1
|
Pirri D, Tian S, Tardajos-Ayllon B, Irving SE, Donati F, Allen SP, Mammoto T, Vilahur G, Kabir L, Bennett J, Rasool Y, Pericleous C, Mazzei G, McAllan L, Scott WR, Koestler T, Zingg U, Birdsey GM, Miller CL, Schenkel T, Chambers EV, Dunning MJ, Serbanovic-Canic J, Botrè F, Mammoto A, Xu S, Osto E, Han W, Fragiadaki M, Evans PC. EPAS1 Attenuates Atherosclerosis Initiation at Disturbed Flow Sites Through Endothelial Fatty Acid Uptake. Circ Res 2024; 135:822-837. [PMID: 39234692 PMCID: PMC11424061 DOI: 10.1161/circresaha.123.324054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis. METHODS Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet). RESULTS En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation. CONCLUSIONS Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.
Collapse
Affiliation(s)
- Daniela Pirri
- School of Medicine and Population Health, INSIGNEO Institute, and the Bateson Centre (D.P., S.T., S.E.I., J.S.-C.), University of Sheffield, United Kingdom
- National Heart and Lung Institute (D.P., G.M.B.), Imperial College London, United Kingdom
| | - Siyu Tian
- School of Medicine and Population Health, INSIGNEO Institute, and the Bateson Centre (D.P., S.T., S.E.I., J.S.-C.), University of Sheffield, United Kingdom
- Centre for Biochemical Pharmacology (S.T., B.T.-A., P.C.E.), William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Blanca Tardajos-Ayllon
- Centre for Biochemical Pharmacology (S.T., B.T.-A., P.C.E.), William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Sophie E. Irving
- School of Medicine and Population Health, INSIGNEO Institute, and the Bateson Centre (D.P., S.T., S.E.I., J.S.-C.), University of Sheffield, United Kingdom
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy (F.D., F.B.)
| | - Scott P. Allen
- School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience (S.P.A.), University of Sheffield, United Kingdom
| | - Tadanori Mammoto
- Department of Pediatrics, Department of Pharmacology and Toxicology (T.M.), Medical College of Wisconsin, Milwaukee
| | - Gemma Vilahur
- Institut de Recerca Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, and CIBERCV (Centro de Investigación en Red de Enfermedades Cardiovasculares)-Instituto de Salud Carlos III, Barcelona, Spain (G.V.)
| | - Lida Kabir
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
| | - Jane Bennett
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
| | - Yasmin Rasool
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
- Institute of Clinical Sciences, Faculty of Medicine (Y.R., G.M., L.M., W.R.S.), Imperial College London, United Kingdom
| | - Charis Pericleous
- Department of Surgery, Bariatric Center, Limmattal Hospital, Schlieren, Switzerland (C.P., T.K., U.Z.)
| | - Guianfranco Mazzei
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
- Institute of Clinical Sciences, Faculty of Medicine (Y.R., G.M., L.M., W.R.S.), Imperial College London, United Kingdom
| | - Liam McAllan
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
- Institute of Clinical Sciences, Faculty of Medicine (Y.R., G.M., L.M., W.R.S.), Imperial College London, United Kingdom
| | - William R. Scott
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
- Institute of Clinical Sciences, Faculty of Medicine (Y.R., G.M., L.M., W.R.S.), Imperial College London, United Kingdom
| | - Thomas Koestler
- Department of Surgery, Bariatric Center, Limmattal Hospital, Schlieren, Switzerland (C.P., T.K., U.Z.)
| | - Urs Zingg
- Department of Surgery, Bariatric Center, Limmattal Hospital, Schlieren, Switzerland (C.P., T.K., U.Z.)
| | - Graeme M. Birdsey
- National Heart and Lung Institute (D.P., G.M.B.), Imperial College London, United Kingdom
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville (C.L.M.)
| | - Torsten Schenkel
- Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom (T.S.)
| | - Emily V. Chambers
- Sheffield Bioinformatics Core, School of Medicine and Population Health (E.V.C., M.J.D.), University of Sheffield, United Kingdom
| | - Mark J. Dunning
- Sheffield Bioinformatics Core, School of Medicine and Population Health (E.V.C., M.J.D.), University of Sheffield, United Kingdom
| | - Jovana Serbanovic-Canic
- School of Medicine and Population Health, INSIGNEO Institute, and the Bateson Centre (D.P., S.T., S.E.I., J.S.-C.), University of Sheffield, United Kingdom
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy (F.D., F.B.)
| | - Akiko Mammoto
- Department of Pediatrics and Department of Cell Biology, Neurobiology and Anatomy (A.M.), Medical College of Wisconsin, Milwaukee
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China (S.X.)
| | - Elena Osto
- Institute of Clinical Chemistry University Hospital and University of Zurich, Switzerland (E.O.)
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria (E.O.)
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore (W.H.)
| | - Maria Fragiadaki
- Centre for Translational Medicine and Therapeutics (M.F.), William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul C. Evans
- Centre for Biochemical Pharmacology (S.T., B.T.-A., P.C.E.), William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
2
|
Qian S, Chen G, Li R, Ma Y, Pan L, Wang X, Wang X. Disulfide stress and its role in cardiovascular diseases. Redox Biol 2024; 75:103297. [PMID: 39127015 PMCID: PMC11364009 DOI: 10.1016/j.redox.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of mortality in humans, and oxidative stress plays a pivotal role in disease progression. This phenomenon typically arises from weakening of the cellular antioxidant system or excessive accumulation of peroxides. This review focuses on a specialized form of oxidative stress-disulfide stress-which is triggered by an imbalance in the glutaredoxin and thioredoxin antioxidant systems within the cell, leading to the accumulation of disulfide bonds. The genesis of disulfide stress is usually induced by extrinsic pathological factors that disrupt the thiol-dependent antioxidant system, manifesting as sustained glutathionylation of proteins, formation of abnormal intermolecular disulfide bonds between cysteine-rich proteins, or irreversible oxidation of thiol groups to sulfenic and sulfonic acids. Disulfide stress not only precipitates the collapse of the antioxidant system and the accumulation of reactive oxygen species, exacerbating oxidative stress, but may also initiate cellular inflammation, autophagy, and apoptosis through a cascade of signaling pathways. Furthermore, this review explores the detrimental effects of disulfide stress on the progression of various CVDs including atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. This review also proposes several potential therapeutic avenues to improve the future treatment of CVDs.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Guanyu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinghua Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lin Pan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaoping Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
3
|
Savic N, Markelic M, Stancic A, Velickovic K, Grigorov I, Vucetic M, Martinovic V, Gudelj A, Otasevic V. Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis. Biofactors 2024; 50:810-827. [PMID: 38299761 DOI: 10.1002/biof.2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Recently, we characterized the ferroptotic phenotype in the liver of diabetic mice and revealed nuclear factor (erythroid-derived-2)-related factor 2 (Nrf2) inactivation as an integral part of hepatic injury. Here, we aim to investigate whether sulforaphane, an Nrf2 activator and antioxidant, prevents diabetes-induced hepatic ferroptosis and the mechanisms involved. Male C57BL/6 mice were divided into four groups: control (vehicle-treated), diabetic (streptozotocin-induced; 40 mg/kg, from Days 1 to 5), diabetic sulforaphane-treated (2.5 mg/kg from Days 1 to 42) and non-diabetic sulforaphane-treated group (2.5 mg/kg from Days 1 to 42). Results showed that diabetes-induced inactivation of Nrf2 and decreased expression of its downstream antiferroptotic molecules critical for antioxidative defense (catalase, superoxide dismutases, thioredoxin reductase), iron metabolism (ferritin heavy chain (FTH1), ferroportin 1), glutathione (GSH) synthesis (cystine-glutamate antiporter system, cystathionase, glutamate-cysteine ligase catalitic subunit, glutamate-cysteine ligase modifier subunit, glutathione synthetase), and GSH recycling - glutathione reductase (GR) were reversed/increased by sulforaphane treatment. In addition, we found that the ferroptotic phenotype in diabetic liver is associated with increased ferritinophagy and decreased FTH1 immunopositivity. The antiferroptotic effect of sulforaphane was further evidenced through the increased level of GSH, decreased accumulation of labile iron and lipid peroxides (4-hydroxy-2-nonenal, lipofuscin), decreased ferritinophagy and liver damage (decreased fibrosis, alanine aminotransferase, and aspartate aminotransferase). Finally, diabetes-induced increase in serum glucose and triglyceride level was significantly reduced by sulforaphane. Regardless of the fact that this study is limited by the use of one model of experimentally induced diabetes, the results obtained demonstrate for the first time that sulforaphane prevents diabetes-induced hepatic ferroptosis in vivo through the activation of Nrf2 signaling pathways. This nominates sulforaphane as a promising phytopharmaceutical for the prevention/alleviation of ferroptosis in diabetes-related pathologies.
Collapse
Affiliation(s)
- Nevena Savic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Markelic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ilijana Grigorov
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Vucetic
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Vesna Martinovic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjelija Gudelj
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Wang P, Xu X, Gu G, Guo Q, Rao Y, Yang K, Xi T, Yuan Y, Chen S, Qi X. Inhibition effect of copper-bearing metals on arterial neointimal hyperplasia via the AKT/Nrf2/ARE pathway in vitro and in vivo. Regen Biomater 2024; 11:rbae042. [PMID: 39027361 PMCID: PMC11256920 DOI: 10.1093/rb/rbae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/20/2024] Open
Abstract
In-stent restenosis can be caused by the activation, proliferation and migration of vascular smooth muscle cells (VSMCs), which affects long-term efficacy of interventional therapy. Copper (Cu) has been proved to accelerate the endothelialization and reduce thrombosis formation, but little is known about its inhibition effect on the excessive proliferation of VSMCs. In this study, 316L-Cu stainless steel and L605-Cu cobalt-based alloy with varying Cu content were fabricated and their effects on surface property, blood compatibility and VSMCs were studied in vitro and in vivo. CCK-8 assay and EdU assay indicated that the Cu-bearing metals had obvious inhibitory effect on proliferation of VSMCs. Blood clotting and hemolysis tests showed that the Cu-bearing metals had good blood compatibility. The inhibition effect of the Cu-bearing metals on migration of cells was detected by Transwell assay. Further studies showed that Cu-bearing metals significantly decreased the mRNA expressions of bFGF, PDGF-B, HGF, Nrf2, GCLC, GCLM, NQO1 and HO1. The phosphorylation of AKT and Nrf2 protein expressions in VSMCs were significantly decreased by Cu-bearing metals. Furthermore, it was also found that SC79 and TBHQ treatments could recover the protein expressions of phospho-AKT and Nrf2, and their downstream proteins as well. Moreover, 316L-Cu stent proved its inhibitory action on the proliferation of VSMCs in vivo. In sum, the results demonstrated that the Cu-bearing metals possessed apparent inhibitory effect on proliferation and migration of VSMCs via regulating the AKT/Nrf2/ARE pathway, showing the Cu-bearing metals as promising stent materials for long-term efficacy of implantation.
Collapse
Affiliation(s)
- Peng Wang
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaohe Xu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guisong Gu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qianwen Guo
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yanzhi Rao
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ke Yang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tong Xi
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yonghui Yuan
- Liaoning Cancer Hospital & Institute, Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Shanshan Chen
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xun Qi
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
5
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Liu Y, Cheng Y, Xiang N, Wang Z, Li S, Gong L, Wang X. Aerobic exercise improves BK Ca channel-mediated vasodilation in diabetic vascular smooth muscle via AMPK/Nrf2/HO-1 pathway. Acta Diabetol 2024; 61:425-434. [PMID: 38041787 DOI: 10.1007/s00592-023-02210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
AIMS This study aims to investigate the effect of aerobic exercise training on BKCa channel in diabetic vascular smooth muscle and explore the underlying mechanism. METHODS Control m/m mice and diabetic db/db mice were randomly assigned to sedentary groups (W and D) and exercise training groups (WE and DE). Mice in exercise groups underwent training sessions lasting for 12 weeks, with a speed of 12 m/min for 60 min, five times per week. The thoracic aorta was extracted isolated and examined for measurement of vascular structure, global levels of reactive oxygen species (ROS), vasodilation, and protein expression. Rat thoracic aorta vascular smooth muscle cells (USMCs) were cultured, and siRNA transfection was conducted to detect whether AMPK contributed to the regulation. ROS level and protein expression were measured. RESULTS Compared with control mice, diabetic mice had a larger vascular medium thickness, impaired BKCa-mediated vasodilation, a higher level of ROS, and a lower expression of BKCa α, BKCa β1, Nrf2, p-Nrf2, p-Nrf2/Nrf2, HO-1, and p-AMPK/AMPK. Exercise training increased the expression of BKCa α, Nrf2, p-Nrf2, p-Nrf2/Nrf2, HO-1, and p-AMPK/AMPK. AMPK deletion led to lower ROS levels and expression of BKCa α, β1, Nrf2, and HO-1 in USMCs cultured in high glucose conditions. CONCLUSIONS BKCa channel protein expression reduction in VSMCs contributes to vasodilation and vascular remodeling dysfunction in diabetes mellitus. Aerobic exercise can promote the expression of BKCa channel and improve BKCa-mediated vascular dysfunction in diabetic VSMCs through AMPK/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Physical Education, Jiangsu Normal University, Xuzhou, China
| | - Yue Cheng
- Department of Physical Education, Jiangsu Normal University, Xuzhou, China
| | - Na Xiang
- Caoxian People's Hospital, Heze, China
| | - Zhiyuan Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Siyu Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xingqi Wang
- Biomedical R&d Center, School of Life Science, Jiangsu Normal University, Tongshan District, No. 101, Shanghai Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Bao J, Gao Z, Hu Y, Ye L, Wang L. Transient receptor potential vanilloid type 1: cardioprotective effects in diabetic models. Channels (Austin) 2023; 17:2281743. [PMID: 37983306 PMCID: PMC10761101 DOI: 10.1080/19336950.2023.2281743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Cardiovascular disease, especially heart failure (HF) is the leading cause of death in patients with diabetes. Individuals with diabetes are prone to a special type of cardiomyopathy called diabetic cardiomyopathy (DCM), which cannot be explained by heart diseases such as hypertension or coronary artery disease, and can contribute to HF. Unfortunately, the current treatment strategy for diabetes-related cardiovascular complications is mainly to control blood glucose levels; nonetheless, the improvement of cardiac structure and function is not ideal. The transient receptor potential cation channel subfamily V member 1 (TRPV1), a nonselective cation channel, has been shown to be universally expressed in the cardiovascular system. Increasing evidence has shown that the activation of TRPV1 channel has a potential protective influence on the cardiovascular system. Numerous studies show that activating TRPV1 channels can improve the occurrence and progression of diabetes-related complications, including cardiomyopathy; however, the specific mechanisms and effects are unclear. In this review, we summarize that TRPV1 channel activation plays a protective role in the heart of diabetic models from oxidation/nitrification stress, mitochondrial function, endothelial function, inflammation, and cardiac energy metabolism to inhibit the occurrence and progression of DCM. Therefore, TRPV1 may become a latent target for the prevention and treatment of diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhang J, Xie SA, Wang J, Liu J, Liu Y, Zhou S, Li X, Han L, Pang W, Yao W, Fu Y, Kong W, Ye M, Zhou J. Echinatin maintains glutathione homeostasis in vascular smooth muscle cells to protect against matrix remodeling and arterial stiffening. Matrix Biol 2023; 119:1-18. [PMID: 36958467 DOI: 10.1016/j.matbio.2023.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Decreased vascular compliance of the large arteries as indicated by increased pulse wave velocity is shown to be associated with atherosclerosis and the related cardiovascular events. The positive correlation between arterial stiffening and disease progression derives a hypothesis that softening the arterial wall may protect against atherosclerosis, despite that the mechanisms controlling the cellular pathological changes in disease progression remain unknown. Here, we established a mechanical-property-based screening to look for compounds alleviating the arterial wall stiffness through their actions on the interaction between vascular smooth muscle cells (VSMCs) and the wall extracellular matrix (ECM). We found that echinatin, a chalcone preferentially accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata), reduced the stiffness of ECM surrounding cultured VSMCs. We examined the potential beneficial effects of echinatin on mitigating arterial stiffening and atherosclerosis, and explored the mechanistic basis by which the compound exert the effects. Administration of echinatin in mice fed on an adenine diet and in hyperlipidemia mice subjected to 5/6 nephrectomy mitigated arterial stiffening and atherosclerosis. Mechanistic insights were gained from the RNA-sequencing results showing that echinatin upregulated the expression of glutamate cysteine ligases (GCLs), both the catalytic (GCLC) and modulatory (GCLM) subunits. Further study indicated that upregulation of GCLC/GCLM in VSMCs by echinatin maintains the homeostasis of glutathione (GSH) metabolism; adequate availability of GSH is critical for counteracting arterial stiffening. As a consequence of regulating the GSH synthesis, echinatin inhibits ferroptosis and matrix remodeling that being considered two contributors of arterial stiffening and atherosclerosis. These data demonstrate a pivotal role of GSH dysregulation in damaging the proper VSMC-ECM interaction and uncover a beneficial activity of echinatin in preventing vascular diseases.
Collapse
Affiliation(s)
- Jianrui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Si-An Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Yueqi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Shuang Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Xixi Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Lili Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China
| | - Min Ye
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China.
| |
Collapse
|
9
|
Martín-Aragón Baudel M, Hong J, Hell JW, Nieves-Cintrón M, Navedo MF. Mechanisms of Vascular Ca V1.2 Channel Regulation During Diabetic Hyperglycemia. Handb Exp Pharmacol 2023; 279:41-58. [PMID: 36598607 DOI: 10.1007/164_2022_628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetes is a leading cause of disability and mortality worldwide. A major underlying factor in diabetes is the excessive glucose levels in the bloodstream (e.g., hyperglycemia). Vascular complications directly result from this metabolic abnormality, leading to disabling and life-threatening conditions. Dysfunction of vascular smooth muscle cells is a well-recognized factor mediating vascular complications during diabetic hyperglycemia. The function of vascular smooth muscle cells is exquisitely controlled by different ion channels. Among the ion channels, the L-type CaV1.2 channel plays a key role as it is the main Ca2+ entry pathway regulating vascular smooth muscle contractile state. The activity of CaV1.2 channels in vascular smooth muscle is altered by diabetic hyperglycemia, which may contribute to vascular complications. In this chapter, we summarize the current understanding of the regulation of CaV1.2 channels in vascular smooth muscle by different signaling pathways. We place special attention on the regulation of CaV1.2 channel activity in vascular smooth muscle by a newly uncovered AKAP5/P2Y11/AC5/PKA/CaV1.2 axis that is engaged during diabetic hyperglycemia. We further describe the pathophysiological implications of activation of this axis as it relates to myogenic tone and vascular reactivity and propose that this complex may be targeted for developing therapies to treat diabetic vascular complications.
Collapse
Affiliation(s)
| | - Junyoung Hong
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
10
|
Cinnamaldehyde Supplementation Reverts Endothelial Dysfunction in Rat Models of Diet-Induced Obesity: Role of NF-E2-Related Factor-2. Antioxidants (Basel) 2022; 12:antiox12010082. [PMID: 36670944 PMCID: PMC9854673 DOI: 10.3390/antiox12010082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Cinnamaldehyde (CN) is an activator of NF-E2-related factor 2 (Nrf2), which has the potential to reduce endothelial dysfunction, oxidative stress and inflammation in metabolic disorders. Our main purpose was to evaluate the effects of CN on vascular dysfunction in metabolic syndrome rats. Normal Wistar (W) rats were divided into eight groups: (1) Wistar (W) rats; (2) W rats fed with a high-fat diet (WHFD); (3) W rats fed with a sucrose diet (WS); (4) WHFD fed with a sucrose diet (WHFDS); (5) W treated with CN (WCn); (6) WS treated with CN (WSCn); (7) WHFD treated with CN (WHFDCn); (8) WHFDS treated with CN (WHFDSCn). CN treatment with 20 mg/kg/day was administered for 8 weeks. Evaluation of metabolic profile, inflammation, endothelial function, oxidative stress, eNOS expression levels and Nrf2 activation was performed. The metabolic dysfunction was greatly exacerbated in the WHFDS rats, accompanied by significantly higher levels of vascular oxidative stress, inflammation, and endothelial dysfunction. In addition, the WHFDS rats displayed significantly reduced activity of Nrf2 at the vascular level. CN significantly reverted endothelial dysfunction in the aortas and the mesenteric arteries. In addition, CN significantly decreased vascular oxidative damage, inflammation at vascular and perivascular level and up-regulated Nrf2 activity in the arteries of WHFDS rats. Cinnamaldehyde, an activator of Nrf2, can be used to improve metabolic profile, and to revert endothelial dysfunction in obesity and metabolic syndrome.
Collapse
|
11
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
12
|
Dodson M, Shakya A, Anandhan A, Chen J, Garcia JG, Zhang DD. NRF2 and Diabetes: The Good, the Bad, and the Complex. Diabetes 2022; 71:2463-2476. [PMID: 36409792 PMCID: PMC9750950 DOI: 10.2337/db22-0623] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Despite decades of scientific effort, diabetes continues to represent an incredibly complex and difficult disease to treat. This is due in large part to the multifactorial nature of disease onset and progression and the multiple organ systems affected. An increasing body of scientific evidence indicates that a key mediator of diabetes progression is NRF2, a critical transcription factor that regulates redox, protein, and metabolic homeostasis. Importantly, while experimental studies have confirmed the critical nature of proper NRF2 function in preventing the onset of diabetic outcomes, we have only just begun to scratch the surface of understanding the mechanisms by which NRF2 modulates diabetes progression, particularly across different causative contexts. One reason for this is the contradictory nature of the current literature, which can often be accredited to model discrepancies, as well as whether NRF2 is activated in an acute or chronic manner. Furthermore, despite therapeutic promise, there are no current NRF2 activators in clinical trials for the treatment of patients with diabetes. In this review, we briefly introduce the transcriptional programs regulated by NRF2 as well as how NRF2 itself is regulated. We also review the current literature regarding NRF2 modulation of diabetic phenotypes across the different diabetes subtypes, including a brief discussion of contradictory results, as well as what is needed to progress the NRF2 diabetes field forward.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
- Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
13
|
Ke J, Pan J, Lin H, Gu J. Diabetic cardiomyopathy: a brief summary on lipid toxicity. ESC Heart Fail 2022; 10:776-790. [PMID: 36369594 PMCID: PMC10053269 DOI: 10.1002/ehf2.14224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) is a serious epidemic around the globe, and cardiovascular diseases account for the majority of deaths in patients with DM. Diabetic cardiomyopathy (DCM) is defined as a cardiac dysfunction derived from DM without the presence of coronary artery diseases and hypertension. Patients with either type 1 or type 2 DM are at high risk of developing DCM and even heart failure. Metabolic disorders of obesity and insulin resistance in type 2 diabetic environments result in dyslipidaemia and subsequent lipid-induced toxicity (lipotoxicity) in organs including the heart. Although various mechanisms have been proposed underlying DCM, it remains incompletely understood how lipotoxicity alters cardiac function and how DM induces clinical heart syndrome. With recent progress, we here summarize the latest discoveries on lipid-induced cardiac toxicity in diabetic hearts and discuss the underlying therapies and controversies in clinical DCM.
Collapse
Affiliation(s)
- Jiahan Ke
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jianan Pan
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Hao Lin
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jun Gu
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
14
|
Wang M, Chen M, Guo R, Ding Y, Zhang H, He Y. The improvement of sulforaphane in type 2 diabetes mellitus (T2DM) and related complications: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Gaikwad DD, Bangar NS, Apte MM, Gvalani A, Tupe RS. Mineralocorticoid interaction with glycated albumin downregulates NRF - 2 signaling pathway in renal cells: Insights into diabetic nephropathy. Int J Biol Macromol 2022; 220:837-851. [PMID: 35987363 DOI: 10.1016/j.ijbiomac.2022.08.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/30/2022] [Accepted: 08/13/2022] [Indexed: 12/20/2022]
Abstract
In diabetic nephropathy, hyperglycemia elevates albumin glycation and also results in increased plasma aldosterone. Both glycation and aldosterone are reported to cause oxidative stress by downregulating the NRF-2 pathway and thereby resulting in reduced levels of antioxidants and glycation detoxifying enzymes. We hypothesize that an interaction between aldosterone and glycated albumin may be responsible for amplified oxidative stress and concomitant renal cell damage. Hence, human serum albumin was glycated by methylglyoxal (MGO) in presence of aldosterone. Different structural modifications of albumin, functional modifications and aldosterone binding were analyzed. HEK-293 T cells were treated with aldosterone+glycated albumin along with inhibitors of receptors for mineralocorticoid (MR) and advanced glycation endproducts (RAGE). Cellular MGO content, antioxidant markers (nitric oxide, glutathione, catalase, superoxide dismutase, glutathione peroxidase), detoxification enzymes (aldose reductase, Glyoxalase I, II), their expression along with NRF-2 and Keap-1 were measured. Aldosterone binds to albumin with high affinity which is static and spontaneous. Cell treatment by aldosterone+glycated albumin increased intracellular MGO, MR and RAGE expression; hampered antioxidant, detoxification enzyme activities and reduced NRF-2, Keap-1 expression. Thus, the glycated albumin-aldosterone interaction and its adverse effect on renal cells were confirmed. The results will help in developing better pharmacotherapeutic strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Deepesh D Gaikwad
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Mayura M Apte
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Armaan Gvalani
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
16
|
Cardiac NF-κB Acetylation Increases While Nrf2-Related Gene Expression and Mitochondrial Activity Are Impaired during the Progression of Diabetes in UCD-T2DM Rats. Antioxidants (Basel) 2022; 11:antiox11050927. [PMID: 35624791 PMCID: PMC9137621 DOI: 10.3390/antiox11050927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The onset of type II diabetes increases the heart’s susceptibility to oxidative damage because of the associated inflammation and diminished antioxidant response. Transcription factor NF-κB initiates inflammation while Nrf2 controls antioxidant defense. Current evidence suggests crosstalk between these transcription factors that may become dysregulated during type II diabetes mellitus (T2DM) manifestation. The objective of this study was to examine the dynamic changes that occur in both transcription factors and target genes during the progression of T2DM in the heart. Novel UC Davis T2DM (UCD-T2DM) rats at the following states were utilized: (1) lean, control Sprague-Dawley (SD; n = 7), (2) insulin-resistant pre-diabetic UCD-T2DM (Pre; n = 9), (3) 2-week recently diabetic UCD-T2DM (2Wk; n = 9), (4) 3-month diabetic UCD-T2DM (3Mo; n = 14), and (5) 6-month diabetic UCD-T2DM (6Mo; n = 9). NF-κB acetylation increased 2-fold in 3Mo and 6Mo diabetic animals compared to SD and Pre animals. Nox4 protein increased 4-fold by 6Mo compared to SD. Nrf2 translocation increased 82% in Pre compared to SD but fell 47% in 6Mo animals. GCLM protein fell 35% in 6Mo animals compared to Pre. Hmox1 mRNA decreased 45% in 6Mo animals compared to SD. These data suggest that during the progression of T2DM, NF-κB related genes increase while Nrf2 genes are suppressed or unchanged, perpetuating inflammation and a lesser ability to handle an oxidant burden altering the heart’s redox state. Collectively, these changes likely contribute to the diabetes-associated cardiovascular complications.
Collapse
|
17
|
Kim MJ, Jeon JH. Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23052846. [PMID: 35269986 PMCID: PMC8910922 DOI: 10.3390/ijms23052846] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a major component of cell damage and cell fat, and as such, it occupies a central position in the pathogenesis of metabolic disease. Nuclear factor-erythroid-derived 2-related factor 2 (Nrf2), a key transcription factor that coordinates expression of genes encoding antioxidant and detoxifying enzymes, is regulated primarily by Kelch-like ECH-associated protein 1 (Keap1). However, involvement of the Keap1–Nrf2 pathway in tissue and organism homeostasis goes far beyond protection from cellular stress. In this review, we focus on evidence for Nrf2 pathway dysfunction during development of several metabolic/inflammatory disorders, including diabetes and diabetic complications, obesity, inflammatory bowel disease, and autoimmune diseases. We also review the beneficial role of current molecular Nrf2 agonists and summarize their use in ongoing clinical trials. We conclude that Nrf2 is a promising target for regulation of numerous diseases associated with oxidative stress and inflammation. However, more studies are needed to explore the role of Nrf2 in the pathogenesis of metabolic/inflammatory diseases and to review safety implications before therapeutic use in clinical practice.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Endocrinology in Internal Medicine, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
18
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1689-1699. [DOI: 10.1093/jpp/rgac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
|
19
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
20
|
Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens. Antioxidants (Basel) 2021; 10:antiox10020309. [PMID: 33670526 PMCID: PMC7922506 DOI: 10.3390/antiox10020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.
Collapse
|
21
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
23
|
Chen X, Qi J, Wu Q, Jiang H, Wang J, Chen W, Mao A, Zhu M. High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression. Acta Biochim Biophys Sin (Shanghai) 2020; 52:506-516. [PMID: 32369110 DOI: 10.1093/abbs/gmaa023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia-mediated reactive oxygen species (ROS) accumulation plays an important role in hyperglycemia-induced endothelial injury. Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway inhibition participates in hyperglycemia-induced ROS accumulation. Our previous study indicated that SET8 overexpression inhibits high glucose-mediated ROS accumulation in human umbilical vein endothelial cells (HUVECs). In the present study, we hypothesize that SET8 may play a major role in high glucose-induced ROS accumulation via modulation of Keap1/Nrf2/ARE pathway. Our data indicated that high glucose mediated cell viability reduction, ROS accumulation, and Nrf2/ARE signal pathway inhibition via upregulation of Keap1 expression in HUVECs. Moreover, high glucose inhibited the expressions of SET8 and H4K20me1 (a downstream target of SET8). SET8 overexpression improved high glucose-mediated Keap1/Nrf2/ARE pathway inhibition and endothelial oxidation. Consistently, the effects of sh-SET8 were similar to that of high glucose treatment and were reversed by si-Keap1. A mechanistic study found that H4K20me1 was enriched at the Keap1 promoter region. SET8 overexpression attenuated Keap1 promoter activity and its expression, while mutant SET8 R259G did not affect Keap1 promoter activity and expression. The results of this study demonstrated that SET8 negatively regulates Keap1 expression, thus participating in high glucose-mediated Nrf2/ARE signal pathway inhibition and oxidative injury in HUVECs.
Collapse
Affiliation(s)
- Xiangyuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Qi
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qichao Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wankun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
25
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
26
|
Liu P, Kerins MJ, Tian W, Neupane D, Zhang DD, Ooi A. Differential and overlapping targets of the transcriptional regulators NRF1, NRF2, and NRF3 in human cells. J Biol Chem 2019; 294:18131-18149. [PMID: 31628195 PMCID: PMC6885608 DOI: 10.1074/jbc.ra119.009591] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor (erythroid 2)-like (NRF) transcription factors are a subset of cap'n'collar transcriptional regulators. They consist of three members, NRF1, NRF2, and NRF3, that regulate the expression of genes containing antioxidant-response elements (AREs) in their promoter regions. Although all NRF members regulate ARE-containing genes, each is associated with distinct roles. A comprehensive study of differential and overlapping DNA-binding and transcriptional activities of the NRFs has not yet been conducted. Here, we performed chromatin immunoprecipitation (ChIP)-exo sequencing, an approach that combines ChIP with exonuclease treatment to pinpoint regulatory elements in DNA with high precision, in conjunction with RNA-sequencing to define the transcriptional targets of each NRF member. Our approach, done in three U2OS cell lines, identified 31 genes that were regulated by all three NRF members, 27 that were regulated similarly by all three, and four genes that were differentially regulated by at least one NRF member. We also found genes that were up- or down-regulated by only one NRF member, with 84, 84, and 22 genes that were regulated by NRF1, NRF2, and NRF3, respectively. Analysis of the ARE motifs identified in ChIP peaks revealed that NRF2 prefers binding to AREs flanked by GC-rich regions and that NRF1 prefers AT-rich flanking regions. Thus, sequence preference, likely in combination with upstream signaling events, determines NRF member activation under specific cellular contexts. Our analysis provides a comprehensive description of differential and overlapping gene regulation by the transcriptional regulators NRF1, NRF2, and NRF3.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Michael J. Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Wang Tian
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Durga Neupane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
27
|
Aberami S, Nikhalashree S, Bharathselvi M, Biswas J, Sulochana KN, Coral K. Elemental concentrations in Choroid-RPE and retina of human eyes with age-related macular degeneration. Exp Eye Res 2019; 186:107718. [DOI: 10.1016/j.exer.2019.107718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/06/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022]
|
28
|
Shin JH, Kim KM, Jeong JU, Shin JM, Kang JH, Bang K, Kim JH. Nrf2-Heme Oxygenase-1 Attenuates High-Glucose-Induced Epithelial-to-Mesenchymal Transition of Renal Tubule Cells by Inhibiting ROS-Mediated PI3K/Akt/GSK-3 β Signaling. J Diabetes Res 2019; 2019:2510105. [PMID: 31467925 PMCID: PMC6701369 DOI: 10.1155/2019/2510105] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is thought to play a significant role in the advancement to chronic kidney disease and contributes to the deposition of extracellular matrix proteins and renal fibrosis relating to diabetic nephropathy. METHOD We studied the effect of Nrf2-HO-1 signaling on high-glucose- (HG-) induced EMT in normal human tubular epithelial cells, that is, HK2 cells. In short, we treated HK2 cells with HG and sulforaphane (SFN) as an Nrf2 activator. EMT was evaluated by the expression activity of the epithelial marker E-cadherin and mesenchymal markers such as vimentin and fibronectin. RESULTS Exposure of HK2 cells to HG (60 mM) activated the expression of vimentin and fibronectin but decreased E-cadherin. Treatment of HK2 cells with SFN caused HG-induced attenuation in EMT markers with activated Nrf2-HO-1. We found that SFN decreased HG-induced production of reactive oxygen species (ROS), phosphorylation of PI3K/Akt at serine 473, and inhibitory phosphorylation of serine/threonine kinase glycogen synthase kinase-3β (GSK-3β) at serine 9. Subsequently, these signaling led to the downregulation of the Snail-1 transcriptional factor and the recovery of E-cadherin. CONCLUSION The present study suggests that Nrf2-HO-1 signaling has an inhibitory role in the regulation of EMT through the modulation of ROS-mediated PI3K/Akt/GSK-3β activity, highlighting Nrf2-HO-1 and GSK-3β as potential therapeutic targets in diabetic nephropathy.
Collapse
Affiliation(s)
- Jong Ho Shin
- Division of Nephrology, Eulji University College of Medicine, Daejeon, Republic of Korea
| | - Kyeong Min Kim
- Division of Nephrology, Eulji University College of Medicine, Daejeon, Republic of Korea
| | - Jin Uk Jeong
- Division of Nephrology, Eulji University College of Medicine, Daejeon, Republic of Korea
| | - Jae Min Shin
- Division of Pathology, Eulji University College of Medicine, Daejeon, Republic of Korea
| | - Ju Hyung Kang
- Division of Pediatrics, Eulji University College of Medicine, Daejeon, Republic of Korea
| | - Kitae Bang
- Division of Nephrology, Eulji University College of Medicine, Daejeon, Republic of Korea
| | - Joo-Heon Kim
- Division of Pathology, Eulji University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Thorwald MA, Godoy-Lugo JA, Rodriguez GJ, Rodriguez MA, Jamal M, Kinoshita H, Nakano D, Nishiyama A, Forman HJ, Ortiz RM. Nrf2-related gene expression is impaired during a glucose challenge in type II diabetic rat hearts. Free Radic Biol Med 2019; 130:306-317. [PMID: 30316779 DOI: 10.1016/j.freeradbiomed.2018.10.405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
Abstract
Diabetic hearts are susceptible to damage from inappropriate activation of the renin angiotensin system (RAS) and hyperglycemic events both of which contribute to increased oxidant production. Prolonged elevation of oxidants impairs mitochondrial enzyme function, further contributing to metabolic derangement. Nuclear factor erythriod-2-related factor 2 (Nrf2) induces antioxidant genes including those for glutathione (GSH) synthesis following translocation to the nucleus. We hypothesized that an acute elevation in glucose impairs Nrf2-related gene expression in diabetic hearts, while AT1 antagonism would aid in Nrf2-mediated antioxidant production and energy replenishment. We used four groups (n = 6-8/group) of 25-week-old rats: 1) LETO (lean strain-control), 2) type II diabetic OLETF, 3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 wks), and 4) ARBM (4 weeks on ARB, 4 weeks off) to study the effects of acutely elevated glucose on cardiac mitochondrial function and Nrf2 signaling in the diabetic heart. Animals were gavaged with a glucose bolus (2 g/kg) and groups were dissected at T0, T180, and T360 minutes. Nrf2 mRNA was 32% lower in OLETF rats compared to LETO and remained suppressed in response to glucose. LETO Nrf2 mRNA increased 25% at T360 in response to glucose while no changes were observed in diabetic hearts. GCLC and GCLM mRNA decreased in diabetic hearts 33% and 44% respectively and remained suppressed in response to glucose while ARB treatment increased GCLM transcripts 90% at T180. These data illustrate that during T2DM and in response to glucose, cardiac Nrf2's adaptive response to environmental stressors such as glucose is impaired in diabetic hearts and that ARB treatment may aid Nrf2's impaired dynamic response.
Collapse
Affiliation(s)
- Max A Thorwald
- School of Natural Sciences, University of California, Merced, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
| | - Jose A Godoy-Lugo
- School of Natural Sciences, University of California, Merced, United States
| | - Gema J Rodriguez
- School of Natural Sciences, University of California, Merced, United States
| | | | - Mostofa Jamal
- Department of Forensic Medicine, Kagawa University Medical School, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Kagawa University Medical School, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Henry J Forman
- School of Natural Sciences, University of California, Merced, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, United States
| |
Collapse
|
30
|
Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol 2018; 9:1514. [PMID: 30425649 PMCID: PMC6218509 DOI: 10.3389/fphys.2018.01514] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and the associated complications represent a global burden on human health and economics. Cardiovascular diseases are the leading cause of death in diabetic patients, who have a 2–5 times higher risk of developing heart failure than age-matched non-diabetic patients, independent of other comorbidities. Diabetic cardiomyopathy is defined as the presence of abnormal cardiac structure and performance in the absence of other cardiac risk factors, such coronary artery disease, hypertension, and significant valvular disease. Hyperglycemia, hyperinsulinemia, and insulin resistance mediate the pathological remodeling of the heart, characterized by left ventricle concentric hypertrophy and perivascular and interstitial fibrosis leading to diastolic dysfunction. A change in the metabolic status, impaired calcium homeostasis and energy production, increased inflammation and oxidative stress, as well as an accumulation of advanced glycation end products are among the mechanisms implicated in the pathogenesis of diabetic cardiomyopathy. Despite a growing interest in the pathophysiology of diabetic cardiomyopathy, there are no specific guidelines for diagnosing patients or structuring a treatment strategy in clinical practice. Anti-hyperglycemic drugs are crucial in the management of diabetes by effectively reducing microvascular complications, preventing renal failure, retinopathy, and nerve damage. Interestingly, several drugs currently in use can improve cardiac health beyond their ability to control glycemia. GLP-1 receptor agonists and sodium-glucose co-transporter 2 inhibitors have been shown to have a beneficial effect on the cardiovascular system through a direct effect on myocardium, beyond their ability to lower blood glucose levels. In recent years, great improvements have been made toward the possibility of modulating the expression of specific cardiac genes or non-coding RNAs in vivo for therapeutic purpose, opening up the possibility to regulate the expression of key players in the development/progression of diabetic cardiomyopathy. This review summarizes the pathogenesis of diabetic cardiomyopathy, with particular focus on structural and molecular abnormalities occurring during its progression, as well as both current and potential future therapies.
Collapse
Affiliation(s)
- Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
Hasanvand D, Amiri I, Soleimani Asl S, Saidijam M, Shabab N, Artimani T. Effects of CeO 2 nanoparticles on the HO-1, NQO1, and GCLC expression in the testes of diabetic rats. Can J Physiol Pharmacol 2018; 96:963-969. [PMID: 29894645 DOI: 10.1139/cjpp-2017-0784] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CeO2 nanoparticles (CNPs) as effective ROS scavengers exhibit potent antioxidant activity. In this study the effect of CNPs investigated was on HO-1, NQO1, and GCLC expression in the streptozotocin (STZ)-induced diabetic rats. Twenty-four male Wistar rats were divided into 4 groups: controls did not receive any treatment; diabetic rats received STZ (60 mg/kg daily); CNPs group received CNPs 30 mg/kg daily for 2 weeks; and rats in STZ + CNPs group received CNPs 30 mg/kg daily for 2 weeks following STZ injection. Oxidative stress was evaluated by measurement of total antioxidant capacity (TAC) and total oxidative status (TOS levels). HO-1, NQO1, and GCLC expression was measured using quantitative real-time PCR. Following STZ injection, significant lower levels of TAC and higher levels of TOS were observed. CNPs could alleviate deleterious effects of diabetes through the enhancement of TAC levels and a significant decline in TOS levels. HO-1, NQO1, and GCLC expression in the diabetic rats were lower than controls. HO-1, NQO1, and GCLC was upregulated in the diabetic rats treated with CNPs. There were significant correlations between NQO1 and GCLC, NQO1 and HO-1, and between HO-1 and GCLC expression. Moreover, Nrf2 was associated with NQO1, GCLC, and HO-1 expression. CNPs as Nrf2 upregulator confer protection against oxidative stress in the testes of STZ-induced diabetic rats by upregulating HO-1, GCLC, and NQO1 cytoprotective genes.
Collapse
Affiliation(s)
- Davood Hasanvand
- a Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- b Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- b Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- c Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- c Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebe Artimani
- b Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
32
|
Paradoxical cardiotoxicity of intraperitoneally-injected epigallocatechin gallate preparation in diabetic mice. Sci Rep 2018; 8:7880. [PMID: 29777127 PMCID: PMC5959847 DOI: 10.1038/s41598-018-25901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Numerous clinical and bioavailability studies addressed epigallocatechin gallate (EGCG) beneficial effects; however, our previous work revealed EGCG-induced nephrotoxicity in the presence of diabetes. In this study, the potential myocardial toxicity of EGCG preparation (100 mg/kg/day, IP; 4 days) in diabetic mice injected with streptozotocin (STZ; 150 mg/kg, IP) was investigated. Diabetic mice receiving EGCG preparation showed electrocardiographic changes in addition to elevation of both serum creatine kinase-MB and troponin-I levels accompanied by microscopic myocardial damage. Additionally, myocardial NADPH oxidase, lipid peroxides and nitrotyrosine were increased in the vicinity of decreases of nuclear factor erythroid 2-related factor 2, hemeoxygenase-1, reduced glutathione, total antioxidant capacity, glutathione peroxidase and reductase and heat shock protein 90. Moreover, in diabetic mice, EGCG preparation increased myocardial nuclear factor-kappa B and tumor necrosis factor-alpha in addition to pronounced overexpression of inducible nitric oxide synthase and active caspase-3. Therefore, this study substantiates that EGCG-mediated deterioration compromises diabetes-induced cardiotoxicity to solidify our previous report for its potential nephrotoxicity in the same experimental setting.
Collapse
|
33
|
The mechanism of action and role of hydrogen sulfide in the control of vascular tone. Nitric Oxide 2017; 81:75-87. [PMID: 29097155 DOI: 10.1016/j.niox.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/21/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022]
Abstract
Our knowledge about hydrogen sulfide (H2S) significantly changed over the last two decades. Today it is considered as not only a toxic gas but also as a gasotransmitter with diverse roles in different physiological and pathophysiological processes. H2S has pleiotropic effects and its possible mechanisms of action involve (1) a reversible protein sulfhydration which can alter the function of the modified proteins similar to nitrosylation or phosphorylation; (2) direct antioxidant effects and (3) interaction with metalloproteins. Its effects on the human cardiovascular system are especially important due to the high prevalence of hypertension and myocardial infarction. The exact molecular targets that affect the vascular tone include the KATP channel, the endothelial nitric oxide synthase, the phosphodiesterase of the vascular smooth muscle cell and the cytochrome c oxidase among others and the combination of all these effects lead to the final result on the vascular tone. The relative role of each effect depends immensely on the used concentration and also on the used donor molecules but several other factors and experimental conditions could alter the final effect. The aim of the current review is to give a comprehensive summary of the current understanding on the mechanism of action and role of H2S in the regulation of vascular tone and to outline the obstacles that hinder the better understanding of its effects.
Collapse
|
34
|
The Sulforaphane and pyridoxamine supplementation normalize endothelial dysfunction associated with type 2 diabetes. Sci Rep 2017; 7:14357. [PMID: 29085055 PMCID: PMC5662716 DOI: 10.1038/s41598-017-14733-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
In this study we investigate pyridoxamine (PM) and/or sulforaphane (SFN) as therapeutic interventions to determine whether activators of NFE2-related factor 2 (Nrf2) can be used in addition with inhibitors of advanced glycation end products (AGE) formation to attenuate oxidative stress and improve endothelial dysfunction in type 2 diabetes. Goto-kakizaki (GK) rats, an animal model of non-obese type 2 diabetes, were treated with or without PM and/or SFN during 8 weeks and compared with age-matched Wistar rats. At the end of the treatment, nitric oxide (NO)-dependent and independent vasorelaxation in isolated aorta and mesenteric arteries were evaluated. Metabolic profile, NO bioavailability and vascular oxidative stress, AGE and Nrf2 levels were also assessed. Diabetic GK rats presented significantly lower levels of Nrf2 and concomitantly exhibited higher levels of oxidative stress and endothelial dysfunction. PM and SFN as monotherapy were capable of significantly improving endothelial dysfunction in aorta and mesenteric arteries decreasing vascular oxidative damage, AGE and HbA1c levels. Furthermore, SFN + PM proved more effective reducing systemic free fatty acids levels, normalizing endothelial function, NO bioavailability and glycation in GK rats. Activators of Nrf2 can be used therapeutically in association with inhibitors of AGE and cross-linking formation to normalize endothelial dysfunction in type 2 diabetes.
Collapse
|
35
|
Thompson JA, Larion S, Mintz JD, Belin de Chantemèle EJ, Fulton DJ, Stepp DW. Genetic Deletion of NADPH Oxidase 1 Rescues Microvascular Function in Mice With Metabolic Disease. Circ Res 2017; 121:502-511. [PMID: 28684629 DOI: 10.1161/circresaha.116.309965] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 06/19/2017] [Accepted: 07/05/2017] [Indexed: 01/04/2023]
Abstract
RATIONALE Early vascular changes in metabolic disease that precipitate the development of cardiovascular complications are largely driven by reactive oxygen species accumulation, yet the extent to which excess reactive oxygen species derive from specific NADPH oxidase isoforms remains ill defined. OBJECTIVE Identify the role of Nox1 in the development of microvascular dysfunction in metabolic disease. METHODS AND RESULTS Four genotypes were generated by breeding Nox1 knockout mice with db/db mice: lean (HdbWnox1), lean Nox1 knockout (HdbKnox1), obese (KdbWnox1), and obese KK (KdbKnox1). The degree of adiposity, insulin resistance, and dyslipidemia in KW mice was not influenced by Nox1 deletion as determined by nuclear magnetic resonance spectroscopy, glucose tolerance tests, and plasma analyses. Endothelium-dependent responses to acetylcholine in pressurized mesenteric arteries were reduced in KW versus HW (P<0.01), whereas deletion of Nox1 in KW mice normalized dilation. Vasodilator responses after inhibition of NO synthase blunted acetylcholine responses in KK and lean controls, but had no impact in KW, attributing recovered dilatory capacity in KK to normalization of NO. Acetylcholine responses were improved (P<0.05) with Tempol, and histochemistry revealed oxidative stress in KW animals, whereas Tempol had no impact and reactive oxygen species staining was negligible in KK. Blunted dilatory responses to an NO donor and loss of myogenic tone in KW animals were also rescued with Nox1 deletion. CONCLUSIONS Nox1 deletion reduces oxidant load and restores microvascular health in db/db mice without influencing the degree of metabolic dysfunction. Therefore, targeted Nox1 inhibition may be effective in the prevention of vascular complications.
Collapse
Affiliation(s)
- Jennifer A Thompson
- From the Vascular Biology Center (J.A.T., S.L., J.D.M., E.J.B.d.C., D.J.F., D.W.S.), Department of Physiology (D.W.S), Department of Pharmacology (D.J.F.), and Department of Medicine (S.L., E.J.B.d.C.), Augusta University, GA
| | - Sebastian Larion
- From the Vascular Biology Center (J.A.T., S.L., J.D.M., E.J.B.d.C., D.J.F., D.W.S.), Department of Physiology (D.W.S), Department of Pharmacology (D.J.F.), and Department of Medicine (S.L., E.J.B.d.C.), Augusta University, GA
| | - James D Mintz
- From the Vascular Biology Center (J.A.T., S.L., J.D.M., E.J.B.d.C., D.J.F., D.W.S.), Department of Physiology (D.W.S), Department of Pharmacology (D.J.F.), and Department of Medicine (S.L., E.J.B.d.C.), Augusta University, GA
| | - Eric J Belin de Chantemèle
- From the Vascular Biology Center (J.A.T., S.L., J.D.M., E.J.B.d.C., D.J.F., D.W.S.), Department of Physiology (D.W.S), Department of Pharmacology (D.J.F.), and Department of Medicine (S.L., E.J.B.d.C.), Augusta University, GA
| | - David J Fulton
- From the Vascular Biology Center (J.A.T., S.L., J.D.M., E.J.B.d.C., D.J.F., D.W.S.), Department of Physiology (D.W.S), Department of Pharmacology (D.J.F.), and Department of Medicine (S.L., E.J.B.d.C.), Augusta University, GA
| | - David W Stepp
- From the Vascular Biology Center (J.A.T., S.L., J.D.M., E.J.B.d.C., D.J.F., D.W.S.), Department of Physiology (D.W.S), Department of Pharmacology (D.J.F.), and Department of Medicine (S.L., E.J.B.d.C.), Augusta University, GA.
| |
Collapse
|
36
|
Kaikini AA, Kanchan DM, Nerurkar UN, Sathaye S. Targeting Mitochondrial Dysfunction for the Treatment of Diabetic Complications: Pharmacological Interventions through Natural Products. Pharmacogn Rev 2017; 11:128-135. [PMID: 28989247 PMCID: PMC5628518 DOI: 10.4103/phrev.phrev_41_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is a chronic hyperglycemic condition with deleterious effects on microcirculation, resulting in diabetic complications. Chronic hyperglycemia induces the generation of reactive oxygen species (ROS), which are the key pathological triggers in the development of diabetic complications. ROS are responsible for the activation of various pathways involved in the genesis of diabetic complications, mitochondrial dysfunction, as well as insulin resistance. The review describes normal mitochondrial physiology and abnormal alterations, which occur in response to hyperglycemia. Mitochondrial biogenesis is a highly regulated process mediated by several transcription factors, wherein mitochondrial fusion and fission occur in harmony in a normal healthy cell. However, this harmony is disrupted in hyperglycemic condition indicated by alteration in functions of essential transcription factors. Hyperglycemia-induced mitochondrial dysfunction plays a key role in diabetic complications, pancreatic β-cell dysfunction, as well as skeletal muscle insulin resistance as demonstrated by various in vitro, preclinical, and clinical studies. The review focuses on the various factors involved in mitochondrial biogenesis and maintenance of healthy mitochondrial function. Several phytoconstituents act through these pathways, either directly by stimulating biogenesis or indirectly by inhibiting or preventing dysfunction, and produce a beneficial effect on overall mitochondrial function. These phytoconstituents have enormous potential in amelioration of diabetic complications by restoring normal mitochondrial physiology and need detailed evaluation by preclinical and clinical studies. Such phytoconstituents can be included as nutraceuticals or adjuvant therapy to the mainstream treatment of diabetes.
Collapse
Affiliation(s)
- Aakruti Arun Kaikini
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Divya Manohar Kanchan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Urvi Narayan Nerurkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
Yan B, Ren J, Zhang Q, Gao R, Zhao F, Wu J, Yang J. Antioxidative Effects of Natural Products on Diabetic Cardiomyopathy. J Diabetes Res 2017; 2017:2070178. [PMID: 29181412 PMCID: PMC5664314 DOI: 10.1155/2017/2070178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/08/2017] [Accepted: 08/06/2017] [Indexed: 12/31/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes and results in high mortality. It is therefore imperative to develop novel therapeutics for the prevention or inhibition of the progression of DCM. Oxidative stress is a key mechanism by which diabetes induces DCM. Hence, targeting of oxidative stress-related processes in DCM could be a promising therapeutic strategy. To date, a number of studies have shown beneficial effects of several natural products on the attenuation of DCM via an antioxidative mechanism of action. The aim of the present review is to provide a comprehensive and concise overview of the previously reported antioxidant natural products in the inhibition of DCM progression. Clinical trials of the antioxidative natural products in the management of DCM are included. In addition, discussion and perspectives are further provided in the present review.
Collapse
Affiliation(s)
- Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Fenglian Zhao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
38
|
Fu J, Hou Y, Xue P, Wang H, Xu Y, Qu W, Zhang Q, Pi J. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabetic nephropathy. Sci Rep 2016; 6:34228. [PMID: 27721446 PMCID: PMC5056367 DOI: 10.1038/srep34228] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
While a plethora of studies support a therapeutic benefit of Nrf2 activation and ROS inhibition in diabetic nephropathy (dNP), the Nrf2 activator bardoxolone failed in clinical studies in type 2 diabetic patients due to cardiovascular side effects. Hence, alternative approaches to target Nrf2 are required. Intriguingly, the tetracycline antibiotic minocycline, which has been in clinical use for decades, has been shown to convey anti-inflammatory effects in diabetic patients and nephroprotection in rodent models of dNP. However, the mechanism underlying the nephroprotection remains unknown. Here we show that minocycline protects against dNP in mouse models of type 1 and type 2 diabetes, while caspase -3,-6,-7,-8 and -10 inhibition is insufficient, indicating a function of minocycline independent of apoptosis inhibition. Minocycline stabilizes endogenous Nrf2 in kidneys of db/db mice, thus dampening ROS-induced inflammasome activation in the kidney. Indeed, minocycline exerts antioxidant effects in vitro and in vivo, reducing glomerular markers of oxidative stress. Minocycline reduces ubiquitination of the redox-sensitive transcription factor Nrf2 and increases its protein levels. Accordingly, minocycline mediated Nlrp3 inflammasome inhibition and amelioration of dNP are abolished in diabetic Nrf2−/− mice. Taken together, we uncover a new function of minocycline, which stabilizes the redox-sensitive transcription factor Nrf2, thus protecting from dNP.
Collapse
|
40
|
Yamagishi SI, Matsui T. Protective role of sulphoraphane against vascular complications in diabetes. PHARMACEUTICAL BIOLOGY 2016; 54:2329-2339. [PMID: 26841240 DOI: 10.3109/13880209.2016.1138314] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Diabetes is a global health challenge. Although large prospective clinical trials have shown that intensive control of blood glucose or blood pressure reduces the risk for development and progression of vascular complications in diabetes, a substantial number of diabetic patients still experience renal failure and cardiovascular events, which could account for disabilities and high mortality rate in these subjects. Objective Sulphoraphane is a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, such as broccoli, cabbage and Brussels sprouts, and an inducer of phase II antioxidant and detoxification enzymes with anticancer properties. We reviewed here the protective role of sulphoraphane against diabetic vascular complications. Methods In this review, literature searches were undertaken in Medline and in CrossRef. Non-English language articles were excluded. Keywords [sulphoraphane and (diabetes, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, diabetic complications, vascular, cardiomyocytes, heart or glycation)] have been used to select the articles. Results There is accumulating evidence that sulphoraphane exerts beneficial effects on vascular damage in both cell culture and diabetic animal models via antioxidative properties. Furthermore, we have recently found that sulphoraphane inhibits in vitro formation of advanced glycation end products (AGEs), suppresses the AGE-induced inflammatory reactions in rat aorta by reducing receptor for AGEs (RAGE) expression and decreases serum levels of AGEs in humans. Conclusion These findings suggest that blockade of oxidative stress and/or the AGE-RAGE axis by sulphoraphane may be a novel therapeutic strategy for preventing vascular complications in diabetes.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- a Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications , Kurume University School of Medicine , Kurume , Japan
| | - Takanori Matsui
- a Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications , Kurume University School of Medicine , Kurume , Japan
| |
Collapse
|
41
|
Ji L, Liu Y, Zhang Y, Chang W, Gong J, Wei S, Li X, Qin L. The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high-glucose-induced injured H9c2 cardiomyoblasts. Can J Physiol Pharmacol 2016; 94:996-1006. [PMID: 27376621 DOI: 10.1139/cjpp-2015-0587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Edaravone, a radical scavenger, has been recognized as a potential protective agent for cardiovascular diseases. However, little is known about the effect of edaravone in cardiac complications associated with diabetes. Here, we have demonstrated that edaravone prevents cardiac dysfunction and apoptosis in the streptozotocin-induced type 1 diabetic rat heart. Mechanistic studies revealed that edaravone treatment improved cardiac function and restored superoxide dismutase levels. In addition, treatment of diabetic animals by edaravone increased protein expressions of sirtuin-1 (SIRT-1), peroxisome proliferator activated receptor γ coactivator α (PGC-1α), nuclear factor like-2 (NRF-2), and B cell lymphoma 2 (Bcl-2), and reduced protein expressions of Bax and Caspase-3 compared to the control group. High glucose incubation resulted in the production of reactive oxygen species (ROS) and cell death. Treatment of high-glucose-incubated H9c2 cells by edaravone reduced ROS production and cell death. In addition, the treatment of high-glucose-incubated H9c2 cells by edaravone increased the activity of antioxidative stress by increasing SIRT-1, PGC-1α, and NRF-2, and this treatment also reduced apoptosis by increasing Bcl-2 expression and reducing Bax and Caspase-3 expressions. Knockdown SIRT-1 with small interferer RNA abolished the effects of edaravone. Overall, our data demonstrated that edaravone may be an effective agent against the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lei Ji
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Yingying Liu
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ying Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, China
| | - Wenguang Chang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Junli Gong
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Shengnan Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xudong Li
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Ling Qin
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
42
|
Alves-Lopes R, Neves KB, Montezano AC, Harvey A, Carneiro FS, Touyz RM, Tostes RC. Internal Pudental Artery Dysfunction in Diabetes Mellitus Is Mediated by NOX1-Derived ROS-, Nrf2-, and Rho Kinase-Dependent Mechanisms. Hypertension 2016; 68:1056-64. [PMID: 27528061 DOI: 10.1161/hypertensionaha.116.07518] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/17/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Oxidative stress plays an important role in diabetes mellitus (DM)-associated vascular injury. DM is an important risk factor for erectile dysfunction. Functional and structural changes in internal pudendal arteries (IPA) can lead to erectile dysfunction. We hypothesized that downregulation of nuclear factor E2-related factor 2 (Nrf2), consequent to increased nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1)-derived reactive oxygen species (ROS), impairs IPA function in DM. IPA and vascular smooth muscle cells from C57BL/6 (control) and NOX1 knockout mice were used. DM was induced by streptozotocin in C57BL/6 mice. Functional properties of IPA were assessed using a myograph, protein expression and peroxiredoxin oxidation by Western blot, RNA expression by polymerase chain reaction, carbonylation by oxyblot assay, ROS generation by lucigenin, nitrotyrosine, and amplex red, and Rho kinase activity and nuclear accumulation of Nrf2 by ELISA. IPA from diabetic mice displayed increased contractions to phenylephrine (control 138.5±9.5 versus DM 191.8±15.5). ROS scavenger, Nrf2 activator, NOX1 and Rho kinase inhibitors normalized vascular function. High glucose increased ROS generation in IPA vascular smooth muscle cell. This effect was abrogated by Nrf2 activation and not observed in NOX1 knockout vascular smooth muscle cell. High glucose also increased levels of nitrotyrosine, protein oxidation/carbonylation, and Rho kinase activity, but reduced Nrf2 activity and expression of Nrf2-regulated genes (catalase [25.6±0.05%], heme oxygenase-1 [21±0.1%], and NAD(P)H quinone oxidoreductase 1 [22±0.1%]) and hydrogen peroxide levels. These effects were not observed in vascular smooth muscle cell from NOX1 knockout mice. In these cells, high glucose increased hydrogen peroxide levels. In conclusion, Rho kinase activation, via NOX1-derived ROS and downregulation of Nrf2 system, impairs IPA function in DM. These data suggest that Nrf2 is vasoprotective in DM-associated erectile dysfunction.
Collapse
Affiliation(s)
- Rhéure Alves-Lopes
- From the Ribeirao Preto Medical School (R.A.-L., K.B.N., F.S.C., R.C.T.) and Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N.), University of Sao Paulo, Brazil; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., A.H., R.M.T.).
| | - Karla B Neves
- From the Ribeirao Preto Medical School (R.A.-L., K.B.N., F.S.C., R.C.T.) and Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N.), University of Sao Paulo, Brazil; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., A.H., R.M.T.)
| | - Augusto C Montezano
- From the Ribeirao Preto Medical School (R.A.-L., K.B.N., F.S.C., R.C.T.) and Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N.), University of Sao Paulo, Brazil; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., A.H., R.M.T.)
| | - Adam Harvey
- From the Ribeirao Preto Medical School (R.A.-L., K.B.N., F.S.C., R.C.T.) and Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N.), University of Sao Paulo, Brazil; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., A.H., R.M.T.)
| | - Fernando S Carneiro
- From the Ribeirao Preto Medical School (R.A.-L., K.B.N., F.S.C., R.C.T.) and Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N.), University of Sao Paulo, Brazil; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., A.H., R.M.T.)
| | - Rhian M Touyz
- From the Ribeirao Preto Medical School (R.A.-L., K.B.N., F.S.C., R.C.T.) and Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N.), University of Sao Paulo, Brazil; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., A.H., R.M.T.)
| | - Rita C Tostes
- From the Ribeirao Preto Medical School (R.A.-L., K.B.N., F.S.C., R.C.T.) and Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N.), University of Sao Paulo, Brazil; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., A.H., R.M.T.)
| |
Collapse
|
43
|
Xu Z, Wang S, Ji H, Zhang Z, Chen J, Tan Y, Wintergerst K, Zheng Y, Sun J, Cai L. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci Rep 2016; 6:30252. [PMID: 27457280 PMCID: PMC4960533 DOI: 10.1038/srep30252] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
To develop a clinic-relevant protocol for systemic up-regulation of NFE2-related factor 2 (Nrf2) to prevent diabetic cardiomyopathy (DCM), male db/db and age-matched wild-type (WT) mice were given sulforaphane (SFN, an Nrf2 activator) and its natural source, broccoli sprout extract (BSE) by gavage every other day for 3 months, with four groups: vehicle (0.1 ml/10 g), BSE-low dose (estimated SFN availability at 0.5 mg/kg), BSE-high dose (estimated SFN availability at 1.0 mg/kg), and SFN (0.5 mg/kg). Cardiac function and pathological changes (hypertrophy, fibrosis, inflammation and oxidative damage) were assessed by echocardiography and histopathological examination along with Western blot and real-time PCR, respectively. Both BSE and SFN significantly prevented diabetes-induced cardiac dysfunction, hypertrophy and fibrosis. Mechanistically, BSE, like SFN, significantly up-regulated Nrf2 transcriptional activity, evidenced by the increased Nrf2 nuclear accumulation and its downstream gene expression. This resulted in a significant prevention of cardiac oxidative damage and inflammation. For all these preventive effects, BSE at high dose provided a similar effect as did SFN. These results indicated that BSE at high dose prevents DCM in a manner congruent with SFN treatment. Therefore, it suggests that BSE could potentially be used as a natural and safe treatment against DCM via Nrf2 activation.
Collapse
Affiliation(s)
- Zheng Xu
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China.,Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Shudong Wang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China.,Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Honglei Ji
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Jing Chen
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Yi Tan
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| | - Kupper Wintergerst
- Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA.,Division of Endocrinology, Department of Pediatrics, the University of Louisville, Louisville, KY, USA
| | - Yang Zheng
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
44
|
Sauvé M, Hui SK, Dinh DD, Foltz WD, Momen A, Nedospasov SA, Offermanns S, Husain M, Kroetsch JT, Lidington D, Bolz SS. Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes. Diabetes 2016; 65:1916-28. [PMID: 27207546 DOI: 10.2337/db15-1450] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/23/2016] [Indexed: 11/13/2022]
Abstract
Diabetes strongly associates with microvascular complications that ultimately promote multiorgan failure. Altered myogenic responsiveness compromises tissue perfusion, aggravates hypertension, and sets the stage for later permanent structural changes to the microcirculation. We demonstrate that skeletal muscle resistance arteries isolated from patients with diabetes have augmented myogenic tone, despite reasonable blood glucose control. To understand the mechanisms, we titrated a standard diabetes mouse model (high-fat diet plus streptozotocin [HFD/STZ]) to induce a mild increase in blood glucose levels. HFD/STZ treatment induced a progressive myogenic tone augmentation in mesenteric and olfactory cerebral arteries; neither HFD nor STZ alone had an effect on blood glucose or resistance artery myogenic tone. Using gene deletion models that eliminate tumor necrosis factor (TNF) or sphingosine kinase 1, we demonstrate that vascular smooth muscle cell TNF drives the elevation of myogenic tone via enhanced sphingosine-1-phosphate (S1P) signaling. Therapeutically antagonizing TNF (etanercept) or S1P (JTE013) signaling corrects this defect. Our investigation concludes that vascular smooth muscle cell TNF augments resistance artery myogenic vasoconstriction in a diabetes model that induces a small elevation of blood glucose. Our data demonstrate that microvascular reactivity is an early disease marker and advocate establishing therapies that strategically target the microcirculation.
Collapse
Affiliation(s)
- Meghan Sauvé
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sonya K Hui
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Danny D Dinh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Warren D Foltz
- Spatio-Temporal Targeting and Amplification of Radiation Response Innovation Centre, Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Abdul Momen
- Division of Cell and Molecular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada Division of Cell and Molecular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada Department of Medicine, University of Toronto, Toronto, Ontario, Canada Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey T Kroetsch
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Wang B, Aw TY, Stokes KY. The protection conferred against ischemia-reperfusion injury in the diabetic brain by N-acetylcysteine is associated with decreased dicarbonyl stress. Free Radic Biol Med 2016; 96:89-98. [PMID: 27083477 PMCID: PMC5079522 DOI: 10.1016/j.freeradbiomed.2016.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Diabetes, a risk factor for stroke, leads to elevated blood methylglyoxal (MG) levels. This is due to increased MG generation from the high glucose levels, and because diabetes impairs the glutathione (GSH)-glyoxalase system for MG elimination. MG glycates proteins and causes dicarbonyl stress. We investigated the contribution of MG and GSH to stroke outcome. Cerebral ischemia/reperfusion was performed in chemical-induced (streptozotocin) and genetic Akita mouse models of Type 1 diabetes. Brain infarction and functions of the GSH-dependent MG elimination pathway were determined. Diabetes increased post-ischemia-reperfusion cerebral infarct area in association with elevated MG and diminished GSH levels. Infarct size correlated with brain MG-to-GSH ratio. Expression of glutamate-cysteine ligase catalytic subunit (GCLc) was increased in diabetic brain. GCL activity was unchanged. MG-adducts were elevated in the diabetic brain and, using immunoprecipitation, we identified one of the bands as glycated occludin. This was accompanied by increased blood-brain barrier permeability. Total protein carbonyls were elevated, indicative of oxidative/carbonyl stress. N-acetylcysteine (NAC) corrected MG-to-GSH ratio, and reduced diabetic brain infarct area, occludin glycation and permeability. In addition, protein carbonyls were decreased by NAC. We showed that the diabetic brain exhibited a lower GSH-dependent potential for MG elimination, which contributed to increased protein glycation, and oxidative/carbonyl stress. The consequence of these changes was aggravated post-stroke brain injury. NAC administration protected against the exacerbated brain damage via restored GSH generation and normalization of the MG-to-GSH ratio and possibly by attenuating oxidative/carbonyl stress. This treatment could contribute to the successful management of stroke risk/outcome in diabetes.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Department of Geriatrics, Union hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tak Yee Aw
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Molecular and Tumor Virology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA.
| |
Collapse
|
46
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|
47
|
The Protective Effects of Isoliquiritigenin and Glycyrrhetinic Acid against Triptolide-Induced Oxidative Stress in HepG2 Cells Involve Nrf2 Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8912184. [PMID: 26904149 PMCID: PMC4745288 DOI: 10.1155/2016/8912184] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Triptolide (TP), an active ingredient of Tripterygium wilfordii Hook f., possesses a wide range of biological activities. Oxidative stress likely plays a role in TP-induced hepatotoxicity. Isoliquiritigenin (ISL) and glycyrrhetinic acid (GA) are potent hepatoprotection agents. The aim of the present study was to investigate whether Nrf2 pathway is associated with the protective effects of ISL and GA against TP-induced oxidative stress or not. HepG2 cells were treated with TP (50 nM) for 24 h after pretreatment with ISL and GA (5, 10, and 20 μM) for 12 h and 24 h, respectively. The results demonstrated that TP treatment significantly increased ROS levels and decreased GSH levels. Both ISL and GA pretreatment decreased ROS and meanwhile enhanced intracellular GSH content. Additionally, TP treatment obviously decreased the protein expression of Nrf2 and its target genes including HO-1 and MRP2 except NQO1. Moreover, both ISL and GA displayed activities as inducers of Nrf2 and increased the expression of HO-1, NQO1, and MRP2. Taken together the current data confirmed that ISL and GA could activate the Nrf2 antioxidant response in HepG2 cells, increasing the expression of its target genes which may be partly associated with their protective effects in TP-induced oxidative stress.
Collapse
|
48
|
Foote CA, Castorena-Gonzalez JA, Staiculescu MC, Clifford PS, Hill MA, Meininger GA, Martinez-Lemus LA. Brief serotonin exposure initiates arteriolar inward remodeling processes in vivo that involve transglutaminase activation and actin cytoskeleton reorganization. Am J Physiol Heart Circ Physiol 2015; 310:H188-98. [PMID: 26566730 DOI: 10.1152/ajpheart.00666.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
Inward remodeling of the resistance vasculature is strongly associated with life-threatening cardiovascular events. Previous studies have demonstrated that both actin polymerization and the activation of transglutaminases mediate early stages of the transition from a structurally normal vessel to an inwardly remodeled one. Ex vivo studies further suggest that a few hours of exposure to vasoconstrictor agonists induces inward remodeling in the absence of changes in intraluminal pressure. Here we report that a short, 10-min, topical exposure to serotonin (5-HT) + N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) was sufficient to initiate inward remodeling processes in rat cremasteric feed arterioles (100-200 μm lumen diameter), in vivo. Addition of the transglutaminase inhibitor, cystamine, blocked the in vivo remodeling. We further demonstrate that, in isolated arterioles, 5-HT + l-NAME activates transglutaminases and modulates the phosphorylation state of cofilin, a regulator of actin depolymerization. The 5-HT + l-NAME-induced remodeling process in isolated arterioles was also inhibited by an inhibitor of Lim Kinase, the kinase that phosphorylates and inactivates cofilin. Therefore, our results indicate that a brief vasoconstriction induced by 5-HT + l-NAME is able to reduce the passive structural diameter of arterioles through processes that are dependent on the activation of transglutaminases and Lim kinase, and the subsequent phosphorylation of cofilin.
Collapse
Affiliation(s)
- Christopher A Foote
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri; Department of Biological Engineering, University of Missouri-Columbia, Columbia, Missouri; and
| | - Marius C Staiculescu
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Philip S Clifford
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Michael A Hill
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri; Department of Biological Engineering, University of Missouri-Columbia, Columbia, Missouri; and
| |
Collapse
|
49
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 616] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
50
|
Lopes RA, Neves KB, Tostes RC, Montezano AC, Touyz RM. Downregulation of Nuclear Factor Erythroid 2-Related Factor and Associated Antioxidant Genes Contributes to Redox-Sensitive Vascular Dysfunction in Hypertension. Hypertension 2015; 66:1240-50. [PMID: 26503970 DOI: 10.1161/hypertensionaha.115.06163] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023]
Abstract
Oxidative stress is implicated in vascular dysfunction in hypertension. Although mechanisms regulating vascular pro-oxidants are emerging, there is a paucity of information on antioxidant systems, particularly nuclear factor erythroid 2-related factor (Nrf2), a master regulator of antioxidants enzymes. We evaluated the vascular regulatory role of Nrf2 in hypertension and examined molecular mechanisms, whereby Nrf2 influences redox signaling in small arteries and vascular smooth muscle cells from Wistar Kyoto (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Cells were stimulated with angiotensin II in the absence/presence of Nrf2 activators (bardoxolone/L-sulforaphane). Increased vascular reactive oxygen species production (chemiluminescence and amplex red) was associated with reduced Nrf2 activity in arteries (18%) and vascular smooth muscle cells (48%) in SHRSP (P<0.05 versus WKY). Expression of antioxidant enzymes, including superoxide dismutase-1 (64%), catalase (60%), peroxiredoxin 1 (75%), and glutathione peroxidase (54%), was reduced in SHRSP. L-sulforaphane reversed these effects. Angiotensin II increased nuclear accumulation of Nrf2 in vascular smooth muscle cells from WKY (197% versus vehicle), with blunted effects in SHRSP (44% versus vehicle). These responses were associated with increased antioxidant expression (superoxide dismutase-1, 32%; catalase, 42%; thioredoxin, 71%; peroxiredoxin, 1%-90%; quinone oxidoreductase, 84%; P<0.05 versus vehicle) and increased activity of superoxide dismutase-1, catalase, and thioredoxin in WKY but not in SHRSP, which exhibited increased Bach1 expression. Nrf2 activators blocked angiotensin II-induced reactive oxygen species generation. Vascular function demonstrated increased contractility (Emax WKY 113.4±5.6 versus SHRSP 159.0±8.3) and decreased endothelial-dependent relaxation (Emax WKY 88.6±3.1 versus SHRSP 74.6±3.2, P<0.05) in SHRSP, effects corrected by L-sulforaphane. Our findings suggest that Nrf2 downregulation contributes to redox-sensitive vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Rhéure A Lopes
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK (R.A.L., K.B.N., A.C.M., R.M.T.); and Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (R.A.L., K.B.N., R.C.T.)
| | - Karla B Neves
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK (R.A.L., K.B.N., A.C.M., R.M.T.); and Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (R.A.L., K.B.N., R.C.T.)
| | - Rita C Tostes
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK (R.A.L., K.B.N., A.C.M., R.M.T.); and Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (R.A.L., K.B.N., R.C.T.)
| | - Augusto C Montezano
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK (R.A.L., K.B.N., A.C.M., R.M.T.); and Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (R.A.L., K.B.N., R.C.T.)
| | - Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK (R.A.L., K.B.N., A.C.M., R.M.T.); and Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (R.A.L., K.B.N., R.C.T.).
| |
Collapse
|