1
|
Afam G, Nakalega AP. Hypertension risk perception among young adults in Victoria University Kampala Uganda. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 23:200327. [PMID: 39282604 PMCID: PMC11393586 DOI: 10.1016/j.ijcrp.2024.200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Introduction Globally, hypertension is becoming a more serious public health concern, with young adults also at risk. Effective intervention techniques require an understanding of young adults' perceptions of the risk factors, enablers, and barriers to adopting healthy lifestyle choices related to hypertension. This research aims to examine hypertension risk perception among young adults at Victoria University Kampala, Uganda. Methods Data were gathered using a structured questionnaire between November 2023 and January 2024. Convenience sampling was used to gather data from young adults at Victoria University Kampala, Uganda. Leslie Kish's formula was used to establish the sample size of 126 respondents. Multiple regression analysis was performed to examine the association between independent variables (barriers, and facilitators) and the dependent variable (perception of hypertension risk). Results The study found that perceptions of certain risk factors, such as smoking (OR = 2.418, p = 0.035), physical inactivity (OR = 1.731, p = 0.008), unhealthy diet (OR = 2.174, p = 0.048), and chronic stress (OR = 1.514, p = 0.028), significantly influenced the likelihood of adopting healthy lifestyle choices. Among the enablers, motivation (OR = 3.491, p = 0.005), availability of time (OR = 3.015, p = 0.011), financial resources (OR = 2.164, p = 0.017), and social support (OR = 2.014, p = 0.026) were strong predictors of healthy behaviour adoption. Conclusion Programs aimed at raising awareness of hypertension risk factors and enhancing enablers such as motivation, time management, and social support are recommended to effectively promote healthy behaviours among this population.
Collapse
Affiliation(s)
- Grace Afam
- Department of Public Health, Victoria University, Kampala, 256, Uganda
- Department of Nursing Sciences, Victoria University, Kampala, 256, Uganda
| | | |
Collapse
|
2
|
Sardar MB, Raza M, Fayyaz A, Nadir MA, Nadeem ZA, Babar M. Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index. Cardiovasc Toxicol 2024; 24:1301-1309. [PMID: 39212843 DOI: 10.1007/s12012-024-09913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD), primarily ischemic heart disease and stroke, remain leading global health burdens. Environmental risk factors have a major role in the development of CVD, particularly exposure to heavy metals. The Triglyceride Glucose Index (TyG), a measure of insulin resistance and CVD risk, is the primary focus of this study, which summarizes the most recent findings on the effects of lead (Pb), arsenic (As), and cadmium (Cd) on CVD risk. A higher risk of CVD is correlated with an elevated TyG index, which has been linked to insulin resistance. Exposure to Cd is associated with disturbance of lipid metabolism and oxidative stress, which increases the risk of CVD and TyG. Exposure reduces insulin secretion and signaling, which raises the TyG index and causes dyslipidemia. Pb exposure increases the risk of CVD and TyG index via causing oxidative stress and pancreatic β-cell destruction. These results highlight the need of reducing heavy metal exposure by lifestyle and environmental modifications in order to lower the risk of CVD. To comprehend the mechanisms and create practical management plans for health hazards associated with heavy metals, more study is required.
Collapse
Affiliation(s)
- Muhammad Bilal Sardar
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan.
| | - Mohsin Raza
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Ammara Fayyaz
- Department of Medicine, Central Park Medical College, Lahore, Pakistan
| | - Muhammad Asfandyar Nadir
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Muhammad Babar
- Department of Medicine, Social Security Hospital, Faisalabad, Pakistan
| |
Collapse
|
3
|
Rajpoot A, Aggarwal T, Sharma V. Unraveling the Enigma of Cardiac Damage Caused by Lead: Understanding the Intricate Relationship between Oxidative Stress and Other Multifactorial Mechanisms. Toxicology 2024:153984. [PMID: 39481524 DOI: 10.1016/j.tox.2024.153984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Lead (Pb) exposure remains a pressing concern in the realm of public health, with a mounting body of evidence underscoring its adverse impact on cardiovascular well-being. The exposure to Lead instigates the production of reactive oxygen species (ROS), leading to consequential cellular and physiological damage and a perturbation in redox equilibrium. The resultant oxidative stress, induced by ROS, disrupts endothelial functionality, propagates inflammatory processes, and initiates vascular remodeling, collectively contributing to the advancement of cardiovascular diseases (CVDs). The objective of this current review is to comprehensively expound upon the intricate mechanisms through which Lead induced toxicity affects cardiac cells. Additionally, it briefly addresses the ramifications of Lead exposure on the development of three interconnected cardiovascular conditions: atherosclerosis, hypertension, and myocardial infarction. Furthermore, the discourse delves into the specific repercussions of Lead exposure on lipid metabolism, blood pressure regulation, and cardiac performance, culminating in the initiation and progression of atherosclerotic plaque formation, elevated blood pressure, and an augmented risk of myocardial infarction. By understanding these intricate mechanisms, targeted interventions may be devised to counteract the deleterious effects of Lead on cardiovascular health. Thus, this review offers novel avenues for preventive and therapeutic strategies, ultimately serving to alleviate the burden of cardiovascular diseases associated with Lead toxicity.
Collapse
Affiliation(s)
- Anjali Rajpoot
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India - 304022.
| | - Tanya Aggarwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India - 304022.
| | - Veena Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India - 304022.
| |
Collapse
|
4
|
Pinho MGM, Koop Y, Mackenbach JD, Lakerveld J, Simões M, Vermeulen R, Wagtendonk AJ, Vaartjes I, Beulens JWJ. Time-varying exposure to food retailers and cardiovascular disease hospitalization and mortality in the netherlands: a nationwide prospective cohort study. BMC Med 2024; 22:427. [PMID: 39379985 PMCID: PMC11462997 DOI: 10.1186/s12916-024-03648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Very few studies to date investigated the prospective association of changes in exposure to the food environment with cardiovascular disease (CVD) risk. We aim to explore if time-varying exposure to the food environment was associated with hospitalization and mortality due to total and specific types of CVD in The Netherlands. METHODS In this prospective cohort study, 4,641,435 Dutch adults aged 35 + years who did not change residence in 2002-2018 were identified through registry data. Exposure to the food environment was defined as time-varying Food Environment Healthiness Index (FEHI) scores (range: - 5 to 5) and time-varying kernel density of specific food retailers (e.g., fast food outlets, supermarkets) around the home location between 2004 and 2018. The main outcome measures were hospitalization and mortality due to overall CVD, stroke, HF, and CHD occurring between 2004 and 2020, based on hospital and death registries. RESULTS In Cox regression models, each unit increase in the FEHI was associated with a lower hospitalization and mortality of CVD (hospitalization hazard ratio (HRh) = 0.90 (0.89 to 0.91), mortality hazard ratio (HRm) = 0.85 (0.82 to 0.89)), CHD (HRh = 0.88 (0.85 to 0.91), HRm = 0.80 (0.75 to 0.86)), stroke (HRh = 0.89 (0.84 to 0.93)), HRm = 0.89 (0.82 to 0.98)), and HF (HRh = 0.90 (0.84-0.96), HRm = 0.84 (0.76 to 0.92)). Increased density of local food shops, fast food outlets, supermarkets, and convenience stores and decreased density of food delivery outlets and restaurants were associated with a higher risk of CVD, CHD, stroke, and HF hospitalization and mortality. CONCLUSIONS In this observational longitudinal study, changes in exposure to a healthier food environment over 14 years were associated with a risk reduction in CVD hospitalization and mortality, in particular in urbanized areas and for younger adults and those with higher incomes.
Collapse
Affiliation(s)
- Maria Gabriela M Pinho
- Copernicus Institute, Utrecht University, Utrecht, The Netherlands
- Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Yvonne Koop
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Dutch Heart Foundation, The Hague, The Netherlands
| | - Joreintje D Mackenbach
- Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Upstream Team, www.upstreamteam.nl, Amsterdam, The Netherlands
| | - Jeroen Lakerveld
- Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Upstream Team, www.upstreamteam.nl, Amsterdam, The Netherlands
- IRAS, Utrecht University, Utrecht, The Netherlands
| | | | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- IRAS, Utrecht University, Utrecht, The Netherlands
| | - Alfred J Wagtendonk
- Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Upstream Team, www.upstreamteam.nl, Amsterdam, The Netherlands
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joline W J Beulens
- Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands.
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Pam P, Goudarzi MA, Ghotboddin Mohammadi S, Asbaghi O, Aghakhani L, Clark CCT, Hashempur MH, Haghighat N. The effects of kiwifruit consumption on anthropometric and cardiometabolic indices in adults: A systematic review and meta-analysis. Food Sci Nutr 2024; 12:7017-7032. [PMID: 39479621 PMCID: PMC11521643 DOI: 10.1002/fsn3.4385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 11/02/2024] Open
Abstract
The current systematic review and meta-analysis was conducted to evaluate the effects of kiwifruit intake on anthropometric indices and key cardiometabolic parameters. Related articles were found by searching PubMed, ISI Web of Science, and Scopus to detect relevant Randomized Clinical Trials (RCTs) and novel systematic reviews relating to kiwi consumption in adults, up to August 2023. The weighted mean difference (WMD) and 95% confidence intervals (CIs) were calculated using a random-effects model. Heterogeneity, sensitivity analysis, and publication bias were assessed and reported using standard methods. Six RCTs were included in the meta-analysis. Analyzing overall effect sizes demonstrated a significant reduction in low-density lipoprotein cholesterol (LDL) levels (WMD: -9.30 mg/dL; 95% CI: -17.56 to -1.04, p = .027), whereas no significant alterations of triglycerides (TG) (WMD: -12.91 mg/dL; 95% CI: -28.17 to 2.34, p = .097), total cholesterol (TC) (WMD: -7.66 mg/dL; 95% CI: -17.85 to 2.52, p = .141), high-density lipoprotein cholesterol (HDL) (WMD: 2.87 mg/dL; 95% CI: -0.36 to 6.11, p = .141), fasting blood glucose (FBG) (WMD: 1.06 mg/dL; 95% CI: -1.43 to 3.56, p = .404), C-reactive protein (CRP) (WMD: 0.15 mg/dL; 95% CI: -0.40, 0.70, p = .0598), body weight (BW) (WMD: 0.85 kg; 95% CI: -1.34 to 3.04, p = .448), body mass index (BMI) (WMD: 0.04 kg/m2; 95% CI: -0.75 to 0.83, p = .920), and waist circumference (WC) (WMD: 0.18 cm; 95% CI: -1.81 to 2.19, p = .855) were found. Our findings suggest that consuming kiwifruit does not have a significant impact on anthropometric indices and cardiometabolic factors, except for LDL-C levels.
Collapse
Affiliation(s)
- Pedram Pam
- Student Research Committee, Department of Clinical NutritionTabriz University of Medical SciencesTabrizIran
- Department of Clinical NutritionTabriz University of Medical SciencesTabrizIran
| | | | - Shirin Ghotboddin Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Omid Asbaghi
- Cancer Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Ladan Aghakhani
- Laparoscopy Research CenterShiraz University of Medical SciencesShirazIran
| | | | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Neda Haghighat
- Laparoscopy Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Chao TH, Lin TH, Cheng CI, Wu YW, Ueng KC, Wu YJ, Lin WW, Leu HB, Cheng HM, Huang CC, Wu CC, Lin CF, Chang WT, Pan WH, Chen PR, Ting KH, Su CH, Chu CS, Chien KL, Yen HW, Wang YC, Su TC, Liu PY, Chang HY, Chen PW, Juang JMJ, Lu YW, Lin PL, Wang CP, Ko YS, Chiang CE, Hou CJY, Wang TD, Lin YH, Huang PH, Chen WJ. 2024 Guidelines of the Taiwan Society of Cardiology on the Primary Prevention of Atherosclerotic Cardiovascular Disease --- Part I. ACTA CARDIOLOGICA SINICA 2024; 40:479-543. [PMID: 39308649 PMCID: PMC11413940 DOI: 10.6515/acs.202409_40(5).20240724a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of death worldwide and in Taiwan. It is highly prevalent and has a tremendous impact on global health. Therefore, the Taiwan Society of Cardiology developed these best-evidence preventive guidelines for decision-making in clinical practice involving aspects of primordial prevention including national policies, promotion of health education, primary prevention of clinical risk factors, and management and control of clinical risk factors. These guidelines cover the full spectrum of ASCVD, including chronic coronary syndrome, acute coronary syndrome, cerebrovascular disease, peripheral artery disease, and aortic aneurysm. In order to enhance medical education and health promotion not only for physicians but also for the general public, we propose a slogan (2H2L) for the primary prevention of ASCVD on the basis of the essential role of healthy dietary pattern and lifestyles: "Healthy Diet and Healthy Lifestyles to Help Your Life and Save Your Lives". We also propose an acronym of the modifiable risk factors/enhancers and relevant strategies to facilitate memory: " ABC2D2EFG-I'M2 ACE": Adiposity, Blood pressure, Cholesterol and Cigarette smoking, Diabetes mellitus and Dietary pattern, Exercise, Frailty, Gout/hyperuricemia, Inflammation/infection, Metabolic syndrome and Metabolic dysfunction-associated fatty liver disease, Atmosphere (environment), Chronic kidney disease, and Easy life (sleep well and no stress). Some imaging studies can be risk enhancers. Some risk factors/clinical conditions are deemed to be preventable, and healthy dietary pattern, physical activity, and body weight control remain the cornerstone of the preventive strategy.
Collapse
Affiliation(s)
- Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital
- Faculty of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University
| | - Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung; School of Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan
| | - Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Yih-Jer Wu
- Department of Medicine and Institute of Biomedical Sciences, MacKay Medical College, New Taipei City
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Hsing-Ban Leu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Healthcare and Management Center
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Hao-Min Cheng
- Ph.D. Program of Interdisciplinary Medicine (PIM), National Yang Ming Chiao Tung University College of Medicine; Division of Faculty Development; Center for Evidence-based Medicine, Taipei Veterans General Hospital; Institute of Public Health; Institute of Health and Welfare Policy, National Yang Ming Chiao Tung University College of Medicine
| | - Chin-Chou Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei
| | - Chih-Cheng Wu
- Center of Quality Management, National Taiwan University Hospital Hsinchu Branch, Hsinchu; College of Medicine, National Taiwan University, Taipei; Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan
| | - Chao-Feng Lin
- Department of Medicine, MacKay Medical College, New Taipei City; Department of Cardiology, MacKay Memorial Hospital, Taipei
| | - Wei-Ting Chang
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung; Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Wen-Han Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei; Institute of Population Health Sciences, National Health Research Institutes, Miaoli; and Institute of Biochemistry and Biotechnology, National Taiwan University
| | - Pey-Rong Chen
- Department of Dietetics, National Taiwan University Hospital, Taipei
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Yunlin Christian Hospital, Yunlin
| | - Chun-Hung Su
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Chih-Sheng Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine; Population Health Research Center, National Taiwan University, Taipei
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital; Department of Medical Laboratory Science and Biotechnology, Asia University; Division of Cardiology, China Medical University College of Medicine and Hospital, Taichung
| | - Ta-Chen Su
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine
| | - Pang-Yen Liu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Po-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Jyh-Ming Jimmy Juang
- Heart Failure Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine, and National Taiwan University Hospital
| | - Ya-Wen Lu
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Po-Lin Lin
- Division of Cardiology, Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Chao-Ping Wang
- Division of Cardiology, E-Da Hospital; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung
| | - Yu-Shien Ko
- Cardiovascular Division, Chang Gung Memorial Hospital; College of Medicine, Chang Gung University, Taoyuan
| | - Chern-En Chiang
- General Clinical Research Center and Division of Cardiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
| | - Tzung-Dau Wang
- Cardiovascular Center and Divisions of Hospital Medicine and Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Po-Hsun Huang
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Wen-Jone Chen
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Abdullatef M, Omran M, Bitar A, Alsaid B. Prevalence of classic and non-classic pain sites of coronary artery disease: a cross-sectional study. BMC Cardiovasc Disord 2024; 24:445. [PMID: 39179977 PMCID: PMC11344326 DOI: 10.1186/s12872-024-04127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
STUDY OBJECTIVE This study aims to assess the prevalence of both classic and non-classic pain sites in patients with ischemic heart disease, emphasizing the importance of recognizing and not disregarding non-classic symptoms. METHODS This cross-sectional study included 100 patients diagnosed with coronary artery disease (CAD) who were admitted to two major hospitals in Syria. classic pain was identified as pain located in the precordial area, with or without radiation to the neck, jaw, left shoulder or arm. Patients' demographics and previous medical history were documented to investigate any potential associations with non-classic pain. RESULTS 62% of the patients experienced non-classic pain, while 12% had no precordial pain. For those without precordial pain, the most common pain site was the left chest (66.7%). Non-classic pain was significantly associated with smoking, with 72.2% of smokers experiencing non-classic pain compared to 35.7% non-smokers (p = 0.001). Additionally, patients with previous heart disease were more likely to have non-classic pain (71.7%), compared with patients with no history of heart disease (51.1%) (p = 0.03). Other factors such as age, sex, and diabetes were not statistically significant. CONCLUSION Non-classic pain is common, affecting 62% of individuals, primarily in the right shoulder, right arm, and back. This type of pain could be associated with smoking and prior heart disease. Misdiagnosing coronary artery disease can have serious consequences, as patients with non-classic symptoms may miss important pre-hospital procedures like ECG.
Collapse
Affiliation(s)
| | - Maya Omran
- Faculty of Medicine, Damascus University, Damascus, Syria.
| | - Anas Bitar
- Faculty of Medicine, Damascus University, Damascus, Syria
| | - Bayan Alsaid
- Laboratory of Anatomy, Faculty of Medicine, Damascus University, Damascus, Syria
| |
Collapse
|
8
|
Wang X, Zhang Y, Tarik B, Zhang K, Lin S, Deng X, Gu H, Wu W, Lin X, Du Z, Wang Y, Qu Y, Lin Z, Zhang M, Sun Y, Dong GH, Wei Y, Zhang W, Hao Y. The effect of residential greenness on cardiovascular mortality from a large cohort in South China: An in-depth analysis of effect modification by multiple demographic and lifestyle characteristics. ENVIRONMENT INTERNATIONAL 2024; 190:108894. [PMID: 39047544 DOI: 10.1016/j.envint.2024.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The potential for residential greenness to improve cardiovascular health through both physical and psychological mechanisms is well recognized. However, evidence from rapidly urbanizing developing countries and cohort-based causal inference approaches, remains limited. We aim to examine the effect of residential greenness and time to cardiovascular mortality in South China. METHODS We utilized data from a community-based population survey involving 748,209 participants at baseline from 2009 to 2015, followed up until 2020. Residential greenness exposure was assessed by the annual Normalized Difference Vegetation Index (NDVI) in the 500 m radius of each participant's residence. We used time-varying proportional hazard Cox models coupled with inverse probability weighting to fit marginal structural models and obtain hazard ratios (HRs) for cardiovascular disease (CVD) mortality after adjusting for confounders. Multiple effect modifiers on both additive and multiplicative scales were further explored. RESULTS A total of 15,139 CVD-related deaths were identified during a median of 7.9 years of follow-up. A protective effect was found between higher greenness exposure and reduced CVD mortality, with a 9.3 % lower rate of total CVD mortality (HR 0.907, 95 % CI 0.859-0.957) based on a 0.1 increase in annual average NDVI. Demographic (age, marital status) and lifestyle factors (smoking, drinking status) were found to modify the association between residential greenness and CVD mortality (all P interaction values < 0.05 or 95 %CI for RERI excluded the value 0). Notably, this effect was more pronounced among older adults, married, and individuals having healthier lifestyles, indicating a greater benefit from greenness for these subgroups. CONCLUSIONS Our findings support a causal link between increased residential greenness exposure and a reduced risk of CVD mortality in South China with marked heterogenous effects, which has public health implications for cultivating greener urban environments to mitigate the impact of CVD within the context of rapid urbanization.
Collapse
Affiliation(s)
- Xiaowen Wang
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Yuqin Zhang
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China; Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Benmarhnia Tarik
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA; Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Shao Lin
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Xinlei Deng
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Haogao Gu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao Lin
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanji Qu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Man Zhang
- Department of Nosocomial Infection Management, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yongqing Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongyue Wei
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
9
|
Elf M, Lipson-Smith R, Kylén M, Saa JP, Sturge J, Miedema E, Nordin S, Bernhardt J, Anåker A. A Systematic Review of Research Gaps in the Built Environment of Inpatient Healthcare Settings. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2024; 17:372-394. [PMID: 38807411 PMCID: PMC11491052 DOI: 10.1177/19375867241251830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE This study utilized the evidence-gap map method and critically examined the scope, methodologies, and focus of the studies that investigated the influence of the built environment on inpatient healthcare settings over a decade (2010-2021). METHODS We conducted a systematic review per the preferred reporting items for systematic reviews and meta-analyses guidelines and surveyed 406 articles, primarily from North America and Europe. RESULTS Our findings revealed a dominant focus on architectural features (73%), such as room design and ward layout. Comparatively, there was less emphasis on interior-, ambient-, social-, and nature-related features. Most previous studies explored multiple environmental features, which indicated the intricacy of this field. Research outcomes were diverse, with person-centered care (PCC) being the most frequently investigated, followed by safe care, emotional well-being, activity, and behavior. Furthermore, research methods varied considerably based on the study's outcomes and features. Clinical outcomes and safe care favored quantitative methods, activity and behavior favored mixed methods, and PCC favored qualitative research. CONCLUSION This review provides an in-depth overview of the existing studies on healthcare design research and sheds light on the current trends and methodological choices. The insights garnered can guide future research, policy-making, and the development of healthcare facilities.
Collapse
Affiliation(s)
- Marie Elf
- School of Health and Welfare, Dalarna University, Falun, Sweden
| | - Ruby Lipson-Smith
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead, NSW Australia
| | - Maya Kylén
- School of Health and Welfare, Dalarna University, Falun, Sweden
- Department of Health Sciences, Lund University, Lund, Sweden
| | - Juan Pablo Saa
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Melbourne, VIC, Australia
| | - Jodi Sturge
- Department of Design, Production and Management, Faculty of Engineering Technology, University of Twente, The Netherlands
| | - Elke Miedema
- InHolland University of Applied Science, Domain Technology, Design and Computation, Division of Built Environment, The Netherlands
| | - Susanna Nordin
- School of Health and Welfare, Dalarna University, Falun, Sweden
| | - Julie Bernhardt
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Anna Anåker
- School of Health and Welfare, Dalarna University, Falun, Sweden
| |
Collapse
|
10
|
Arregi A, Vegas O, Lertxundi A, Silva A, Ferreira I, Bereziartua A, Cruz MT, Lertxundi N. Road traffic noise exposure and its impact on health: evidence from animal and human studies-chronic stress, inflammation, and oxidative stress as key components of the complex downstream pathway underlying noise-induced non-auditory health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46820-46839. [PMID: 38977550 PMCID: PMC11297122 DOI: 10.1007/s11356-024-33973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
In heavily urbanized world saturated with environmental pollutants, road traffic noise stands out as a significant factor contributing to widespread public health issues. It contributes in the development of a diverse range of non-communicable diseases, such as cardiovascular diseases, metabolic dysregulation, cognitive impairment, and neurodegenerative disorders. Although the exact mechanisms behind these non-auditory health effects remain unclear, the noise reaction model centres on the stress response to noise. When exposed to noise, the body activates the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, leading to the secretion of stress hormones like catecholamines and cortisol. Prolonged exposure to noise-induced stress results in chronic inflammation and oxidative stress. This review underscores the role of inflammation and oxidative stress in the progression of noise-induced vascular dysfunction, disruption of the circadian rhythm, accelerated aging, neuroinflammation, and changes in microbiome. Additionally, our focus is on understanding the interconnected nature of these health outcomes: These interconnected factors create a cascade effect, contributing to the accumulation of multiple risk factors that ultimately lead to severe adverse health effects.
Collapse
Affiliation(s)
- Ane Arregi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Oscar Vegas
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Aitana Lertxundi
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ana Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ainhoa Bereziartua
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Nerea Lertxundi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
11
|
Wu L, Liu Y, Zhou H, Cao Z, Yu J. Gastrodin Ameliorates Learning and Memory Impairments Caused by Long-Term Noise Exposure. Noise Health 2024; 26:396-402. [PMID: 39345083 PMCID: PMC11540004 DOI: 10.4103/nah.nah_76_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 10/01/2024] Open
Abstract
The developing brain is significantly affected by long-term exposure to noise at an early age, leading to functional disorders such as learning and memory impairments. Gastrodin (GAS), a natural organic compound, is an extraction of phenolic glycoside from the rhizome of Gastrodia elata. Clinically, GAS is extensively utilised for the treatment of neurological disorders. This study aimed to explore the effect and mechanism of GAS on noise exposure-induced learning and memory impairments. Rats aged 21 days were exposed to a 90 dB noise environment for 4 weeks and divided into the noise group, the noise + GAS group, and the control group to establish a noise exposure model. After noise exposure treatment, the improvement effect of GAS on the memory of rats was evaluated by Y-maze and Morris water maze. Enzyme-linked immunosorbent assay was utilised to determine the effect of GAS on neurotransmitter levels in the hippocampal tissue of noise-exposed rats. Western blot was applied for the detection of the protein levels of neurotrophic factors. The GAS treatment significantly improved spatial memory and increased the levels of key neurotransmitters (norepinephrine, dopamine and serotonin) and neurotrophic factors (neurotrophin-3 and brain-derived neurotrophic factor) in the hippocampal tissues of noise-exposed rats. These alterations correlate with enhanced cognitive functions, suggesting a neuroprotective effect of GAS against noise-induced cognitive impairments. This study supports the potential of GAS to treat noise-induced learning and memory impairments by modulating neurotransmitter secretion and enhancing the expression levels of neurotrophic factors. These findings offer potential therapeutic avenues for cognitive impairments induced by noise exposure.
Collapse
Affiliation(s)
- Lin Wu
- Department of Pathology, Peking University Cancer Hospital Yunnan/Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University Kunming, Yunnan 650118, China
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Liu
- Department of Pathology, Peking University Cancer Hospital Yunnan/Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University Kunming, Yunnan 650118, China
| | - Hu Zhou
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhenzhen Cao
- Department of Anatomy and Histology, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jianyun Yu
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
12
|
Yim G, Margetaki K, Romano ME, Kippler M, Vafeiadi M, Roumeliotaki T, Bempi V, Farzan SF, Chatzi L, Howe CG. Metal mixture exposures and serum lipid levels in childhood: the Rhea mother-child cohort in Greece. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:688-698. [PMID: 38698271 DOI: 10.1038/s41370-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Growing evidence suggests that cardiovascular disease develops over the lifetime, often beginning in childhood. Metal exposures have been associated with cardiovascular disease and important risk factors, including dyslipidemia, but prior studies have largely focused on adult populations and single metal exposures. OBJECTIVE To investigate the individual and joint impacts of multiple metal exposures on lipid levels during childhood. METHODS This cross-sectional study included 291 4-year-old children from the Rhea Cohort Study in Heraklion, Greece. Seven metals (manganese, cobalt, selenium, molybdenum, cadmium, mercury, and lead) were measured in whole blood using inductively coupled plasma mass spectrometry. Serum lipid levels included total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. To determine the joint and individual impacts of child metal exposures (log2-transformed) on lipid levels, Bayesian kernel machine regression (BKMR) was employed as the primary multi-pollutant approach. Potential effect modification by child sex and childhood environmental tobacco smoke exposure was also evaluated. RESULTS BKMR identified a positive association between the metal mixture and both total and LDL cholesterol. Of the seven metals examined, selenium (median 90.6 [IQR = 83.6, 96.5] µg/L) was assigned the highest posterior inclusion probability for both total and LDL cholesterol. A difference in LDL cholesterol of 8.22 mg/dL (95% CI = 1.85, 14.59) was observed when blood selenium was set to its 75th versus 25th percentile, holding all other metals at their median values. In stratified analyses, the positive association between selenium and LDL cholesterol was only observed among boys or among children exposed to environmental tobacco smoke during childhood. IMPACT STATEMENT Growing evidence indicates that cardiovascular events in adulthood are the consequence of the lifelong atherosclerotic process that begins in childhood. Therefore, public health interventions targeting childhood cardiovascular risk factors may have a particularly profound impact on reducing the burden of cardiovascular disease. Although growing evidence supports that both essential and nonessential metals contribute to cardiovascular disease and risk factors, such as dyslipidemia, prior studies have mainly focused on single metal exposures in adult populations. To address this research gap, the current study investigated the joint impacts of multiple metal exposures on lipid concentrations in early childhood.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA.
| | - Katerina Margetaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Vicky Bempi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
13
|
Akkuş O, Yadsıbaş R, Demirkıran RF, Elitaş V, Bekler Ö, Şen F, Binokay H, Akkuş G, Okuyan E. Changes in Acute Coronary Syndrome Clinic after the Devastating Earthquake in Türkiye. Anatol J Cardiol 2024:446-453. [PMID: 38832525 PMCID: PMC11426400 DOI: 10.14744/anatoljcardiol.2024.4207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND We aimed to investigate the clinical and angiographic characteristics of patients with acute coronary syndrome (ACS) who survived this devastating earthquake and were admitted to our hospital in Antakya/Türkiye. METHODS We retrospectively examined the impact of the earthquake on the occurrences of acute coronary syndromes in Antakya/Türkiye. All 248 consecutive patients with ACS, also survivors of the earthquake in Antakya, were enrolled as the earthquake group. The earthquake group was created from patients hospitalized between February and June in 2023 after the earthquake. In total, 209 consecutive ACS patients who were hospitalized in our cardiology clinic in similar months of 2022 named as the control group. RESULTS Patients admitted before the earthquake were more hospitalized with multivessel disease compared to after the earthquake group (P <.001). Myocardial infarction with non-obstructive coronary artery disease (MINOCA) was the main reason for the significant increase rate of ACS after the earthquake. The earthquake patient group had lesser diabetes mellitus than the control group (P <.001). The risk of men suffering from ACS after an earthquake is approximately 2.1 times higher than women (P =.023). Those with a history of revascularization are approximately 1.8 times more likely to have ACS after an earthquake (P =.05). The risk of experiencing ACS after an earthquake is approximately 3.5 times higher for those with a family history than for those without (P <.001). CONCLUSION Effects of the devastating earthquake on the heart are the increase in MINOCA patients triggered by great sudden environmental stress and the decrease in diabetes due to worsening nutritional conditions, respectively.
Collapse
Affiliation(s)
- Oğuz Akkuş
- Department of Cardiology, Mustafa Kemal University Faculty of Medicine, Antakya, Türkiye
| | - Ramazan Yadsıbaş
- Department of Cardiology, Mustafa Kemal University Faculty of Medicine, Antakya, Türkiye
| | | | - Veysel Elitaş
- Department of Cardiology, Mustafa Kemal University Faculty of Medicine, Antakya, Türkiye
| | - Özkan Bekler
- Department of Cardiology, Mustafa Kemal University Faculty of Medicine, Antakya, Türkiye
| | - Fatih Şen
- Department of Cardiology, Mustafa Kemal University Faculty of Medicine, Antakya, Türkiye
| | - Hülya Binokay
- Department of Biostatistics, Çukurova University Faculty of Medicine, Adana, Türkiye
| | - Gamze Akkuş
- Division of Endocrinology, Çukurova University Faculty of Medicine, Adana, Türkiye
| | - Ertuğrul Okuyan
- Department of Cardiology, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Türkiye
| |
Collapse
|
14
|
Liu S, Wan J, Wang D, Yang Y, Fang J, Luo T, Liang D, Hu J, Hou J, Wang P. Effect of the PCSK9 R46L genetic variant on plasma insulin and glucose levels, risk of diabetes mellitus and cardiovascular disease: A meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:1339-1351. [PMID: 38734541 DOI: 10.1016/j.numecd.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND AIM The impact of the loss-of-function (LOF) genetic variant PCSK9 R46L on glucose homeostasis and cardiovascular disease (CVD) remains uncertain, despite its established correlation with diminished blood cholesterol levels. This meta-analysis aimed at exploring the effect of the PCSK9 R46L genetic variant on plasma insulin and glucose levels, risk of diabetes mellitus and CVD. METHODS AND RESULTS PubMed, Embase, and the Cochrane Library were searched for cohort and case-control studies published until October 1, 2023. The studies should report the association of the PCSK9 R46L genetic variant with one of the following: fasting plasma insulin, blood glucose levels, diabetes mellitus, and CVD risk. A dominant model of the PCSK9 R46L genetic variant was employed to statistical analysis. The meta-analyses were performed for continuous variables with standard mean difference (SMD), categorical variables with odds ratio (OR) using a random-effects model. A total of 17 articles with 20 studies engaging 1,186,861 population were identified and mobilized for these analyses. The overall results indicated that, compared with non-carriers of the PCSK9 R46L genetic variant, carriers of the PCSK9 R46L genetic variant did not increase or decrease the levels of fasting plasma insulin (3 studies with 7277 population; SMD, 0.08; 95% CI, -0.04 to 0.19; P = 0.270), and the levels of fasting plasma glucose (7 studies with 9331 population; SMD, 0.03; 95% CI, -0.08 to 0.13; P = 0.610). However, carriers of the PCSK9 R46L genetic variant indeed had 17% reduction in the risk of CVD (11 studies with 558,263 population; OR, 0.83; 95% CI, 0.71 to 0.98; P = 0.030), and 9% increase in the risk of diabetes mellitus (10 studies with 744,466 population; OR, 1.09; 95% CI, 1.04 to 1.14; P < 0.01). Meta-regression analyses indicated that the increased risk of diabetes mellitus and the reduced risk of CVD were positively correlated with reduction in LDL-C (P = 0.004 and 0.033, respectively). CONCLUSIONS PCSK9 R46L genetic variant exhibited an elevated susceptibility to diabetes mellitus alongside a reduced vulnerability to CVD.
Collapse
Affiliation(s)
- Sen Liu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jindong Wan
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Dan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jie Fang
- Department of Ultrasound Medicine, Xindu District People's Hospital of Chengdu, Chengdu 610500, Sichuan, China.
| | - Tao Luo
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Dengpan Liang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jun Hu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jixin Hou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China.
| |
Collapse
|
15
|
Mousavi Ghahfarrokhi SS, Mohamadzadeh M, Samadi N, Fazeli MR, Khaki S, Khameneh B, Khameneh Bagheri R. Management of Cardiovascular Diseases by Short-Chain Fatty Acid Postbiotics. Curr Nutr Rep 2024; 13:294-313. [PMID: 38656688 DOI: 10.1007/s13668-024-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Global health concerns persist in the realm of cardiovascular diseases (CVDs), necessitating innovative strategies for both prevention and treatment. This narrative review aims to explore the potential of short-chain fatty acids (SCFAs)-namely, acetate, propionate, and butyrate-as agents in the realm of postbiotics for the management of CVDs. RECENT FINDINGS We commence our discussion by elucidating the concept of postbiotics and their pivotal significance in mitigating various aspects of cardiovascular diseases. This review centers on a comprehensive examination of diverse SCFAs and their associated receptors, notably GPR41, GPR43, and GPR109a. In addition, we delve into the intricate cellular and pharmacological mechanisms through which these receptors operate, providing insights into their specific roles in managing cardiovascular conditions such as hypertension, atherosclerosis, heart failure, and stroke. The integration of current information in our analysis highlights the potential of both SCFAs and their receptors as a promising path for innovative therapeutic approaches in the field of cardiovascular health. The idea of postbiotics arises as an optimistic and inventive method, presenting new opportunities for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Khaki
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ramin Khameneh Bagheri
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Rappazzo KM, Egerstrom NM, Wu J, Capone AB, Joodi G, Keen S, Cascio WE, Simpson RJ. Fine particulate matter-sudden death association modified by ventricular hypertrophy and inflammation: a case-crossover study. Front Public Health 2024; 12:1367416. [PMID: 38835616 PMCID: PMC11148389 DOI: 10.3389/fpubh.2024.1367416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Background Sudden death accounts for approximately 10% of deaths among working-age adults and is associated with poor air quality. Objectives: To identify high-risk groups and potential modifiers and mediators of risk, we explored previously established associations between fine particulate matter (PM2.5) and sudden death stratified by potential risk factors. Methods Sudden death victims in Wake County, NC, from 1 March 2013 to 28 February 2015 were identified by screening Emergency Medical Systems reports and adjudicated (n = 399). Daily PM2.5 concentrations for Wake County from the Air Quality Data Mart were linked to event and control periods. Potential modifiers included greenspace metrics, clinical conditions, left ventricular hypertrophy (LVH), and neutrophil-to-lymphocyte ratio (NLR). Using a case-crossover design, conditional logistic regression estimated the OR (95%CI) for sudden death for a 5 μg/m3 increase in PM2.5 with a 1-day lag, adjusted for temperature and humidity, across risk factor strata. Results Individuals having LVH or an NLR above 2.5 had PM2.5 associations of greater magnitude than those without [with LVH OR: 1.90 (1.04, 3.50); NLR > 2.5: 1.25 (0.89, 1.76)]. PM2.5 was generally less impactful for individuals living in areas with higher levels of greenspace. Conclusion LVH and inflammation may be the final step in the causal pathway whereby poor air quality and traditional risk factors trigger arrhythmia or myocardial ischemia and sudden death. The combination of statistical evidence with clinical knowledge can inform medical providers of underlying risks for their patients generally, while our findings here may help guide interventions to mitigate the incidence of sudden death.
Collapse
Affiliation(s)
- Kristen M Rappazzo
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Nicole M Egerstrom
- Gillings Global School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jianyong Wu
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Alia B Capone
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Family Medicine, University of Maryland Medical Center, Baltimore, MD, United States
| | - Golsa Joodi
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Susan Keen
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cardiovascular Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Wayne E Cascio
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Ross J Simpson
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
An C, Li Z, Chen Y, Huang S, Yang F, Hu Y, Xu T, Zhang C, Ge S. The cGAS-STING pathway in cardiovascular diseases: from basic research to clinical perspectives. Cell Biosci 2024; 14:58. [PMID: 38720328 PMCID: PMC11080250 DOI: 10.1186/s13578-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Zhen Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
18
|
Miao J, Thongprayoon C, Fülöp T, Cheungpasitporn W. Enhancing clinical decision-making: Optimizing ChatGPT's performance in hypertension care. J Clin Hypertens (Greenwich) 2024; 26:588-593. [PMID: 38646920 PMCID: PMC11088425 DOI: 10.1111/jch.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Jing Miao
- Division of NephrologyDepartment of Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Charat Thongprayoon
- Division of NephrologyDepartment of Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Tibor Fülöp
- Division of NephrologyDepartment of Medicine, Medical University of South CarolinaCharlestonSouth CarolinaUSA
- Medicine ServiceRalph H. Johnson VA Medical CenterCharlestonSouth CarolinaUSA
| | | |
Collapse
|
19
|
Xu Q, Qu B, Li L, Chen Y. Geographical association of biodiversity with cancer and cardiovascular mortality rates: analysis of 39 distinct conditions. Front Public Health 2024; 12:1368017. [PMID: 38746003 PMCID: PMC11091335 DOI: 10.3389/fpubh.2024.1368017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Background Biodiversity has been recognized as a positive contributor to human health and wellbeing. Cardiovascular disease and cancer are the two most significant global health burdens, and understanding their relationship with biodiversity forms an essential step toward promoting biodiversity conservation and human health. Methods The species richness of birds is a common indicator of biodiversity, given their vast numbers, distinctive distribution, and acute sensitivity to environmental disturbances. This ecological study utilized avian observation data derived from the eBird database, human health data from the International Health Metrics and Evaluation, and county-level statistics, including population characteristics, socio-economics, healthcare service, residential environment, and geographic and climatic characteristics in 2014. We aimed to extensively explore the individual associations between biodiversity (i.e., avian species richness) and age-standardized cause-specific mortalities for different types of cancers (29 conditions) and cardiovascular diseases (10 conditions) across the United States (US). Results Our multiple regression analyses that adjusted for a variety of socio-demographic and geographical factors showed that increased rarefied species richness of birds was associated with reduced mortality rates for three of the five most common cancers, namely, tracheal, bronchus, and lung cancer, breast cancer (in women only), and colon and rectal cancer. For cardiovascular conditions, a similar relationship was observed for ischemic heart disease and cerebrovascular disease-the two most frequent causes of mortality. This study provided extended details regarding the beneficial effects of biodiversity on human health.
Collapse
Affiliation(s)
- Qiaochu Xu
- Department of Geography and Planning, School of Environmental Science, University of Liverpool, Liverpool, United Kingdom
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Bingjie Qu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Li Li
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
20
|
Abstract
Ubiquitous environmental exposures increase cardiovascular disease risk via diverse mechanisms. This review examines personal strategies to minimize this risk. With regard to fine particulate air pollution exposure, evidence exists to recommend the use of portable air cleaners and avoidance of outdoor activity during periods of poor air quality. Other evidence may support physical activity, dietary modification, omega-3 fatty acid supplementation, and indoor and in-vehicle air conditioning as viable strategies to minimize adverse health effects. There is currently insufficient data to recommend specific personal approaches to reduce the adverse cardiovascular effects of noise pollution. Public health advisories for periods of extreme heat or cold should be observed, with limited evidence supporting a warm ambient home temperature and physical activity as strategies to limit the cardiovascular harms of temperature extremes. Perfluoroalkyl and polyfluoroalkyl substance exposure can be reduced by avoiding contact with perfluoroalkyl and polyfluoroalkyl substance-containing materials; blood or plasma donation and cholestyramine may reduce total body stores of perfluoroalkyl and polyfluoroalkyl substances. However, the cardiovascular impact of these interventions has not been examined. Limited utilization of pesticides and safe handling during use should be encouraged. Finally, vasculotoxic metal exposure can be decreased by using portable air cleaners, home water filtration, and awareness of potential contaminants in ground spices. Chelation therapy reduces physiological stores of vasculotoxic metals and may be effective for the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Luke J Bonanni
- Grossman School of Medicine (L.J.B.), NYU Langone Health, New York, NY
| | | |
Collapse
|
21
|
Marchewka WM, Bryniarski KL, Marchewka JM, Popiołek I, Dębski G, Badacz R, Marchewka I, Podolec-Szczepara N, Jasiewicz-Honkisz B, Mikołajczyk TP, Guzik TJ. Sex-specific associations between the environmental exposures and low-grade inflammation and increased blood pressure in young, healthy subjects. Sci Rep 2024; 14:9588. [PMID: 38670971 PMCID: PMC11053153 DOI: 10.1038/s41598-024-59078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Long-term exposures to environmental factors including airborne as well as noise pollutants, are associated with cardiovascular risk. However, the influence of environmental pollution on the young population is controversial. Accordingly, we aimed to investigate the relationships between long-term exposures to different environmental factors and major cardiovascular and inflammatory parameters and biomarkers in young, healthy subjects. Representative sample of permanent residents of two cities differing in air and noise pollution levels, aged 15-21 years, were recruited. Krakow and Lublin, both located in southern Poland, were chosen in relation to their similarities in demographic and geopolitical characteristics, but differences in air pollution (higher in Krakow) and noise parameters (higher in Lublin). A total of 576 subjects were studied: 292 in Krakow and 284 in Lublin. All subjects underwent health questionnaire, blood pressure measurements and biomarker determinations. Inflammatory biomarkers, such as CRP, hs-CRP, fibrinogen as well as homocysteine were all significantly higher in subjects living in Krakow as opposed to subjects living in Lublin (for hsCRP: 0.52 (0.32-0.98) mg/l vs. 0.35 (0.22-0.67) mg/l; p < 0.001). Increased inflammatory biomarker levels were observed in Krakow in both male and female young adults. Interestingly, significant differences were observed in blood pressure between male and female subjects. Males from Krakow had significantly higher mean systolic blood pressure (127.7 ± 10.4 mm/Hg vs. 122.4 ± 13.0 mm/Hg; p = 0.001), pulse pressure (58.7 ± 8.9 mm/Hg vs. 51.4 ± 12.3 mm/Hg; p < 0.001) and lower heart rate (p < 0.001) as compared to males living in Lublin. This was not observed in young adult females. Long-term exposure to environmental factors related to the place of residence can significantly influence inflammatory and cardiovascular parameters, even in young individuals. Interestingly, among otherwise healthy young adults, blood pressure differences exhibited significant variations based on biological sex.
Collapse
Affiliation(s)
- Wojciech M Marchewka
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
- Department of Radiology and Imaging Science, 5th Military Hospital, Krakow, Poland
| | - Krzysztof L Bryniarski
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jakub M Marchewka
- Department of Physiotherapy, University of Physical Education, Krakow, Poland
- Department of Orthopedics and Trauma Surgery, 5th Military Hospital, Krakow, Poland
| | - Iwona Popiołek
- Department of Toxicology and Environmental Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Dębski
- Department of Radiology and Imaging Science, 5th Military Hospital, Krakow, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ida Marchewka
- Department of Ophthalmology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | | | - Barbara Jasiewicz-Honkisz
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
| | - Tomasz P Mikołajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland.
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland.
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Domínguez-Rodríguez A, Baéz-Ferrer N, Avanzas P, Rodríguez S, Abreu-González P, Trujillo-Martin E, Burillo-Putze G, Hernández-Vaquero D. The Association of Desert Dust with the Risk of Acute Coronary Syndrome in Subjects of a Younger Age. J Clin Med 2024; 13:2392. [PMID: 38673666 PMCID: PMC11051357 DOI: 10.3390/jcm13082392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Objectives: Recently, desert dust in Europe has been recognized as a cardiovascular health problem. In Spain, desert dust inflows in recent years have been associated with worsening air quality. The present study examines whether desert dust events are related to the incidence of acute coronary syndrome (ACS) in patients under 55 years of age. Methods: Data from 2416 consecutive patients admitted to a tertiary hospital due to ACS were prospectively analyzed. A case-crossover time-stratified design using Poisson conditional regression models was applied to estimate the impact of desert dust events involving particulate matter concentrations of an aerodynamic diameter <10 μm (PM10) on the incidence of ACS in patients under 55 years of age. Results: Desert dust intrusion on days 0 to 5 before ACS onset showed no significant association with the incidence of ACS in patients under 55 years of age. The incidence rate ratios of PM10 concentrations 1, 2, 3, 3, 4, and 5 days before ACS onset (for changes of 10 µg/m3) were 1.02 (95% CI 0.97-1.1; p = 0.41), 1.01 (95% CI 0.96-1.07; p = 0.66), 0.99 (95% CI 0.94-1.05; p = 0.78), 0.96 (95% CI 0.9-1.02; p = 0.18), and 0.97 (95% CI 0.91-1.04; p = 0.41). Conclusions: Our findings suggest that desert dust is unlikely to be related to the incidence of ACS in patients under 55 years of age.
Collapse
Affiliation(s)
- Alberto Domínguez-Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Cardiología, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Néstor Baéz-Ferrer
- Hospital Universitario de Canarias, Servicio de Cardiología, 38320 Tenerife, Spain;
| | - Pablo Avanzas
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiology Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Department of Medicine, Faculty of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sergio Rodríguez
- Institute of Natural Products and Agrobiology (IPNA), CSIC, 38206 La Laguna, Spain;
| | - Pedro Abreu-González
- Unidad de Fisiología, Departamento de Ciencias Médicas Básicas, Universidad de la Laguna, 38200 Tenerife, Spain;
| | - Elisa Trujillo-Martin
- Hospital Universitario de Canarias, Servicio de Reumatología, 38320 Tenerife, Spain;
| | - Guillermo Burillo-Putze
- Hospital Universitario de Canarias, Servicio de Urgencias, 38320 Tenerife, Spain;
- Faculty of Health Sciences, Universidad Europea de Canarias, 38320 La Orotava, Spain
| | - Daniel Hernández-Vaquero
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Cardiac Surgery Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| |
Collapse
|
23
|
Soh MS, Jang JH, Park JS, Shin JH. Effects of high-gravity acceleration forces and anti-gravity maneuver on the cardiac function of fighter pilots. Sci Rep 2024; 14:8749. [PMID: 38627423 PMCID: PMC11021439 DOI: 10.1038/s41598-024-59274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The fighter pilots exposed to high gravitational (G) acceleration must perform anti-G maneuvers similar to the Valsalva maneuver. However, the effects of high-G acceleration and anti-G maneuvers on cardiac function have rarely been studied. This study aimed to investigate the effects of high-G forces on cardiac function of fighter pilots. Fighter pilots who underwent regular health check-ups and echocardiography were included (n = 29; 100% men, 41 ± 10 years old; mean flight time, 1821 ± 1186 h). Trainees who had not experienced any flights were included in the control group (n = 16; 100% men, 36 ± 17 years old). Echocardiographic data included left ventricular chamber size, systolic and diastolic functions, right ventricular systolic pressure (RVSP), inferior vena cava (IVC) collapsibility, and tricuspid annular plane systolic excursion (TAPSE). No significant differences in left ventricular ejection fraction, RVSP, or IVC collapsibility were observed between two groups. In the multivariate linear regression analysis with total flight time as an independent continuous variable for fighter pilots, TAPSE was positively correlated with total flight time. The experience of fighter pilots who were exposed to high-G acceleration forces and anti-G maneuvers did not cause cardiac structural changes, but the exposure might be associated with right heart function changes.
Collapse
Affiliation(s)
- Moon-Seung Soh
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Hyuk Jang
- Division of Cardiology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Jin-Sun Park
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Joon-Han Shin
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
24
|
Lin M, Yan J, Tang J, Han S, Guo P, Wu S, Tao L, Xiao H, Chen Y, Tan X. Air Pollutants and Mortality Risk in Patients with Aortic Dissection: Evidence from a Clinical Cohort, Single-Cell Sequencing, and Proteomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6509-6518. [PMID: 38561599 PMCID: PMC11025546 DOI: 10.1021/acs.est.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
We aimed to evaluate the association between air pollutants and mortality risk in patients with acute aortic dissection (AAD) in a longitudinal cohort and to explore the potential mechanisms of adverse prognosis induced by fine particulate matter (PM2.5). Air pollutants data, including PM2.5, PM10.0, nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3), were collected from official monitoring stations, and multivariable Cox regression models were applied. Single-cell sequencing and proteomics of aortic tissue were conducted to explore the potential mechanisms. In total, 1,267 patients with AAD were included. Exposure to higher concentrations of air pollutants was independently associated with an increased mortality risk. The high-PM2.5 group carried approximately 2 times increased mortality risk. There were linear associations of PM10, NO2, CO, and SO2 exposures with long-term mortality risk. Single-cell sequencing revealed an increase in mast cells in aortic tissue in the high-PM2.5 exposure group. Enrichment analysis of the differentially expressed genes identified the inflammatory response as one of the main pathways, with IL-17 and TNF signaling pathways being among the top pathways. Analysis of proteomics also identified these pathways. This study suggests that exposure to higher PM2.5, PM10, NO2, CO, and SO2 are associated with increased mortality risk in patients with AAD. PM2.5-related activation and degranulation of mast cells may be involved in this process.
Collapse
Affiliation(s)
- Mengyue Lin
- Department
of Cardiology, First Affiliated Hospital
of Shantou University Medical College, No. 57 Changping Road, Shantou 515000, China
- Shantou
University Medical College, No. 22 Xinling Road, Shantou 515000, China
| | - Jingyi Yan
- Shantou
University Medical College, No. 22 Xinling Road, Shantou 515000, China
| | - Junshuang Tang
- Shantou
University Medical College, No. 22 Xinling Road, Shantou 515000, China
| | - Sirui Han
- Shantou
University Medical College, No. 22 Xinling Road, Shantou 515000, China
| | - Pi Guo
- Department
of Preventive Medicine, Shantou University
Medical College, No. 22 Xinling Road, Shantou 515000, China
| | - Shiwan Wu
- Department
of Cardiology, First Affiliated Hospital
of Shantou University Medical College, No. 57 Changping Road, Shantou 515000, China
| | - Liang Tao
- Department
of Cardiac Surgery, Wuhan Asia Heart Hospital
Affiliated with Wuhan University of Science and Technology, No. 753 Jinghan Road, Wuhan 430000, China
| | - Hongyan Xiao
- Department
of Cardiac Surgery, Wuhan Asia Heart Hospital
Affiliated with Wuhan University of Science and Technology, No. 753 Jinghan Road, Wuhan 430000, China
| | - Yequn Chen
- Department
of Cardiology, First Affiliated Hospital
of Shantou University Medical College, No. 57 Changping Road, Shantou 515000, China
- Clinical
Research Center, First Affiliated Hospital
of Shantou University Medical College, No. 57 Changping Road, Shantou 515000, China
| | - Xuerui Tan
- Department
of Cardiology, First Affiliated Hospital
of Shantou University Medical College, No. 57 Changping Road, Shantou 515000, China
- Shantou
University Medical College, No. 22 Xinling Road, Shantou 515000, China
- Clinical
Research Center, First Affiliated Hospital
of Shantou University Medical College, No. 57 Changping Road, Shantou 515000, China
| |
Collapse
|
25
|
Li X, Li Y, Guo W, Zhang Y. Effects of Ambient Noise Isolation on Illness Severity and Mental Health Among Hospitalized Children with Asthma: Retrospective Study. Noise Health 2024; 26:128-135. [PMID: 38904812 PMCID: PMC11530095 DOI: 10.4103/nah.nah_22_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 02/16/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE This study investigated the effects of ambient noise isolation on disease severity and mental health among hospitalized children with asthma. METHODS A retrospective analysis was conducted on the clinical data of 187 hospitalized children with asthma admitted from May 2021 to May 2023. Among them, 92 cases were categorized in the control group (conventional management) and 95 in the observation group (environmental noise isolation). Ambient noise level, disease severity, mental health, and sleep quality were observed and compared between the two groups. RESULTS Weekly time, the noise value of the observation group was lower than that of the control group (P < 0.05). Before the management, modified Tal scoring system, cough symptom score, and Spence Children's Anxiety Scale-Short Version (SCAS-S) were recorded. SCAS-S and Sleep Disturbance Scale for Children (SDSC) had no significant difference (P > 0.05). Weekly time, no differences in the score of social fear dimension of SCAS-S, score of excessive sweating dimension of SDSC, Tal score, and cough symptom score were found between the observation and control groups (P > 0.05). The scores of other dimensions of SCAS-S and SDSC were lower in the observation group than those in the control group (P < 0.05). CONCLUSIONS Environmental noise isolation for hospitalized children with asthma can effectively improve their mental health and sleep status, but this strategy cannot improve their disease.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pediatrics, Jiaozhou Central Hospital of Qingdao, Qingdao, 266300, China
| | - Yunfang Li
- Department of Pediatrics, Jiaozhou Central Hospital of Qingdao, Qingdao, 266300, China
| | - Wenwen Guo
- Department of Pediatrics, Jiaozhou Central Hospital of Qingdao, Qingdao, 266300, China
| | - Yanling Zhang
- Children’s Health Department, Qingdao Women and Children’s Hospital, Qingdao, 266000, China
| |
Collapse
|
26
|
Mehrotra A, Shukla SP, Shukla A, Manar MK, Singh S, Mehrotra M. A Comprehensive Review of Auditory and Non-Auditory Effects of Noise on Human Health. Noise Health 2024; 26:59-69. [PMID: 38904803 PMCID: PMC11530096 DOI: 10.4103/nah.nah_124_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 08/03/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE Excessive noise is unpleasant and induces several physiological and psychological effects. Noise pollution is a potential threat to humans, particularly those continuously exposed for extended periods throughout the day over many years. This review aims to examine the various auditory and non-auditory outcomes associated with prolonged exposure to noise pollution. MATERIALS AND METHODS The review utilized a combination of relevant keywords to search the electronic databases. After screening based on the applied selection criteria for title, abstract, and full text, 44 articles were finally selected for critical review. RESULTS We identified and analyzed research findings related to noise-induced hearing loss, tinnitus, and sleep disturbances along with non-auditory issues such as annoyance, cognitive impairments, and mental stress associated with cardiovascular disorders. Furthermore, the existing studies were compared and collated to highlight the unique challenges and significance of noise pollution as a distinctive environmental concern and to explore the ongoing efforts in its research and prevention, including the early detection and potential reversal of noise-induced hearing loss. CONCLUSION The fundamental health consequences of noise pollution underscore the need for extensive research encompassing emerging noise sources and technologies to establish a health management system tailored to address noise-related health concerns and reduce noise exposure risk among populations. Finally, further research is warranted to ensure improved measurement of noise exposure and related health outcomes, especially in the context of occupational noise.
Collapse
Affiliation(s)
| | - Sheo Prasad Shukla
- Department of Civil Engineering, Rajkiya Engineering College, Banda, Uttar Pradesh, India
| | - A.K. Shukla
- Department of Civil Engineering, IET, Lucknow, Uttar Pradesh, India
| | - Manish K. Manar
- Department of Community Medicine and Public Health, KGMU, Lucknow, Uttar Pradesh, India
| | - S.K. Singh
- Department of Community Medicine and Public Health, KGMU, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
27
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
28
|
Cheng C, Ren X, Zhang M, Wang Z. The nexus among CO 2 emission, health expenditure and economic development in the OECD countries: New insights from a cross-sectional ARDL model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16746-16769. [PMID: 38326679 DOI: 10.1007/s11356-024-32081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
To find a way to realize sustainable development, this paper applied a cross-sectional ARDL (CS-ARDL) method to explore the interaction between carbon emissions, economic development, and health care expenditure for OECD countries. Firstly, we conduct a cross-sectional test to check whether the data is confronted with this issue. Secondly, we conduct a panel unit root test and cointegration test to confirm whether the ARDL-based method is suitable for our data. Thirdly, we analyze the results and provide possible explanations. Lastly, we conduct a short-term causality test to detect the connection between different variables. The main conclusion of our study includes: 1) Health care is a necessity in OECD countries. 2) Environmental deterioration places a heavy burden on health care expenditure in OECD countries. 3) Health care expenditure of last year negatively affects health care expenditure. 4) There is a short-run causality relationship from CO2, economic development, and dependency rate of youth to health care expenditure in OECD countries. Related policy proposals are provided according to our analysis of the results.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Management Science and Engineering, Shanxi University of Finance and Economics, Taiyuan, 030006, Shanxi Province, China
| | - Xiaohang Ren
- School of Business, Central South University, Changsha, 410083, Hunan Province, China.
| | - Mingming Zhang
- School of Economics and Management, China University of Petroleum (East China), Qingdao, 266580, Shandong Province, China
| | - Zhen Wang
- School of Economics and Management, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
29
|
Montone RA, Camilli M, Calvieri C, Magnani G, Bonanni A, Bhatt DL, Rajagopalan S, Crea F, Niccoli G. Exposome in ischaemic heart disease: beyond traditional risk factors. Eur Heart J 2024; 45:419-438. [PMID: 38238478 PMCID: PMC10849374 DOI: 10.1093/eurheartj/ehae001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Ischaemic heart disease represents the leading cause of morbidity and mortality, typically induced by the detrimental effects of risk factors on the cardiovascular system. Although preventive interventions tackling conventional risk factors have helped to reduce the incidence of ischaemic heart disease, it remains a major cause of death worldwide. Thus, attention is now shifting to non-traditional risk factors in the built, natural, and social environments that collectively contribute substantially to the disease burden and perpetuate residual risk. Of importance, these complex factors interact non-linearly and in unpredictable ways to often enhance the detrimental effects attributable to a single or collection of these factors. For this reason, a new paradigm called the 'exposome' has recently been introduced by epidemiologists in order to define the totality of exposure to these new risk factors. The purpose of this review is to outline how these emerging risk factors may interact and contribute to the occurrence of ischaemic heart disease, with a particular attention on the impact of long-term exposure to different environmental pollutants, socioeconomic and psychological factors, along with infectious diseases such as influenza and COVID-19. Moreover, potential mitigation strategies for both individuals and communities will be discussed.
Collapse
Affiliation(s)
- Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Giulia Magnani
- Department of Medicine, University of Parma, Parma, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
30
|
Siddiqui NZ, Wei L, Mackenbach JD, Pinho MGM, Helbich M, Schoonmade LJ, Beulens JWJ. Global positioning system-based food environment exposures, diet-related, and cardiometabolic health outcomes: a systematic review and research agenda. Int J Health Geogr 2024; 23:3. [PMID: 38321477 PMCID: PMC10848400 DOI: 10.1186/s12942-024-00362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Geographic access to food may affect dietary choices and health outcomes, but the strength and direction of associations may depend on the operationalization of exposure measures. We aimed to systematically review the literature on up-to-date evidence on the association between food environment exposures based on Global Positioning System (GPS) and diet-related and cardiometabolic health outcomes. METHODS The databases PubMed, Embase.com, APA PsycInfo (via Ebsco), Cinahl (via Ebsco), the Web of Science Core Collection, Scopus, and the International Bibliography of the Social Sciences (via ProQuest) were searched from inception to October 31, 2022. We included studies that measured the activity space through GPS tracking data to identify exposure to food outlets and assessed associations with either diet-related or cardiometabolic health outcomes. Quality assessment was evaluated using the criteria from a modified version of the Newcastle-Ottawa Scale (NOS) for cross-sectional studies. We additionally used four items from a quality assessment tool to specifically assess the quality of GPS measurements. RESULTS Of 2949 studies retrieved, 14 studies fulfilled our inclusion criteria. They were heterogeneous and represent inconsistent evidence. Yet, three studies found associations between food outlets and food purchases, for example, more exposure to junk food outlets was associated with higher odds of junk food purchases. Two studies found associations between greater exposure to fast food outlets and higher fast food consumption and out of three studies that investigated food environment in relation to metabolic outcomes, two studies found that higher exposure to an unhealthy food environment was associated with higher odds of being overweight. CONCLUSIONS The current and limited evidence base does not provide strong evidence for consistent associations of GPS-based exposures of the food environment with diet-related and cardiometabolic health outcomes.
Collapse
Affiliation(s)
- Noreen Z Siddiqui
- Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1089a, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands.
| | - Lai Wei
- Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, The Netherlands
| | - Joreintje D Mackenbach
- Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1089a, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
- Upstream Team, Amsterdam, the Netherlands
| | - Maria G M Pinho
- Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1089a, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
- Upstream Team, Amsterdam, the Netherlands
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Marco Helbich
- Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, The Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joline W J Beulens
- Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1089a, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Orasche J, Luschkova D, Traidl-Hoffmann C. [Allergies in the light of global environmental changes]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:93-103. [PMID: 38194098 DOI: 10.1007/s00105-023-05287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The increase in allergies began worldwide with the onset of the Great Acceleration. Environmental pollution and climate change now threaten to cancel out decades of success in health research. OBJECTIVE A summary of environmental influences is provided, which not only shows the significant increase in the prevalence of allergies worldwide but also that of noncommunicable diseases. The effects of the climate crisis on allergies and the multifactorial and interfunctional relationships with other environmental changes are described in detail. MATERIAL AND METHODS In order to obtain an overview of the possible effects of global environmental changes on allergies, a wide range of literature was evaluated and the study results were prepared and summarized. RESULTS A large number of allergens are influencing the human exposome on a daily basis. These allergens are triggered by environmental changes, such as air pollution in the ambient air and indoors, chemicals in everyday objects or residues in food. People are sensitized by the interaction of allergens and pollutants. CONCLUSION The prevalence of allergies is stagnating in industrialized countries. This is probably just the calm before the storm. The accelerating effects of global warming could make pollen and air pollutants even more aggressive in the future. Urgent action is therefore needed to minimize environmental pollution and mitigate climate change.
Collapse
Affiliation(s)
- Jürgen Orasche
- Medizinische Fakultät, Lehrstuhl für Umweltmedizin, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland
| | - Daria Luschkova
- Medizinische Fakultät, Lehrstuhl für Umweltmedizin, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland
| | - Claudia Traidl-Hoffmann
- Medizinische Fakultät, Lehrstuhl für Umweltmedizin, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland.
| |
Collapse
|
32
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
33
|
Liu M, Patel VR, Salas RN, Rice MB, Kazi DS, Zheng Z, Wadhera RK. Neighborhood Environmental Burden and Cardiovascular Health in the US. JAMA Cardiol 2024; 9:153-163. [PMID: 37955891 PMCID: PMC10644252 DOI: 10.1001/jamacardio.2023.4680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
Importance Cardiovascular disease is the leading cause of death in the US. However, little is known about the association between cumulative environmental burden and cardiovascular health across US neighborhoods. Objective To evaluate the association of neighborhood-level environmental burden with prevalence of cardiovascular risk factors and diseases, overall and by levels of social vulnerability. Design, Settings, and Participants This was a national cross-sectional study of 71 659 US Census tracts. Environmental burden (EBI) and social vulnerability indices from the US Centers for Disease Control and Prevention (CDC) and Agency for Toxic Substances and Disease Registry were linked to the 2020 CDC PLACES data set. Data were analyzed from March to October 2023. Exposures The EBI, a measure of cumulative environmental burden encompassing 5 domains (air pollution, hazardous or toxic sites, built environment, transportation infrastructure, and water pollution). Main Outcomes and Measures Neighborhood-level prevalence of cardiovascular risk factors (hypertension, diabetes, and obesity) and cardiovascular diseases (coronary heart disease and stroke). Results Across the US, neighborhoods with the highest environmental burden (top EBI quartile) were more likely than those with the lowest environmental burden (bottom EBI quartile) to be urban (16 626 [92.7%] vs 13 414 [75.4%]), in the Midwest (5191 [28.9%] vs 2782 [15.6%]), have greater median (IQR) social vulnerability scores (0.64 [0.36-0.85] vs 0.42 [0.20-0.65]), and have higher proportions of adults in racial or ethnic minority groups (median [IQR], 34% [12-73] vs 12% [5-30]). After adjustment, neighborhoods with the highest environmental burden had significantly higher rates of cardiovascular risk factors than those with the lowest burden, including hypertension (mean [SD], 32.83% [7.99] vs 32.14% [6.99]; adjusted difference, 0.84%; 95% CI, 0.71-0.98), diabetes (mean [SD], 12.19% [4.33] vs 10.68% [3.27]; adjusted difference, 0.62%; 95% CI, 0.53-0.70), and obesity (mean [SD], 33.57% [7.62] vs 30.86% [6.15]; adjusted difference, 0.77%; 95% CI, 0.60-0.94). Similarly, neighborhoods with the highest environmental burden had significantly higher rates of coronary heart disease (mean [SD], 6.66% [2.15] vs 6.82% [2.41]; adjusted difference, 0.28%; 95% CI, 0.22-0.33) and stroke (mean [SD], 3.65% [1.47] vs 3.31% [1.12]; adjusted difference, 0.19%; 95% CI, 0.15-0.22). Results were consistent after matching highest and lowest environmentally burdened neighborhoods geospatially and based on other covariates. The associations between environmental burden quartiles and cardiovascular risk factors and diseases were most pronounced among socially vulnerable neighborhoods. Conclusions and Relevance In this cross-sectional study of US neighborhoods, cumulative environmental burden was associated with higher rates of cardiovascular risk factors and diseases, although absolute differences were small. The strongest associations were observed in socially vulnerable neighborhoods. Whether initiatives that address poor environmental conditions will improve cardiovascular health requires additional prospective investigations.
Collapse
Affiliation(s)
- Michael Liu
- Section of Health Policy and Equity, Richard A. and Susan F. Smith Center for Outcomes Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Renee N. Salas
- Harvard Medical School, Boston, Massachusetts
- Center for Social Justice and Health Equity, Department of Emergency Medicine, Massachusetts General Hospital, Boston
- C-CHANGE, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard Global Health Institute, Boston, Massachusetts
| | - Mary B. Rice
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Dhruv S. Kazi
- Section of Health Policy and Equity, Richard A. and Susan F. Smith Center for Outcomes Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - ZhaoNian Zheng
- Section of Health Policy and Equity, Richard A. and Susan F. Smith Center for Outcomes Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Rishi K. Wadhera
- Section of Health Policy and Equity, Richard A. and Susan F. Smith Center for Outcomes Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Yu TH, Lee TL, Tsai IT, Hsuan CF, Wang CP, Lu YC, Tang WH, Wei CT, Chung FM, Lee YJ, Wu CC. Transcription factor 21 rs12190287 polymorphism is related to stable angina and ST elevation myocardial infarction in a Chinese Population. Int J Med Sci 2024; 21:483-491. [PMID: 38250610 PMCID: PMC10797673 DOI: 10.7150/ijms.89901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Transcription factor 21 (TCF21, epicardin, capsuling, pod-1) is expressed in the epicardium and is involved in the regulation of cell fate and differentiation via epithelial-mesenchymal transformation during development of the heart. In addition, TCF21 can suppress the differentiation of epicardial cells into vascular smooth muscle cells and promote cardiac fibroblast development. This study aimed to explore whether TCF21 gene (12190287G/C) variants affect coronary artery disease risk. Methods: We enrolled 381 patients who had stable angina, 138 with ST elevation myocardial infarction (STEMI), and 276 healthy subjects. Genotyping of rs12190287 of the TCF21 gene was performed. Results: Higher frequencies of the CC genotype were found in the patients with stable angina/STEMI than in the healthy controls. After adjusting for diabetes mellitus, hypertension, age, sex, smoking, body mass index and hyperlipidemia, the patients with the CC genotype of the TCF21 gene were associated with 2.49- and 9.19-fold increased risks of stable angina and STEMI, respectively, compared to the patients with the GG genotype. Furthermore, TCF21 CC genotypes showed positive correlations with both stable angina and STEMI, whereas TCF21 GG genotypes exhibited a negative correlation with STEMI. Moreover, the stable angina and STEMI patients with the CC genotype had significantly elevated high-sensitivity C-reactive protein levels than those with the GG genotype. In addition, significant associations were found between type 2 diabetes mellitus, hypertension, and hyperlipidemia with TCF21 gene polymorphisms (p for trend < 0.05). Conclusion: TCF21 gene polymorphisms may increase susceptibility to stable angina and STEMI.
Collapse
Affiliation(s)
- Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 807066, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, Hualien 98142 Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304 Taiwan
| | - Ching-Ting Wei
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445 Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | | | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| |
Collapse
|
35
|
Charchar FJ, Prestes PR, Mills C, Ching SM, Neupane D, Marques FZ, Sharman JE, Vogt L, Burrell LM, Korostovtseva L, Zec M, Patil M, Schultz MG, Wallen MP, Renna NF, Islam SMS, Hiremath S, Gyeltshen T, Chia YC, Gupta A, Schutte AE, Klein B, Borghi C, Browning CJ, Czesnikiewicz-Guzik M, Lee HY, Itoh H, Miura K, Brunström M, Campbell NR, Akinnibossun OA, Veerabhadrappa P, Wainford RD, Kruger R, Thomas SA, Komori T, Ralapanawa U, Cornelissen VA, Kapil V, Li Y, Zhang Y, Jafar TH, Khan N, Williams B, Stergiou G, Tomaszewski M. Lifestyle management of hypertension: International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension. J Hypertens 2024; 42:23-49. [PMID: 37712135 PMCID: PMC10713007 DOI: 10.1097/hjh.0000000000003563] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools.
Collapse
Affiliation(s)
- Fadi J. Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Physiology, University of Melbourne, Melbourne, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Priscilla R. Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Charlotte Mills
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Siew Mooi Ching
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
- Department of Medical Sciences, School of Medical and Live Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Dinesh Neupane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne
| | - James E. Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Liffert Vogt
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Louise M. Burrell
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Lyudmila Korostovtseva
- Department of Hypertension, Almazov National Medical Research Centre, St Petersburg, Russia
| | - Manja Zec
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Mansi Patil
- Department of Nutrition and Dietetics, Asha Kiran JHC Hospital, Chinchwad
- Hypertension and Nutrition, Core Group of IAPEN India, India
| | - Martin G. Schultz
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | | | - Nicolás F. Renna
- Unit of Hypertension, Hospital Español de Mendoza, School of Medicine, National University of Cuyo, IMBECU-CONICET, Mendoza, Argentina
| | | | - Swapnil Hiremath
- Department of Medicine, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
| | - Tshewang Gyeltshen
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Yook-Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abhinav Gupta
- Department of Medicine, Acharya Shri Chander College of Medical Sciences and Hospital, Jammu, India
| | - Aletta E. Schutte
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, New South Wales, Australia
- Hypertension in Africa Research Team, SAMRC Unit for Hypertension and Cardiovascular Disease, North-West University
- SAMRC Developmental Pathways for Health Research Unit, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Britt Klein
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Bologna, Bologna, Italy
| | - Colette J. Browning
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Marta Czesnikiewicz-Guzik
- School of Medicine, Dentistry and Nursing-Dental School, University of Glasgow, UK
- Department of Periodontology, Prophylaxis and Oral Medicine; Jagiellonian University, Krakow, Poland
| | - Hae-Young Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hiroshi Itoh
- Department of Internal Medicine (Nephrology, Endocrinology and Metabolism), Keio University, Tokyo
| | - Katsuyuki Miura
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Mattias Brunström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Norm R.C. Campbell
- Libin Cardiovascular Institute, Department of Medicine, University of Calgary, Calgary, Canada
| | | | - Praveen Veerabhadrappa
- Kinesiology, Division of Science, The Pennsylvania State University, Reading, Pennsylvania
| | - Richard D. Wainford
- Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston
- Division of Cardiology, Emory University, Atlanta, USA
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Shane A. Thomas
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Takahiro Komori
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Udaya Ralapanawa
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Vikas Kapil
- William Harvey Research Institute, Centre for Cardiovascular Medicine and Devices, NIHR Barts Biomedical Research Centre, BRC, Faculty of Medicine and Dentistry, Queen Mary University London
- Barts BP Centre of Excellence, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai
| | - Yuqing Zhang
- Department of Cardiology, Fu Wai Hospital, Chinese Academy of Medical Sciences, Chinese Hypertension League, Beijing, China
| | - Tazeen H. Jafar
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Nadia Khan
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bryan Williams
- University College London (UCL), Institute of Cardiovascular Science, National Institute for Health Research (NIHR), UCL Hospitals Biomedical Research Centre, London, UK
| | - George Stergiou
- Hypertension Centre STRIDE-7, School of Medicine, Third Department of Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester
- Manchester Academic Health Science Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
36
|
Kassavin D, Mota L, Ostertag-Hill CA, Kassavin M, Himmelstein DU, Woolhandler S, Wang SX, Liang P, Schermerhorn ML, Vithiananthan S, Kwoun M. Amputation Rates and Associated Social Determinants of Health in the Most Populous US Counties. JAMA Surg 2024; 159:69-76. [PMID: 37910120 PMCID: PMC10620677 DOI: 10.1001/jamasurg.2023.5517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/07/2023] [Indexed: 11/03/2023]
Abstract
Importance Social Determinants of Health (SDOH) have been found to be associated with health outcome disparities in patients with peripheral artery disease (PAD). However, the association of specific components of SDOH and amputation has not been well described. Objective To evaluate whether individual components of SDOH and race are associated with amputation rates in the most populous counties of the US. Design, Setting, and Participants In this population-based cross-sectional study of the 100 most populous US counties, hospital discharge rates for lower extremity amputation in 2017 were assessed using the Healthcare Cost and Utilization Project State Inpatient Database. Those data were matched with publicly available demographic, hospital, and SDOH data. Data were analyzed July 3, 2022, to March 5, 2023. Main outcome and Measures Amputation rates were assessed across all counties. Counties were divided into quartiles based on amputation rates, and baseline characteristics were described. Unadjusted linear regression and multivariable regression analyses were performed to assess associations between county-level amputation and SDOH and demographic factors. Results Amputation discharge data were available for 76 of the 100 most populous counties in the United States. Within these counties, 15.3% were African American, 8.6% were Asian, 24.0% were Hispanic, and 49.6% were non-Hispanic White; 13.4% of patients were 65 years or older. Amputation rates varied widely, from 5.5 per 100 000 in quartile 1 to 14.5 per 100 000 in quartile 4. Residents of quartile 4 (vs 1) counties were more likely to be African American (27.0% vs 7.9%, P < .001), have diabetes (10.6% vs 7.9%, P < .001), smoke (16.5% vs 12.5%, P < .001), be unemployed (5.8% vs 4.6%, P = .01), be in poverty (15.8% vs 10.0%, P < .001), be in a single-parent household (41.9% vs 28.6%, P < .001), experience food insecurity (16.6% vs 12.9%, P = .04), or be physically inactive (23.1% vs 17.1%, P < .001). In unadjusted linear regression, higher amputation rates were associated with the prevalence of several health problems, including mental distress (β, 5.25 [95% CI, 3.66-6.85]; P < .001), diabetes (β, 1.73 [95% CI, 1.33-2.15], P < .001), and physical distress (β, 1.23 [95% CI, 0.86-1.61]; P < .001) and SDOHs, including unemployment (β, 1.16 [95% CI, 0.59-1.73]; P = .03), physical inactivity (β, 0.74 [95% CI, 0.57-0.90]; P < .001), smoking, (β, 0.69 [95% CI, 0.46-0.92]; P = .002), higher homicide rate (β, 0.61 [95% CI, 0.45-0.77]; P < .001), food insecurity (β, 0.51 [95% CI, 0.30-0.72]; P = .04), and poverty (β, 0.46 [95% CI, 0.32-0.60]; P < .001). Multivariable regression analysis found that county-level rates of physical distress (β, 0.84 [95% CI, 0.16-1.53]; P = .03), Black and White racial segregation (β, 0.12 [95% CI, 0.06-0.17]; P < .001), and population percentage of African American race (β, 0.06 [95% CI, 0.00-0.12]; P = .03) were associated with amputation rate. Conclusions and Relevance Social determinants of health provide a framework by which the associations of environmental factors with amputation rates can be quantified and potentially used to guide interventions at the local level.
Collapse
Affiliation(s)
- Daniel Kassavin
- Division of Vascular Surgery, Cambridge Health Alliance, Cambridge, Massachusetts
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Monica Kassavin
- Department of Medicine, Cambridge Health Alliance, Cambridge, Massachusetts
| | - David U. Himmelstein
- Department of Medicine, Cambridge Health Alliance, Cambridge, Massachusetts
- School of Urban Public Health, City University of New York at Hunter College, New York, New York
| | - Steffie Woolhandler
- Department of Medicine, Cambridge Health Alliance, Cambridge, Massachusetts
- School of Urban Public Health, City University of New York at Hunter College, New York, New York
| | - Sophie X. Wang
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Marc L. Schermerhorn
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Moon Kwoun
- Division of Vascular Surgery, Cambridge Health Alliance, Cambridge, Massachusetts
| |
Collapse
|
37
|
Anyaegbunam UA, More P, Fontaine JF, Cate VT, Bauer K, Distler U, Araldi E, Bindila L, Wild P, Andrade-Navarro MA. A Systematic Review of Lipid-Focused Cardiovascular Disease Research: Trends and Opportunities. Curr Issues Mol Biol 2023; 45:9904-9916. [PMID: 38132464 PMCID: PMC10742042 DOI: 10.3390/cimb45120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Lipids are important modifiers of protein function, particularly as parts of lipoproteins, which transport lipophilic substances and mediate cellular uptake of circulating lipids. As such, lipids are of particular interest as blood biological markers for cardiovascular disease (CVD) as well as for conditions linked to CVD such as atherosclerosis, diabetes mellitus, obesity and dietary states. Notably, lipid research is particularly well developed in the context of CVD because of the relevance and multiple causes and risk factors of CVD. The advent of methods for high-throughput screening of biological molecules has recently resulted in the generation of lipidomic profiles that allow monitoring of lipid compositions in biological samples in an untargeted manner. These and other earlier advances in biomedical research have shaped the knowledge we have about lipids in CVD. To evaluate the knowledge acquired on the multiple biological functions of lipids in CVD and the trends in their research, we collected a dataset of references from the PubMed database of biomedical literature focused on plasma lipids and CVD in human and mouse. Using annotations from these records, we were able to categorize significant associations between lipids and particular types of research approaches, distinguish non-biological lipids used as markers, identify differential research between human and mouse models, and detect the increasingly mechanistic nature of the results in this field. Using known associations between lipids and proteins that metabolize or transport them, we constructed a comprehensive lipid-protein network, which we used to highlight proteins strongly connected to lipids found in the CVD-lipid literature. Our approach points to a series of proteins for which lipid-focused research would bring insights into CVD, including Prostaglandin G/H synthase 2 (PTGS2, a.k.a. COX2) and Acylglycerol kinase (AGK). In this review, we summarize our findings, putting them in a historical perspective of the evolution of lipid research in CVD.
Collapse
Affiliation(s)
- Uchenna Alex Anyaegbunam
- Computational Biology and Data Mining Group (CBDM), Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, 55122 Mainz, Germany
| | - Piyush More
- Computational Biology and Data Mining Group (CBDM), Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, 55122 Mainz, Germany
- Department of Pharmacology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Jean-Fred Fontaine
- Computational Biology and Data Mining Group (CBDM), Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, 55122 Mainz, Germany
- Central Institute for Decision Support Systems in Crop Protection (ZEPP), 55545 Bad Kreuznach, Germany
| | - Vincent ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), University Medical Center, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katrin Bauer
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Computational Systems Medicine, Center for Thrombosis and Hemostasis (CTH), 55131 Mainz, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Elisa Araldi
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Computational Systems Medicine, Center for Thrombosis and Hemostasis (CTH), 55131 Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center, 55131 Mainz, Germany
| | - Philipp Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), University Medical Center, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Miguel A. Andrade-Navarro
- Computational Biology and Data Mining Group (CBDM), Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, 55122 Mainz, Germany
| |
Collapse
|
38
|
Roscoe C, Grady ST, Hart JE, Iyer HS, Manson JE, Rexrode KM, Rimm EB, Laden F, James P. Association between Noise and Cardiovascular Disease in a Nationwide U.S. Prospective Cohort Study of Women Followed from 1988 to 2018. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127005. [PMID: 38048103 PMCID: PMC10695265 DOI: 10.1289/ehp12906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Long-term noise exposure is associated with cardiovascular disease (CVD), including acute cardiovascular events such as myocardial infarction and stroke. However, longitudinal cohort studies in the U.S. of long-term noise and CVD are almost exclusively from Europe and few modeled nighttime noise, when an individual is likely at home or asleep, separately from daytime noise. We aimed to examine the prospective association of outdoor long-term nighttime and daytime noise from anthropogenic sources with incident CVD using a U.S.-based, nationwide cohort of women. METHODS We linked L 50 nighttime and L 50 daytime anthropogenic modeled noise estimates from a U.S. National Parks Service model (L 50 : sound pressure levels exceeded 50 percent of the time) to geocoded residential addresses of 114,116 participants in the Nurses' Health Study. We used time-varying Cox proportional hazards models to estimate risk of incident CVD, coronary heart disease (CHD), and stroke associated with long-term average (14-y measurement period) noise exposure, adjusted for potential individual- and area-level confounders and CVD risk factors (1988-2018; biennial residential address updates; monthly CVD updates). We assessed effect modification by population density, region, air pollution, vegetation cover, and neighborhood socioeconomic status, and explored mediation by self-reported average nightly sleep duration. RESULTS Over 2,548,927 person-years, there were 10,331 incident CVD events. In fully adjusted models, the hazard ratios for each interquartile range increase in L 50 nighttime noise (3.67 dBA) and L 50 daytime noise (4.35 dBA), respectively, were 1.04 (95% CI: 1.02, 1.06) and 1.04 (95% CI: 1.02, 1.07). Associations for total energy-equivalent noise level (L eq ) measures were stronger than for the anthropogenic statistical L 50 noise measures. Similar associations were observed for CHD and stroke. Interaction analyses suggested that associations of L 50 nighttime and L 50 daytime noise with CVD did not differ by prespecified effect modifiers. We found no evidence that inadequate sleep (< 5 h/night) mediated associations of L 50 nighttime noise and CVD. DISCUSSION Outdoor L 50 anthropogenic nighttime and daytime noise at the residential address was associated with a small increase in CVD risk in a cohort of adult female nurses. https://doi.org/10.1289/EHP12906.
Collapse
Affiliation(s)
- Charlotte Roscoe
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Population Sciences, Dana Faber Cancer Institute, Boston, Massachusetts, USA
| | - Stephanie T. Grady
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jaime E. Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hari S. Iyer
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kathryn M. Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric B. Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Rossios K, Antza C, Kachtsidis V, Kotsis V. The Modern Environment: The New Secondary Cause of Hypertension? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2095. [PMID: 38138198 PMCID: PMC10744418 DOI: 10.3390/medicina59122095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The most important risk factor for cardiovascular disease, the leading cause of death worldwide, is hypertension. Although most cases of hypertension are thought to be essential, the multifactorial associations of the environmental influence on blood pressure seem to play an important role and should be more closely investigated. This review attempts to focus on the recent literature that examines the environmental effects on arterial blood pressure and its management. Seasonal variability and the role of ambient temperature, either occupational or recreational noise pollution, as well as obesity due to environment-caused dietary habits, are recognized as important risk factors, affecting the onset as well as the regulation of hypertension. Furthermore, the effects of seasonal fluctuations in blood pressure, noise pollution, and obesity seem to share a similar pathogenesis, and as such to all further react together, leading to increased blood pressure. The activation of the autonomous nervous system plays a key role and causes an increase in stress hormones that generates oxidative stress on the vascular system and, thus, vasoconstriction. In this review, by focusing on the association of the environmental impact with arterial blood pressure, we come to the question of whether most cases of hypertension-if not all-should, indeed, be considered primary or secondary.
Collapse
Affiliation(s)
- Konstantinos Rossios
- Cardiology Clinic, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Antza
- Hypertension Center, 3rd Department of Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.A.); (V.K.)
| | - Vasileios Kachtsidis
- Hypertension Center, 3rd Department of Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.A.); (V.K.)
| | - Vasilios Kotsis
- Hypertension Center, 3rd Department of Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.A.); (V.K.)
| |
Collapse
|
40
|
Liang X, Wang Z, Cai H, Zeng YQ, Chen J, Wei X, Dong G, Huang Y, Lao XQ. Outdoor light at night and mortality in the UK Biobank: a prospective cohort study. Occup Environ Med 2023:oemed-2023-109036. [PMID: 38053269 DOI: 10.1136/oemed-2023-109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND More than 83% of the world's population lives under light-polluted skies while information about health effects of outdoor light at night (LAN) is limited. We examined the association of LAN with natural cause (NC) and cardiovascular disease (CVD) mortality using the UK Biobank. METHODS We included 273 335 participants recruited between 2006 and 2010. Level of LAN was estimated at each participant's address using time-varying satellite data for a composite of persistent night-time illumination at ~1 km2 scale. Information on causes of death until 12 November 2021 was obtained through record linkage. Cox proportional hazards regression was used. RESULTS In the follow-up with an average of 12.4 years, 14 864 NC and 3100 CVD deaths were identified. Compared with the participants exposed to the first quartile of LAN, participants exposed to the highest quartile showed an 8% higher risk of NC mortality (HR: 1.08, 95% CI 1.03 to 1.13) after adjusting for age, sex, social-economic status, shift work, lifestyle factors and body mass index. However, the association disappeared after further adjustment for PM2.5 and evening noise, with HRs (95% CIs) of 1.02 (0.97 to 1.07), 1.01 (0.97 to 1.06) and 1.03 (0.97 to 1.08), respectively, for the participants exposed to the second, third and fourth quartiles of LAN. No significant associations were observed between LAN and CVD mortality, either. CONCLUSIONS We did not observe significant associations of LAN with NC and CVD mortality in this large nationwide cohort. The health effects of LAN remain unclear. Further studies are warranted to address this public health concern.
Collapse
Affiliation(s)
- Xue Liang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zixin Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Honglin Cai
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Rehabilitation Science, the Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yi Qian Zeng
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinjian Chen
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xianglin Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guanghui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiang Qian Lao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Ghazihosseini S, De Rosa C, Trimarco V, Izzo R, Morisco C, Esposito G. The Environmental Pollution and Cardiovascular Risk: The Role of Health Surveillance and Legislative Interventions in Cardiovascular Prevention. High Blood Press Cardiovasc Prev 2023; 30:533-538. [PMID: 38070034 PMCID: PMC10721657 DOI: 10.1007/s40292-023-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Environmental pollution in considered an established determinant of non-communicable illness, including cardiovascular diseases (CVDs). Air pollution is the result of a complex combination of chemical, physical, and biological agents, and represents one of the main causes of mortality and morbidity in the world population. It is responsible for 7.6% of global mortality. In this regard, it has been documented that it increases the risk of CVDs and major adverse cardiovascular and cerebrovascular events. In northern regions of China, long-term exposures to the particulate matter < 2.5 µm (PM2.5) increase in the risk of ischemic heart disease by almost two-folds. Similarly, the additional risk for stroke, increases by almost 10% for long-term exposure to PM2.5. The detrimental effects of air pollution on cardiovascular system are particularly manifest in vulnerable subjects, such as the elderly, patients with heart disease, and obese individuals. Therefore, nowadays, cardiovascular prevention strategies, in addition to controlling traditional risk factors, should also include measures to improve the environment. This goal can be achieved by the implementation of the health surveillance in occupational medicine and by the extensive application of the national and international legislative measures. In fact, the health surveillance represents a crucial preventive measure for workers exposed to health risks (chemical, physical agents, etc.) that may lead to occupational diseases after long-term exposure. On the other hand, since environmental pollution does not recognize well-defined boundaries, only the implementation of regulations among large territorial areas can be useful to improve the quality of environment.
Collapse
Affiliation(s)
- Seyedali Ghazihosseini
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Carlo De Rosa
- Medicina Legale Università della Tuscia, Viterbo, Italy
| | - Valentina Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Raffaele Izzo
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy.
| | - Giovanni Esposito
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| |
Collapse
|
43
|
Kvandová M, Rajlic S, Stamm P, Schmal I, Mihaliková D, Kuntic M, Bayo Jimenez MT, Hahad O, Kollárová M, Ubbens H, Strohm L, Frenis K, Duerr GD, Foretz M, Viollet B, Ruan Y, Jiang S, Tang Q, Kleinert H, Rapp S, Gericke A, Schulz E, Oelze M, Keaney JF, Daiber A, Kröller-Schön S, Jansen T, Münzel T. Mitigation of aircraft noise-induced vascular dysfunction and oxidative stress by exercise, fasting, and pharmacological α1AMPK activation: molecular proof of a protective key role of endothelial α1AMPK against environmental noise exposure. Eur J Prev Cardiol 2023; 30:1554-1568. [PMID: 37185661 DOI: 10.1093/eurjpc/zwad075] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
AIMS Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.
Collapse
Affiliation(s)
- Miroslava Kvandová
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1813 71 Bratislava, Slovak Republic
| | - Sanela Rajlic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Isabella Schmal
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Dominika Mihaliková
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marta Kollárová
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Henning Ubbens
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Lea Strohm
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Qi Tang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Rapp
- Department of Cardiology, Preventive Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | - Matthias Oelze
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - John F Keaney
- Division of Cardiovascular Medicine, UMass Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Thomas Jansen
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, KVB Hospital Königstein, 61462 Königstein, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
44
|
Hageman SHJ, Petitjean C, Pennells L, Kaptoge S, Pajouheshnia R, Tillmann T, Blaha MJ, McClelland RL, Matsushita K, Nambi V, Klungel OH, Souverein PC, van der Schouw YT, Verschuren WMM, Lehmann N, Erbel R, Jöckel KH, Di Angelantonio E, Visseren FLJ, Dorresteijn JAN. Improving 10-year cardiovascular risk prediction in apparently healthy people: flexible addition of risk modifiers on top of SCORE2. Eur J Prev Cardiol 2023; 30:1705-1714. [PMID: 37264679 PMCID: PMC10600319 DOI: 10.1093/eurjpc/zwad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
AIMS In clinical practice, factors associated with cardiovascular disease (CVD) like albuminuria, education level, or coronary artery calcium (CAC) are often known, but not incorporated in cardiovascular risk prediction models. The aims of the current study were to evaluate a methodology for the flexible addition of risk modifying characteristics on top of SCORE2 and to quantify the added value of several clinically relevant risk modifying characteristics. METHODS AND RESULTS Individuals without previous CVD or DM were included from the UK Biobank; Atherosclerosis Risk in Communities (ARIC); Multi-Ethnic Study of Atherosclerosis (MESA); European Prospective Investigation into Cancer, The Netherlands (EPIC-NL); and Heinz Nixdorf Recall (HNR) studies (n = 409 757) in whom 16 166 CVD events and 19 149 non-cardiovascular deaths were observed over exactly 10.0 years of follow-up. The effect of each possible risk modifying characteristic was derived using competing risk-adjusted Fine and Gray models. The risk modifying characteristics were applied to individual predictions with a flexible method using the population prevalence and the subdistribution hazard ratio (SHR) of the relevant predictor. Risk modifying characteristics that increased discrimination most were CAC percentile with 0.0198 [95% confidence interval (CI) 0.0115; 0.0281] and hs-Troponin-T with 0.0100 (95% CI 0.0063; 0.0137). External validation was performed in the Clinical Practice Research Datalink (CPRD) cohort (UK, n = 518 015, 12 675 CVD events). Adjustment of SCORE2-predicted risks with both single and multiple risk modifiers did not negatively affect calibration and led to a modest increase in discrimination [0.740 (95% CI 0.736-0.745) vs. unimproved SCORE2 risk C-index 0.737 (95% CI 0.732-0.741)]. CONCLUSION The current paper presents a method on how to integrate possible risk modifying characteristics that are not included in existing CVD risk models for the prediction of CVD event risk in apparently healthy people. This flexible methodology improves the accuracy of predicted risks and increases applicability of prediction models for individuals with additional risk known modifiers.
Collapse
Affiliation(s)
- Steven H J Hageman
- Department of Vascular Medicine, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Carmen Petitjean
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Lisa Pennells
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Stephen Kaptoge
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Romin Pajouheshnia
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Taavi Tillmann
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Michael J Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins Hospital, Baltimore, USA
| | | | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Vijay Nambi
- Center for Cardiovascular Disease Prevention, Michael E DeBakey Veterans Affairs Hospital, Houston, USA
- Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Olaf H Klungel
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Patrick C Souverein
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - W M Monique Verschuren
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nils Lehmann
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Health Data Science Research Centre, Human Technopole, Milan, Italy
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Jannick A N Dorresteijn
- Department of Vascular Medicine, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
45
|
Mohanta SK, Sun T, Lu S, Wang Z, Zhang X, Yin C, Weber C, Habenicht AJR. The Impact of the Nervous System on Arteries and the Heart: The Neuroimmune Cardiovascular Circuit Hypothesis. Cells 2023; 12:2485. [PMID: 37887328 PMCID: PMC10605509 DOI: 10.3390/cells12202485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Three systemic biological systems, i.e., the nervous, the immune, and the cardiovascular systems, form a mutually responsive and forward-acting tissue network to regulate acute and chronic cardiovascular function in health and disease. Two sub-circuits within the cardiovascular system have been described, the artery brain circuit (ABC) and the heart brain circuit (HBC), forming a large cardiovascular brain circuit (CBC). Likewise, the nervous system consists of the peripheral nervous system and the central nervous system with their functional distinct sensory and effector arms. Moreover, the immune system with its constituents, i.e., the innate and the adaptive immune systems, interact with the CBC and the nervous system at multiple levels. As understanding the structure and inner workings of the CBC gains momentum, it becomes evident that further research into the CBC may lead to unprecedented classes of therapies to treat cardiovascular diseases as multiple new biologically active molecules are being discovered that likely affect cardiovascular disease progression. Here, we weigh the merits of integrating these recent observations in cardiovascular neurobiology into previous views of cardiovascular disease pathogeneses. These considerations lead us to propose the Neuroimmune Cardiovascular Circuit Hypothesis.
Collapse
Affiliation(s)
- Sarajo K. Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
| | - Ting Sun
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Shu Lu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Zhihua Wang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510030, China
| | - Xi Zhang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510030, China
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
| |
Collapse
|
46
|
Mahmood R, Said A, Kanagala SG, Gupta V, Jain R. Unraveling the link: exploring the effects of environmental change on the cardiovascular system. Future Cardiol 2023; 19:649-659. [PMID: 37830331 DOI: 10.2217/fca-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Climate change has a particularly detrimental effect on the cardiovascular system, which is highly vulnerable to harmful impacts. The accumulation of particulate matter (PM) and greenhouse gasses in the environment negatively impacts the cardiovascular system through several mechanisms. The burden of climate change-related diseases falls disproportionately on vulnerable populations, including the elderly, the poor, and those with pre-existing health conditions. A key component of addressing the complex interplay between climate change and cardiovascular diseases is acknowledging health disparities among vulnerable populations resulting from climate change, familiarizing themselves with strategies for adapting to changing conditions, educating patients about climate-related cardiovascular risks, and advocating for policies that promote cleaner environments and sustainable practices.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Avalon University School of Medicine, Willemstad, Curaçao
| | - Aimen Said
- CMH Lahore Medical College, Punjab, Pakistan
| | | | - Vasu Gupta
- Dayanand Medical College & Hospital, Ludhiana, India
| | - Rohit Jain
- Department of Internal Medicine Institution: Avalon University School of Medicine, WTC, Piscaderaweg z/n, Willemstad, Curaçao
| |
Collapse
|
47
|
Figtree GA, Vernon ST, Harmer JA, Gray MP, Arnott C, Bachour E, Barsha G, Brieger D, Brown A, Celermajer DS, Channon KM, Chew NWS, Chong JJH, Chow CK, Cistulli PA, Ellinor PT, Grieve SM, Guzik TJ, Hagström E, Jenkins A, Jennings G, Keech AC, Kott KA, Kritharides L, Mamas MA, Mehran R, Meikle PJ, Natarajan P, Negishi K, O'Sullivan J, Patel S, Psaltis PJ, Redfern J, Steg PG, Sullivan DR, Sundström J, Vogel B, Wilson A, Wong D, Bhatt DL, Kovacic JC, Nicholls SJ. Clinical Pathway for Coronary Atherosclerosis in Patients Without Conventional Modifiable Risk Factors: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1343-1359. [PMID: 37730292 PMCID: PMC10522922 DOI: 10.1016/j.jacc.2023.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 09/22/2023]
Abstract
Reducing the incidence and prevalence of standard modifiable cardiovascular risk factors (SMuRFs) is critical to tackling the global burden of coronary artery disease (CAD). However, a substantial number of individuals develop coronary atherosclerosis despite no SMuRFs. SMuRFless patients presenting with myocardial infarction have been observed to have an unexpected higher early mortality compared to their counterparts with at least 1 SMuRF. Evidence for optimal management of these patients is lacking. We assembled an international, multidisciplinary team to develop an evidence-based clinical pathway for SMuRFless CAD patients. A modified Delphi method was applied. The resulting pathway confirms underlying atherosclerosis and true SMuRFless status, ensures evidence-based secondary prevention, and considers additional tests and interventions for less typical contributors. This dedicated pathway for a previously overlooked CAD population, with an accompanying registry, aims to improve outcomes through enhanced adherence to evidence-based secondary prevention and additional diagnosis of modifiable risk factors observed.
Collapse
Affiliation(s)
- Gemma A Figtree
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Cardiovascular Discovery Group, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia; Department of Cardiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Stephen T Vernon
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Cardiovascular Discovery Group, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia; Department of Cardiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Jason A Harmer
- Department of Cardiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia; The George Institute for Global Health, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| | - Michael P Gray
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Cardiovascular Discovery Group, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - Clare Arnott
- The George Institute for Global Health, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Eric Bachour
- Consumer Representative, Agile Group Switzerland AG, Zug, Switzerland
| | - Giannie Barsha
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Cardiovascular Discovery Group, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - David Brieger
- Department of Cardiology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Alex Brown
- National Centre for Indigenous Genomics, Australian National University, Canberra, Australian Capitol Territory, Australia; Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - David S Celermajer
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Keith M Channon
- British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore
| | - James J H Chong
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Peter A Cistulli
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; Department of Respiratory & Sleep Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stuart M Grieve
- Department of Radiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tomasz J Guzik
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Internal Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University Medical College, Krakow, Poland
| | - Emil Hagström
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| | - Alicia Jenkins
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia; Diabetes and Vascular Medicine, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Garry Jennings
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony C Keech
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Katharine A Kott
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia; Department of Cardiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Leonard Kritharides
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Concord Repatriation General Hospital, Concord, New South Wales, Australia; The ANZAC Research Institute, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Centre for Prognostic Research, Keele University, Keele, United Kingdom; Department of Cardiology, Royal Stoke University Hospital, Stoke-on-Trent, United Kingdom
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Vicotria, Australia
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kazuaki Negishi
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; Department of Cardiology, Nepean Hospital, Kingswood, New South Wales, Australia
| | - John O'Sullivan
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; Precision Cardiovascular Laboratory, University of Sydney, Camperdown, New South Wales, Australia; Heart Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Sanjay Patel
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; Heart Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, SAHMRI, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Julie Redfern
- The George Institute for Global Health, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia; Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Philippe G Steg
- Université de Paris, Assistance Publique-Hôpitaux de Paris, French Alliance for Cardiovascular Trials and INSERM Unité 1148, Paris, France
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Johan Sundström
- The George Institute for Global Health, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Birgit Vogel
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Wilson
- Menzies Centre for Health Policy and Economics, Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Dennis Wong
- Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia; MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, New York, USA
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen J Nicholls
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
48
|
Han B, Luo J, Xu B. Insights into the Chemical Compositions and Health Promoting Effects of Wild Edible Mushroom Chroogomphus rutilus. Nutrients 2023; 15:4030. [PMID: 37764813 PMCID: PMC10537009 DOI: 10.3390/nu15184030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chroogomphus rutilus is an edible mushroom that has been an important food source since ancient times. It is increasingly sought after for its unique flavor and medicinal value. It is one of the most important wild mushrooms for its medicinal and economic value. C. rutilus contains a variety of active ingredients such as vitamins, proteins, minerals, polysaccharides, and phenolics. C. rutilus and its active compounds have significant anti-oxidant, anti-tumor, immunomodulatory, anti-fatigue, hypoglycemic, gastroprotective, hypolipemic, and neuronal protective properties. This paper summarizes the fungal chemical compositions and health-promoting effects of C. rutilus by collecting the literature on the role of C. rutilus through its active ingredients from websites such as Google Scholar, Scopus, PubMed, and Web of Science. Current research on C. rutilus is limited to the cellular and animal levels, and further clinical trials are needed to conduct and provide theoretical support for further development.
Collapse
Affiliation(s)
- Bincheng Han
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Jinhai Luo
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| |
Collapse
|
49
|
Marijon E, Narayanan K, Smith K, Barra S, Basso C, Blom MT, Crotti L, D'Avila A, Deo R, Dumas F, Dzudie A, Farrugia A, Greeley K, Hindricks G, Hua W, Ingles J, Iwami T, Junttila J, Koster RW, Le Polain De Waroux JB, Olasveengen TM, Ong MEH, Papadakis M, Sasson C, Shin SD, Tse HF, Tseng Z, Van Der Werf C, Folke F, Albert CM, Winkel BG. The Lancet Commission to reduce the global burden of sudden cardiac death: a call for multidisciplinary action. Lancet 2023; 402:883-936. [PMID: 37647926 DOI: 10.1016/s0140-6736(23)00875-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 09/01/2023]
Abstract
Despite major advancements in cardiovascular medicine, sudden cardiac death (SCD) continues to be an enormous medical and societal challenge, claiming millions of lives every year. Efforts to prevent SCD are hampered by imperfect risk prediction and inadequate solutions to specifically address arrhythmogenesis. Although resuscitation strategies have witnessed substantial evolution, there is a need to strengthen the organisation of community interventions and emergency medical systems across varied locations and health-care structures. With all the technological and medical advances of the 21st century, the fact that survival from sudden cardiac arrest (SCA) remains lower than 10% in most parts of the world is unacceptable. Recognising this urgent need, the Lancet Commission on SCD was constituted, bringing together 30 international experts in varied disciplines. Consistent progress in tackling SCD will require a completely revamped approach to SCD prevention, with wide-sweeping policy changes that will empower the development of both governmental and community-based programmes to maximise survival from SCA, and to comprehensively attend to survivors and decedents' families after the event. International collaborative efforts that maximally leverage and connect the expertise of various research organisations will need to be prioritised to properly address identified gaps. The Commission places substantial emphasis on the need to develop a multidisciplinary strategy that encompasses all aspects of SCD prevention and treatment. The Commission provides a critical assessment of the current scientific efforts in the field, and puts forth key recommendations to challenge, activate, and intensify efforts by both the scientific and global community with new directions, research, and innovation to reduce the burden of SCD worldwide.
Collapse
Affiliation(s)
- Eloi Marijon
- Division of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France.
| | - Kumar Narayanan
- Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France; Medicover Hospitals, Hyderabad, India
| | - Karen Smith
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Silverchain Group, Melbourne, VIC, Australia
| | - Sérgio Barra
- Department of Cardiology, Hospital da Luz Arrábida, Vila Nova de Gaia, Portugal
| | - Cristina Basso
- Cardiovascular Pathology Unit-Azienda Ospedaliera and Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Marieke T Blom
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lia Crotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy; Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Cardiomyopathy Unit and Laboratory of Cardiovascular Genetics, Department of Cardiology, Milan, Italy
| | - Andre D'Avila
- Department of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Cardiology, Hospital SOS Cardio, Santa Catarina, Brazil
| | - Rajat Deo
- Department of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Florence Dumas
- Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France; Emergency Department, Cochin Hospital, Paris, France
| | - Anastase Dzudie
- Cardiology and Cardiac Arrhythmia Unit, Department of Internal Medicine, DoualaGeneral Hospital, Douala, Cameroon; Yaounde Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon
| | - Audrey Farrugia
- Hôpitaux Universitaires de Strasbourg, France, Strasbourg, France
| | - Kaitlyn Greeley
- Division of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France
| | | | - Wei Hua
- Cardiac Arrhythmia Center, FuWai Hospital, Beijing, China
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
| | - Taku Iwami
- Kyoto University Health Service, Kyoto, Japan
| | - Juhani Junttila
- MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Rudolph W Koster
- Heart Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Theresa M Olasveengen
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital and Institute of Clinical Medicine, Oslo, Norway
| | - Marcus E H Ong
- Singapore General Hospital, Duke-NUS Medical School, Singapore
| | - Michael Papadakis
- Cardiovascular Clinical Academic Group, St George's University of London, London, UK
| | | | - Sang Do Shin
- Department of Emergency Medicine at the Seoul National University College of Medicine, Seoul, South Korea
| | - Hung-Fat Tse
- University of Hong Kong, School of Clinical Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zian Tseng
- Division of Cardiology, UCSF Health, University of California, San Francisco Medical Center, San Francisco, California
| | - Christian Van Der Werf
- University of Amsterdam, Heart Center, Amsterdam, Netherlands; Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Fredrik Folke
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Gregers Winkel
- Department of Cardiology, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
50
|
Shetty SS, D D, S H, Sonkusare S, Naik PB, Kumari N S, Madhyastha H. Environmental pollutants and their effects on human health. Heliyon 2023; 9:e19496. [PMID: 37662771 PMCID: PMC10472068 DOI: 10.1016/j.heliyon.2023.e19496] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous environmental contaminants significantly contribute to human disease, affecting climate change and public and individual health, resulting in increased mortality and morbidity. Because of the scarcity of information regarding pollution exposure from less developed nations with inadequate waste management, higher levels of poverty, and limited adoption of new technology, the relationship between pollutants and health effects needs to be investigated more. A similar situation is present in many developed countries, where solutions are only discovered after the harm has already been done and the necessity for safeguards has subsided. The connection between environmental toxins and health needs to be better understood due to difficulties in quantifying exposure levels and a lack of systematic monitoring. Different pollutants are to blame for both chronic and acute disorders. Additionally, research becomes challenging when disease problems are seen after prolonged exposure. This review aims to discuss the present understanding of the association between environmental toxins and human health in bridging this knowledge gap. The genesis of cancer and the impact of various environmental pollutants on the human body's cardiovascular, respiratory, reproductive, prenatal, and neural health are discussed in this overview.
Collapse
Affiliation(s)
- Shilpa S. Shetty
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Deepthi D
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Harshitha S
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Shipra Sonkusare
- Department of Obstetrics and Gynecology, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Prashanth B. Naik
- Department of Pediatrics, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Suchetha Kumari N
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
- Department of Biochemistry, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|