushell-based LFIA efficiently improved the sensitivity and quantitative ability of commercial colloidal gold LFIA. Furthermore, this method showed good specificity, and kept the advantages of convenience, speed, cost-effectiveness, and portability. Therefore, this Aushell-based LFIA exhibits practical application potential in IL-6 POCT detection.
Collapse
Affiliation(s)
- Congying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Yue Dou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Yao Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Xuan Jiang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Xiaomei Tu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.D.); (Y.L.); (X.J.); (X.T.)
| | - Ruiqiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| |
Collapse
|
21
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
22
|
Lu YT, Zeng YX, Tsai WX, Huang HC, Tsai MY, Diao Y, Hung WH. Study of Highly Efficient Au/Pt Nanoparticles for Rapid Screening of Clostridium difficile. ACS OMEGA 2024; 9:24593-24600. [PMID: 38882078 PMCID: PMC11170621 DOI: 10.1021/acsomega.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024]
Abstract
This study synthesized core/shell gold-platinum nanoparticles and characterized their colorimetric properties; ultraviolet-visible spectroscopy revealed that the synthesized nanoparticles exhibited distinct colors from conventional gold nanoparticles. Furthermore, the nanoparticles were subjected to lateral flow assays using Protein A, and the results revealed that they outperformed conventional spherical gold nanoparticles in terms of color development. This improvement can be attributed to the distinct core/shell structures of our nanoparticles. Further evaluation revealed that these nanoparticles could facilitate the detection of Clostridium difficile Toxin B visually at an extremely low concentration (1 ng/mL) without the requirement for advanced instrumentation. This substantial improvement in sensitivity can be attributed to the meticulous design and nanoscale engineering of the structure of the nanoparticles.
Collapse
Affiliation(s)
- Ying-Tsang Lu
- School of Medicine, Huaqiao University, No. 269 Chenghua North Rd ,Quanzhou ,Fujian 362021, China
- Strong Biotech Corporation, 7f., No. 32, Sec. 1, Chenggong Rd., Nangang District ,Taipei City 11570, Taiwan (R.O.C.)
| | - Yu-Xlang Zeng
- Institute of Material Science and Engineering, National Central University, No. 300, Zhong-da Rd. Zhongli District ,Taoyuan City 32001, Taiwan (R.O.C.)
| | - Wu-Xiong Tsai
- Institute of Material Science and Engineering, National Central University, No. 300, Zhong-da Rd. Zhongli District ,Taoyuan City 32001, Taiwan (R.O.C.)
| | - Hsin-Chang Huang
- Institute of Material Science and Engineering, National Central University, No. 300, Zhong-da Rd. Zhongli District ,Taoyuan City 32001, Taiwan (R.O.C.)
- Tripod Nano Technology Corporation, No. 3, Gongye 12th Rd., Pingzhen District ,Taoyuan City 324403, Taiwan (R.O.C.)
| | - Ming-Yuan Tsai
- Tripod Nano Technology Corporation, No. 3, Gongye 12th Rd., Pingzhen District ,Taoyuan City 324403, Taiwan (R.O.C.)
| | - Yong Diao
- School of Medicine, Huaqiao University, No. 269 Chenghua North Rd ,Quanzhou ,Fujian 362021, China
| | - Wei-Hsuan Hung
- Institute of Material Science and Engineering, National Central University, No. 300, Zhong-da Rd. Zhongli District ,Taoyuan City 32001, Taiwan (R.O.C.)
| |
Collapse
|
23
|
Nualnoi T, Wongwitwichot P, Kaewmanee S, Chanchay P, Wongpanti N, Ueangsuwan T, Siangsanor R, Chotirouangnapa W, Saechin T, Thungtin S, Szekely J, Wattanachant C, Saechan V. Development of an Antigen Capture Lateral Flow Immunoassay for the Detection of Burkholderia pseudomallei. Diagnostics (Basel) 2024; 14:1033. [PMID: 38786331 PMCID: PMC11120185 DOI: 10.3390/diagnostics14101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Early diagnosis is essential for the successful management of Burkholderia pseudomallei infection, but it cannot be achieved by the current gold standard culture technique. Therefore, this study aimed to develop a lateral flow immunoassay (LFIA) targeting B. pseudomallei capsular polysaccharide. The development was performed by varying nitrocellulose membrane reaction pads and chase buffers. The prototype LFIA is composed of Unisart CN95 and chase buffer containing tris-base, casein, and Surfactant 10G. The assay showed no cross-reactivity with E. coli, S. aureus, P. aeruginosa, and P. acne. The limit of detections (LODs) of the prototype LFIA was 107 and 106 CFU/mL B. pseudomallei in hemoculture medium and artificial urine, respectively. These LODs suggest that this prototype can detect melioidosis from positive hemoculture bottles but not straight from urine. Additionally, these LODs are still inferior compared to Active Melioidosis Detect (AMDTM). Overall, this prototype holds the potential to be used clinically with hemoculture bottles. However, further improvements should be considered, especially for use with urine samples.
Collapse
Affiliation(s)
- Teerapat Nualnoi
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand (T.U.)
- Drug Delivery System Excellence Center (DDSEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Paweena Wongwitwichot
- Drug Delivery System Excellence Center (DDSEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Siriluk Kaewmanee
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | | | - Nattapong Wongpanti
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand (T.U.)
| | - Tossapol Ueangsuwan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand (T.U.)
| | - Rattikarn Siangsanor
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand (T.U.)
| | - Wannittaya Chotirouangnapa
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand (T.U.)
| | - Tanatchaporn Saechin
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand (T.U.)
| | - Suwanna Thungtin
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand (T.U.)
| | - Jidapa Szekely
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Chaiyawan Wattanachant
- Division of Animal Production Innovation & Management, Faculty of Natural Resources, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Vannarat Saechan
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| |
Collapse
|
24
|
Lei Y, Xu D. Rapid Nucleic Acid Diagnostic Technology for Pandemic Diseases. Molecules 2024; 29:1527. [PMID: 38611806 PMCID: PMC11013254 DOI: 10.3390/molecules29071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The recent global pandemic of coronavirus disease 2019 (COVID-19) has enormously promoted the development of diagnostic technology. To control the spread of pandemic diseases and achieve rapid screening of the population, ensuring that patients receive timely treatment, rapid diagnosis has become the top priority in the development of clinical technology. This review article aims to summarize the current rapid nucleic acid diagnostic technologies applied to pandemic disease diagnosis, from rapid extraction and rapid amplification to rapid detection. We also discuss future prospects in the development of rapid nucleic acid diagnostic technologies.
Collapse
Affiliation(s)
- Yu Lei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences (CAS), Beijing 100190, China;
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Dawei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences (CAS), Beijing 100190, China;
| |
Collapse
|
25
|
Chen X, Dong S, Shi Y, Wu Z, Wu X, Zeng X, Yang X, Zhao Q, Xiao Z, Zhou Q. Biosensor-based multiple cross displacement amplification platform for visual and rapid identification of hepatitis C virus. J Med Virol 2024; 96:e29481. [PMID: 38425184 DOI: 10.1002/jmv.29481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Hepatitis C remains a global health problem, especially in poverty-stricken areas. A rapid and sensitive point-of-care (POC) diagnostic tool is critical for the early detection and timely treatment of hepatitis C virus (HCV) infection. Here, for the first time, we reported a novel molecular diagnostic assay, termed reverse transcription multiple cross displacement amplification integrated with a gold-nanoparticle-based lateral flow biosensor (RT-MCDA-AuNPs-LFB), which was developed for rapid, sensitive, specific, and visual identification of HCV. HCV-RT-MCDA induced rapid isothermal amplification through a specific primer set targeting the 5'untranslated region gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a that are prevalent in China. The optimal reaction temperature and time for RT-MCDA-AuNPs-LFB were 68°C and 25 min, respectively. The limit of detection of the assay was 10 copies per test, and the specificity was 100% for the experimental strains. The whole detection procedure, including crude nucleic acid isolation (~5 min), RT-MCDA (68°C, 25 min), and visual AuNPs-LFB result confirmation (less than 2 min), was performed within 35 min. The preliminary results indicated that the HCV-RT-MCDA-AuNPs-LFB assay could be a valuable tool for sensitive, specific, visual, cost-saving, and rapid detection of HCV and has potential as a POC diagnostic platform for field screening and early clinical detection of HCV infection.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Yuanfang Shi
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Zengguang Wu
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xue Wu
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xiaoyan Zeng
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xinggui Yang
- Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People's Republic of China
| | - Qi Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Zhenghua Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
26
|
Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, Bollella P, Catacchio M, Piscitelli M, Di Franco C, Scamarcio G, Torsi L. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309705. [PMID: 38108547 DOI: 10.1002/adma.202309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Michele Catacchio
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
27
|
Lee S, Park JS, Woo H, Yoo YK, Lee D, Chung S, Yoon DS, Lee KB, Lee JH. Rapid deep learning-assisted predictive diagnostics for point-of-care testing. Nat Commun 2024; 15:1695. [PMID: 38402240 PMCID: PMC10894262 DOI: 10.1038/s41467-024-46069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Prominent techniques such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and rapid kits are currently being explored to both enhance sensitivity and reduce assay time for diagnostic tests. Existing commercial molecular methods typically take several hours, while immunoassays can range from several hours to tens of minutes. Rapid diagnostics are crucial in Point-of-Care Testing (POCT). We propose an approach that integrates a time-series deep learning architecture and AI-based verification, for the enhanced result analysis of lateral flow assays. This approach is applicable to both infectious diseases and non-infectious biomarkers. In blind tests using clinical samples, our method achieved diagnostic times as short as 2 minutes, exceeding the accuracy of human analysis at 15 minutes. Furthermore, our technique significantly reduces assay time to just 1-2 minutes in the POCT setting. This advancement has the potential to greatly enhance POCT diagnostics, enabling both healthcare professionals and non-experts to make rapid, accurate decisions.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Jeong Soo Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyowon Woo
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, 24, Beomil-ro 579 beon-gil, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Dongho Lee
- CALTH Inc., Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- Astrion Inc, Seoul, 02841, Republic of Korea
| | - Ki-Baek Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea.
- CALTH Inc., Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea.
| |
Collapse
|
28
|
Fernández-Lodeiro C, González-Cabaleiro L, Vázquez-Iglesias L, Serrano-Pertierra E, Bodelón G, Carrera M, Blanco-López MC, Pérez-Juste J, Pastoriza-Santos I. Au@Ag Core-Shell Nanoparticles for Colorimetric and Surface-Enhanced Raman-Scattering-Based Multiplex Competitive Lateral Flow Immunoassay for the Simultaneous Detection of Histamine and Parvalbumin in Fish. ACS APPLIED NANO MATERIALS 2024; 7:498-508. [PMID: 38229662 PMCID: PMC10788866 DOI: 10.1021/acsanm.3c04696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Foodborne allergies and illnesses represent a major global health concern. In particular, fish can trigger life-threatening food allergic reactions and poisoning effects, mainly caused by the ingestion of parvalbumin toxin. Additionally, preformed histamine in less-than-fresh fish serves as a toxicological alert. Consequently, the analytical assessment of parvalbumin and histamine levels in fish becomes a critical public health safety measure. The multiplex detection of both analytes has emerged as an important issue. The analytical detection of parvalbumin and histamine requires different assays; while the determination of parvalbumin is commonly carried out by enzyme-linked immunosorbent assay, histamine is analyzed by high-performance liquid chromatography. In this study, we present an approach for multiplexing detection and quantification of trace amounts of parvalbumin and histamine in canned fish. This is achieved through a colorimetric and surface-enhanced Raman-scattering-based competitive lateral flow assay (SERS-LFIA) employing plasmonic nanoparticles. Two distinct SERS nanotags tailored for histamine or β-parvalbumin detection were synthesized. Initially, spherical 50 nm Au@Ag core-shell nanoparticles (Au@Ag NPs) were encoded with either rhodamine B isothiocyanate (RBITC) or malachite green isothiocyanate (MGITC). Subsequently, these nanoparticles were bioconjugated with anti-β-parvalbumin and antihistamine, forming the basis for our detection and quantification methodology. Additionally, our approach demonstrates the use of SERS-LFIA for the sensitive and multiplexed detection of parvalbumin and histamine on a single test line, paving the way for on-site detection employing portable Raman instruments.
Collapse
Affiliation(s)
- Carlos Fernández-Lodeiro
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Lara González-Cabaleiro
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Lorena Vázquez-Iglesias
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Esther Serrano-Pertierra
- Department
of Biochemistry and Molecular Biology and Institute of Biotechnology
of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Gustavo Bodelón
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Functional Biology and Health Sciences, Universidade de Vigo, 36310 Vigo, Spain
| | - Mónica Carrera
- Department
of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| | - María Carmen Blanco-López
- Department
of Physical and Analytical Chemistry and Institute of Biotechnology
of Asturias, University of Oviedo, c/Julián Clavería
8, 33006 Oviedo, Spain
| | - Jorge Pérez-Juste
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
29
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
30
|
Li X, Yu D, Li H, Sun R, Zhang Z, Zhao T, Guo G, Zeng J, Wen CY. High-density Au nanoshells assembled onto Fe 3O 4 nanoclusters for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein. Biosens Bioelectron 2023; 241:115688. [PMID: 37714062 DOI: 10.1016/j.bios.2023.115688] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Traditional lateral flow immunoassays (LFIA) suffer from insufficient sensitivity, difficulty for quantitation, and susceptibility to complex substrates, limiting their practical application. Herein, we developed a polyethylenimine (PEI)-mediated approach for assembling high-density Au nanoshells onto Fe3O4 nanoclusters (MagAushell) as LFIA labels for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein (N protein). PEI layer served not only as "binders" to Fe3O4 nanoclusters and Au nanoshells, but also "barriers" to ambient environment. Thus, MagAushell not only combined magnetic and photothermal properties, but also showed good stability. With MagAushell, N protein was first separated and enriched from complex samples, and then loaded to the strip for detection. By observation of the color stripes, qualitative detection was performed with naked eye, and by measuring the temperature change under laser irradiation, quantification was attained free of sophisticated instruments. The introduction of Fe3O4 nanoclusters facilitated target purification and enrichment before LFIA, which greatly improved the anti-interference ability and increased the detection sensitivity by 2 orders compared with those without enrichment. Moreover, the high loading density of Au nanoshells on one Fe3O4 nanocluster enhanced the photothermal signal of the nanoprobe significantly, which could further increase the detection sensitivity. The photothermal detection limit reached 43.64 pg/mL which was 1000 times lower than colloidal gold strips. Moreover, this method was successfully applied to real samples, showing great application potential in practice. We envision that this LFIA could serve not only for SARS-CoV-2 detection but also as a general test platform for other biotargets in clinical samples.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Dong Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Huiwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Ruichang Sun
- Huangdao Customs of the People's Republic of China, 266580, PR China
| | - Zhuoran Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Tianyu Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Gengchen Guo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
31
|
Gunasekaran R, Chandrasekaran A, Rajarathinam K, Duncan S, Dhaliwal K, Lalitha P, Prajna NV, Mills B. Rapid Point-of-Care Identification of Aspergillus Species in Microbial Keratitis. JAMA Ophthalmol 2023; 141:966-973. [PMID: 37768674 PMCID: PMC10540059 DOI: 10.1001/jamaophthalmol.2023.4214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 09/29/2023]
Abstract
Importance Microbial keratitis (MK) is a common cause of unilateral visual impairment, blindness, and eye loss in low-income and middle-income countries. There is an urgent need to develop and implement rapid and simple point-of-care diagnostics for MK to increase the likelihood of good outcomes. Objective To evaluate the diagnostic performance of the Aspergillus-specific lateral-flow device (AspLFD) to identify Aspergillus species causing MK in corneal scrape and corneal swab samples of patients presenting with microbial keratitis. Design, Setting, and Participants This diagnostic study was conducted between May 2022 and January 2023 at the corneal clinic of Aravind Eye Hospital in Madurai, Tamil Nadu, India. All study participants were recruited during their first presentation to the clinic. Patients aged 15 years or older met the eligibility criteria if they were attending their first appointment, had a corneal ulcer that was suggestive of a bacterial or fungal infection, and were about to undergo diagnostic scrape and culture. Main Outcomes and Measures Sensitivity and specificity of the AspLFD with corneal samples collected from patients with MK. During routine diagnostic scraping, a minimally invasive corneal swab and an additional corneal scrape were collected and transferred to aliquots of sample buffer and analyzed by lateral-flow device (LFD) if the patient met the inclusion criteria. Photographs of devices were taken with a smartphone and analyzed using a ratiometric approach, which was developed for this study. The AspLFD results were compared with culture reports. Results The 198 participants who met the inclusion criteria had a mean (range) age of 51 (15-85) years and included 126 males (63.6%). Overall, 35 of 198 participants with corneal scrape (17.7%) and 17 of 40 participants with swab samples (42.5%) had positive culture results for Aspergillus species. Ratiometric analysis results for the scrape samples found that the AspLFD achieved high sensitivity (0.89; 95% CI, 0.74-0.95), high negative predictive value (0.97; 95% CI, 0.94-0.99), low negative likelihood ratio (0.12; 95% CI, 0.05-0.30), and an accuracy of 0.94 (95% CI, 0.90-0.97). Ratiometric analysis results for the swab samples showed that the AspLFD had high sensitivity (0.94; 95% CI, 0.73-1.00), high negative predictive value (0.95; 95% CI, 0.76-1.00), low negative likelihood ratio (0.07; 95% CI, 0.01-0.48), and an accuracy of 0.88 (95% CI, 0.73-0.96). Conclusions and Relevance Results of this diagnostic study suggest that AspLFD along with the ratiometric analysis of LFDs developed for this study has high diagnostic accuracy in identifying Aspergillus species from corneal scrapes and swabs. This technology is an important step toward the provision of point-of-care diagnostics for MK and could inform the clinical management strategy.
Collapse
Affiliation(s)
- Rameshkumar Gunasekaran
- Department of Ocular Microbiology, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Abinaya Chandrasekaran
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Karpagam Rajarathinam
- Department of Ocular Microbiology, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Sheelagh Duncan
- Translational Healthcare Technologies Group, Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - N. Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Bethany Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, University of Edinburgh, United Kingdom
| |
Collapse
|
32
|
Shrestha K, Kim S, Han J, Florez GM, Truong H, Hoang T, Parajuli S, AM T, Kim B, Jung Y, Abafogi AT, Lee Y, Song SH, Lee J, Park S, Kang M, Huh HJ, Cho G, Lee LP. Mobile Efficient Diagnostics of Infectious Diseases via On-Chip RT-qPCR: MEDIC-PCR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302072. [PMID: 37587764 PMCID: PMC10558658 DOI: 10.1002/advs.202302072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Indexed: 08/18/2023]
Abstract
The COVID-19 outbreak has caused public and global health crises. However, the lack of on-site fast, reliable, sensitive, and low-cost reverse transcription polymerase chain reaction (RT-PCR) testing limits early detection, timely isolation, and epidemic prevention and control. Here, the authors report a rapid mobile efficient diagnostics of infectious diseases via on-chip -RT-quantitative PCR (RT-qPCR): MEDIC-PCR. First, the authors use a roll-to-roll printing process to accomplish low-cost carbon-black-based disposable PCR chips that enable rapid LED-induced photothermal PCR cycles. The MEDIC-PCR can perform RT (3 min), and PCR (9 min) steps. Further, the cohort of 89 COVID-19 and 103 non-COVID-19 patients testing is completed by the MEDIC-PCR to show excellent diagnostic accuracy of 97%, sensitivity of 94%, and specificity of 98%. This MEDIC-PCR can contribute to the preventive global health in the face of a future pandemic.
Collapse
Affiliation(s)
- Kiran Shrestha
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
| | - Seongryeong Kim
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
| | - Jiyeon Han
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
| | - Gabriela Morales Florez
- Department of Biological ScienceCollege of ScienceSungkyunkwan UniversitySuwon16419South Korea
| | - Han Truong
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
| | - Trung Hoang
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
| | - Sajjan Parajuli
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
| | - Tiara AM
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- Research Engineering Center for R2R Printed Flexible ComputerSungkyunkwan UniversitySuwon16419South Korea
| | - Beomsoo Kim
- School of Electronic and Electrical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Younsu Jung
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- Research Engineering Center for R2R Printed Flexible ComputerSungkyunkwan UniversitySuwon16419South Korea
| | | | - Yugyeong Lee
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Seung Hyun Song
- Department of Electronics EngineeringSookmyung Women's UniversitySeoul04310South Korea
| | - Jinkee Lee
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Sungsu Park
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Minhee Kang
- Biomedical Engineering Research CenterSmart Healthcare Research InstituteSamsung Medical CenterSeoul06352South Korea
- Department of Medical Device Management and ResearchSAIHST (Samsung Advanced Institute for Health Sciences & Technology)Sungkyunkwan UniversitySeoul06355South Korea
| | - Hee Jae Huh
- School of MedicineDepartment of Laboratory Medicine and GeneticsSamsung Medical CenterSungkyunkwan UniversitySeoul06351South Korea
| | - Gyoujin Cho
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- Research Engineering Center for R2R Printed Flexible ComputerSungkyunkwan UniversitySuwon16419South Korea
| | - Luke P. Lee
- Department of BiophysicsInstitute of Quantum BiologySungkyunkwan UniversitySuwon16419South Korea
- Harvard Medical SchoolDepartment of MedicineBrigham Women's HospitalBostonMA02115USA
- Department of BioengineeringUniversity of California at BerkeleyBerkeleyCA94720USA
- Department of Electrical Engineering and Computer ScienceUniversity of California at BerkeleyBerkeleyCA94720USA
| |
Collapse
|
33
|
Dey MK, Iftesum M, Devireddy R, Gartia MR. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4351-4376. [PMID: 37615701 DOI: 10.1039/d3ay00844d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Lateral flow assays (LFAs) are a popular method for quick and affordable diagnostic testing because they are easy to use, portable, and user-friendly. However, LFA design has always faced challenges regarding sensitivity, accuracy, and complexity of the operation. By integrating new technologies and reagents, the sensitivity and accuracy of LFAs can be improved while minimizing the complexity and potential for false positives. Surface enhanced Raman spectroscopy (SERS), photoacoustic techniques, fluorescence resonance energy transfer (FRET), and the integration of smartphones and thermal readers can improve LFA accuracy and sensitivity. To ensure reliable and accurate results, careful assay design and validation, appropriate controls, and optimization of assay conditions are necessary. Continued innovation in LFA technology is crucial to improving the reliability and accuracy of rapid diagnostic testing and expanding its applications to various areas, such as food testing, water quality monitoring, and environmental testing.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
34
|
Le APH, Nguyen QL, Pham BH, Cao THM, Vo TV, Huynh K, Ha HTT. SALAD: Syringe-based Arduino-operated Low-cost Antibody Dispenser. HARDWAREX 2023; 15:e00455. [PMID: 37497344 PMCID: PMC10366588 DOI: 10.1016/j.ohx.2023.e00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Lateral Flow Assays (LFA) have been one of the most widely adopted technologies in clinical diagnosis over recent years, especially during the COVID-19 pandemic, due to their feasibility, compactness, and rapid readout. However, the precise dispensing of antibodies-a key part of the fabrication process-requires costly line dispenser equipment, which poses a challenge to researchers with limited budgets. This study aims to resolve this key issue by introducing a Syringe-based Arduino-operated Low-cost Antibody Dispenser (SALAD). By utilizing a microneedle, stepper motor-driven syringe pump, and conveyor belt, SALAD can form micro-droplets to create an even band of antibodies. Our evaluation results showed comparable performance between SALAD and a commercialized model - Claremont ALFRD, with SALAD exceeding in affordability and feasibility. SALAD yielded an even signal, uniform bandwidth, and low background noise, yet optimization in the conveyor belt should be considered to enhance stability. With a low manufacturing cost ($200.61) compared to the commercialized models, our model is expected to provide an affordable approach for LFA researchers.
Collapse
Affiliation(s)
- Anh Phuc Hoang Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Quang Lam Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Bao Hoai Pham
- School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Thien Hoang Minh Cao
- School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Toi Van Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Khon Huynh
- School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Huong Thi Thanh Ha
- School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
35
|
Kwon Y, Kim D, Kim S. Quantitative injection strip platform using water-soluble paper and magnet based on a lateral flow assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4168-4178. [PMID: 37577848 DOI: 10.1039/d3ay01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Quantitative analysis for lateral flow immunoassay (LFA) strips was conducted continuously. Quantitative analysis means measuring concentration, which represents the number of molecules per unit volume. In this study, we designed a quantitative injection (QI) strip by modifying the structure of general LFA strips to inject the same unit volume. To achieve the injection of the same unit volume, we used water-soluble paper and magnet. In addition, the QI strip was fabricated to enable the physical separation of the gold conjugate pad from the nitrocellulose membrane (NC membrane) at the optimized time after sample injection. The optimized time refers to the time from the point at which the sample started flowing on the NC membrane to the point at which the strip was separated. At the samples of same concentration, the LFA strip increases detection signals as the volume of injected sample increases. In contrast to the LFA strip, the QI strip maintained consistent detection signals even with increasing volume of injected sample. Furthermore, the QI strip demonstrated an 11-fold lower deviation compared to the LFA strip. These results are attributed to the separation function of the QI strip. In conclusion, the QI strip is more suitable for quantitative analysis compared to the LFA strip due to the same unit volume without additional equipment such as a pipette. This study is expected to contribute to the development of user-friendly POCT and strip-based quantitative analysis.
Collapse
Affiliation(s)
- Yewon Kwon
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| | - Dami Kim
- Philmedi R&D Center, Philmedi Incorporation, 33, Sangimakol-ro, 62beon-gil, Jungwon-gu, Seognam, 13211, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Republic of Korea.
- Philmedi R&D Center, Philmedi Incorporation, 33, Sangimakol-ro, 62beon-gil, Jungwon-gu, Seognam, 13211, Republic of Korea
| |
Collapse
|
36
|
Sotnikov DV, Byzova NA, Zherdev AV, Xu Y, Dzantiev BB. Comparison of Three Lateral Flow Immunoassay Formats for the Detection of Antibodies against the SARS-CoV-2 Antigen. BIOSENSORS 2023; 13:750. [PMID: 37504148 PMCID: PMC10376990 DOI: 10.3390/bios13070750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Reliable detection of specific antibodies against pathogens by lateral flow immunoassay (LFIA) greatly depends on the composition of the detectable complex and the order of its assembly. We compared three LFIA formats for revealing anti-SARS-CoV-2 antibodies in sera with the following detected complexes in the analytical zone of the strip: antigen-antibodies-labeled immunoglobulin-binding protein (Scheme A); antigen-antibodies-labeled antigen (Scheme B); and immunoglobulin-binding protein-antibodies-labeled antigen (Scheme C). The lowest detection limit was observed for Scheme C, and was equal to 10 ng/mL of specific humanized monoclonal antibodies. When working with pooled positive sera, Scheme C had a detection limit 15 times lower than Scheme B and 255 times lower than Scheme A. Due to the high sensitivity of Scheme C, its application for the panel of human sera (n = 22) demonstrated 100% diagnostic specificity and sensitivity. These consistent results be useful for designing the format of LFIA serodiagnosis for other diseases.
Collapse
Affiliation(s)
- Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda A Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Youchun Xu
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
37
|
Song J, Zhang L, Zeng L, Xu X. Visualized Lateral Flow Assay for Dual Viral RNA Fragment Detection. Anal Chem 2023. [PMID: 37463852 DOI: 10.1021/acs.analchem.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In this technical note, we report an easy-to-produce, reverse-transcription-free, and protein-enzyme-free lateral flow assay for detection of viral RNA fragments by taking SARS-CoV-2 ORF1ab and N as target models. Catalytic hairpin assembly is utilized for dual RNA fragment orthogonal reaction to generate copious amounts of opened hairpin duplexes, which bridge DNA-modified gold nanoparticles and capture strands on the strip to induce coloration. The dual RNA fragments are simultaneously visualized during one time of sample flow, and single-base-mismatched nontarget sequences can be differentiated. The test strip can be flexibly adapted to detect evolutional SARS-CoV-2 variants such as Delta and Omicron. It also shows potential in visually detecting long-sequence virus simulants and achieves a sensitivity comparable to that of RT-qPCR by incorporation with upstream sample amplification. The lateral flow assay should offer a convenient and reliable technique for viral nucleic acid detection.
Collapse
Affiliation(s)
- Juanjuan Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Liangwen Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Luhao Zeng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
38
|
Chen X, Du C, Zhao Q, Zhao Q, Wan Y, He J, Yuan W. Rapid and visual identification of HIV-1 using reverse transcription loop-mediated isothermal amplification integrated with a gold nanoparticle-based lateral flow assay platform. Front Microbiol 2023; 14:1230533. [PMID: 37502395 PMCID: PMC10368893 DOI: 10.3389/fmicb.2023.1230533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Human immunodeficiency virus type one (HIV-1) infection remains a major public health problem worldwide. Early diagnosis of HIV-1 is crucial to treat and control this infection effectively. Here, for the first time, we reported a novel molecular diagnostic assay called reverse transcription loop-mediated isothermal amplification combined with a visual gold nanoparticle-based lateral flow assay (RT-LAMP-AuNPs-LFA), which we devised for rapid, specific, sensitive, and visual identification of HIV-1. The unique LAMP primers were successfully designed based on the pol gene from the major HIV-1 genotypes CRF01_AE, CRF07_BC, CRF08_BC, and subtype B, which are prevalent in China. The optimal HIV-1-RT-LAMP-AuNPs-LFA reaction conditions were determined to be 68°C for 35 min. The detection procedure, including crude genomic RNA isolation (approximately 5 min), RT-LAMP amplification (35 min), and visual result readout (<2 min), can be completed within 45 min. Our assay has a detection limit of 20 copies per test, and we did not observe any cross-reactivity with any other pathogen in our testing. Hence, our preliminary results indicated that the HIV-1-RT-LAMP-AuNPs-LFA assay can potentially serve as a useful point-of-care diagnostic tool for HIV-1 detection in a clinical setting.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Clinical Medical Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Cheng Du
- Department of Anesthesiology, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qiang Zhao
- Clinical Laboratory, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, China
| | - Qi Zhao
- Gastroenterology of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yonghu Wan
- Experiment Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Jun He
- Clinical Laboratory, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, China
| | - Wei Yuan
- Department of Quality Control, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, China
| |
Collapse
|
39
|
Peng W, Tan Y, Shen C, Tang Y, Li F. Enabling a universal lateral flow readout for DNA strand displacement via disassembling chemical labels. Chem Commun (Camb) 2023. [PMID: 37366312 DOI: 10.1039/d3cc01743e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Herein, we describe a novel strategy that enables lateral flow readout for DNA strand displacement via disassembling chemical labels (DCL). Comparing it to a classic fluorogenic assay, we demonstrate that our DCL-based lateral flow assay is highly sensitive and specific, capable of discriminating single nucleotide variants in buccal swab samples.
Collapse
Affiliation(s)
- Wanting Peng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
| | - Yun Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
| | - Chenlan Shen
- Department of Laboratory Medicine, Med + X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yanan Tang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
- Department of Laboratory Medicine, Med + X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
40
|
Abu N, Mohd Bakhori N, Shueb RH. Lateral Flow Assay for Hepatitis B Detection: A Review of Current and New Assays. MICROMACHINES 2023; 14:1239. [PMID: 37374824 DOI: 10.3390/mi14061239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
From acute to chronic hepatitis, cirrhosis, and hepatocellular cancer, hepatitis B infection causes a broad spectrum of liver diseases. Molecular and serological tests have been used to diagnose hepatitis B-related illnesses. Due to technology limitations, it is challenging to identify hepatitis B infection cases at an early stage, particularly in a low- and middle-income country with constrained resources. Generally, the gold-standard methods to detect hepatitis B virus (HBV) infection requires dedicated personnel, bulky, expensive equipment and reagents, and long processing times which delay the diagnosis of HBV. Thus, lateral flow assay (LFA), which is inexpensive, straightforward, portable, and operates reliably, has dominated point-of-care diagnostics. LFA consists of four parts: a sample pad where samples are dropped; a conjugate pad where labeled tags and biomarker components are combined; a nitrocellulose membrane with test and control lines for target DNA-probe DNA hybridization or antigen-antibody interaction; and a wicking pad where waste is stored. By modifying the pre-treatment during the sample preparation process or enhancing the signal of the biomarker probes on the membrane pad, the accuracy of the LFA for qualitative and quantitative analysis can be improved. In this review, we assembled the most recent developments in LFA technologies for the progress of hepatitis B infection detection. Prospects for ongoing development in this area are also covered.
Collapse
Affiliation(s)
- Norhidayah Abu
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, Kulim 09000, Kedah, Malaysia
| | - Noremylia Mohd Bakhori
- Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, Kulim 09000, Kedah, Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
41
|
Li G, Li Q, Wang X, Liu X, Zhang Y, Li R, Guo J, Zhang G. Lateral flow immunoassays for antigens, antibodies and haptens detection. Int J Biol Macromol 2023:125186. [PMID: 37268073 DOI: 10.1016/j.ijbiomac.2023.125186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Lateral flow immunoassay (LFIA) is widely used as a rapid point-of-care testing (POCT) technique in food safety, veterinary and clinical detection on account of the accessible, fast and low-cost characteristics. After the outbreak of the coronavirus disease 2019 (COVID-19), different types of LFIAs have attracted considerable interest because of their ability of providing immediate diagnosis directly to users, thereby effectively controlling the outbreak. Based on the introduction of the principles and key components of LFIAs, this review focuses on the major detection formats of LFIAs for antigens, antibodies and haptens. With the rapid innovation of detection technologies, new trends of novel labels, multiplex and digital assays are increasingly integrated with LFIAs. Therefore, this review will also introduce the development of new trends of LFIAs as well as its future perspectives.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Liu
- Henan Medical College, Zhengzhou 451191, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
42
|
He S. No-cost ballpoint pen dispenser for lateral flow assays. Talanta 2023; 263:124742. [PMID: 37257236 DOI: 10.1016/j.talanta.2023.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
We have developed a no-cost, lightweight, human-powered dispenser using an empty ballpoint pen. Used in lateral flow assays, this dispenser restricts antibody deposition to narrow zones, allowing freehand drawing of test and control lines. The lines can be drawn in widths ranging from 0.15 to 1.00 mm. Naphthol green B, a compatible stain, was used to label antibody solutions and certify handwriting traces. Using human chorionic gonadotropin (HCG) as a model antigen, we demonstrated that the pen dispenser can imprint antibodies on nitrocellulose membranes without affecting their microstructure and chromatographic function. A lateral flow assay using the pen dispenser detected HCG at 0.1 μg/mL, comparable to the sensitivity of standard tests using traditional benchtop dispensers.
Collapse
Affiliation(s)
- Shengbin He
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
43
|
Barshevskaya LV, Sotnikov DV, Zherdev AV, Dzantiev BB. Modular Set of Reagents in Lateral Flow Immunoassay: Application for Antibiotic Neomycin Detection in Honey. BIOSENSORS 2023; 13:bios13050498. [PMID: 37232859 DOI: 10.3390/bios13050498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
A scheme of modular competitive immunochromatography with an analyte-independent test strip and changeable specific immunoreactants has been proposed. Native (detected) and biotinylated antigens interact with specific antibodies during their preincubation in solution, that is, without the immobilization of reagents. After this, the detectable complexes on the test strip are formed by the use of streptavidin (which binds biotin with high affinity), anti-species antibodies, and immunoglobulin-binding streptococcal protein G. The technique was successfully applied for the detection of neomycin in honey. The visual and instrumental detection limits were 0.3 and 0.014 mg/kg, respectively, and the degree of neomycin revealed in honey samples varied from 85% to 113%. The efficiency of the modular technique with the use of the same test strip for different analytes was confirmed for streptomycin detection. The proposed approach excludes the necessity of finding the condition of immobilization for each new specific immunoreactant and transferring the assay to other analytes by a simple choice of concentrations for preincubated specific antibodies and the hapten-biotin conjugate.
Collapse
Affiliation(s)
- Lyubov V Barshevskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
44
|
Seo SE, Ryu E, Kim J, Shin CJ, Kwon OS. Fluorophore-encapsulated nanobeads for on-site, rapid, and sensitive lateral flow assay. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 381:133364. [PMID: 36684645 PMCID: PMC9838036 DOI: 10.1016/j.snb.2023.133364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 05/09/2023]
Abstract
Since December 2019, the rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a priority for public health. Although the lateral flow assay (LFA) sensor has emerged as a rapid and on-site SARS-CoV-2 detection technique, the conventional approach of using gold nanoparticles for the signaling probe had limitations in increasing the sensitivity of the sensor. Herein, our newly suggested methodology to improve the performance of the LFA system could amplify the sensor signal with a facile fabrication method by concentrating fluorescent organic molecules. A large Stokes shift fluorophore (single benzene) was encapsulated into polystyrene nanobeads to enhance the fluorescence intensity of the probe for LFA sensor, which was detected on the test line with a longpass filter under ultraviolet light irradiation. This approach provides comparatively high sensitivity with the limit of detection of 1 ng mL-1 for the SARS-CoV-2 spike protein and a fast detection process, which takes less than 20 min. Furthermore, our sensor showed higher performance than gold nanoparticle-based commercial rapid diagnostics test kits in clinical tests, proving that this approach is more suitable and reliable for the sensitive and rapid detection of viruses, bacteria, and other hazardous materials.
Collapse
Key Words
- Ab, Antibody
- Ag, Antigen
- AuNP, Gold nanoparticle
- CL, Control line
- CT, Threshold cycle
- LFA, Lateral flow assay
- LOD, Limit of detection
- PCR, Polymerase chain reaction
- PS, Polystyrene
- RDT, Rapid diagnostic test
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SB, Single Benzene
- TL, Test line
Collapse
Affiliation(s)
- Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Eunsu Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Chan Jae Shin
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
- Department of Biotechnology, University of Science & Technology (UST), Daejeon 34141, South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
- Department of Biotechnology, University of Science & Technology (UST), Daejeon 34141, South Korea
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
45
|
Pan D, Wang W, Cheng T. Current Methods for the Detection of Antibodies of Varicella-Zoster Virus: A Review. Microorganisms 2023; 11:microorganisms11020519. [PMID: 36838484 PMCID: PMC9965970 DOI: 10.3390/microorganisms11020519] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Infection with the varicella-zoster virus (VZV) causes chickenpox and shingles, which lead to significant morbidity and mortality globally. The detection of serum VZV-specific antibodies is important for the clinical diagnosis and sero-epidemiological research of VZV infection, and for assessing the effect of VZV vaccine immunization. Over recent decades, a variety of methods for VZV antibody detection have been developed. This review summarizes and compares the current methods for detecting VZV antibodies, and discussed future directions for this field.
Collapse
|
46
|
Bartosh AV, Sotnikov DV, Zherdev AV, Dzantiev BB. Handling Detection Limits of Multiplex Lateral Flow Immunoassay by Choosing the Order of Binding Zones. MICROMACHINES 2023; 14:333. [PMID: 36838034 PMCID: PMC9965744 DOI: 10.3390/mi14020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Changes in the limits of detection (LODs) for a multiplex lateral flow immunoassay (LFIA) caused by different locations of the binding zone on the test strips were studied. Due to the non-equilibrium conditions of the immune reactions in LFIAs, their analytical parameters are susceptible to the binding constants of antigen-antibody reactions and assay duration. Consequently, the integration of several tests into one multiplex assay can cause a significant worsening of the sensitivity. In this study, we propose a simple methodology for the determination of the best arrangement of binding zones, which takes into account the binding constants for immunoreagents. LFIAs of four mycotoxins, namely, aflatoxin B1, deoxynivalenol, T-2 toxin, and ochratoxin A, were integrated into a multiplex test strip. An enzyme-linked immunosorbent assay was applied to determine the equilibrium and kinetic constants of the immunoreactants for each analyte. It was found that the arrangement of binding zones with a descending order of the equilibrium association constants was optimal and provided both lower detection limits and a more uniform coloration. The selected position of the binding zones allowed decreasing the LODs down to 2 and 27 times for ochratoxin A and deoxynivalenol, respectively. The proposed approach can be applied to multiplex LFIAs for different analytes.
Collapse
|
47
|
Colombo M, Bezinge L, Rocha Tapia A, Shih CJ, de Mello AJ, Richards DA. Real-time, smartphone-based processing of lateral flow assays for early failure detection and rapid testing workflows. SENSORS & DIAGNOSTICS 2023; 2:100-110. [PMID: 36741250 PMCID: PMC9850356 DOI: 10.1039/d2sd00197g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations.
Collapse
Affiliation(s)
- Monika Colombo
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Léonard Bezinge
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Andres Rocha Tapia
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Andrew J de Mello
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Daniel A Richards
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
48
|
Rubio-Monterde A, Quesada-González D, Merkoçi A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal Chem 2023; 95:468-489. [PMID: 36413136 DOI: 10.1021/acs.analchem.2c04529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain
| | | | - Arben Merkoçi
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08036 Bellaterra, Barcelona Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
49
|
Galyamin D, Liébana S, Esquivel JP, Sabaté N. Immuno-battery: A single use self-powered immunosensor for REASSURED diagnostics. Biosens Bioelectron 2023; 220:114868. [DOI: 10.1016/j.bios.2022.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
|
50
|
Lam SY, Lau HL, Kwok CK. Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application. BIOSENSORS 2022; 12:1142. [PMID: 36551109 PMCID: PMC9776347 DOI: 10.3390/bios12121142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Small-molecule contaminants, such as antibiotics, pesticides, and plasticizers, have emerged as one of the substances most detrimental to human health and the environment. Therefore, it is crucial to develop low-cost, user-friendly, and portable biosensors capable of rapidly detecting these contaminants. Antibodies have traditionally been used as biorecognition elements. However, aptamers have recently been applied as biorecognition elements in aptamer-based biosensors, also known as aptasensors. The systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro technique used to generate aptamers that bind their targets with high affinity and specificity. Over the past decade, a modified SELEX method known as Capture-SELEX has been widely used to generate DNA or RNA aptamers that bind small molecules. In this review, we summarize the recent strategies used for Capture-SELEX, describe the methods commonly used for detecting and characterizing small-molecule-aptamer interactions, and discuss the development of aptamer-based biosensors for various applications. We also discuss the challenges of the Capture-SELEX platform and biosensor development and the possibilities for their future application.
Collapse
Affiliation(s)
- Sin Yu Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hill Lam Lau
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Kit Kwok
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|