1
|
De G, Yang M, Cai W, Zhao Q, Lu L, Chen A. Salvia miltiorrhiza augments endothelial cell function for ischemic hindlimb recovery. Biol Chem 2024; 405:119-128. [PMID: 36869860 DOI: 10.1515/hsz-2022-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Salvia miltiorrhiza (Salvia miltiorrhiza) root, as a traditional herb, is widely applied to pharmacotherapy for vascular system disease. In this study, we elucidate the therapy mechanism of Salvia miltiorrhiza by using a model of hindlimb ischemia. Blood perfusion measurement showed that intravenous administration of the Water Extract of Salvia miltiorrhiza (WES) could facilitate damaged hindlimb blood flow recovery and blood vessel regeneration. In vitro mRNA screen assay in cultured human umbilical vein endothelial cells (HUVECs) show that WES induced increased NOS3, VEGFA, and PLAU mRNA levels. Endothelial NOS (eNOS) promotor reporter analysis revealed that WES and the major ingredients danshensu (DSS) could enhance eNOS promoter activity. Additionally, we found that WES and its ingredients, including DSS, protocatechuic aldehyde (PAI), and salvianolic acid A (SaA), promoted HUVECs growth by the endothelial cell viability assays. A mechanistic approach confirmed that WES augments HUVECs proliferation through the activation of extracellular signal-regulated kinase (ERK) signal pathway. This study reveals that WES promotes ischemic remodeling and angiogenesis through its multiple principal ingredients, which target and regulate multiple sites of the network of the blood vessel endothelial cell regenerating process.
Collapse
Affiliation(s)
- Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Miyi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Lili Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
2
|
Dergilev K, Tsokolaeva Z, Goltseva Y, Beloglazova I, Ratner E, Parfyonova Y. Urokinase-Type Plasminogen Activator Receptor Regulates Prosurvival and Angiogenic Properties of Cardiac Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:15554. [PMID: 37958542 PMCID: PMC10650341 DOI: 10.3390/ijms242115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions. We focused on studying the CD117+ population of cardiac mesenchymal progenitor cells (MPCs), expressing uPAR on their surface. It was found that the number of CD117+ MPCs in the heart of the uPAR-/- mice is lower, as well as their ability to proliferate in vitro compared with cells from wild-type animals. Knockdown of uPAR in CD117+ MPCs of wild-type animals was accompanied by a decrease in survival rate and Akt signaling pathway activity and by an increase in the level of caspase activity in these cells. That suggests the role of uPAR in supporting cell survival. After intramyocardial transplantation of uPAR(-) MPCs, reduced cell retention and angiogenesis stimulation were observed in mice with myocardial infarction model compared to uPAR(+) cells transplantation. Taken together, the present results appear to prove a novel mechanism of uPAR action in maintaining the survival and angiogenic properties of CD117+ MPCs. These results emphasize the importance of the uPAR as a potential pharmacological target for the regulation of reparative properties of myocardial mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Konstantin Dergilev
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Zoya Tsokolaeva
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Yulia Goltseva
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Irina Beloglazova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Elizaveta Ratner
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Yelena Parfyonova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
3
|
Georgieva I, Tchekalarova J, Iliev D, Tzoneva R. Endothelial Senescence and Its Impact on Angiogenesis in Alzheimer's Disease. Int J Mol Sci 2023; 24:11344. [PMID: 37511104 PMCID: PMC10379128 DOI: 10.3390/ijms241411344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial cells are constantly exposed to environmental stress factors that, above a certain threshold, trigger cellular senescence and apoptosis. The altered vascular function affects new vessel formation and endothelial fitness, contributing to the progression of age-related diseases. This narrative review highlights the complex interplay between senescence, oxidative stress, extracellular vesicles, and the extracellular matrix and emphasizes the crucial role of angiogenesis in aging and Alzheimer's disease. The interaction between the vascular and nervous systems is essential for the development of a healthy brain, especially since neurons are exceptionally dependent on nutrients carried by the blood. Therefore, anomalies in the delicate balance between pro- and antiangiogenic factors and the consequences of disrupted angiogenesis, such as misalignment, vascular leakage and disturbed blood flow, are responsible for neurodegeneration. The implications of altered non-productive angiogenesis in Alzheimer's disease due to dysregulated Delta-Notch and VEGF signaling are further explored. Additionally, potential therapeutic strategies such as exercise and caloric restriction to modulate angiogenesis and vascular aging and to mitigate the associated debilitating symptoms are discussed. Moreover, both the roles of extracellular vesicles in stress-induced senescence and as an early detection marker for Alzheimer's disease are considered. The intricate relationship between endothelial senescence and angiogenesis provides valuable insights into the mechanisms underlying angiogenesis-related disorders and opens avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 23, 1113 Sofia, Bulgaria
| | - Dimitar Iliev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
4
|
Zhou Y, Song M, Xie D, Yan S, Yu S, Xie S, Cai M, Li H, Shang L, Jiang L, Yuan C, Huang M, Li J, Xu P. Structural Dynamics-Driven Discovery of Anticancer and Antimetastatic Effects of Diltiazem and Glibenclamide Targeting Urokinase Receptor. J Med Chem 2023; 66:5415-5426. [PMID: 36854648 DOI: 10.1021/acs.jmedchem.2c01663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Diltiazem and glibenclamide are commonly used hypotensive and antidiabetic drugs. This study reports the discovery of the potential antitumor and antimetastatic effects of these two drugs using a structural dynamics-driven virtual screening targeting urokinase receptor (uPAR). Owing to uPAR's high flexibility, currently resolved crystal structures of uPAR, all in ligand-bound states, provide limited representations of its physiological conformation. To improve the accuracy of screening, we performed a long-timescale molecular dynamics simulation and obtained the representative conformations of apo-uPAR as the targets for our screening. Experimentally, we demonstrated that diltiazem and glibenclamide bound uPAR with KD values in the micromolar range. In addition, both compounds effectively suppressed tumor growth and metastasis in a uPAR-dependent manner in vitro and in vivo. This work not only provides two potent uPAR inhibitors but also reports a proof-of-concept study on the potential off-label antitumor and antimetastatic uses of diltiazem and glibenclamide.
Collapse
Affiliation(s)
- Yang Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Meiru Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Henan Academy of Sciences, Zhengzhou, Henan 450046, P. R. China
| | - Daoqing Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Shufeng Yan
- Sanming University, Sanming, Fujian 365004, P. R. China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Meiqin Cai
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Le Shang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350109, P. R. China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
5
|
The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int J Mol Sci 2023; 24:ijms24021796. [PMID: 36675310 PMCID: PMC9866279 DOI: 10.3390/ijms24021796] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.
Collapse
|
6
|
Liu H, Wu B, Shi X, Cao Y, Zhao X, Liang D, Qin Q, Liang X, Lu W, Wang D, Liu J. Aerobic exercise-induced circulating extracellular vesicle combined decellularized dermal matrix hydrogel facilitates diabetic wound healing by promoting angiogenesis. Front Bioeng Biotechnol 2022; 10:903779. [PMID: 36082169 PMCID: PMC9445842 DOI: 10.3389/fbioe.2022.903779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Insufficient blood supply results in unsatisfactory wound healing, especially for challenging wound repair such as diabetic wound defects. Regular exercise training brings a lot of benefits to cardiovascular fitness and metabolic health including attenuation of T2DM progression. Circulating extracellular vesicles (EVs) are postulated to carry a variety of signals involved in tissue crosstalk by their modified cargoes, representing novel mechanisms for the effects of exercise. Prominently, both acute and chronic aerobic exercise training can promote the release of exercise-induced cytokines and enhance the angiogenic function of circulating angiogenic cell–derived EVs.Methods: We investigated the possible angiogenesis potential of aerobic exercise-induced circulating EVs (EXE-EVs) on diabetic wound healing. Circulating EVs were isolated from the plasma of rats subjected to 4 weeks of moderate aerobic exercise or sedentariness 24 h after the last training session. The therapeutic effect of circulating EVs was evaluated in vitro by proliferation, migration, and tube formation assays of human umbilical vein endothelial cells (HUVECs), as well as in vivo by quantification of angiogenesis and cutaneous wound healing in diabetic rats.Results: The number of circulating EVs did not change significantly in exercised rats 24 h post-exercise in comparison with the sedentary rats. Nevertheless, EXE-EVs showed remarkable pro-angiogenic effect by augmenting proliferation, migration, and tube formation of HUVECs. Furthermore, the findings of animal experiments revealed that the EXE-EVs delivered by decellularized dermal matrix hydrogel (DDMH) could significantly promote the repair of skin defects through stimulating the regeneration of vascularized skin.Discussion: The present study is the first attempt to demonstrate that aerobic exercise-induced circulating EVs could be utilized as a cell-free therapy to activate angiogenesis and promote diabetic wound healing. Our findings suggest that EXE-EVs may stand for a potential strategy for diabetic soft tissue wound repair.
Collapse
Affiliation(s)
- Haifeng Liu
- Guangzhou Medical University, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Bing Wu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xin Shi
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Xin Zhao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Daqiang Liang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qihuang Qin
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xinzhi Liang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Lu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Daping Wang
- Guangzhou Medical University, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- *Correspondence: Daping Wang, ; Jun Liu,
| | - Jun Liu
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
- *Correspondence: Daping Wang, ; Jun Liu,
| |
Collapse
|
7
|
Dai XY, Ren LJ, Yan L, Zhang JQZ, Dong YF, Qing TL, Shi WJ, Li JF, Gao FY, Zhang XF, Tian YJ, Zhu YP, Zhu JB, Chen JK. Vascular toxicity of multi-walled carbon nanotubes targeting vascular endothelial growth factor. Nanotoxicology 2022; 16:597-609. [PMID: 36151876 DOI: 10.1080/17435390.2022.2125849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiwalled carbon nanotubes (MWCNTs) are currently widely used and are expected to be used as drug carriers and contrast agents in clinical practice. Previous studies mainly focused on their lung toxicity; therefore, their effects on the vascular endothelium are unclear. In this study, a human angiogenesis array was used to determine the effect of MWCNTs on the expression profile of angiogenic factors in endothelial cells and to clarify the role of vascular endothelial growth factor (VEGF) in MWCNT-induced endothelial cell injury at the cellular and animal levels. The results indicated that MWCNTs (20-30 nm and 30-50 nm) could enter endothelial cells and disrupt human umbilical vein endothelial cell (HUVECs) activity in a concentration-dependent manner. MWCNTs disrupted the tube formation ability and cell migration function of HUVECs. The results from a Matrigel Plug experiment in mice showed that angiogenesis in the MWCNT experimental group was significantly reduced. The results of a protein chip analysis indicated that VEGF expression in the MWCNT treatment group was decreased, a finding that was validated by ELISA results. The protein expression levels of AKT and eNOS in the MWCNT treatment group were significantly decreased; the administration of recombinant VEGF significantly alleviated the migration ability and tube formation ability of endothelial cells injured by MWCNTs, upregulated the protein expression of AKT and eNOS, and increased the number of neovascularization in mice in the MWCNT treatment group. This study demonstrated that MWCNTs affect angiogenesis via the VEGF-Akt-eNOS axis which can be rescued by VEGF endothelial treatment.
Collapse
Affiliation(s)
- Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Li-Jun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ji-Qian-Zhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Fan Dong
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Wen-Jing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fang-Yuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Jun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yu-Ping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Second Military Medical University, Shanghai, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
9
|
Therapeutic Strategies Targeting Urokinase and Its Receptor in Cancer. Cancers (Basel) 2022; 14:cancers14030498. [PMID: 35158766 PMCID: PMC8833673 DOI: 10.3390/cancers14030498] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies have ascertained that uPA and uPAR do participate in tumor progression and metastasis and are involved in cell adhesion, migration, invasion and survival, as well as angiogenesis. Increased levels of uPA and uPAR in tumor tissues, stroma and biological fluids correlate with adverse clinic-pathologic features and poor patient outcomes. After binding to uPAR, uPA activates plasminogen to plasmin, a broad-spectrum matrix- and fibrin-degrading enzyme able to facilitate tumor cell invasion and dissemination to distant sites. Moreover, uPAR activated by uPA regulates most cancer cell activities by interacting with a broad range of cell membrane receptors. These findings make uPA and uPAR not only promising diagnostic and prognostic markers but also attractive targets for developing anticancer therapies. In this review, we debate the uPA/uPAR structure-function relationship as well as give an update on the molecules that interfere with or inhibit uPA/uPAR functions. Additionally, the possible clinical development of these compounds is discussed.
Collapse
|
10
|
Ismail AA, Shaker BT, Bajou K. The Plasminogen-Activator Plasmin System in Physiological and Pathophysiological Angiogenesis. Int J Mol Sci 2021; 23:ijms23010337. [PMID: 35008762 PMCID: PMC8745544 DOI: 10.3390/ijms23010337] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a process associated with the migration and proliferation of endothelial cells (EC) to form new blood vessels. It is involved in various physiological and pathophysiological conditions and is controlled by a wide range of proangiogenic and antiangiogenic molecules. The plasminogen activator–plasmin system plays a major role in the extracellular matrix remodeling process necessary for angiogenesis. Urokinase/tissue-type plasminogen activators (uPA/tPA) convert plasminogen into the active enzyme plasmin, which in turn activates matrix metalloproteinases and degrades the extracellular matrix releasing growth factors and proangiogenic molecules such as the vascular endothelial growth factor (VEGF-A). The plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of uPA and tPA, thereby an inhibitor of pericellular proteolysis and intravascular fibrinolysis, respectively. Paradoxically, PAI-1, which is expressed by EC during angiogenesis, is elevated in several cancers and is found to promote angiogenesis by regulating plasmin-mediated proteolysis and by promoting cellular migration through vitronectin. The urokinase-type plasminogen activator receptor (uPAR) also induces EC cellular migration during angiogenesis via interacting with signaling partners. Understanding the molecular functions of the plasminogen activator plasmin system and targeting angiogenesis via blocking serine proteases or their interactions with other molecules is one of the major therapeutic strategies scientists have been attracted to in controlling tumor growth and other pathological conditions characterized by neovascularization.
Collapse
Affiliation(s)
- Asmaa Anwar Ismail
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.A.I.); (B.T.S.)
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Baraah Tariq Shaker
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.A.I.); (B.T.S.)
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalid Bajou
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.A.I.); (B.T.S.)
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
11
|
Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J, Wang J. uPAR: An Essential Factor for Tumor Development. J Cancer 2021; 12:7026-7040. [PMID: 34729105 PMCID: PMC8558663 DOI: 10.7150/jca.62281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is closely related to the loss of control of many genes. Urokinase-type plasminogen activator receptor (uPAR), a glycolipid-anchored protein on the cell surface, is controlled by many factors in tumorigenesis and is expressed in many tumor tissues. In this review, we summarize the regulatory effects of the uPAR signaling pathway on processes and factors related to tumor progression, such as tumor cell proliferation, adhesion, metastasis, glycolysis, tumor microenvironment and angiogenesis. Overall, the evidence accumulated to date suggests that uPAR induction by tumor progression may be one of the most important factors affecting therapeutic efficacy. An improved understanding of the interactions between uPAR and its coreceptors in cancer will provide critical biomolecular information that may help to better predict the disease course and response to therapy.
Collapse
Affiliation(s)
- Tao Lv
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Ying Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China 610500
| | - Hemei Yuan
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Haibo Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Xuelin Cui
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiashun Xu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jingye Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianlin Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| |
Collapse
|
12
|
Campion O, Thevenard Devy J, Billottet C, Schneider C, Etique N, Dupuy JW, Raymond AA, Boulagnon Rombi C, Meunier M, Djermoune EH, Lelièvre E, Wahart A, Bour C, Hachet C, Cairo S, Bikfalvi A, Dedieu S, Devy J. LRP-1 Matricellular Receptor Involvement in Triple Negative Breast Cancer Tumor Angiogenesis. Biomedicines 2021; 9:biomedicines9101430. [PMID: 34680548 PMCID: PMC8533426 DOI: 10.3390/biomedicines9101430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023] Open
Abstract
Background: LRP-1 is a multifunctional scavenger receptor belonging to the LDLR family. Due to its capacity to control pericellular levels of various growth factors and proteases, LRP-1 plays a crucial role in membrane proteome dynamics, which appears decisive for tumor progression. Methods: LRP-1 involvement in a TNBC model was assessed using an RNA interference strategy in MDA-MB-231 cells. In vivo, tumorigenic and angiogenic effects of LRP-1-repressed cells were evaluated using an orthotopic xenograft model and two angiogenic assays (Matrigel® plugs, CAM). DCE-MRI, FMT, and IHC were used to complete a tumor longitudinal follow-up and obtain morphological and functional vascular information. In vitro, HUVECs’ angiogenic potential was evaluated using a tumor secretome, subjected to a proteomic analysis to highlight LRP-1-dependant signaling pathways. Results: LRP-1 repression in MDA-MB-231 tumors led to a 60% growth delay because of, inter alia, morphological and functional vascular differences, confirmed by angiogenic models. In vitro, the LRP-1-repressed cells secretome restrained HUVECs’ angiogenic capabilities. A proteomics analysis revealed that LRP-1 supports tumor growth and angiogenesis by regulating TGF-β signaling and plasminogen/plasmin system. Conclusions: LRP-1, by its wide spectrum of interactions, emerges as an important matricellular player in the control of cancer-signaling events such as angiogenesis, by supporting tumor vascular morphology and functionality.
Collapse
Affiliation(s)
- Océane Campion
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | - Jessica Thevenard Devy
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | - Clotilde Billottet
- INSERM, LAMC, U1029, Université de Bordeaux, 33600 Pessac, France; (C.B.); (A.B.)
| | - Christophe Schneider
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | - Nicolas Etique
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | | | | | - Camille Boulagnon Rombi
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
- Laboratoire d’Anatomie Pathologie, CHU Reims, 51100 Reims, France
| | - Marie Meunier
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | | | - Elodie Lelièvre
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | - Amandine Wahart
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | - Camille Bour
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | - Cathy Hachet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | | | - Andréas Bikfalvi
- INSERM, LAMC, U1029, Université de Bordeaux, 33600 Pessac, France; (C.B.); (A.B.)
| | - Stéphane Dedieu
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
| | - Jérôme Devy
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687 Reims, France; (O.C.); (J.T.D.); (C.S.); (N.E.); (M.M.); (E.L.); (A.W.); (C.B.); (C.H.); (S.D.)
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, 51687 Reims, France;
- Correspondence:
| |
Collapse
|
13
|
Mahmood N, Rabbani SA. Fibrinolytic System and Cancer: Diagnostic and Therapeutic Applications. Int J Mol Sci 2021; 22:ijms22094358. [PMID: 33921923 PMCID: PMC8122389 DOI: 10.3390/ijms22094358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrinolysis is a crucial physiological process that helps to maintain a hemostatic balance by counteracting excessive thrombosis. The components of the fibrinolytic system are well established and are associated with a wide array of physiological and pathophysiological processes. The aberrant expression of several components, especially urokinase-type plasminogen activator (uPA), its cognate receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), has shown a direct correlation with increased tumor growth, invasiveness, and metastasis. As a result, targeting the fibrinolytic system has been of great interest in the field of cancer biology. Even though there is a plethora of encouraging preclinical evidence on the potential therapeutic benefits of targeting the key oncogenic components of the fibrinolytic system, none of them made it from “bench to bedside” due to a limited number of clinical trials on them. This review summarizes our existing understanding of the various diagnostic and therapeutic strategies targeting the fibrinolytic system during cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
| | - Shafaat A. Rabbani
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
- Correspondence:
| |
Collapse
|
14
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
15
|
Lin S, He X, He Y. Co-culture of ASCs/EPCs and dermal extracellular matrix hydrogel enhances the repair of full-thickness skin wound by promoting angiogenesis. Stem Cell Res Ther 2021; 12:129. [PMID: 33579369 PMCID: PMC7881476 DOI: 10.1186/s13287-021-02203-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background The repair of large-scale full-thickness skin defects represents a challenging obstacle in skin tissue engineering. To address the most important problem in skin defect repair, namely insufficient blood supply, this study aimed to find a method that could promote the formation of vascularized skin tissue. Method The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of dermal and angiogenic genes. Furthermore, the co-culture system combined with dermal extracellular matrix hydrogel was used to repair the full-scale skin defects in rats. Result The co-culture of ASCs/EPCs could increase skin- and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASCs/EPCs group could significantly accelerate the repair of skin defects by promoting the regeneration of vascularized skin. Conclusion It is feasible to replace traditional single-seed cells with the ASC/EPC co-culture system for vascularized skin regeneration. This system could ultimately enable clinicians to better repair the full-thickness skin defects and avoid donor site morbidity.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Plastic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoning He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanjia He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
16
|
Yuan C, Guo Z, Yu S, Jiang L, Huang M. Development of inhibitors for uPAR: blocking the interaction of uPAR with its partners. Drug Discov Today 2021; 26:1076-1085. [PMID: 33486111 DOI: 10.1016/j.drudis.2021.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) mediates a multitude of biological activities, has key roles in several clinical indications, including malignancies and inflammation, and, thus, has attracted intensive research over the past few decades. The pleiotropic functions of uPAR can be attributed to its interaction with an array of partners. Many inhibitors have been developed to intervene with the interaction of uPAR with these partners. Here, we review the development of these classes of uPAR inhibitor and their inhibitory mechanisms to promote the translation of these inhibitors to clinical applications.
Collapse
Affiliation(s)
- Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhanzhi Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fujian, 350116, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350116, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350116, China.
| |
Collapse
|
17
|
Kang EY, Park SB, Choi B, Baek SW, Ko KW, Rhim WK, Park W, Kim IH, Han DK. Enhanced mechanical and biological characteristics of PLLA composites through surface grafting of oligolactide on magnesium hydroxide nanoparticles. Biomater Sci 2020; 8:2018-2030. [PMID: 32080689 DOI: 10.1039/c9bm01863h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(l-lactic acid) (PLLA) is a biocompatible and biodegradable polymer that has received much attention as a biomedical material. However, PLLA also produces by-products that acidify the surrounding tissues during in vivo degradation, which induces inflammatory responses. To overcome these problems, magnesium hydroxide nanoparticles (nano-magnesium hydroxide; nMH) were added to the PLLA matrix as a bioactive filler that can suppress inflammatory responses by neutralizing the acidified environment caused by the degradation of PLLA. Despite the advantages of nMH, the strong cohesion of these nanoparticles toward each other makes it difficult to manufacture a polymer matrix containing homogeneous nanoparticles through thermal processing. Here, we prepared two types of surface-modified nMH with oligolactide (ODLLA) utilizing grafting to (GT) and grafting from (GF) strategies to improve the mechanical and biological characteristics of the organic-inorganic hybrid composite. The incorporation of surface-modified nMH not only enhanced mechanical properties, such as Young's modulus, but also improved homogeneity of magnesium hydroxide particles in the PLLA matrix due to the increase in interfacial interaction. Additionally, the PLLA composites with surface-modified nMH exhibited reduced bulk erosion during hydrolytic degradation with lower cytotoxicity and immunogenicity. Hemocompatibility tests on the PLLA composites with nMH showed a higher albumin to fibrinogen ratio (AFR) and a lower influence of platelet activation, when compared with unmodified control samples. Taken all together, the surface-modified nMH could be seen to successfully improve the physical and biological characteristics of polymer composites. We believe this technology has great potential for the development of hybrid nanocomposites for biomedical devices, including cardiovascular implants.
Collapse
Affiliation(s)
- Eun Young Kang
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. and Department of Biological Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sung-Bin Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. and Department of Biomedical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do 16419, Republic of Korea
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Wooram Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Ik-Hwan Kim
- Department of Biological Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| |
Collapse
|
18
|
Marden G, Wan Q, Wilks J, Nevin K, Feeney M, Wisniacki N, Trojanowski M, Bujor A, Stawski L, Trojanowska M. The role of the oncostatin M/OSM receptor β axis in activating dermal microvascular endothelial cells in systemic sclerosis. Arthritis Res Ther 2020; 22:179. [PMID: 32736577 PMCID: PMC7393919 DOI: 10.1186/s13075-020-02266-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Scleroderma (SSc) is a rare autoimmune disease characterized by vascular impairment and progressive fibrosis of the skin and other organs. Oncostatin M, a member of the IL-6 family, is elevated in SSc serum and was recognized as a significant player in various stages of fibrosis. The goal of this study was to assess the contribution of the OSM/OSMRβ pathway to endothelial cell (EC) injury and activation in SSc. METHODS IHC and IF were used to assess the distribution of OSM and OSMRβ in SSc (n = 14) and healthy control (n = 7) skin biopsies. Cell culture experiments were performed in human dermal microvascular endothelial cells (HDMECs) and included mRNA and protein analysis, and cell migration and proliferation assays. Ex vivo skin organoid culture was used to evaluate the effect of OSM on perivascular fibrosis. RESULTS OSMRβ protein was elevated in dermal ECs and in fibroblasts of SSc patients. Treatments of HDMECs with OSM or IL-6+sIL-6R have demonstrated that both cytokines similarly stimulated proinflammatory genes and genes related to endothelial to mesenchymal transition (EndMT). OSM was more effective than IL-6+sIL-6R in inducing cell migration, while both treatments similarly induced cell proliferation. The effects of OSM were mediated via OSMRβ and STAT3, while the LIFR did not contribute to these responses. Both OSM and IL-6+sIL-6R induced profibrotic gene expression in HDMECs, as well as expansion of the perivascular PDGFRβ+ cells in the ex vivo human skin culture system. Additional studies in HDMECs showed that siRNA-mediated downregulation of FLI1 and its close homolog ERG resulted in increased expression of OSMRβ in HDMECs. CONCLUSIONS This work provides new insights into the role of the OSM/OSMRβ axis in activation/injury of dermal ECs and supports the involvement of this pathway in SSc vascular disease.
Collapse
Affiliation(s)
- G Marden
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - Q Wan
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
- Department of Rheumatology and Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - J Wilks
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - K Nevin
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - M Feeney
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - N Wisniacki
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - M Trojanowski
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - A Bujor
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - L Stawski
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - M Trojanowska
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA.
| |
Collapse
|
19
|
Comparison of Proangiogenic Effects of Adipose-Derived Stem Cells and Foreskin Fibroblast Exosomes on Artificial Dermis Prefabricated Flaps. Stem Cells Int 2020; 2020:5293850. [PMID: 32089706 PMCID: PMC7013349 DOI: 10.1155/2020/5293850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 01/19/2023] Open
Abstract
Large prefabricated flaps often suffer from necrosis or poor healing due to a lack of new blood vessels and related factors that promote angiogenesis. The innovative use of adipose-derived stem cell exosomes (ADSC-Exo) resolves the problem of vascularization of prefabricated flaps. We analyzed the differential microRNA (miRNA) expression in ADSC-Exo using next-generation sequencing (NGS) technology to explore their potential mechanisms in promoting vascularization. We observed that ADSC-Exo could significantly promote the vascularization of artificial dermis prefabricated flaps compared with human foreskin fibroblast exosomes. NGS indicated that there were some differentially expressed miRNAs in both exosomes. Bioinformatics analysis suggested that significantly upregulated hsa-miR-760 and significantly downregulated hsa-miR-423-3p in ADSC-Exo could regulate the expression of the ITGA5 and HDAC5 genes, respectively, to promote the vascularization of skin flaps. In summary, ADSC-Exo can promote skin-flap vascularization, and thereby resolve the problem of insufficient neovascularization of artificial dermis prefabricated flaps, thus expanding the application of prefabricated skin-flap transplantation.
Collapse
|
20
|
Azouz NP, Ynga-Durand MA, Caldwell JM, Jain A, Rochman M, Fischesser DM, Ray LM, Bedard MC, Mingler MK, Forney C, Eilerman M, Kuhl JT, He H, Biagini Myers JM, Mukkada VA, Putnam PE, Khurana Hershey GK, Kottyan LC, Wen T, Martin LJ, Rothenberg ME. The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Sci Transl Med 2019; 10:10/444/eaap9736. [PMID: 29875205 DOI: 10.1126/scitranslmed.aap9736] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
Abstract
Loss of barrier integrity has an important role in eliciting type 2 immune responses, yet the molecular events that initiate and connect this with allergic inflammation remain unclear. We reveal an endogenous, homeostatic mechanism that controls barrier function and inflammatory responses in esophageal allergic inflammation. We show that a serine protease inhibitor, SPINK7 (serine peptidase inhibitor, kazal type 7), is part of the differentiation program of human esophageal epithelium and that SPINK7 depletion occurs in a human allergic, esophageal condition termed eosinophilic esophagitis. Experimental manipulation strategies reducing SPINK7 in an esophageal epithelial progenitor cell line and primary esophageal epithelial cells were sufficient to induce barrier dysfunction and transcriptional changes characterized by loss of cellular differentiation and altered gene expression known to stimulate allergic responses (for example, FLG and SPINK5). Epithelial silencing of SPINK7 promoted production of proinflammatory cytokines including thymic stromal lymphopoietin (TSLP). Loss of SPINK7 increased the activity of urokinase plasminogen-type activator (uPA), which in turn had the capacity to promote uPA receptor-dependent eosinophil activation. Treatment of epithelial cells with the broad-spectrum antiserine protease, α1 antitrypsin, reversed the pathologic features associated with SPINK7 silencing. The relevance of this pathway in vivo was supported by finding genetic epistasis between variants in TSLP and the uPA-encoding gene, PLAU We propose that the endogenous balance between SPINK7 and its target proteases is a key checkpoint in regulating mucosal differentiation, barrier function, and inflammatory responses and that protein replacement with antiproteases may be therapeutic for select allergic diseases.
Collapse
Affiliation(s)
- Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mario A Ynga-Durand
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.,Laboratorio de Inmunidad de Mucosas, Sección de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ayushi Jain
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Demetria M Fischesser
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Leanne M Ray
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mary C Bedard
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Melissa K Mingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Matthew Eilerman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jonathan T Kuhl
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Hua He
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jocelyn M Biagini Myers
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Vincent A Mukkada
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Philip E Putnam
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.
| |
Collapse
|
21
|
Luo Y, Yi X, Liang T, Jiang S, He R, Hu Y, Bai L, Wang C, Wang K, Zhu L. Autograft microskin combined with adipose-derived stem cell enhances wound healing in a full-thickness skin defect mouse model. Stem Cell Res Ther 2019; 10:279. [PMID: 31470890 PMCID: PMC6717360 DOI: 10.1186/s13287-019-1389-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Autograft microskin transplantation has been widely used as a skin graft therapy in full-thickness skin defect. However, skin grafting failure can lead to a pathological delay wound healing due to a poor vascularization bed. Considering the active role of adipose-derived stem cell (ADSC) in promoting angiogenesis, we intend to investigate the efficacy of autograft microskin combined with ADSC transplantation for facilitating wound healing in a full-thickness skin defect mouse model. MATERIAL AND METHODS An in vivo full-thickness skin defect mouse model was used to evaluate the contribution of transplantation microskin and ADSC in wound healing. The angiogenesis was detected by immunohistochemistry staining. In vitro paracrine signaling pathway was evaluated by protein array and Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction network analysis. RESULTS Co-transplantation of microskin and ADSC potentiated the wound healing with better epithelization, smaller scar thickness, and higher angiogenesis (CD31) in the subcutaneous layer. We found both EGF and VEGF cytokines were secreted by microskin in vitro. Additionally, secretome proteomic analysis in a co-culture system of microskin and ADSC revealed that ADSC could secrete a wide range of important molecules to form a reacting network with microskin, including VEGF, IL-6, EGF, uPAR, MCP-3, G-CSF, and Tie-2, which most likely supported the angiogenesis effect as observed. CONCLUSION Overall, we concluded that the use of ADSC partially modulates microskin function and enhances wound healing by promoting angiogenesis in a full-thickness skin defect mouse model.
Collapse
Affiliation(s)
- Yuansen Luo
- Department of Plastic and Aesthetic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Xiaoyou Yi
- Department of Orthopedics Surgery, Tungwah Hospital of Sun Yat-sen University, 523110, Dongguan, China
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Shihai Jiang
- Department of Joint and Trauma Surgery, the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Ying Hu
- Department of Plastic and Aesthetic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Li Bai
- Department of Plastic and Aesthetic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Chunmei Wang
- Department of Plastic and Aesthetic Surgery, Dermatology Hospital of Southern Medical University, 510630, Guangzhou, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Lei Zhu
- Department of Plastic and Aesthetic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Yim HE, Kim DS, Chung HC, Shing B, Moon KH, George SK, Kim MW, Atala Z, Kim JH, Ko IK, Yoo JJ. Controlled Delivery of Stem Cell-Derived Trophic Factors Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury in Rats. Stem Cells Transl Med 2019; 8:959-970. [PMID: 31144785 PMCID: PMC6708069 DOI: 10.1002/sctm.18-0222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Renal disease is a worldwide health issue. Besides transplantation, current therapies revolve around dialysis, which only delays disease progression but cannot replace other renal functions, such as synthesizing erythropoietin. To address these limitations, cell‐based approaches have been proposed to restore damaged kidneys as an alternative to current therapies. Recent studies have shown that stem cell‐derived secretomes can enhance tissue regeneration. However, many growth factors undergo rapid degradation when they are injected into the body in a soluble form. Efficient delivery and controlled release of secreting factors at the sites of injury would improve the efficacy in tissue regeneration. Herein, we developed a gel‐based delivery system for controlled delivery of trophic factors in the conditioned medium (CM) secreted from human placental stem cells (HPSCs) and evaluated the effect of trophic factors on renal regeneration. CM treatment significantly enhanced cell proliferation and survival in vitro. Platelet‐rich plasma (PRP) was used as a delivery vehicle for CM. Analysis of the release kinetics demonstrated that CM delivery through the PRP gel resulted in a controlled release of the factors both in vitro and in vivo. In an acute kidney injury model in rats, functional and structural analysis showed that CM delivery using the PRP gel system into the injured kidney minimized renal tissue damage, leading to a more rapid functional recovery when compared with saline, CM, or vehicle only injection groups. These results suggest that controlled delivery of HPSC‐derived trophic factors may provide efficient repair of renal tissue injury. stem cells translational medicine2019;8:959&970
Collapse
Affiliation(s)
- Hyung Eun Yim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - Doo Sang Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyun Chul Chung
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Brian Shing
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Kyung Hyun Moon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Michael W Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Zachary Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| |
Collapse
|
23
|
Gong X, Hu A, Li X, He J, Wu Z, Zuo X, Ning P. Coordinated expression of vascular endothelial growth factor A and urokinase-type plasminogen activator contributes to classical swine fever virus Shimen infection in macrophages. BMC Vet Res 2019; 15:82. [PMID: 30849965 PMCID: PMC6407193 DOI: 10.1186/s12917-019-1826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 02/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Shimen strain of classical swine fever (CSF) virus (CSFV) causes CSF, which is mainly characterised by disseminated intravascular haemorrhage. Macrophages are an essential component of innate immunity against pathogenic microorganisms; however, the role of macrophages in CSF pathogenesis remains unclear. To illuminate the infective mechanism of CSFV, we used gene co-expression networks derived from macrophages infected with CSFV Shimen and CSFV C as well as uninfected macrophages to screen key regulatory genes, and their contributions to the pathogenesis of CSF were discussed. RESULTS Vascular endothelial growth factor A (VEGFA) and plasminogen activator, urokinase (PLAU, which encodes urokinase-type plasminogen activator [uPA]) were identified as coordinated genes expressed in macrophages by gene co-expression networks. Quantitative polymerase chain reaction and western blot analysis confirmed that VEGFA and PLAU were significantly up-regulated at both the transcription and translation levels after infection. Further, confocal microscopy analysis proposed that the VEGFA and uPA proteins were temporally co-localised with the CSFV protein E2. CONCLUSIONS Our findings suggest that co-expression of VEGFA and PLAU in macrophages contributes to CSFV Shimen infection and serves as a significant avenue for the strain to form an inflammatory microenvironment, providing new insight into the mechanisms of CSF caused by a virulent strain.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Aoxue Hu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Xuepeng Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Jun He
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Zhongxing Wu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Xi Zuo
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China. .,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, People's Republic of China.
| |
Collapse
|
24
|
Hugdahl E, Bachmann IM, Schuster C, Ladstein RG, Akslen LA. Prognostic value of uPAR expression and angiogenesis in primary and metastatic melanoma. PLoS One 2019; 14:e0210399. [PMID: 30640942 PMCID: PMC6331131 DOI: 10.1371/journal.pone.0210399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is important for the progression of cutaneous melanoma. Here, we analyzed the prognostic impact of the angiogenic factor urokinase plasminogen activator resecptor (uPAR), vascular proliferation index (VPI) and tumor necrosis as a measure of hypoxia in a patient series of nodular melanomas (n = 255) and matched loco-regional metastases (n = 78). Expression of uPAR was determined by immunohistochemistry and VPI was assessed by dual immunohistochemistry using Factor-VIII/Ki67 staining. Necrosis was recorded based on HE-slides. As novel findings, high uPAR expression and high VPI were associated with each other, and with increased tumor thickness, presence of tumor necrosis, tumor ulceration, increased mitotic count and reduced cancer specific survival in primary melanoma. In matched cases, VPI was decreased in metastases, whereas the frequency of necrosis was increased. Our findings demonstrate for the first time the impact on melanoma specific survival of uPAR expression and VPI in primary tumors, and of increased necrosis as an indicator of tumor hypoxia in loco-regional metastases. These findings support the importance of tumor angiogenesis in melanoma aggressiveness, and suggest uPAR as an indicator of vascular proliferation and a potential biomarker in melanoma.
Collapse
Affiliation(s)
- Emilia Hugdahl
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | - Ingeborg M. Bachmann
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | - Cornelia Schuster
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology Haukeland University Hospital, Bergen, Norway
| | - Rita G. Ladstein
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
25
|
Rico P, Rodrigo-Navarro A, de la Peña M, Moulisová V, Costell M, Salmerón-Sánchez M. Simultaneous Boron Ion-Channel/Growth Factor Receptor Activation for Enhanced Vascularization. ACTA ACUST UNITED AC 2018; 3:e1800220. [PMID: 32627349 DOI: 10.1002/adbi.201800220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/06/2018] [Indexed: 11/06/2022]
Abstract
Boron ion is essential in metabolism and its concentration is regulated by ion-channel NaBC1. NaBC1 mutations cause corneal dystrophies such as Harboyan syndrome. Here a 3D molecular model for NaBC1 is proposed and it is shown that simultaneous stimulation of NaBC1 and vascular endothelial growth factor receptors (VEGFR) promotes angiogenesis in vitro and in vivo with ultralow concentrations of VEGF. Human umbilical vein endothelial cells' (HUVEC) organization into tubular structures is shown to be indicative of vascularization potential. Enhanced cell sprouting is found only in the presence of VEGF and boron, the effect abrogated after blocking NaBC1. It is demonstrated that stimulated NaBC1 promotes angiogenesis via PI3k-independent pathways and that α5 β1 /αv β3 integrin binding is not essential to enhanced HUVEC organization. A novel vascularization mechanism that involves crosstalk and colocalization between NaBC1 and VEGFR receptors is described. This has important translational consequences; just by administering boron, taking advantage of endogenous VEGF, in vivo vascularization is shown in a chorioallantoic membrane assay.
Collapse
Affiliation(s)
- Patricia Rico
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.,Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Aleixandre Rodrigo-Navarro
- Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Centro Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Vladimira Moulisová
- Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Mercedes Costell
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Doctor Moliner s/n, 46100, Burjassot, Spain
| | - Manuel Salmerón-Sánchez
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.,Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.,Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| |
Collapse
|
26
|
Palomo AG, Medinilla AL, Segatori V, Barroso MDC, Blanco R, Gabri MR, Pérez AC, Monzón KL. Synergistic potentiation of the anti-metastatic effect of anti EGFR mAb by its combination with immunotherapies targeting the ganglioside NGcGM3. Oncotarget 2018; 9:24069-24080. [PMID: 29844873 PMCID: PMC5963610 DOI: 10.18632/oncotarget.25290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 03/29/2018] [Indexed: 11/30/2022] Open
Abstract
Several Anti-EGFR mAbs are register for the treatment of human cancer. However, their impact on patients overall survival has been limited by tumor resistance. N-Glycolyl variant of GM3 ganglioside (NGcGM3) is specifically expressed in some human tumors, and it has been associated with a poor prognosis. Several reports have documented that GM3 physically associates to EGFR inhibiting its ligand depend phosphorylation, but it also facilitates an alternative/compensatory signaling cascade mediated by Uroquinase Plasminogen Activator Receptor (uPAR) and integrin α5β1 interaction. However, the difference between NGc and N-Acetylated (NAc) variants of GM3 regarding such interactions is unknown. We hypothesized that enrichment of NGcGM3 expression in tumors relates to advantages of this ganglioside, on ensuring both EGFR and uPAR pathways optimal function. We explored the impact of combining an anti-EGFR (7A7 mAb) with anti-NGcGM3 therapies: NGcGM3/VSSP vaccine or 14F7 mAb. Both combinations synergistically increase overall survival in two models of lung metastasis: 3LL-D122 and 4T1; but combination with NGcGM3/VSSP vaccine is significantly more effective. In 3LL-D122-metastasis, of mice treated with the best combination, both EGFR and uPAR/α5β1 integrin pathways are turn off (I.e expression of uPAR/α5β1; and phosphorylation of EGFR, Stat3, Src and FAK are reduced); and tumor angiogenesis is decreased. Interestingly, combination treatment increases tumor infiltrating CD4+T, CD8+T and NK+-cells. Furthermore, a positive clinical outcome is reported for a cancer patient treated with an anti-EGFR mAb and anti-NGcGM3 therapy. Overall, our results support the combination of anti EGFR antibodies with therapies targeting NGcGM3 to increase their efficacy in future clinical trials.
Collapse
Affiliation(s)
| | | | - Valeria Segatori
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | | | - Rances Blanco
- Center of Molecular Immunology (CIM), Atabey, Playa, Havana, Cuba
| | - Mariano R Gabri
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | | | | |
Collapse
|
27
|
Involvement of the Urokinase Receptor and Its Endogenous Ligands in the Development of the Brain and the Formation of Cognitive Functions. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0525-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Lulli M, Cammalleri M, Granucci I, Witort E, Bono S, Di Gesualdo F, Lupia A, Loffredo R, Casini G, Dal Monte M, Capaccioli S. In vitro and in vivo inhibition of proangiogenic retinal phenotype by an antisense oligonucleotide downregulating uPAR expression. Biochem Biophys Res Commun 2017; 490:977-983. [PMID: 28666875 DOI: 10.1016/j.bbrc.2017.06.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023]
Abstract
Neoangiogenesis is the main pathogenic event involved in a variety of retinal diseases. It has been recently demonstrated that inhibiting the urokinase-type plasminogen activator receptor (uPAR) results in reduced angiogenesis in a mouse model of oxygen-induced retinopathy (OIR), establishing uPAR as a therapeutic target in proliferative retinopathies. Here, we evaluated in cultured human retinal endothelial cells (HRECs) and in OIR mice the potential of a specific antisense oligodeoxyribonucleotide (ASO) in blocking the synthesis of uPAR and in providing antiangiogenic effects. uPAR expression in HRECs was inhibited by lipofection with the phosphorotioated 5'-CGGCGGGTGACCCATGTG-3' ASO-uPAR, complementary to the initial translation site of uPAR mRNA. Inhibition of uPAR expression via ASO-uPAR was evaluated in HRECs by analyzing VEGF-induced tube formation and migration. In addition, the well-established and reproducible murine OIR model was used to induce retinal neovascularization in vivo. OIR mice were injected intraperitoneally with ASO-uPAR and retinopathy was evaluated considering the extent of the avascular area in the central retina and neovascular tuft formation. The ASO-uPAR specifically decreased uPAR mRNA and protein levels in HRECs and mitigated VEGF-induced tube formation and cell migration. Noteworthy, in OIR mice ASO-uPAR administration reduced both the avascular area and the formation of neovascular tufts. In conclusion, although the extrapolation of these experimental findings to the clinic is not straightforward, ASO-uPAR may be considered a potential therapeutic tool for treatment of proliferative retinal diseases.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy
| | - Irene Granucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Ewa Witort
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Silvia Bono
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Federico Di Gesualdo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Antonella Lupia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Rosa Loffredo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy
| | - Sergio Capaccioli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
29
|
Xia J, Chen H, Yan J, Wu H, Wang H, Guo J, Zhang X, Zhang S, Zhao C, Chen Y. High-Purity Magnesium Staples Suppress Inflammatory Response in Rectal Anastomoses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9506-9515. [PMID: 28240546 DOI: 10.1021/acsami.7b00813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Magnesium-based materials are promising biodegradable implants, although the impact of magnesium on rectal anastomotic inflammation is poorly understood. Thus, we investigated the inflammatory effects of high-purity Mg staples in rectal anastomoses by in vivo luciferase reporter gene expression in transgenic mice, hematoxylin-eosin staining, immunohistochemistry, and Western blotting. As expected, strong IL-1β-mediated inflammation and inflammatory cell infiltration were observed 1 day after rectal anastomoses were stapled with high-purity Mg or Ti. However, inflammation and inflammatory cell infiltration decreased more robustly 4-7 days postoperation in tissues stapled with high-purity Mg. This rapid reduction in inflammation was confirmed by immunohistochemical analysis of IL-6 and TNF-α. Western blot also suggested that the reduced inflammatory response is due to suppressed TLR4/NF-κB signaling. In contrast, MCP-1, uPAR, and VEGF were abundantly expressed, in line with the notion that expression of these proteins is regulated by feedback between the VEGF and NF-κB pathways. In vitro expression of MCP-1, uPAR, and VEGF was also similarly high in primary rectal mucosal epithelial cells exposed to extracts from Mg staples, as measured by antibody array. Collectively, the results suggest that high-purity Mg staples suppress the inflammatory response during rectal anastomoses via TLR4/NF-κB and VEGF signaling.
Collapse
Affiliation(s)
- Jiazeng Xia
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Hui Chen
- Department of Pathology, Nanjing General Hospital , Jiangsu 210002, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, People's Republic of China
| | - Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Hao Wang
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Jian Guo
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Company Ltd. , 2 Haicheng Road, Changshu Economic and Technology Development Zone, Jiangsu 215513, People's Republic of China
| | - Changli Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Yigang Chen
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| |
Collapse
|
30
|
Schütz GJ, Weghuber J, Lanzerstorfer P, Sevcsik E. Protein Micropatterning Assay: Quantitative Analysis of Protein-Protein Interactions. Methods Mol Biol 2017; 1550:261-270. [PMID: 28188535 DOI: 10.1007/978-1-4939-6747-6_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Characterization, especially quantification, of protein interactions in live cells is usually not an easy endeavor. Here, we describe a straightforward method to identify and quantify the interaction of a membrane protein ("bait") and a fluorescently labeled interaction partner ("prey") (membrane-bound or cytosolic) in live cells using Total Internal Reflection Fluorescence microscopy. The bait protein is immobilized within patterns in the plasma membrane (e.g., via an antibody); the bait-prey interaction strength can be quantified by determining the prey bulk fluorescence intensity with respect to the bait patterns. This method is particularly suitable also for the analysis of weak, transient interactions that are not easily accessible with other methods.
Collapse
Affiliation(s)
- Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.
| | - Julian Weghuber
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Peter Lanzerstorfer
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
31
|
Hsu LH, Hsu PC, Liao TL, Feng AC, Chu NM, Kao SH. Pleural fluid osteopontin, vascular endothelial growth factor, and urokinase-type plasminogen activator levels as predictors of pleurodesis outcome and prognosticators in patients with malignant pleural effusion: a prospective cohort study. BMC Cancer 2016; 16:463. [PMID: 27411914 PMCID: PMC4944509 DOI: 10.1186/s12885-016-2529-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapidly growing cancer cells secrete growth-promoting polypeptides and have increased proteolytic activity, contributing to tumor progression and metastasis. Their presentation in malignant pleural effusion (MPE) and their predictive value for the outcome of pleurodesis and survival were studied. METHODS Between February 2011 and March 2012, MPE samples were prospectively collected from 61 patients. Twenty-five patients with non-malignant pleural effusion in the same period were included as controls. Pleural fluid osteopontin (OPN), vascular endothelial growth factor (VEGF), and urokinase-type plasminogen activator (uPA) concentrations were measured. RESULTS Patients with MPE had higher pleural fluid OPN, VEGF, and uPA concentrations than those with non-malignant pleural effusion, but only differences in VEGF were statistically significant (p = 0.045). Patients with distant metastases had significantly elevated pleural fluid VEGF concentrations than those without (p = 0.004). Pleural fluid OPN, VEGF, and uPA concentrations were positively correlated in most patients. However, there was no significant difference in pleural fluid OPN, VEGF, and uPA concentrations between patients with successful pleurodesis and those without. There was also no significant difference in cancer-specific survival between sub-groups with higher and lower pleural fluid OPN, VEGF, or uPA concentrations. Patients with successful pleurodesis had significantly longer cancer-specific survival than those without (p = 0.015). CONCLUSIONS Pleural fluid OPN, VEGF, and uPA concentrations are elevated in MPE but are not satisfactory predictors of pleurodesis outcome or survival. Patients with higher pleural fluid VEGF concentration have higher risk of distant metastasis. Evaluating the benefits of therapy targeting the VEGF pathway in these patients warrants further studies.
Collapse
Affiliation(s)
- Li-Han Hsu
- Ph.D. for Medical Biotechnology Program, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University Medical School, Taipei, Taiwan.,Division of Pulmonary and Critical Care Medicine, Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Pei-Chi Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Tien-Ling Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - An-Chen Feng
- Department of Research, Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Nei-Min Chu
- Department of Medical Oncology, Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Shu-Huei Kao
- Ph.D. for Medical Biotechnology Program, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
32
|
Stepanova V, Jayaraman PS, Zaitsev SV, Lebedeva T, Bdeir K, Kershaw R, Holman KR, Parfyonova YV, Semina EV, Beloglazova IB, Tkachuk VA, Cines DB. Urokinase-type Plasminogen Activator (uPA) Promotes Angiogenesis by Attenuating Proline-rich Homeodomain Protein (PRH) Transcription Factor Activity and De-repressing Vascular Endothelial Growth Factor (VEGF) Receptor Expression. J Biol Chem 2016; 291:15029-45. [PMID: 27151212 DOI: 10.1074/jbc.m115.678490] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 01/09/2023] Open
Abstract
Urokinase-type plasminogen activator (uPA) regulates angiogenesis and vascular permeability through proteolytic degradation of extracellular matrix and intracellular signaling initiated upon its binding to uPAR/CD87 and other cell surface receptors. Here, we describe an additional mechanism by which uPA regulates angiogenesis. Ex vivo VEGF-induced vascular sprouting from Matrigel-embedded aortic rings isolated from uPA knock-out (uPA(-/-)) mice was impaired compared with vessels emanating from wild-type mice. Endothelial cells isolated from uPA(-/-) mice show less proliferation and migration in response to VEGF than their wild type counterparts or uPA(-/-) endothelial cells in which expression of wild type uPA had been restored. We reported previously that uPA is transported from cell surface receptors to nuclei through a mechanism that requires its kringle domain. Intranuclear uPA modulates gene transcription by binding to a subset of transcription factors. Here we report that wild type single-chain uPA, but not uPA variants incapable of nuclear transport, increases the expression of cell surface VEGF receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2) by translocating to the nuclei of ECs. Intranuclear single-chain uPA binds directly to and interferes with the function of the transcription factor hematopoietically expressed homeodomain protein or proline-rich homeodomain protein (HHEX/PRH), which thereby lose their physiologic capacity to repress the activity of vehgr1 and vegfr2 gene promoters. These studies identify uPA-dependent de-repression of vegfr1 and vegfr2 gene transcription through binding to HHEX/PRH as a novel mechanism by which uPA mediates the pro-angiogenic effects of VEGF and identifies a potential new target for control of pathologic angiogenesis.
Collapse
Affiliation(s)
| | - Padma-Sheela Jayaraman
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Sergei V Zaitsev
- Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Khalil Bdeir
- From the Departments of Pathology and Laboratory Medicine and
| | - Rachael Kershaw
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Kelci R Holman
- College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Yelena V Parfyonova
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | - Ekaterina V Semina
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | | | - Vsevolod A Tkachuk
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | - Douglas B Cines
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
33
|
Hensler M, Vančurová I, Becht E, Palata O, Strnad P, Tesařová P, Čabiňaková M, Švec D, Kubista M, Bartůňková J, Špíšek R, Sojka L. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients. Oncoimmunology 2015; 5:e1102827. [PMID: 27141386 PMCID: PMC4839342 DOI: 10.1080/2162402x.2015.1102827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 01/26/2023] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that are released from a tumor into the bloodstream. The presence of CTCs in peripheral blood has been associated with metastasis formation in patients with breast cancer. Therefore, the molecular characterization of CTCs may improve diagnostics and support treatment decisions. We performed gene expression profiling to evaluate the enriched CTCs and peripheral blood mononuclear cells (PBMCs) of breast cancer patients using an expression panel of 55 breast cancer-associated genes. The study revealed several significantly differentially expressed genes in the CTC-positive samples, including a few that were exclusively expressed in these cells. However, the expression of these genes was barely detectable in the PBMC samples. Some genes were differentially expressed in PBMCs, and the expression of these genes was correlated with tumor grade and the formation of metastasis. In this study, we have shown that the enriched CTCs of breast cancer patients overexpress genes involved in proteolytic degradation of the extracellular matrix (ECM) as well as genes that play important roles in the epithelial-mesenchymal transition (EMT) process that may occur in these cells.
Collapse
Affiliation(s)
| | - Irena Vančurová
- Sotio, a.s., Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Etienne Becht
- Laboratory of Cancer, Immune Control and Escape, UMRS 1138 INSERM, Cordeliers Research Center , Paris, France
| | | | - Pavel Strnad
- Department of Gynecology and Obstetrics, Second Faculty of Medicine, Charles University and University Hospital Motol , Prague, Czech Republic
| | - Petra Tesařová
- Oncology Clinic, First Faculty of Medicine, Charles University , Prague, Czech Republic
| | - Michaela Čabiňaková
- Oncology Clinic, First Faculty of Medicine, Charles University , Prague, Czech Republic
| | - David Švec
- TATAA Biocenter, Göteborg, Sweden; Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Mikael Kubista
- TATAA Biocenter, Göteborg, Sweden; Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jiřina Bartůňková
- Sotio, a.s., Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radek Špíšek
- Sotio, a.s., Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Luděk Sojka
- Sotio, a.s., Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
34
|
Herkenne S, Paques C, Nivelles O, Lion M, Bajou K, Pollenus T, Fontaine M, Carmeliet P, Martial JA, Nguyen NQN, Struman I. The interaction of uPAR with VEGFR2 promotes VEGF-induced angiogenesis. Sci Signal 2015; 8:ra117. [PMID: 26577922 DOI: 10.1126/scisignal.aaa2403] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In endothelial cells, binding of vascular endothelial growth factor (VEGF) to the receptor VEGFR2 activates multiple signaling pathways that trigger processes such as proliferation, survival, and migration that are necessary for angiogenesis. VEGF-bound VEGFR2 becomes internalized, which is a key step in the proangiogenic signal. We showed that the urokinase plasminogen activator receptor (uPAR) interacted with VEGFR2 and described the mechanism by which this interaction mediated VEGF signaling and promoted angiogenesis. Knockdown of uPAR in human umbilical vein endothelial cells (HUVECs) impaired VEGFR2 signaling, and uPAR deficiency in mice prevented VEGF-induced angiogenesis. Upon exposure of HUVECs to VEGF, uPAR recruited the low-density lipoprotein receptor-related protein 1 (LRP-1) to VEGFR2, which induced VEGFR2 internalization. Thus, the uPAR-VEGFR2 interaction is crucial for VEGF signaling in endothelial cells.
Collapse
Affiliation(s)
- Stéphanie Herkenne
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium. Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy. Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Cécile Paques
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Olivier Nivelles
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Michelle Lion
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Khalid Bajou
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium. Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirates of Sharjah, United Arab Emirates
| | - Thomas Pollenus
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Marie Fontaine
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center (VRC), Vlaams Instituut Biotechnologie, 3000 Leuven, Belgium. Laboratory of Angiogenesis and Neurovascular Link, VRC, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joseph A Martial
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Ngoc-Quynh-Nhu Nguyen
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Ingrid Struman
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium.
| |
Collapse
|
35
|
Anwar S, Yanai T, Sakai H. Immunohistochemical Detection of Urokinase Plasminogen Activator and Urokinase Plasminogen Activator Receptor in Canine Vascular Endothelial Tumours. J Comp Pathol 2015; 153:278-82. [PMID: 26286429 DOI: 10.1016/j.jcpa.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemistry was used to assess the expression of urokinase plasminogen activator (uPA) and uPA receptor (uPAR) in 57 canine primary haemangiosarcomas (HSAs), 26 canine cutaneous haemangiomas (HAs) and in control sections of canine cutaneous granulation tissue. The correlation between uPA/uPAR expression and the Ki67 labelling index (LI) was estimated in the HSA and HA tissues. uPA was expressed by 73.2% and 75.0% of splenic HSAs and non-splenic HSAs, respectively. All HSA tissues tested expressed uPAR. Expression of both molecules was significantly higher in HSAs than in cutaneous HAs (3.8% for uPA and 30.7% for uPAR). The average Ki67 LI of the uPA(+)/uPAR(+) HSAs was significantly higher than that of uPA(-)/uPAR(+) HSAs and HA tissues (mean ± SDs 32.8 ± 15.3, 15.2 ± 7.2 and 2.1 ± 0.7, respectively; P <0.05). These results suggest that uPA and uPAR play a significant role in the malignant proliferation of canine HSA, regardless of the primary origin of the tumour.
Collapse
Affiliation(s)
- Sh Anwar
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt; Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - T Yanai
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - H Sakai
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan; Comparative Cancer Centre, Gifu University, 1-1 Yanagido, Gifu, Japan.
| |
Collapse
|
36
|
Post-transcriptional control of Amblyomin-X on secretion of vascular endothelial growth factor and expression of adhesion molecules in endothelial cells. Toxicon 2015; 101:1-10. [PMID: 25912945 DOI: 10.1016/j.toxicon.2015.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/20/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a pivotal process of homeostasis and tissue repair, but it also favours neovascularisation syndromes and cancer nutrition. The chemical mediation of angiogenesis is complex, involving a balance between serine proteases and their inhibitors. We addressed the mechanisms of action of a Kunitz serine protease inhibitor (KPI) on spontaneous angiogenesis, using Amblyomin-X, a KPI designed from the cDNA library of the Amblyomma cajennense tick. Amblyomin-X treatment (10-1000 ng/10 μL; each 48 h; 3 times) reduced the number of vessels in the subcutaneous dorsal tissue of male Swiss mice, as measured by intravital microscopy, haematoxylin-eosin staining, and PECAM-1 immunofluorescence labeling. Incubation of Amblyomin-X with t-End endothelial cells, a murine endothelial microvascular lineage, did not alter cell proliferation, cell-cycle phases, necrosis and apoptosis, and the production of nitric oxide and prostaglandin E2. Nevertheless, Amblyomin-X treatment reduced t-End migration and adhesion to Matrigel(®), and inhibited the VEGF-A secretion and VCAM-1 and β3 integrin expressions by posttranscriptional pathways. Together, data herein outline novel posttranscriptional mechanisms of KPIs on endothelial cells during angiogenesis and point out the possible application of Amblyomin-X as a local inhibitor to undesired neovascularisation process.
Collapse
|
37
|
Sevcsik E, Brameshuber M, Fölser M, Weghuber J, Honigmann A, Schütz GJ. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun 2015; 6:6969. [PMID: 25897971 PMCID: PMC4430820 DOI: 10.1038/ncomms7969] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/18/2015] [Indexed: 02/07/2023] Open
Abstract
The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.
Collapse
Affiliation(s)
- Eva Sevcsik
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Mario Brameshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Martin Fölser
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Julian Weghuber
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels 4600, Austria
| | - Alf Honigmann
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| |
Collapse
|
38
|
Laurenzana A, Fibbi G, Chillà A, Margheri G, Del Rosso T, Rovida E, Del Rosso M, Margheri F. Lipid rafts: integrated platforms for vascular organization offering therapeutic opportunities. Cell Mol Life Sci 2015; 72:1537-57. [PMID: 25552244 PMCID: PMC11113367 DOI: 10.1007/s00018-014-1814-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Research on the nanoscale membrane structures known as lipid rafts is relevant to the fields of cancer biology, inflammation and ischaemia. Lipid rafts recruit molecules critical to signalling and regulation of the invasion process in malignant cells, the leukocytes that provide immunity in inflammation and the endothelial cells that build blood and lymphatic vessels, as well as the patterning of neural networks. As angiogenesis is a common denominator, regulation of receptors and signalling molecules critical to angiogenesis is central to the design of new approaches aimed at reducing, promoting or normalizing the angiogenic process. The goal of this review is to highlight some of the key issues that indicate the involvement of endothelial cell lipid rafts at each step of so-called 'sprouting angiogenesis', from stimulation of the vascular endothelial growth factor to the choice of tip cells, activation of migratory and invasion pathways, recruitment of molecules that guide axons in vascular patterning and maturation of blood vessels. Finally, the review addresses opportunities for future studies to define how these lipid domains (and their constituents) may be manipulated to stimulate the so-called 'normalization' of vascular networks within tumors, and be identified as the main target, enabling the development of more efficient chemotherapeutics and cancer immunotherapies.
Collapse
Affiliation(s)
- Anna Laurenzana
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Gabriella Fibbi
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Anastasia Chillà
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Giancarlo Margheri
- Institute of Complex Systems (ISC), Consiglio Nazionale delle Ricerche (CNR), Florence, Italy
| | - Tommaso Del Rosso
- Department of Physics, Pontificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisabetta Rovida
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Mario Del Rosso
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Francesca Margheri
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
39
|
Lanzerstorfer P, Yoneyama Y, Hakuno F, Müller U, Höglinger O, Takahashi SI, Weghuber J. Analysis of insulin receptor substrate signaling dynamics on microstructured surfaces. FEBS J 2015; 282:987-1005. [PMID: 25627174 DOI: 10.1111/febs.13213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Insulin receptor substrates (IRS) are phosphorylated by activated insulin/insulin-like growth factor I receptor tyrosine kinases, with this comprising an initial key event for downstream signaling and bioactivities. Despite the structural similarities, increasing evidence shows that IRS family proteins have nonredundant functions. Although the specificity of insulin/insulin-like growth factor signaling and biological responses partly reflects which IRS proteins are dominantly phosphorylated by the receptors, the precise properties of the respective IRS interaction with the receptors remain elusive. In the present study, we utilized a technique that combines micropatterned surfaces and total internal reflection fluorescence microscopy for the quantitative analysis of the interaction between IRS proteins and insulin/insulin-like growth factor in living cells. Our experimental set-up enabled the measurement of equilibrium associations and interaction dynamics of these molecules with high specificity. We revealed that several domains of IRS including pleckstrin homology and phosphotyrosine binding domains critically determine the turnover rate of the receptors. Furthermore, we found significant differences among IRS proteins in the strength and kinetic stability of the interaction with the receptors, suggesting that these interaction properties could account for the diverse functions of IRS. In addition, our analyses using fluorescent recovery after photobleaching revealed that kinases such as c-Jun N-terminal kinase and IκB kinase β, which phosphorylate serine/threonine residues of IRS and contribute to insulin resistance, altered the interaction kinetics of IRS with insulin receptor. Collectively, our experimental set-up is a valuable system for quantitifying the physiological interaction of IRS with the receptors in insulin/insulin-like growth factor signaling.
Collapse
Affiliation(s)
- Peter Lanzerstorfer
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Wels, Austria
| | | | | | | | | | | | | |
Collapse
|
40
|
Wu J, Strawn TL, Luo M, Wang L, Li R, Ren M, Xia J, Zhang Z, Ma W, Luo T, Lawrence DA, Fay WP. Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-αVβ3 integrin cross talk. Arterioscler Thromb Vasc Biol 2015; 35:111-20. [PMID: 25378411 PMCID: PMC4270947 DOI: 10.1161/atvbaha.114.304554] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Plasminogen activator inhibitor-1 (PAI-1) regulates angiogenesis via effects on extracellular matrix proteolysis and cell adhesion. However, no previous study has implicated PAI-1 in controlling vascular endothelial growth factor (VEGF) signaling. We tested the hypothesis that PAI-1 downregulates VEGF receptor-2 (VEGFR-2) activation by inhibiting a vitronectin-dependent cooperative binding interaction between VEGFR-2 and αVβ3. APPROACH AND RESULTS We studied effects of PAI-1 on VEGF signaling in human umbilical vein endothelial cells. PAI-1 inhibited VEGF-induced phosphorylation of VEGFR-2 in human umbilical vein endothelial cells grown on vitronectin, but not on fibronectin or collagen. PAI-1 inhibited the binding of VEGFR-2 to β3 integrin, VEGFR-2 endocytosis, and intracellular signaling pathways downstream of VEGFR-2. The anti-VEGF effect of PAI-1 was mediated by 2 distinct pathways, one requiring binding to vitronectin and another requiring binding to very low-density lipoprotein receptor. PAI-1 inhibited VEGF-induced angiogenesis in vitro and in vivo, and pharmacological inhibition of PAI-1 promoted collateral arteriole development and recovery of hindlimb perfusion after femoral artery interruption. CONCLUSIONS PAI-1 inhibits activation of VEGFR-2 by VEGF by disrupting a vitronectin-dependent proangiogenic binding interaction involving αVβ3 and VEGFR-2. These results broaden our understanding of the roles of PAI-1, vitronectin, and endocytic receptors in regulating VEGFR-2 activation and suggest novel therapeutic strategies for regulating VEGF signaling.
Collapse
Affiliation(s)
- Jianbo Wu
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.).
| | - Tammy L Strawn
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Mao Luo
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Liqun Wang
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Rong Li
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Meiping Ren
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Jiyi Xia
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Zhuo Zhang
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Weizhong Ma
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Tingting Luo
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - Daniel A Lawrence
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - William P Fay
- From the Departments of Internal Medicine and Medical Pharmacology and Physiology (J.W., T.L.S., M.L., W.P.F.), the Research Service, Harry S. Truman Memorial Veterans Hospital (W.P.F.), University of Missouri School of Medicine, Columbia; the Drug Discovery Research Center, Luzhou Medical College, Luzhou, Sichuan, China (J.W., M.L., L.W., R.L., M.R., J.X., Z.Z., W.M., T.L.); and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| |
Collapse
|
41
|
Shen Y, Leng M, Yu H, Zhang Q, Luo X, Gregersen H, Wang G, Liu X. Effect of amphiphilic PCL-PEG nano-micelles on HepG2 cell migration. Macromol Biosci 2014; 15:372-84. [PMID: 25367414 DOI: 10.1002/mabi.201400376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/27/2014] [Indexed: 01/18/2023]
Abstract
Uptake of nanoparticles (NPs) affects cell migration but the mechanism remains poorly understood. In this study, the amphiphilic block PCL-PEG nano-micelles with well-controlled hydrophilic/hydrophobic chains were used to investigate the effect of internalized nano-micelles on cancer cell migration. Our results indicated that the nano-micelles with medium PCL and PEG chains increased expression of Rho GTPases and impeded focal adhesion components. This could enhance Hep G2 cell motility. The nano-micelles with large PCL and PEG chains showed lower Rho GTPase levels and higher FA components. This is consistent with slower cell migration. Understanding the mechanism of NPs regulating cell behaviors may help the design of efficient drug delivery systems based on polymer micelles.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao N, Zhu D. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics 2014; 7:118-28. [PMID: 25363018 DOI: 10.1039/c4mt00244j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Chemical, Biological and Bio-Engineering, North Carolina Agricultural and Technical State University, 1601 E Market St, McNair 329, Greensboro, North Carolina 27411, USA.
| | | |
Collapse
|
43
|
Shang RZ, Dai B, Wang DS. Role of uPA/uPAR system in tumors. Shijie Huaren Xiaohua Zazhi 2014; 22:1235-1240. [DOI: 10.11569/wcjd.v22.i9.1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urokinase type plasminogen activator (uPA) is a major activator of plasminogen, and uPA receptor is the specific receptor of uPA. The uPA/uPAR system regulates plasminogen activity, which participates in degradation and remodeling of the extracellular matrix (ECM), and is involved in many pathophysiological processes. In neoplasms, the activation of plasminogen into plasmin caused by the uPA/uPAR system induces the degradation of components in the basement membrane as well as in the ECM, which provides a favorable microenvironment for tumor invasion and metastasis. In addition, the uPA/uPAR system regulates tumor proliferation and angiogenesis. In this review, we will discuss the role of the uPA/uPAR system in tumors and its potential clinical implications.
Collapse
|
44
|
Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 2014; 9:e92151. [PMID: 24658383 PMCID: PMC3962377 DOI: 10.1371/journal.pone.0092151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022] Open
Abstract
The identification of the epidermal growth factor receptor (EGFR) as an oncogene has led to the development of several anticancer therapeutics directed against this receptor tyrosine kinase. However, drug resistance and low efficacy remain a severe challenge, and have led to a demand for novel systems for an efficient identification and characterization of new substances. Here we report on a technique which combines micro-patterned surfaces and total internal reflection fluorescence (TIRF) microscopy (μ-patterning assay) for the quantitative analysis of EGFR activity. It does not simply measure the phosphorylation of the receptor, but instead quantifies the interaction of the key signal transmitting protein Grb2 (growth factor receptor-bound protein 2) with the EGFR in a live cell context. It was possible to demonstrate an EGF dependent recruitment of Grb2 to the EGFR, which was significantly inhibited in the presence of clinically tested EGFR inhibitors, including small tyrosine kinase inhibitors and monoclonal antibodies targeting the EGF binding site. Importantly, in addition to its potential use as a screening tool, our experimental setup offers the possibility to provide insight into the molecular mechanisms of bait-prey interaction. Recruitment of the EGFR together with Grb2 to clathrin coated pits (CCPs) was found to be a key feature in our assay. Application of bleaching experiments enabled calculation of the Grb2 exchange rate, which significantly changed upon stimulation or the presence of EGFR activity inhibiting drugs.
Collapse
|
45
|
Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev 2014; 34:918-56. [PMID: 24549574 DOI: 10.1002/med.21308] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, there are several studies supporting the role of urokinase-type plasminogen activator (uPA) system in cancer. The association of uPA to its receptor triggers the conversion of plasminogen into plasmin. This process is regulated by the uPA inhibitors (PAI-1 and PAI-2). Plasmin promotes degradation of basement membrane and extracellular matrix (ECM) components as well as activation of ECM latent matrix metalloproteases. Degradation and remodeling of the surrounding tissues is crucial in the early steps of tumor progression by facilitating expansion of the tumor mass, release of tumor growth factors, activation of cytokines as well as induction of tumor cell proliferation, migration, and invasion. Hence, many tumors showed a correlation between uPA system component levels and tumor aggressiveness and survival. Therefore, this review summarizes the structure of the uPA system, its contribution to cancer progression, and the clinical relevance of uPA family members in cancer diagnosis. In addition, the review evaluates the significance of uPA system in the development of cancer-targeted therapies.
Collapse
Affiliation(s)
- Ahmed H Mekkawy
- Department of Surgery, Cancer Research Laboratories, St. George Hospital, University of New South Wales, Sydney, NSW 2217, Australia
| | | | | |
Collapse
|
46
|
Tkachuk VA. Role of multidomain structure of urokinase in regulation of growth and remodeling of vessels. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
47
|
Epithelial ovarian cancer-induced angiogenic phenotype of human omental microvascular endothelial cells may occur independently of VEGF signaling. Transl Oncol 2013; 6:703-14. [PMID: 24466373 DOI: 10.1593/tlo.13529] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 07/29/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) metastasizes transcoelomically to the peritoneum and omentum, and despite surgery and chemotherapy, recurrent disease is likely. Metastasis requires the induction of proangiogenic changes in the omental microenvironment and EOC-induced omental angiogenesis is currently a key therapeutic target. In particular, antiangiogenic therapies targeting the vascular endothelial growth factor A (VEGFA) pathway are commonly used, although, with limited effects. Here, using human omental microvascular endothelial cells (HOMECs) and ovarian cancer cell lines as an in vitro model, we show that factors secreted from EOC cells increased proliferation, migration, and tube-like structure formation in HOMECs. However, EOC-induced angiogenic tube-like formation and migration were unaffected by inhibition of tyrosine kinase activity of VEGF receptors 1 and 2 (Semaxanib; SU5416) or neutralization of VEGFA (neutralizing anti-VEGFA antibody), although VEGFA165-induced HOMEC migration and tube-like structure formation were abolished. Proteomic investigation of the EOC secretome identified several alternative angiogenesis-related proteins. We screened these for their ability to induce an angiogenic phenotype in HOMECs, i.e., proliferation, migration, and tube-like structure formation. Hepatocyte growth factor (HGF) and insulin-like growth factor binding protein 7 (IGFBP-7) increased all three parameters, and cathepsin L (CL) increased migration and tubule formation. Further investigation confirmed expression of the HGF receptor c-Met in HOMECs. HGF- and EOC-induced proliferation and angiogenic tube structure formation were blocked by the c-Met inhibitor PF04217903. Our results highlight key alternative angiogenic mediators for metastatic EOC, namely, HGF, CL, and IGFBP-7, suggesting that effective antiangiogenic therapeutic strategies for this disease require inhibition of multiple angiogenic pathways.
Collapse
|
48
|
Fomin ME, Zhou Y, Beyer AI, Publicover J, Baron JL, Muench MO. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One 2013; 8:e77255. [PMID: 24167566 PMCID: PMC3805584 DOI: 10.1371/journal.pone.0077255] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/02/2013] [Indexed: 12/23/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII). Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene (uPA-NOG mice). Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.
Collapse
Affiliation(s)
- Marina E. Fomin
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Yanchen Zhou
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Ashley I. Beyer
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Jean Publicover
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Jody L. Baron
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Marcus O. Muench
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Jeong SY, Martchenko M, Cohen SN. Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis. Proc Natl Acad Sci U S A 2013; 110:E4007-15. [PMID: 24085852 PMCID: PMC3801034 DOI: 10.1073/pnas.1316852110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The protective antigen component of Bacillus anthracis toxins can interact with at least three distinct proteins on the host cell surface, capillary morphogenesis gene 2 (CMG2), tumor endothelial marker 8, and β1-integrin, and, with the assistance of other host proteins, enters targeted cells by receptor-mediated endocytosis. Using an antisense-based phenotypic screen, we discovered the role of calpains in this process. We show that functions of a ubiquitous Ca(2+)-dependent cysteine protease, calpain-2, and of the calpain substrate talin-1 are exploited for association of anthrax toxin and its principal receptor, CMG2, with higher-order actin filaments and consequently for toxin entry into host cells. Down-regulated expression of calpain-2 or talin-1, or pharmacological interference with calpain action, did not affect toxin binding but reduced endocytosis and increased the survival of cells exposed to anthrax lethal toxin. Adventitious expression of wild-type talin-1 promoted toxin endocytosis and lethality, whereas expression of a talin-1 mutant (L432G) that is insensitive to calpain cleavage did not. Disruption of talin-1, which links integrin-containing focal adhesion complexes to the actin cytoskeleton, facilitated association of toxin bound to its principal cell-surface receptor, CMG2, with higher-order actin filaments undergoing dynamic disassembly and reassembly during endocytosis. Our results reveal a mechanism by which a bacterial toxin uses constitutively occurring calpain-mediated cytoskeletal rearrangement for internalization.
Collapse
Affiliation(s)
| | | | - Stanley N. Cohen
- Departments of Genetics and
- Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
50
|
Bifulco K, Longanesi-Cattani I, Liguori E, Arra C, Rea D, Masucci MT, De Rosa M, Pavone V, Stoppelli MP, Carriero MV. A urokinase receptor-derived peptide inhibiting VEGF-dependent directional migration and vascular sprouting. Mol Cancer Ther 2013; 12:1981-93. [PMID: 23939376 DOI: 10.1158/1535-7163.mct-13-0077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration, and uPAR₈₈₋₉₂ is the minimal sequence required to induce cell motility. We previously showed that soluble forms of uPAR elicit angiogenic responses through their uPAR₈₈₋₉₂ chemotactic sequence and that the synthetic peptide SRSRY exerts similar effects. By a drug design approach, based on the conformational analysis of the uPAR₈₈₋₉₂ sequence, we developed peptides (pERERY, RERY, and RERF) that potently inhibit signaling triggered by uPAR₈₈₋₉₂. In this study, we present evidence that these peptides are endowed also with a clear-cut antiangiogenic activity, although to different extents. The most active, RERF, prevents tube formation by human endothelial cells exposed to SRSRY. RERF also inhibits VEGF-triggered endothelial cell migration and cord-like formation in a dose-dependent manner, starting in the femtomolar range. RERF prevents F-actin polymerization, recruitment of αvβ3 integrin at focal adhesions, and αvβ3/VEGFR2 complex formation in endothelial cells exposed to VEGF. At molecular level, the inhibitory effect of RERF on VEGF signaling is shown by the decreased amount of phospho-FAK and phospho-Akt in VEGF-treated cells. In vivo, RERF prevents VEGF-dependent capillary sprouts originating from the host vessels that invaded angioreactors implanted in mice and neovascularization induced by subcorneal implantation of pellets containing VEGF in rabbits. Consistently, RERF reduced the growth and vascularization rate of tumors formed by HT1080 cells injected subcutaneously in the flanks of nude mice, indicating that RERF is a promising therapeutic agent for the control of diseases fuelled by excessive angiogenesis such as cancer.
Collapse
Affiliation(s)
- Katia Bifulco
- Corresponding Author: Maria Vincenza Carriero, Department of Experimental Oncology-National Cancer Institute of Naples, via M. Semmola, Naples 80131, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|