1
|
Chen H, Liu L, Wang Y, Hong L, Pan J, Yu X, Dai H. Managing Cardiovascular Risk in Patients with Autoimmune Diseases: Insights from a Nutritional Perspective. Curr Nutr Rep 2024; 13:718-728. [PMID: 39078574 DOI: 10.1007/s13668-024-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW Autoimmune diseases manifest as an immune system response directed against endogenous antigens, exerting a significant influence on a substantial portion of the population. Notably, a leading contributor to morbidity and mortality in this context is cardiovascular disease (CVD). Intriguingly, individuals with autoimmune disorders exhibit a heightened prevalence of CVD compared to the general population. The meticulous management of CV risk factors assumes paramount importance, given the current absence of a standardized solution to this perplexity. This review endeavors to address this challenge from a nutritional perspective. RECENT FINDINGS Emerging evidence suggests that inflammation, a common thread in autoimmune diseases, also plays a pivotal role in the pathogenesis of CVD. Nutritional interventions aimed at reducing inflammation have shown promise in mitigating cardiovascular risk. The integration of nutritional strategies into the management plans for patients with autoimmune diseases offers a holistic approach to reducing cardiovascular risk. While conventional pharmacological treatments remain foundational, the addition of targeted dietary interventions can provide a complementary pathway to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Lu Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Yi Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Liqiong Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Jiahui Pan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Xiongkai Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Frostegård J, Åkesson A, Helte E, Söderlund F, Su J, Hua X, Rautiainen S, Wolk A. Antibodies Against Phosphorylcholine in Prediction of Cardiovascular Disease Among Women: A Population-Based Prospective Cohort Study. JACC. ADVANCES 2024; 3:101298. [PMID: 39741640 PMCID: PMC11686053 DOI: 10.1016/j.jacadv.2024.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 01/03/2025]
Abstract
Background Antibodies against phosphorylcholine (anti-PC) have been reported as associated with protection against atherosclerosis, cardiovascular disease (CVD), and other chronic inflammatory diseases. Underlying potential mechanisms have been demonstrated and include anti-inflammatory, clearance of dead cells, and inhibition of oxidized low-density lipoprotein effects. Objectives This study examined the role of IgM anti-PC and incident CVD among women, where less is known than among men in the general population. Methods In a total of 932 women, age 66 ± 6 years at baseline, from the population-based Swedish Mammography Cohort, IgM anti-PC levels of sera were measured using Enzyme Linked Immunosorbent assay. Prospective associations with any first CVD, ischemic heart disease (IHD), myocardial infarction (MI), and ischemic stroke were assessed using Cox proportional hazard regression, generating HRs and 95% CIs. The model was adjusted for potential confounding factors. Results Over the course of 16 years (13,033 person-years), we identified 113 cases of composite CVD, 69 cases of IHD, 44 cases of MI, and 50 cases of ischemic stroke. IgM anti-PC was statistically significantly inversely associated with risk of CVD, IHD, and MI, but not with ischemic stroke. Comparing the highest tertile with lowest, we observed multivariable-adjusted HR of 0.27 (95% CI: 0.11-0.68; P trend <0.01) for MI. Conclusions IgM anti-PC may play an active role in inhibition of CVD development in women, especially MI. Furthermore, IgM anti-PC levels may play a role in identifying those at risk.
Collapse
Affiliation(s)
- Johan Frostegård
- Units of Immunology and chronic disease, and Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Units of Immunology and chronic disease, and Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Helte
- Units of Immunology and chronic disease, and Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Söderlund
- Units of Immunology and chronic disease, and Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jun Su
- Units of Immunology and chronic disease, and Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiang Hua
- Units of Immunology and chronic disease, and Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Rautiainen
- Units of Immunology and chronic disease, and Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Units of Immunology and chronic disease, and Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Deroissart J, Binder CJ, Porsch F. Role of Antibodies and Their Specificities in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2154-2168. [PMID: 39114917 DOI: 10.1161/atvbaha.124.319843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by innate and adaptive immunity including humoral immunity. Importantly, antibody alterations achieved by genetic means or active and passive immunization strategies in preclinical studies can improve or aggravate atherosclerosis. Additionally, a wide range of epidemiological data demonstrate not only an association between the total levels of different antibody isotypes but also levels of antibodies targeting specific antigens with atherosclerotic cardiovascular disease. Here, we discuss the potential role of atherogenic dyslipidemia on the antibody repertoire and review potential antibody-mediated effector mechanisms involved in atherosclerosis development highlighting the major atherosclerosis-associated antigens that trigger antibody responses.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| |
Collapse
|
4
|
Parodis I, Sjöwall C. Immune Mechanisms and Biomarkers in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:9965. [PMID: 39337453 PMCID: PMC11432324 DOI: 10.3390/ijms25189965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The immense heterogeneity of the chronic, inflammatory, autoimmune disease systemic lupus erythematosus (SLE), both with regard to immunological aberrancies and clinical manifestations, poses diagnostic difficulties and challenges in the management of patients [...].
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 77 Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection/Rheumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
5
|
Müller FS, Aherrahrou Z, Grasshoff H, Heidorn MW, Humrich JY, Johanson L, Aherrahrou R, Reinberger T, Schulz A, ten Cate V, Robles AP, Koeck T, Rapp S, Lange T, Brachaczek L, Luebber F, Erdmann J, Heidecke H, Schulze-Forster K, Dechend R, Lackner KJ, Pfeiffer N, Ghaemi Kerahrodi J, Tüscher O, Schwarting A, Strauch K, Münzel T, Prochaska JH, Riemekasten G, Wild PS. Autoantibodies against the chemokine receptor 3 predict cardiovascular risk. Eur Heart J 2023; 44:4935-4949. [PMID: 37941454 PMCID: PMC10719496 DOI: 10.1093/eurheartj/ehad666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND AND AIMS Chronic inflammation and autoimmunity contribute to cardiovascular (CV) disease. Recently, autoantibodies (aAbs) against the CXC-motif-chemokine receptor 3 (CXCR3), a G protein-coupled receptor with a key role in atherosclerosis, have been identified. The role of anti-CXCR3 aAbs for CV risk and disease is unclear. METHODS Anti-CXCR3 aAbs were quantified by a commercially available enzyme-linked immunosorbent assay in 5000 participants (availability: 97.1%) of the population-based Gutenberg Health Study with extensive clinical phenotyping. Regression analyses were carried out to identify determinants of anti-CXCR3 aAbs and relevance for clinical outcome (i.e. all-cause mortality, cardiac death, heart failure, and major adverse cardiac events comprising incident coronary artery disease, myocardial infarction, and cardiac death). Last, immunization with CXCR3 and passive transfer of aAbs were performed in ApoE(-/-) mice for preclinical validation. RESULTS The analysis sample included 4195 individuals (48% female, mean age 55.5 ± 11 years) after exclusion of individuals with autoimmune disease, immunomodulatory medication, acute infection, and history of cancer. Independent of age, sex, renal function, and traditional CV risk factors, increasing concentrations of anti-CXCR3 aAbs translated into higher intima-media thickness, left ventricular mass, and N-terminal pro-B-type natriuretic peptide. Adjusted for age and sex, anti-CXCR3 aAbs above the 75th percentile predicted all-cause death [hazard ratio (HR) (95% confidence interval) 1.25 (1.02, 1.52), P = .029], driven by excess cardiac mortality [HR 2.51 (1.21, 5.22), P = .014]. A trend towards a higher risk for major adverse cardiac events [HR 1.42 (1.0, 2.0), P = .05] along with increased risk of incident heart failure [HR per standard deviation increase of anti-CXCR3 aAbs: 1.26 (1.02, 1.56), P = .03] may contribute to this observation. Targeted proteomics revealed a molecular signature of anti-CXCR3 aAbs reflecting immune cell activation and cytokine-cytokine receptor interactions associated with an ongoing T helper cell 1 response. Finally, ApoE(-/-) mice immunized against CXCR3 displayed increased anti-CXCR3 aAbs and exhibited a higher burden of atherosclerosis compared to non-immunized controls, correlating with concentrations of anti-CXCR3 aAbs in the passive transfer model. CONCLUSIONS In individuals free of autoimmune disease, anti-CXCR3 aAbs were abundant, related to CV end-organ damage, and predicted all-cause death as well as cardiac morbidity and mortality in conjunction with the acceleration of experimental atherosclerosis.
Collapse
Affiliation(s)
- Felix S Müller
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Marc W Heidorn
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Laurence Johanson
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Redouane Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Vincent ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
| | - Alejandro Pallares Robles
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
| | - Thomas Koeck
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Lukas Brachaczek
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Finn Luebber
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Harald Heidecke
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Kai Schulze-Forster
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Ralf Dechend
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
- Experimental and Clinical Research Center, a cooperation of Charité—Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Karl J Lackner
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jasmin Ghaemi Kerahrodi
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Molecular Biology (IMB), Working Group Neurocognitive Mechanisms of Mental Resilience, Ackermannweg 4, 55128 Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Münzel
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- Centre for Infection and Inflammation Lübeck (ZIEL), University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
- Institute for Molecular Biology (IMB), Mainz, Working Group Systems Medicine, Ackermannweg 4, 55128 Mainz, Germany
| |
Collapse
|
6
|
Raposo-Gutiérrez I, Rodríguez-Ronchel A, Ramiro AR. Atherosclerosis antigens as targets for immunotherapy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1129-1147. [PMID: 39196152 DOI: 10.1038/s44161-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 08/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.
Collapse
Affiliation(s)
- Irene Raposo-Gutiérrez
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Ana Rodríguez-Ronchel
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain.
| |
Collapse
|
7
|
Abstract
BACKGROUND Atrial fibrillation (AF) is by far the most common cardiac arrhythmia. In about 3% of individuals, AF develops as a primary disorder without any identifiable trigger (idiopathic or historically termed lone AF). In line with the emerging field of autoantibody-related cardiac arrhythmias, the objective of this study was to explore whether autoantibodies targeting cardiac ion channels can underlie unexplained AF. METHODS Peptide microarray was used to screen patient samples for autoantibodies. We compared patients with unexplained AF (n=37 pre-existent AF; n=14 incident AF on follow-up) to age- and sex-matched controls (n=37). Electrophysiological properties of the identified autoantibody were then tested in vitro with the patch clamp technique and in vivo with an experimental mouse model of immunization. RESULTS A common autoantibody response against Kir3.4 protein was detected in patients with AF and even before the development of clinically apparent AF. Kir3.4 protein forms a heterotetramer that underlies the cardiac acetylcholine-activated inwardly rectifying K+ current, IKACh. Functional studies on human induced pluripotent stem cell-derived atrial cardiomyocytes showed that anti-Kir3.4 IgG purified from patients with AF shortened action potentials and enhanced the constitutive form of IKACh, both key mediators of AF. To establish a causal relationship, we developed a mouse model of Kir3.4 autoimmunity. Electrophysiological study in Kir3.4-immunized mice showed that Kir3.4 autoantibodies significantly reduced atrial effective refractory period and predisposed animals to a 2.8-fold increased susceptibility to AF. CONCLUSIONS To our knowledge, this is the first report of an autoimmune pathogenesis of AF with direct evidence of Kir3.4 autoantibody-mediated AF.
Collapse
Affiliation(s)
- Ange Maguy
- Institute of Physiology, University of Bern, Switzerland (A.M.)
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Canada (J.-C.T., D.B.)
| | - David Busseuil
- Montreal Heart Institute, Université de Montréal, Canada (J.-C.T., D.B.)
| | - Jin Li
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Switzerland (J.L.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland (J.L.)
| |
Collapse
|
8
|
Frostegård J. Antibodies against Phosphorylcholine-Implications for Chronic Inflammatory Diseases. Metabolites 2023; 13:720. [PMID: 37367878 DOI: 10.3390/metabo13060720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Atherosclerosis and its main consequence, cardiovascular disease (CVD) are nowadays regarded as chronic inflammatory disease conditions, and CVD is the main cause of death in the world. Other examples of chronic inflammation are rheumatic and other autoimmune conditions, but also diabetes, obesity, and even osteoarthritis among others. In addition, infectious diseases can have traits in common with these conditions. Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease, where atherosclerosis is increased and the risk of CVD is very high. This is a clinical problem but could also shed light on the role of the immune system in atherosclerosis and CVD. Underlying mechanisms are of major interest and these are only partially known. Phosphorylcholine (PC) is a small lipid-related antigen, which is both a danger associated molecular pattern (DAMP), and a pathogen associated molecular pattern (PAMP). Antibodies against PC are ubiquitous and 5-10% of circulating IgM is IgM anti-PC. Anti-PC, especially IgM and IgG1 anti-PC, has been associated with protection in the chronic inflammatory conditions mentioned above, and develops during the first years of life, while being present at very low levels at birth. Animal experiments with immunization to raise anti-PC ameliorate atherosclerosis and other chronic inflammatory conditions. Potential mechanisms include anti-inflammatory, immune modulatory, clearance of dead cells and protection against infectious agents. An intriguing possibility is to raise anti-PC levels through immunization, to prevent and/or ameliorate chronic inflammation.
Collapse
Affiliation(s)
- Johan Frostegård
- IMM, Nobels Väg 13, Karolinska Institutet, 17165 Stockholm, Sweden
| |
Collapse
|
9
|
Wirestam L, Jönsson F, Enocsson H, Svensson C, Weiner M, Wetterö J, Zachrisson H, Eriksson P, Sjöwall C. Limited Association between Antibodies to Oxidized Low-Density Lipoprotein and Vascular Affection in Patients with Established Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24108987. [PMID: 37240332 DOI: 10.3390/ijms24108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Patients with systemic lupus erythematosus (SLE) are at an increased risk of cardiovascular disease. We aimed to evaluate whether antibodies to oxidized low-density lipoprotein (anti-oxLDL) were associated with subclinical atherosclerosis in patients with different SLE phenotypes (lupus nephritis, antiphospholipid syndrome, and skin and joint involvement). Anti-oxLDL was measured by enzyme-linked immunosorbent assay in 60 patients with SLE, 60 healthy controls (HCs) and 30 subjects with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). Intima-media thickness (IMT) assessment of vessel walls and plaque occurrence were recorded using high-frequency ultrasound. In the SLE cohort, anti-oxLDL was again assessed in 57 of the 60 individuals approximately 3 years later. The levels of anti-oxLDL in the SLE group (median 5829 U/mL) were not significantly different from those in the HCs group (median 4568 U/mL), while patients with AAV showed significantly higher levels (median 7817 U/mL). The levels did not differ between the SLE subgroups. A significant correlation was found with IMT in the common femoral artery in the SLE cohort, but no association with plaque occurrence was observed. The levels of anti-oxLDL antibodies in the SLE group were significantly higher at inclusion compared to 3 years later (median 5707 versus 1503 U/mL, p < 0.0001). Overall, we found no convincing support for strong associations between vascular affection and anti-oxLDL antibodies in SLE.
Collapse
Affiliation(s)
- Lina Wirestam
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Frida Jönsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Helena Enocsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Christina Svensson
- Department of Clinical Physiology, University Hospital and Department of Health, Medicine and Caring Sciences, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Maria Weiner
- Department of Nephrology in Linkoping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linkoping, Sweden
| | - Jonas Wetterö
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Helene Zachrisson
- Department of Clinical Physiology, University Hospital and Department of Health, Medicine and Caring Sciences, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Per Eriksson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| |
Collapse
|
10
|
Ronda N, Zimetti F, Adorni MP, Palumbo M, Karpouzas GA, Bernini F. Role of Lipoprotein Levels and Function in Atherosclerosis Associated with Autoimmune Rheumatic Diseases. Rheum Dis Clin North Am 2023; 49:151-163. [PMID: 36424022 DOI: 10.1016/j.rdc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune and inflammatory mediators in autoimmune rheumatic diseases induce modification in the activity of enzymes pivotal for lipid metabolism and promote a proatherogenic serum lipid profile. However, disturbances in low- and high-density lipoprotein composition and increased lipid oxidation also occur. Therefore, lipoprotein dysfunction causes intracellular cholesterol accumulation in macrophages, smooth muscle cells, and platelets. Overall, both plaque progression and acute cardiovascular events are promoted. Single rheumatic diseases may present a particular pattern of lipid disturbances so that standard methods to evaluate cardiovascular risk may not be accurate enough. In general, antirheumatic drugs positively affect lipid metabolism in these patients.
Collapse
Affiliation(s)
- Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma 43124, Italy.
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma 43124, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39/F, Parma 43125, Italy
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma 43124, Italy
| | - George A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute, Torrance, CA, USA
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma 43124, Italy
| |
Collapse
|
11
|
Abstract
The prognosis in systemic lupus erythematosus (SLE) has improved due to better treatment and care, but cardiovascular disease (CVD) still remains an important clinical problem, since the risk of CVD in SLE is much higher than among controls. Atherosclerosis is the main cause of CVD in the general population, and in SLE, increased atherosclerosis, especially the prevalence of atherosclerotic plaques, has been demonstrated. Atherosclerosis is an inflammatory condition, where immunity plays an important role. Interestingly, oxidized low-density lipoprotein, defective clearance of dead cells, and inflammation, with a pro-inflammatory T-cell profile are characteristics of both atherosclerosis and SLE. In addition to atherosclerosis as an underlying cause of CVD in SLE, there are also other non-mutually exclusive mechanisms, and the most important of these are antiphospholipid antibodies (aPL) leading to the antiphospholipid antibody syndrome with both arterial and venous thrombosis. aPL can cause direct pro-inflammatory and prothrombotic effects on endothelial and other cells and also interfere with the coagulation, for example, by inhibiting annexin A5 from its antithrombotic and protective effects. Antibodies against phosphorylcholine (anti-PC) and other small lipid-related epitopes, sometimes called natural antibodies, are negatively associated with CVD and atherosclerosis in SLE. Taken together, a combination of traditional risk factors such as hypertension and dyslipidemia, and nontraditional ones, especially aPL, inflammation, and low anti-PC are implicated in the increased risk of CVD in SLE. Close monitoring of both traditional risk factors and nontraditional ones, including treatment of disease manifestations, not lest renal disease in SLE, is warranted.
Collapse
Affiliation(s)
- Johan Frostegård
- Section of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Kubota M, Zhang BS, Li SY, Yoshida Y, Wang H, Adachi A, Matsutani T, Mine S, Machida T, Kamitsukasa I, Wada T, Aotsuka A, Kitamura K, Takizawa H, Kuroda H, Iwadate Y, Hiwasa T. Serum anti‑TSTD2 antibody as a biomarker for atherosclerosis‑induced ischemic stroke and chronic kidney disease. MEDICINE INTERNATIONAL 2022; 3:4. [PMID: 36699658 PMCID: PMC9829233 DOI: 10.3892/mi.2022.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Autoantibodies can be used in the early diagnosis and treatment of atherosclerosis-related diseases. Using ProtoArray® screening of samples from patients with atherosclerosis, the present study identified thiosulfate sulfurtransferase-like domain-containing 2 (TSTD2) as a novel atherosclerosis antigen. The serum TSTD2 antibody levels were then quantified using an amplified luminescent proximity homogeneous assay-linked immunosorbent assay. This demonstrated the levels of TSTD2 antibodies (TSTD2-Abs) to be significantly higher in patients with acute cerebral infarction or chronic kidney disease than in healthy donors. The TSTD2-Ab levels were also found to be higher in males, older adults, smokers, in those who consumed alcohol regularly, and in those with hypertension. Furthermore, Spearman's rank correlation analysis revealed TSTD2-Ab levels to be strongly associated with measures of atherosclerosis severity, including plaque scores, intima-media thickness of the carotid artery and the cardio-ankle vascular index. Thus, TSTD2-Abs may thus be a promising novel biomarker for atherosclerosis-related cerebral infarction and kidney disease.
Collapse
Affiliation(s)
- Masaaki Kubota
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Bo-Shi Zhang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan,Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan
| | - Hao Wang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan,Department of Anesthesiology, Stroke Center, The First Affiliated Hospital and Health Science Center, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Akihiko Adachi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan,Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba 287-0003, Japan,Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan,Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan,Department of Neurosurgery, Eastern Chiba Medical Center, Chiba 283-8686, Japan
| | - Ikuo Kamitsukasa
- Department of Neurology, Chiba Rosai Hospital, Chiba 290-0003, Japan,Department of Neurology, Chibaken Saiseikai Narashino Hospital, Chiba 275-8580, Japan
| | - Takeshi Wada
- Department of Internal Medicine, Chiba Aoba Municipal Hospital, Chiba 260-0852, Japan
| | - Akiyo Aotsuka
- Department of Internal Medicine, Chiba Aoba Municipal Hospital, Chiba 260-0852, Japan
| | | | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Hideyuki Kuroda
- Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama 340-0203, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan,Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan,Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan,Correspondence to: Professor Takaki Hiwasa, Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan NULL
| |
Collapse
|
13
|
Strohm L, Ubbens H, Münzel T, Daiber A, Daub S. Role of CD40(L)-TRAF signaling in inflammation and resolution-a double-edged sword. Front Pharmacol 2022; 13:995061. [PMID: 36267276 PMCID: PMC9577411 DOI: 10.3389/fphar.2022.995061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular diseases (CVD) and cardiovascular risk factors are the leading cause of death in the world today. According to the Global Burden of Disease Study, hypertension together with ischemic heart and cerebrovascular diseases is responsible for approximately 40% of all deaths worldwide. The major pathomechanism underlying almost all CVD is atherosclerosis, an inflammatory disorder of the vascular system. Recent large-scale clinical trials demonstrated that inflammation itself is an independent cardiovascular risk factor. Specific anti-inflammatory therapy could decrease cardiovascular mortality in patients with atherosclerosis (increased markers of inflammation). Inflammation, however, can also be beneficial by conferring so-called resolution, a process that contributes to clearing damaged tissue from cell debris upon cell death and thereby represents an essential step for recovery from, e.g., ischemia/reperfusion damage. Based on these considerations, the present review highlights features of the detrimental inflammatory reactions as well as of the beneficial process of immune cell-triggered resolution. In this context, we discuss the polarization of macrophages to either M1 or M2 phenotype and critically assess the role of the CD40L-CD40-TRAF signaling cascade in atherosclerosis and its potential link to resolution. As CD40L can bind to different cellular receptors, it can initiate a broad range of inflammatory processes that may be detrimental or beneficial. Likewise, the signaling of CD40L downstream of CD40 is mainly determined by activation of TRAF1-6 pathways that again can be detrimental or beneficial. Accordingly, CD40(L)-based therapies may be Janus-faced and require sophisticated fine-tuning in order to promote cardioprotection.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
14
|
L'Huillier AG, Pagano S, Baggio S, Meyer B, Andrey DO, Nehme M, Guessous I, Eberhardt CS, Huttner A, Posfay-Barbe KM, Yerly S, Siegrist CA, Kaiser L, Vuilleumier N. Autoantibodies against apolipoprotein A-1 after COVID-19 predict symptoms persistence. Eur J Clin Invest 2022; 52:e13818. [PMID: 35598178 PMCID: PMC9348059 DOI: 10.1111/eci.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND SARS-CoV-2 infection triggers different auto-antibodies, including anti-apolipoprotein A-1 IgGs (AAA1), which could be of concern as mediators of persistent symptoms. We determined the kinetics of AAA1 response over after COVID-19 and the impact of AAA1 on the inflammatory response and symptoms persistence. METHODS All serologies were assessed at one, three, six and twelve months in 193 hospital employees with COVID-19. ROC curve analyses and logistic regression models (LRM) were used to determine the prognostic accuracy of AAA1 and their association with patient-reported COVID-19 symptoms persistence at 12 months. Interferon (IFN)-α and-γ production by AAA1-stimulated human monocyte-derived macrophages (HMDM) was assessed in vitro. RESULTS AAA1 seropositivity was 93% at one month and declined to 15% at 12 months after COVID-19. Persistent symptoms at 12 months were observed in 45.1% of participants, with a predominance of neurological (28.5%), followed by general (15%) and respiratory symptoms (9.3%). Over time, strength of correlations between AAA1 and anti-SARS-COV2 serologies decreased, but remained significant. From the 3rd month on, AAA1 levels predicted persistent respiratory symptoms (area under the curves 0.72-0.74; p < 0.001), independently of disease severity, age and gender (adjusted odds ratios 4.81-4.94; p = 0.02), while anti-SARS-CoV-2 serologies did not. AAA1 increased IFN-α production by HMDMs (p = 0.03), without affecting the IFN-γ response. CONCLUSION COVID-19 induces a marked though transient AAA1 response, independently predicting one-year persistence of respiratory symptoms. By increasing IFN-α response, AAA1 may contribute to persistent symptoms. If and how AAA1 levels assessment could be of use for COVID-19 risk stratification remains to be determined.
Collapse
Affiliation(s)
- Arnaud G L'Huillier
- Department of Woman, Pediatric Infectious Diseases Unit, Child and Adolescent Medicine, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Stephanie Baggio
- Division of Prison Health, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Diego O Andrey
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mayssam Nehme
- Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Idris Guessous
- Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Christiane S Eberhardt
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Klara M Posfay-Barbe
- Department of Woman, Pediatric Infectious Diseases Unit, Child and Adolescent Medicine, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabine Yerly
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
15
|
Hu L, Liu J, Shimada H, Ito M, Sugimoto K, Hiwasa T, Zhou Q, Li J, Shen S, Wang H. Serum Anti-BRAT1 is a Common Molecular Biomarker for Gastrointestinal Cancers and Atherosclerosis. Front Oncol 2022; 12:870086. [PMID: 35656505 PMCID: PMC9152111 DOI: 10.3389/fonc.2022.870086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis (AS) and cancers are major global causes of mortality and morbidity. They also share common modifiable pathogenesis risk factors. As the same strategies used to predict AS could also detect certain cancers, we sought novel serum antibody biomarkers of cancers in atherosclerotic sera sampled by liquid biopsy. Using serological antigen identification by cDNA expression cloning (SEREX) and western blot, we screened and detected the antigens BRCA1-Associated ATM Activator 1 (BRAT1) and WD Repeat Domain 1 (WDR1) in the sera of patients with transient ischemic attacks (TIA). Amplified luminescence proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) established the upregulation of serum BRAT1 antibody (BRAT1-Abs) and WDR1 antibody (WDR1-Abs) in patients with AS-related diseases compared with healthy subjects. ROC and Spearman’s correlation analyses showed that BRAT1-Abs and WDR1-Abs could detect AS-related diseases. Thus, serum BRAT1-Abs and WDR1-Abs are potential AS biomarkers. We used online databases and AlphaLISA detection to compare relative antigen and serum antibody expression and found high BRAT1 and BRAT1-Abs expression in patients with GI cancers. Significant increases (> 0.6) in the AUC for BRAT1-Ab vs. esophageal squamous cell carcinoma (ESCC), gastric cancer, and colorectal cancer suggested that BRAT1-Ab exhibited better predictive potential for GI cancers than WDR1-Ab. There was no significant difference in overall survival (OS) between BRAT1-Ab groups (P = 0.12). Nevertheless, a log-rank test disclosed that the highest serum BRAT1-Ab levels were associated with poor ESCC prognosis at 5–60 weeks post-surgery. We validated the foregoing conclusions by comparing serum BRAT1-Ab and WDR1-Ab levels based on the clinicopathological characteristics of the patients with ESCC. Multiple statistical approaches established a correlation between serum BRAT1-Ab levels and platelet counts. BRAT1-Ab upregulation may enable early detection of AS and GI cancers and facilitate the delay of disease progression. Thus, BRAT1-Ab is a potential antibody biomarker for the diagnosis of AS and GI cancers and strongly supports the routine clinical application of liquid biopsy in chronic disease detection and diagnosis.
Collapse
Affiliation(s)
- Liubing Hu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiyue Liu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hideaki Shimada
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Ito
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuo Sugimoto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Qinghua Zhou
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jianshuang Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Si Shen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Frostegård J. Antibodies against phosphorylcholine and protection against atherosclerosis, cardiovascular disease and chronic inflammation. Expert Rev Clin Immunol 2022; 18:525-532. [PMID: 35471137 DOI: 10.1080/1744666x.2022.2070475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Chronic inflammatory diseases include cardiovascular disease (CVD) atherosclerosis, rheumatic and autoimmune diseases, and others, constitute a large part of the disease burden. It is therefore of major importance to improve understanding of underlying mechanisms, prediction and treatment. AREAS COVERED Broad fields including atherosclerosis, immunology and inflammation are covered, through searches on Pubmed and background knowledge. Phosphorylcholine (PC) is both a danger associated molecular pattern (DAMP), present on oxidized LDL (OxLDL) in atherosclerotic lesions and dead cells, and a pathogen associated molecular pattern (PAMP), present on microorganisms. IgM and IgG1 antibodies against PC (anti-PC) are associated with protection in several chronic inflammatory conditions, especially in CVD and atherosclerosis where most research has been done. PC-immunization ameliorates atherosclerosis in animal models and several potential underlying mechanisms have been proposed, including anti-inflammatory, decreased uptake of OxLDL in the artery wall, promotion of T regulatory cells. Anti-PC develops during the first years of life. Low levels of IgM and IgG1 anti-PC may be caused by lack of exposure to microorganisms, including nematodes and helminths among others. EXPERT OPINION anti-PC could improve prediction of clinical outcome and raising anti-PC could be developed into a novel therapy.
Collapse
Affiliation(s)
- Johan Frostegård
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 15, 17165 Stockholm, Sweden,
| |
Collapse
|
18
|
Wang J, He L, Li W, Lv S. A Role of IL-17 in Rheumatoid Arthritis Patients Complicated With Atherosclerosis. Front Pharmacol 2022; 13:828933. [PMID: 35211020 PMCID: PMC8861488 DOI: 10.3389/fphar.2022.828933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is mainly caused by joint inflammation. RA significantly increases the probability of cardiovascular disease. Although the progress of RA has been well controlled recently, the mortality of patients with RA complicated with cardiovascular disease is 1.5–3 times higher than that of patients with RA alone. The number of people with atherosclerosis in patients with RA is much higher than that in the general population, and atherosclerotic lesions develop more rapidly in patients with RA, which has become one of the primary factors resulting in the death of patients with RA. The rapid development of atherosclerosis in RA is induced by inflammation-related factors. Recent studies have reported that the expression of IL-17 is significantly upregulated in patients with RA and atherosclerosis. Simultaneously, there is evidence that IL-17 can regulate the proliferation, migration, and apoptosis of vascular endothelial cells and vascular smooth muscle cells through various ways and promote the secretion of several cytokines leading to the occurrence and development of atherosclerosis. Presently, there is no clear prevention or treatment plan for atherosclerosis in patients with RA. Therefore, this paper explores the mechanism of IL-17 in RA complicated with atherosclerosis and shows the reasons for the high incidence of atherosclerosis in patients with RA. It is hoped that the occurrence and development of atherosclerosis in patients with RA can be diagnosed or prevented in time in the early stage of lesions, and the prevention and treatment of cardiovascular complications in patients with RA can be enhanced to reduce mortality.
Collapse
Affiliation(s)
- Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linxi He
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shangbin Lv
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Depletion of Homeostatic Antibodies against Malondialdehyde-Modified Low-Density Lipoprotein Correlates with Adverse Events in Major Vascular Surgery. Antioxidants (Basel) 2022; 11:antiox11020271. [PMID: 35204154 PMCID: PMC8868419 DOI: 10.3390/antiox11020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
We aimed to investigate if major vascular surgery induces LDL oxidation, and whether circulating antibodies against malondialdehyde-modified LDL (MDA-LDL) alter dynamically in this setting. We also questioned relationships between these biomarkers and post-operative cardiovascular events. Major surgery can induce an oxidative stress response. However, the role of the humoral immune system in clearance of oxidized LDL following such an insult is unknown. Plasma samples were obtained from a prospective cohort of 131 patients undergoing major non-cardiac vascular surgery, with samples obtained preoperatively and at 24- and 72 h postoperatively. Enzyme-linked immunoassays were developed to assess MDA-LDL-related antibodies and complexes. Adverse events were myocardial infarction (primary outcome), and a composite of unstable angina, stroke and all-cause mortality (secondary outcome). MDA-LDL significantly increased at 24 h post-operatively (p < 0.0001). Conversely, levels of IgG and IgM anti-MDA-LDL, as well as IgG/IgM-MDA-LDL complexes and total IgG/IgM, were significantly lower at 24 h (each p < 0.0001). A smaller decrease in IgG anti-MDA-LDL related to combined clinical adverse events in a post hoc analysis, withstanding adjustment for age, sex, and total IgG (OR 0.13, 95% CI [0.03-0.5], p < 0.001; p value for trend <0.001). Major vascular surgery resulted in an increase in plasma MDA-LDL, in parallel with a decrease in antibody/complex levels, likely due to antibody binding and subsequent removal from the circulation. Our study provides novel insight into the role of the immune system during the oxidative stress of major surgery, and suggests a homeostatic clearance role for IgG antibodies, with greater reduction relating to downstream adverse events.
Collapse
|
20
|
Hoebinger C, Rajcic D, Hendrikx T. Oxidized Lipids: Common Immunogenic Drivers of Non-Alcoholic Fatty Liver Disease and Atherosclerosis. Front Cardiovasc Med 2022; 8:824481. [PMID: 35083304 PMCID: PMC8784685 DOI: 10.3389/fcvm.2021.824481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to inflammatory steatohepatitis (NASH) and cirrhosis, continues to rise, making it one of the major chronic liver diseases and indications for liver transplantation worldwide. The pathological processes underlying NAFLD not only affect the liver but are also likely to have systemic effects. In fact, growing evidence indicates that patients with NAFLD are at increased risk for developing atherosclerosis. Indeed, cardiovascular complications are the leading cause of mortality in NAFLD patients. Here, we aim to address common pathophysiological molecular pathways involved in chronic fatty liver disease and atherosclerosis. In particular, we focus on the role of oxidized lipids and the formation of oxidation-specific epitopes, which are important targets of host immunity. Acting as metabolic danger signals, they drive pro-inflammatory processes and thus contribute to disease progression. Finally, we summarize encouraging studies indicating that oxidized lipids are promising immunological targets to improve intervention strategies for NAFLD and potentially limit the risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Constanze Hoebinger
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Tim Hendrikx
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria.,Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
21
|
Yoshimatsu H, Kataoka K, Fujihashi K, Miyake T, Ono Y. A nasal double DNA adjuvant system induces atheroprotective IgM antibodies via dendritic cell-B-1a B cell interactions. Vaccine 2022; 40:1116-1127. [DOI: 10.1016/j.vaccine.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
|
22
|
Pagano S, Yerly S, Meyer B, Juillard C, Suh N, Le Terrier C, Daguer JP, Farrera-Soler L, Barluenga S, Piumatti G, Hartley O, Lemaitre B, Eberhardt CS, Siegrist CA, Eckerle I, Stringhini S, Guessous I, Kaiser L, Pugin J, Winssinger N, Vuilleumier N. SARS-CoV-2 infection as a trigger of humoral response against apolipoprotein A-1. Eur J Clin Invest 2021; 51:e13661. [PMID: 34324704 PMCID: PMC8420318 DOI: 10.1111/eci.13661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Unravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights into the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We aimed at determining (a) the association between anti-SARS-CoV-2 and anti-apoA-1 humoral response and (b) the degree of linear homology between SARS-CoV-2, apoA-1 and Toll-like receptor 2 (TLR2) epitopes. DESIGN Bioinformatics modelling coupled with mimic peptides engineering and competition experiments were used to assess epitopes sequence homologies. Anti-SARS-CoV-2 and anti-apoA-1 IgG as well as cytokines were assessed by immunoassays on a case-control (n = 101), an intensive care unit (ICU; n = 126) and a general population cohort (n = 663) with available samples in the pre and post-pandemic period. RESULTS Using bioinformatics modelling, linear sequence homologies between apoA-1, TLR2 and Spike epitopes were identified but without experimental evidence of cross-reactivity. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (P < .0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-day kinetics, reaching 82% for anti-apoA-1 seropositivity. In the general population, SARS-CoV-2-exposed individuals displayed higher anti-apoA-1 IgG seropositivity rates than nonexposed ones (34% vs 16.8%; P = .004). CONCLUSION COVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabine Yerly
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jean-Pierre Daguer
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Lluc Farrera-Soler
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Giovanni Piumatti
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of BioMedicine, Università della Svizzera Italiana, Lugano, Switzerland
| | - Oliver Hartley
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Switzerland
| | - Barbara Lemaitre
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Christiane S Eberhardt
- Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Isabella Eckerle
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Silvia Stringhini
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Idris Guessous
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jerome Pugin
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Nicolas Winssinger
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
23
|
Stafford G, Villén N, Roso-Llorach A, Troncoso-Mariño A, Monteagudo M, Violán C. Combined Multimorbidity and Polypharmacy Patterns in the Elderly: A Cross-Sectional Study in Primary Health Care. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179216. [PMID: 34501805 PMCID: PMC8430667 DOI: 10.3390/ijerph18179216] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/30/2023]
Abstract
(1) Background: The acquisition of multiple chronic diseases, known as multimorbidity, is common in the elderly population, and it is often treated with the simultaneous consumption of several prescription drugs, known as polypharmacy. These two concepts are inherently related and cause an undue burden on the individual. The aim of this study was to identify combined multimorbidity and polypharmacy patterns for the elderly population in Catalonia. (2) Methods: A cross-sectional study using electronic health records from 2012 was conducted. A mapping process was performed linking chronic disease categories to the drug categories indicated for their treatment. A soft clustering technique was then carried out on the final mapped categories. (3) Results: 916,619 individuals were included, with 93.1% meeting the authors’ criteria for multimorbidity and 49.9% for polypharmacy. A seven-cluster solution was identified: one non-specific (Cluster 1) and six specific, corresponding to diabetes (Cluster 2), neurological and musculoskeletal, female dominant (Clusters 3 and 4) and cardiovascular, cerebrovascular and renal diseases (Clusters 5 and 6), and multi-system diseases (Cluster 7). (4) Conclusions: This study utilized a mapping process combined with a soft clustering technique to determine combined patterns of multimorbidity and polypharmacy in the elderly population, identifying overrepresentation in six of the seven clusters with chronic disease and chronic disease-drug categories. These results could be applied to clinical practice guidelines in order to better attend to patient needs. This study can serve as the foundation for future longitudinal regarding relationships between multimorbidity and polypharmacy.
Collapse
Affiliation(s)
- Grant Stafford
- Programa de Máster en Salud Pública, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Unitat Transversal de Recerca (UTR), Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain; (A.R.-L.); (M.M.)
| | - Noemí Villén
- Àrea del Medicament i Servei de Farmàcia, Atenció Primària Barcelona Ciutat, Institut Català de la Salut (ICS), 08015 Barcelona, Spain; (N.V.); (A.T.-M.)
- Programa de Doctorat en Metodologia de la Recerca Biomèdica i Salut Pública, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Albert Roso-Llorach
- Unitat Transversal de Recerca (UTR), Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain; (A.R.-L.); (M.M.)
- Programa de Doctorat en Metodologia de la Recerca Biomèdica i Salut Pública, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Amelia Troncoso-Mariño
- Àrea del Medicament i Servei de Farmàcia, Atenció Primària Barcelona Ciutat, Institut Català de la Salut (ICS), 08015 Barcelona, Spain; (N.V.); (A.T.-M.)
- Department of Clinical Sciences, University of Barcelona and IDIBELL, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Mònica Monteagudo
- Unitat Transversal de Recerca (UTR), Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain; (A.R.-L.); (M.M.)
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Concepción Violán
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitaria per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08303 Mataró, Spain
- Correspondence:
| |
Collapse
|
24
|
Porsch F, Mallat Z, Binder CJ. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc Res 2021; 117:2544-2562. [PMID: 34450620 DOI: 10.1093/cvr/cvab285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immune mechanisms are critically involved in the pathogenesis of atherosclerosis and its clinical manifestations. Associations of specific antibody levels and defined B cell subsets with cardiovascular disease activity in humans as well as mounting evidence from preclinical models demonstrate a role of B cells and humoral immunity in atherosclerotic cardiovascular disease. These include all aspects of B cell immunity, the generation of antigen-specific antibodies, antigen presentation and co-stimulation of T cells, as well as production of cytokines. Through their impact on adaptive and innate immune responses and the regulation of many other immune cells, B cells mediate both protective and detrimental effects in cardiovascular disease. Several antigens derived from (oxidised) lipoproteins, the vascular wall and classical autoantigens have been identified. The unique antibody responses they trigger and their relationship with atherosclerotic cardiovascular disease are reviewed. In particular, we focus on the different effector functions of specific IgM, IgG, and IgE antibodies and the cellular responses they trigger and highlight potential strategies to target B cell functions for therapy.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Unversité Paris Descartes, Sorbonne Paris Cité, Paris France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Pepe M, Napoli G, Carulli E, Moscarelli M, Forleo C, Nestola PL, Biondi-Zoccai G, Giordano A, Favale S. Autoimmune diseases in patients undergoing percutaneous coronary intervention: A risk factor for in-stent restenosis? Atherosclerosis 2021; 333:24-31. [PMID: 34418682 DOI: 10.1016/j.atherosclerosis.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Despite the relation between autoimmune diseases and increased atherosclerotic risk is established, the influence of autoimmune disorders on in-stent restenosis (ISR) after percutaneous coronary intervention (PCI) is only partly known. ISR is an aberrant reparative process mainly characterized by an increased number of vascular smooth muscle cells and excessive deposition of extracellular proteoglycans and type III collagen. Chronic inflammation, always present in autoimmune diseases, modulates the endothelial response to PCI. Aim of this review is to resume the current evidence on the association between ISR and autoimmune diseases, focusing on pathogenic mechanisms and therapeutic targets. METHODS We conducted a comprehensive review of the literature on the relationship between ISR and insulin-dependent diabetes mellitus (IDDM), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), antiphospholipid-antibodies syndrome (APS), inflammatory bowel diseases (IBD), and Hashimoto's thyroiditis (HT). RESULTS Patients affected with IDDM, RA, SLE, APS, IBD and HT proved to face higher rates of ISR compared to the general population. The endothelial dysfunction seems the principal common pathogenic pathway for ISR and is attributed to both the immune system disorder and the systemic inflammation. Some evidence suggested that methotrexate and anti-tumor necrosis factor treatments can be effective in reducing ISR, while antibodies against vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 showed to reduce neointimal hyperplasia in animal models. CONCLUSIONS Autoimmune diseases are a risk factor for ISR. The study of the potential cardiovascular benefits of the current therapies, mainly anti-inflammatory drugs, and the pursuit of innovative treatments appear of paramount interest.
Collapse
Affiliation(s)
- Martino Pepe
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy.
| | - Gianluigi Napoli
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| | - Eugenio Carulli
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| | - Marco Moscarelli
- Cardiothoracic and Vascular Department, Maria Cecilia Hospital GVM Care & Research, Via Via Corriera 1,Cotignola, 48033, Ravenna, Italy
| | - Cinzia Forleo
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| | - Palma Luisa Nestola
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Republica 79, Latina, 04100,Latina, Italy; Mediterranea Cardiocentro, Via Orazio 2, Napoli, 80122, Napoli, Italy
| | - Arturo Giordano
- Invasive Cardiology Unit, "Pineta Grande" Hospital, Via Domitiana km 30, Castel Volturno, 81030, Caserta, Italy
| | - Stefano Favale
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| |
Collapse
|
26
|
Ajeganova S, Andersson MLE, Frostegård J, Hafström I. Higher levels of anti-phosphorylcholine autoantibodies in early rheumatoid arthritis indicate lower risk of incident cardiovascular events. Arthritis Res Ther 2021; 23:201. [PMID: 34311770 PMCID: PMC8314464 DOI: 10.1186/s13075-021-02581-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background The increased risk of cardiovascular events (CVE) in rheumatoid arthritis (RA) is not fully explained by traditional risk factors. Immuno-inflammatory mechanisms and autoantibodies could be involved in the pathogenesis of atherosclerotic disease. It has been suggested that anti-phosphorylcholine antibodies (anti-PC) of the IgM subclass may have atheroprotective effects. Here, we aimed to investigate the association between levels of IgM anti-PC antibodies with CVE in patients with early RA. Methods The study population was derived from the BARFOT early RA cohort, recruited in 1994–1999. The outcome of incident CVE (AMI, angina pectoris, coronary intervention, ischemic stroke, TIA) was tracked through the Swedish Hospital Discharge and the National Cause of Death Registries. Sera collected at inclusion and the 2-year visit were analyzed with ELISA to determine levels of anti-PC IgM. The Kaplan-Meier estimates and Cox proportional hazards regression models were used to compare CV outcome in the groups categorized by baseline median level of IgM anti-PC. Results In all, 653 patients with early RA, 68% women, mean (SD) age 54.8 (14.7) years, DAS28 5.2 (1.3), 68% seropositive, and without prevalent CVD, were included. During the follow-up of mean 11.7 years, 141 incident CVE were recorded. Baseline IgM anti-PC above median was associated with a reduction in risk of incident CVE in patients aged below 55 years at inclusion, HR 0.360 (95% CI, 0.142–0.916); in males, HR 0.558 (0.325–0.958); in patients with BMI above 30 kg/m2, HR 0.235 (0.065–0.842); and in those who did not achieve DAS28 remission at 1 year, HR 0.592 (0.379–0.924). The pattern of associations was confirmed in the models with AUC IgM anti-PC over 2 years. Conclusion Protective effects of higher levels of innate IgM anti-PC autoantibodies on CVE were detected in younger patients with RA and those at high risk of CVE: males, presence of obesity, and non-remission at 1 year.
Collapse
Affiliation(s)
- Sofia Ajeganova
- Division of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Department of Clinical Sciences, Rheumatology Division, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Maria L E Andersson
- Faculty of Medicine, Department of Rheumatology, Lund University, Lund and Spenshult Research and Development Centre, Halmstad, Sweden
| | - Johan Frostegård
- Section of Immunology and Chronic disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingiäld Hafström
- Division of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, 171 77, Stockholm, Sweden.,Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
de Vries MR, Ewing MM, de Jong RCM, MacArthur MR, Karper JC, Peters EAB, Nordzell M, Karabina SAP, Sexton D, Dahlbom I, Bergman A, Mitchell JR, Frostegård J, Kuiper J, Ninio E, Jukema JW, Pettersson K, Quax PHA. Identification of IgG1 isotype phosphorylcholine antibodies for the treatment of inflammatory cardiovascular diseases. J Intern Med 2021; 290:141-156. [PMID: 33342002 PMCID: PMC8359267 DOI: 10.1111/joim.13234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Phosphorylcholine (PC) is an important pro-inflammatory damage-associated molecular pattern. Previous data have shown that natural IgM anti-PC protects against cardiovascular disease. We aimed to develop a monoclonal PC IgG antibody with anti-inflammatory and anti-atherosclerotic properties. METHODS Using various techniques PC antibodies were validated and optimized. In vivo testing was performed in a femoral artery cuff model in ApoE3*Leiden mice. Safety studies are performed in rats and cynomolgus monkeys. RESULTS A chimeric anti-PC (PC-mAb(T15), consisting of a human IgG1 Fc and a mouse T15/E06 Fab) was produced, and this was shown to bind specifically to epitopes in human atherosclerotic tissues. The cuff model results in rapid induction of inflammatory genes and altered expression of genes associated with ER stress and choline metabolism in the lesions. Treatment with PC-mAb(T15) reduced accelerated atherosclerosis via reduced expression of endoplasmic reticulum stress markers and CCL2 production. Recombinant anti-PC Fab fragments were identified by phage display and cloned into fully human IgG1 backbones creating a human monoclonal IgG1 anti-PC (PC-mAbs) that specifically bind PC, apoptotic cells and oxLDL. Based on preventing macrophage oxLDL uptake and CCL2 production, four monoclonal PC-mAbs were selected, which to various extent reduced vascular inflammation and lesion development. Additional optimization and validation of two PC-mAb antibodies resulted in selection of PC-mAb X19-A05, which inhibited accelerated atherosclerosis. Clinical grade production of this antibody (ATH3G10) significantly attenuated vascular inflammation and accelerated atherosclerosis and was tolerated in safety studies in rats and cynomolgus monkeys. CONCLUSIONS Chimeric anti-PCs can prevent accelerated atherosclerosis by inhibiting vascular inflammation directly and through reduced macrophage oxLDL uptake resulting in decreased lesions. PC-mAb represents a novel strategy for cardiovascular disease prevention.
Collapse
Affiliation(s)
- M. R. de Vries
- From theDeptartment of SurgeryLUMCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
| | - M. M. Ewing
- From theDeptartment of SurgeryLUMCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
- Deptartment of CardiologyLUMCLeidenThe Netherlands
| | - R. C. M. de Jong
- From theDeptartment of SurgeryLUMCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
| | - M. R. MacArthur
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - J. C. Karper
- From theDeptartment of SurgeryLUMCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
| | - E. A. B. Peters
- From theDeptartment of SurgeryLUMCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
| | | | - S. A. P. Karabina
- INSERM UMR_S 933Hôpital Armand‐TrousseauSorbonne UniversitéParisFrance
| | | | - I. Dahlbom
- Dept. of MedicineKarolinska University Hospital Huddinge and Karolinska InstitutetStockholmSweden
| | | | - J. R. Mitchell
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - J. Frostegård
- Dept. of MedicineKarolinska University Hospital Huddinge and Karolinska InstitutetStockholmSweden
| | - J. Kuiper
- Division of BioTherapeuticsLACDRLeidenThe Netherlands
| | - E. Ninio
- INSERM UMR_S 1166‐ICANGenomics and Pathophysiology of Cardiovascular DiseasesInstitute of Cardiometabolism and NutritionPitié‐Salpêtrière HôpitalSorbonne UniversitéParisFrance
| | - J. W. Jukema
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
- Deptartment of CardiologyLUMCLeidenThe Netherlands
| | | | - P. H. A. Quax
- From theDeptartment of SurgeryLUMCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
| |
Collapse
|
28
|
Guo N, Wang P, Yang J, Yang X, van der Voet M, Wildwater M, Wei J, Tang X, Wang M, Yang H. Serum Metabolomic Analysis of Coronary Heart Disease Patients with Stable Angina Pectoris Subtyped by Traditional Chinese Medicine Diagnostics Reveals Biomarkers Relevant to Personalized Treatments. Front Pharmacol 2021; 12:664320. [PMID: 34194326 PMCID: PMC8236985 DOI: 10.3389/fphar.2021.664320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
To improve the treatment of patients with coronary heart disease (CHD), personalized treatments based on potential biomarkers could make a difference. To investigate if such potential biomarkers could be found for CHD inhomogeneous, we combined traditional Chinese medicine based diagnosis with untargeted and targeted metabolomics analyses. Shi and Xu patient subtype groups of CHD with angina pectoris were identified. Different metabolites including lipids, fatty acids and amino acids were further analyzed with targeted metabolomics and mapped to disease-related pathways. The long-chain unsaturated lipids ceramides metabolism, bile acid metabolism were differentially affected in the Xu subtype groups. While, Shi-subtype patients seemed to show inflammation, anomalous levels of bioactive phospholipids and antioxidant molecules. Furthermore, variations in the endothelial damage response and energy metabolism found based on ELISA analysis are the key divergence points between different CHD subtypes. The results showed Xu subtype patients might benefit from long-chain unsaturated lipids ceramides as therapeutic targets. Shi subtype patients might benefit more from levels of polyunsaturated fatty acid consumption and treatments that help in restoring energy balance. Metabolic differences can be essential for treatment protocols. Thus, patient group specific differences can serve as important information to refine current treatment approaches in a personalized manner.
Collapse
Affiliation(s)
- Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peili Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaying Yang
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaofang Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Kyaw T, Loveland P, Kanellakis P, Cao A, Kallies A, Huang AL, Peter K, Toh BH, Bobik A. Alarmin-activated B cells accelerate murine atherosclerosis after myocardial infarction via plasma cell-immunoglobulin-dependent mechanisms. Eur Heart J 2021; 42:938-947. [PMID: 33338208 DOI: 10.1093/eurheartj/ehaa995] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/30/2020] [Accepted: 11/29/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS Myocardial infarction (MI) accelerates atherosclerosis and greatly increases the risk of recurrent cardiovascular events for many years, in particular, strokes and MIs. Because B cell-derived autoantibodies produced in response to MI also persist for years, we investigated the role of B cells in adaptive immune responses to MI. METHODS AND RESULTS We used an apolipoprotein-E-deficient (ApoE-/-) mouse model of MI-accelerated atherosclerosis to assess the importance of B cells. One week after inducing MI in atherosclerotic mice, we depleted B cells using an anti-CD20 antibody. This treatment prevented subsequent immunoglobulin G accumulation in plaques and MI-induced accelerated atherosclerosis. In gain of function experiments, we purified spleen B cells from mice 1 week after inducing MI and transferred these cells into atherosclerotic ApoE-/- mice, which greatly increased immunoglobulin G (IgG) accumulation in plaque and accelerated atherosclerosis. These B cells expressed many cytokines that promote humoural immunity and in addition, they formed germinal centres within the spleen where they differentiated into antibody-producing plasma cells. Specifically deleting Blimp-1 in B cells, the transcriptional regulator that drives their terminal differentiation into antibody-producing plasma cells prevented MI-accelerated atherosclerosis. Alarmins released from infarcted hearts were responsible for activating B cells via toll-like receptors and deleting MyD88, the canonical adaptor protein for inflammatory signalling downstream of toll-like receptors, prevented B-cell activation and MI-accelerated atherosclerosis. CONCLUSION Our data implicate early B-cell activation and autoantibodies as a central cause for accelerated atherosclerosis post-MI and identifies novel therapeutic strategies towards preventing recurrent cardiovascular events such as MI and stroke.
Collapse
Affiliation(s)
- Tin Kyaw
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Paula Loveland
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, Melbourne, Vic 3000, Australia
| | - Alex L Huang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Cardiology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Cardiology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia.,Department of Immunology, Central Clinical School, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia.,Department of Immunology, Central Clinical School, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| |
Collapse
|
30
|
Tmoyan NA, Afanasieva OI, Ezhov MV, Klesareva EA, Balakhonova TV, Pokrovsky SN. Lipoprotein(a), Immunity, and Inflammation in Polyvascular Atherosclerotic Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8020011. [PMID: 33513851 PMCID: PMC7911372 DOI: 10.3390/jcdd8020011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background and aims: lipoprotein(a) (Lp(a)) is a genetically determined risk factor for coronary artery disease and its complications, although data on the association with other vascular beds and the severity of atherosclerosis is limited. The aim of this study was to evaluate the association of atherosclerosis of various vascular beds with Lp(a), as well as its autoantibodies and generalized inflammatory markers. Material and methods: this study included 1288 adult patients with clinical and imaging examination of three vascular beds (coronary, carotid, and lower limb arteries). Patients were categorized according to the number of affected vascular beds (with at least one atherosclerotic stenosis ≥50%): 0 (n = 339), 1 (n = 470), 2 (n = 315), 3 (n = 164). We assessed blood cell count, lipid profile, C-reactive protein, circulating immune complexes, Lp(a), and its autoantibodies. Results: the number of affected vascular beds was associated with an increasing level of Lp(a) and a lower level of IgM autoantibodies to Lp(a). Hyperlipoproteinemia(a) (Lp(a) ≥ 30 mg/dL) was detected more frequently in patients with atherosclerosis. In logistic regression analysis adjusted for age, sex, hypertension, type 2 diabetes, and smoking, an elevated Lp(a) level was independently associated with stenotic atherosclerosis and lesion severity. There was a positive association of the number of affected vascular beds with C-reactive protein (r = 0.21, p < 0.01) and a negative association with circulating immune complexes (r = −0.29, p < 0.01). The neutrophil-to-lymphocyte ratio was significantly higher and the lymphocyte-to-monocyte ratio was significantly lower in patients with atherosclerosis compared to the controls (p < 0.01). Conclusion: Lp(a), C-reactive protein, circulating immune complexes, and neutrophil-to-lymphocyte ratio are associated with the stenotic atherosclerosis of different vascular beds. Lp(a) levels increase and IgM autoantibodies to Lp(a) decrease with the number of affected vascular beds.
Collapse
Affiliation(s)
- Narek A. Tmoyan
- A.L. Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (M.V.E.); (T.V.B.)
- Correspondence: ; Tel.: +7-(925)-077-07-70
| | - Olga I. Afanasieva
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (O.I.A.); (E.A.K.); (S.N.P.)
| | - Marat V. Ezhov
- A.L. Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (M.V.E.); (T.V.B.)
| | - Elena A. Klesareva
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (O.I.A.); (E.A.K.); (S.N.P.)
| | - Tatiana V. Balakhonova
- A.L. Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (M.V.E.); (T.V.B.)
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sklifosovsky Institute of Clinical Medicine, Federal State Autonomus Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Sergei N. Pokrovsky
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (O.I.A.); (E.A.K.); (S.N.P.)
| |
Collapse
|
31
|
Effect of Phosphatidylcholine Nanosomes on Phospholipid Composition of the Plasma Membranes in Liver Cells and Blood Serum in Experimental Atherosclerosis. Bull Exp Biol Med 2020; 170:181-184. [PMID: 33263842 DOI: 10.1007/s10517-020-05028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 10/22/2022]
Abstract
Alimentary atherosclerosis is associated with a significant decrease in the content of phosphatidylcholine, the phospholipid that provides antioxidant protection, in the plasma membrane of liver cells, while the level of phosphatidic acid that initiates generation of superoxides, on the contrary, increases. The level of membrane phosphatidylserine, a target of the scavenger receptors, which initiates removal of damaged cells and modified lipoproteins from the circulation was also elevated. In the blood serum of rabbits receiving an atherogenic diet, the content of cardiolipin involved in the immune mechanisms of atherosclerosis development and a risk factor for thrombosis, sharply increased. The level of lysophosphatidylcholine that mediates initiation and progression of atherosclerosis increased. The content of phosphatidylinositol that is involved in the mechanisms protecting from exposure to excess cholesterol was significantly reduced. Treatment of alimentary atherosclerosis with "empty" phosphatidylcholine nanosomes eliminates the key factors initiating atherosclerosis development.
Collapse
|
32
|
Phosphorylcholine Antibodies Preserve Cardiac Function and Reduce Infarct Size by Attenuating the Post-Ischemic Inflammatory Response. JACC Basic Transl Sci 2020; 5:1228-1239. [PMID: 33426378 PMCID: PMC7775955 DOI: 10.1016/j.jacbts.2020.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Phosphorylcholine is a proinflammatory epitope exposed on the outer membrane of apoptotic cells. This study investigated the modulatory effects of a fully human IgG1 monoclonal antibody directed against phosphorylcholine (PC-mAb) on myocardial remodeling and cardiac function following myocardial ischemia-reperfusion injury. PC-mAb attenuates the immediate post-ischemic inflammatory response by reducing the proinflammatory CCL2 chemokine and circulating Ly-6Chi monocytes. This subsequently enhances the post-ischemic repair process resulting in limited adverse cardiac remodeling and preservation of cardiac function. PC-mAb therapy may be a valid therapeutic approach against myocardial ischemia-reperfusion injury.
Phosphorylcholine monoclonal immunoglobulin G antibody attenuates the immediate post-ischemic inflammatory response by reducing the proinflammatory chemokine (C-C motif) ligand 2 chemokine and circulating Ly-6Chi monocytes. This subsequently enhances the post-ischemic repair process, resulting in limited adverse cardiac remodeling and preservation of cardiac function. Therefore, phosphorylcholine monoclonal immunoglobulin G antibody therapy may be a valid therapeutic approach against myocardial ischemia-reperfusion injury.
Collapse
Key Words
- CCL2, chemokine (C-C motif) ligand 2
- CMR, cardiac magnetic resonance
- EDV, end-diastolic volume
- EF, ejection fraction
- ESV, end-systolic volume
- IS, infarct size
- Ig, immunoglobulin
- LV, left ventricular/ventricle
- MI, myocardial infarction
- MI-R, myocardial ischemia-reperfusion
- PC, phosphorylcholine
- PC-mAb, phosphorylcholine monoclonal immunoglobulin G antibody
- cardiac function
- infarct size
- inflammation
- myocardial infarction
- myocardial ischemia-reperfusion
Collapse
|
33
|
Yi X, Wang Y, Jia Z, Hiller S, Nakamura J, Luft JC, Tian S, DeSimone JM. Retinoic Acid-Loaded Poly(lactic- co-glycolic acid) Nanoparticle Formulation of ApoB-100-Derived Peptide 210 Attenuates Atherosclerosis. J Biomed Nanotechnol 2020; 16:467-480. [PMID: 32970979 DOI: 10.1166/jbn.2020.2905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We developed a vaccine formulation containing ApoB derived P210 peptides as autoantigens, retinoic acid (RA) as an immune enhancer, both of which were delivered using PLGA nanoparticles. The formula was used to induce an immune response in 12-week-old male Apoe-/- mice with pre-existing atherosclerotic lesions. The nanotechnology platform PRINT® was used to fabricate PLGA nanoparticles that encapsulated RA inside and adsorbed the P210 onto the particle surface. In this study, we demonstrated that immunization of Apoe-/- mice with the formulation was able to considerably attenuate atherosclerotic lesions, accompanied by increased P210 specific IgM and another oxidized lipid derived autoantigen, M2AA, specific IgG autoantibodies, and decreased the inflammatory response, as compared to the P210 group with Freund's adjuvant. Our formulation represents an exciting technology to enhance the efficacy of the P210 vaccine.
Collapse
|
34
|
The Effect of a 13-Valent Conjugate Pneumococcal Vaccine on Circulating Antibodies Against Oxidized LDL and Phosphorylcholine in Man, A Randomized Placebo-Controlled Clinical Trial. BIOLOGY 2020; 9:biology9110345. [PMID: 33105582 PMCID: PMC7716233 DOI: 10.3390/biology9110345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Simple Summary Atherosclerosis is the main underlying mechanism for cardiovascular disease. The main cause for atherosclerosis development is oxidized low density lipoprotein (oxLDL) accumulation in the vessel wall and a subsequent immune response. It has been established that immunoglobulin M antibodies against oxLDL help protect against atherosclerosis. It has been found in mice that vaccination with Streptococcus pneumoniae results in an increase of these protective antibodies and thereby decreases the development of atherosclerosis. In this study, we investigated if this increase of antibodies can be found in human as well. Twenty-four healthy male volunteers were vaccinated with Prevenar-13, a pneumococcal vaccine, using different dosing regimens. An increase in anti-Prevenar antibodies was found, showing that the vaccination worked. However, no increase in protective anti-phosphorylcholine or anti-oxLDL antibodies was observed. This work shows that vaccination against pneumococcal does not seem to be a suitable treatment option to help prevent atherosclerosis development, although further research would be required to test alternative pneumococcal-based vaccines, vaccination regimens or study populations. Abstract In mice vaccination with Streptococcus pneumoniae results in an increase in anti-oxLDL IgM antibodies due to mimicry of anti-phosphorylcholine (present in the cell wall of S. pneumoniae) and anti-oxLDL IgM. In this study we investigated the human translation of this molecular mimicry by vaccination against S. pneumoniae using the Prevenar-13 vaccine. Twenty-four healthy male volunteers were vaccinated with Prevenar-13, either three times, twice or once in a double-blind, placebo-controlled, randomized single center clinical study. Anti-pneumococcal wall, oxLDL and phosphorycholine antibody levels were measured at a fixed serum dilution, as well as circulating lipid levels over the course of 68 weeks. A significant increase in anti-oxLDL IgG and IgM was seen in the group receiving two doses six months apart compared to the placebo. However, these differences were not observed in the groups receiving a single dose, two doses one month apart, or three doses. This study shows that vaccination with Prevenar-13 does not result in robust anti-oxLDL IgM levels in humans. Further research would be required to test alternative pneumococcal-based vaccines, vaccination regimens or study populations, such as cardiovascular disease patients.
Collapse
|
35
|
Wei X, Valenzuela NM, Rossetti M, Sosa RA, Nevarez-Mejia J, Fishbein GA, Mulder A, Dhar J, Keslar KS, Baldwin WM, Fairchild RL, Hou J, Reed EF. Antibody-induced vascular inflammation skews infiltrating macrophages to a novel remodeling phenotype in a model of transplant rejection. Am J Transplant 2020; 20:2686-2702. [PMID: 32320528 PMCID: PMC7529968 DOI: 10.1111/ajt.15934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/15/2020] [Accepted: 04/07/2020] [Indexed: 01/25/2023]
Abstract
HLA donor-specific antibodies (DSAs) binding to vascular endothelial cells of the allograft trigger inflammation, vessel injury, and antibody-mediated rejection (AMR). Accumulation of intragraft-recipient macrophages is a histological characteristic of AMR, which portends worse outcome. HLA class I (HLA I) DSAs enhance monocyte recruitment by activating endothelial cells and engaging FcγRs, but the DSA-activated donor endothelial influence on macrophage differentiation is unknown. In this study, we explored the consequence of DSA-activated endothelium on infiltrating monocyte differentiation. Here we show that cardiac allografts from murine recipients treated with MHC I DSA upregulated genes related to monocyte transmigration and Fc receptor stimulation. Human monocytes co-cultured with HLA I IgG-stimulated primary human endothelium promoted monocyte differentiation into CD68+ CD206+ CD163+ macrophages (M(HLA I IgG)), whereas HLA I F(ab')2 stimulated endothelium solely induced higher CD206 (M(HLA I F(ab')2 )). Both macrophage subtypes exhibited significant changes in discrete cytokines/chemokines and unique gene expression profiles. Cross-comparison of gene transcripts between murine DSA-treated cardiac allografts and human co-cultured macrophages identified overlapping genes. These findings uncover the role of HLA I DSA-activated endothelium in monocyte differentiation, and point to a novel, remodeling phenotype of infiltrating macrophages that may contribute to vascular injury.
Collapse
Affiliation(s)
- Xuedong Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California,Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Nicole M. Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Arend Mulder
- Department of Immunohaematology and Bloodtransfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jayeeta Dhar
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Karen S. Keslar
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - William M. Baldwin
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert L. Fairchild
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
36
|
Karadimou G, Gisterå A, Gallina AL, Caravaca AS, Centa M, Salagianni M, Andreakos E, Hansson GK, Malin S, Olofsson PS, Paulsson-Berne G. Treatment with a Toll-like Receptor 7 ligand evokes protective immunity against atherosclerosis in hypercholesterolaemic mice. J Intern Med 2020; 288:321-334. [PMID: 32410352 DOI: 10.1111/joim.13085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The interplay between innate and adaptive immunity is central in life-threatening clinical complications of atherosclerosis such as myocardial infarction and stroke. The specific mechanisms involved and their protective versus detrimental effects in the disease process remain poorly understood. We have previously shown that higher levels of Toll-like receptor 7 (TLR7) expression in human atherosclerotic lesions are correlated with better patient outcome. OBJECTIVE In this study, we explored whether TLR7 activation can ameliorate disease in experimental atherosclerosis in mice. METHODS Apolipoprotein E deficient mice (Apoe-/- ) with established disease were injected for five weeks intraperitoneally with the TLR7 ligand R848. Local effects were evaluated by characterization of the lesion. Systemic effects of the treatment were investigated by immune composition analysis in the spleen and plasma measurements. RESULTS The in vivo treatment arrested lesion progression in the aorta. We also detected expansion of marginal zone B cells and Treg in the spleen together with increased plasma IgM antibodies against oxidized low-density lipoprotein (oxLDL) and reduced plasma cholesterol levels. These changes were accompanied by increased accumulation of IgM antibodies, decreased necrosis and fewer apoptotic cells in atherosclerotic lesions. CONCLUSIONS Our findings show that TLR7 stimulation could ameliorate atherosclerotic lesion burden and reduce plasma cholesterol in Apoe-/- mice. TLR7 stimulation was associated with an atheroprotective B-cell and Treg response, which may have systemic and local effects within lesions that could prevent arterial lipid accumulation and inflammation.
Collapse
Affiliation(s)
- G Karadimou
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A Gisterå
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A L Gallina
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A S Caravaca
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - M Centa
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - M Salagianni
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - E Andreakos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - G K Hansson
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - S Malin
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - P S Olofsson
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - G Paulsson-Berne
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Abstract
Adaptive as well as innate immune responses contribute to the development of atherosclerosis. Studies performed in experimental animals have revealed that some of these immune responses are protective while others contribute to the progression of disease. These observations suggest that it may be possible to develop novel therapies for cardiovascular disease by selectively modulating such atheroprotective and proatherogenic immunity. Recent advances in cancer treatment using immune check inhibitors and CAR (chimeric antigen receptor) T-cell therapy serve as excellent examples of the possibilities of targeting the immune system to combat disease. LDL (low-density lipoprotein) that has accumulated in the artery wall is a key autoantigen in atherosclerosis, and activation of antigen-specific T helper 1–type T cells is thought to fuel plaque inflammation. Studies aiming to prove this concept by immunizing experimental animals with oxidized LDL particles unexpectedly resulted in activation of atheroprotective immunity involving regulatory T cells. This prompted several research groups to try to develop vaccines against atherosclerosis. In this review, we will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk. We will also summarize ongoing clinical studies and discuss the challenges associated with developing an effective and safe atherosclerosis vaccine.
Collapse
Affiliation(s)
- Jan Nilsson
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (J.N.)
| | - Göran K. Hansson
- Department of Medicine, Karolinska University Hospital Solna, Karolinska Institute, Sweden (G.K.H.)
| |
Collapse
|
38
|
Ståhle M, Silvola JMU, Hellberg S, de Vries M, Quax PHA, Kroon J, Rinne P, de Jong A, Liljenbäck H, Savisto N, Wickman A, Stroes ESG, Ylä-Herttuala S, Saukko P, Abrahamsson T, Pettersson K, Knuuti J, Roivainen A, Saraste A. Therapeutic Antibody Against Phosphorylcholine Preserves Coronary Function and Attenuates Vascular 18F-FDG Uptake in Atherosclerotic Mice. JACC Basic Transl Sci 2020; 5:360-373. [PMID: 32368695 PMCID: PMC7188869 DOI: 10.1016/j.jacbts.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Phosphorylcholine is a pro-inflammatory epitope in atherogenic oxidized phospholipids. This study investigated effects of a novel monoclonal IgG1 antibody against PC on vascular function and atherosclerotic inflammation. Treatment with phosphorylcholine antibody preserved coronary flow reserve and decreased uptake of 18F-FDG in atherosclerotic lesions in hypercholesterolemic mice. Noninvasive imaging techniques represent translational tools to assess the efficacy of phosphorylcholine-targeted therapy on coronary artery function and atherosclerosis.
This study showed that treatment with a therapeutic monoclonal immunoglobulin-G1 antibody against phosphorylcholine on oxidized phospholipids preserves coronary flow reserve and attenuates atherosclerotic inflammation as determined by the uptake of 18F-fluorodeoxyglucose in atherosclerotic mice. The noninvasive imaging techniques represent translational tools to assess the efficacy of phosphorylcholine-targeted therapy on coronary artery function and atherosclerosis in clinical studies.
Collapse
Key Words
- 18F-FDG, 18F-fluorodeoxyglucose
- 18F-fluorodeoxyglucose positron emission tomography
- ANOVA, analysis of variance
- ApoB, apolipoprotein-B
- CFR, coronary flow reserve
- HAEC, human aortic endothelial cell
- ICAM, intracellular adhesion molecule
- IL, interleukin
- Ig, immunoglobulin
- LDLR, low-density lipoprotein receptor
- Lp(a), lipoprotein(a)
- NO, nitric oxide
- OxLDL, oxidized low-density lipoprotein cholesterol
- OxPLs, oxidized phospholipids
- PC, phosphorylcholine
- PC-mAb, human PC antibody
- VCAM, vascular cell adhesion molecule
- atherosclerosis
- coronary flow reserve
- inflammation
- phosphorylcholine
Collapse
Affiliation(s)
- Mia Ståhle
- Turku PET Centre, University of Turku, Turku, Finland
| | | | | | - Margreet de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Petteri Rinne
- Research Center for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Alwin de Jong
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Nina Savisto
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Erik S G Stroes
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands.,Department of Vascular Medicine, Academic Medical Center, Amsterdam University Medical Center (UMC), Amsterdam, the Netherlands
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Saukko
- Department of Pathology and Forensic Medicine, University of Turku, Turku, Finland
| | | | | | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,Heart Center, Turku University Hospital, Turku, Finland.,Institute of Clinical Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
39
|
Upadhye A, Sturek JM, McNamara CA. 2019 Russell Ross Memorial Lecture in Vascular Biology: B Lymphocyte-Mediated Protective Immunity in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:309-322. [PMID: 31852222 PMCID: PMC7398219 DOI: 10.1161/atvbaha.119.313064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022]
Abstract
Atherosclerosis-the major underlying pathology of cardiovascular disease-is characterized by accumulation and subsequent oxidative modification of lipoproteins within the artery wall, leading to inflammatory cell infiltration and lesion formation that can over time result in arterial stenosis, ischemia, and downstream adverse events. The contribution of innate and adaptive immunity to atherosclerosis development is well established, and B cells have emerged as important modulators of both pro- and anti-inflammatory effects in atherosclerosis. Murine B cells can broadly be divided into 2 subsets: (1) B-2 cells, which are bone marrow derived and include conventional follicular and marginal zone B cells, and (2) B-1 cells, which are largely fetal liver derived and persist in adults through self-renewal. B-cell subsets are developmentally, functionally, and phenotypically distinct with unique subset-specific contributions to atherosclerosis development. Mechanisms whereby B cells regulate vascular inflammation and atherosclerosis will be discussed with a particular emphasis on B-1 cells. B-1 cells have a protective role in atherosclerosis that is mediated in large part by IgM antibody production. Accumulating evidence over the last several years has pointed to a previously underappreciated heterogeneity in B-1 cell populations, which may have important implications for understanding atherosclerosis development and potential targeted therapeutic approaches. This heterogeneity within atheroprotective innate B-cell subsets will be highlighted.
Collapse
Affiliation(s)
- Aditi Upadhye
- From the Robert M. Berne Cardiovascular Research Center (A.U., C.A.M.), University of Virginia School of Medicine, Charlottesville
| | - Jeffrey M Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine (J.M.S.), University of Virginia School of Medicine, Charlottesville
| | - Coleen A McNamara
- From the Robert M. Berne Cardiovascular Research Center (A.U., C.A.M.), University of Virginia School of Medicine, Charlottesville
- Division of Cardiovascular Medicine (C.A.M.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
40
|
Katsumata Y, Terada J, Matsumura T, Koshikawa K, Sakao S, Tomiyoshi G, Shinmen N, Nakamura R, Kuroda H, Nagashima K, Kobayashi Y, Kobayashi E, Iwadate Y, Zhang XM, Hiwasa T, Tatsumi K. Circulating Anti-Sorting Nexins 16 Antibodies as an Emerging Biomarker of Coronary Artery Disease in Patients with Obstructive Sleep Apnea. Diagnostics (Basel) 2020; 10:E71. [PMID: 32012743 PMCID: PMC7168932 DOI: 10.3390/diagnostics10020071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/17/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
Biomarkers are not available for monitoring the onset and progression of coronary artery disease (CAD) in patients with obstructive sleep apnea (OSA), a major risk factor for arteriosclerotic cardiovascular diseases. This study aimed to test for correlation between circulating anti-Sorting Nexins 16 antibody (SNX16-Ab) levels, CAD history and clinical parameters of patients with OSA. Sixty-four healthy donors, 82 adults with OSA, and 96 with acute coronary syndrome (ACS) were studied. Serum samples were collected at diagnostic polysomnography in the OSA group or at the disease onset in the ACS group. Serum SNX16-Ab levels were measured by amplified luminescence proximity homogeneous assay (AlphaLISA), and correlation between SNX16-Ab levels and clinical parameters was analyzed. SNX16-Ab levels and apnea-hypopnea index (AHI) were weakly correlated. Additionally, logistic regression analyses of OSA group identified that elevated SNX16-Ab level associated with the history of CAD. Circulating SNX16-Ab could increase during CAD pathogenesis in patients with OSA. Further prospective studies are required to prove the predictive potential of SNX16-Ab level in CAD onset of patients with OSA.
Collapse
Affiliation(s)
- Yusuke Katsumata
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.K.); (T.M.); (K.K.); (S.S.); (K.T.)
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.K.); (T.M.); (K.K.); (S.S.); (K.T.)
| | - Takuma Matsumura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.K.); (T.M.); (K.K.); (S.S.); (K.T.)
| | - Ken Koshikawa
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.K.); (T.M.); (K.K.); (S.S.); (K.T.)
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.K.); (T.M.); (K.K.); (S.S.); (K.T.)
| | - Go Tomiyoshi
- Fujikura Kasei Co.,Ltd., Minato-ku, Tokyo 105-0011, Japan; (G.T.); (N.S.); (R.N.); (H.K.)
| | - Natsuko Shinmen
- Fujikura Kasei Co.,Ltd., Minato-ku, Tokyo 105-0011, Japan; (G.T.); (N.S.); (R.N.); (H.K.)
| | - Rika Nakamura
- Fujikura Kasei Co.,Ltd., Minato-ku, Tokyo 105-0011, Japan; (G.T.); (N.S.); (R.N.); (H.K.)
| | - Hideyuki Kuroda
- Fujikura Kasei Co.,Ltd., Minato-ku, Tokyo 105-0011, Japan; (G.T.); (N.S.); (R.N.); (H.K.)
| | - Kengo Nagashima
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan;
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Eiichi Kobayashi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (E.K.); (Y.I.); (T.H.)
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (E.K.); (Y.I.); (T.H.)
| | - Xiao-Meng Zhang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (E.K.); (Y.I.); (T.H.)
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.K.); (T.M.); (K.K.); (S.S.); (K.T.)
| |
Collapse
|
41
|
Tmoyan NA, Afanasieva OI, Ezhov MV, Klesareva EA, Afanasieva MI, Razova OA, Balakhonova TV, Pokrovsky SN. [Lipoprotein(а) Level, Apolipoprotein(а) Polymorphism аnd Autoаntibodies Against Lipoprotein(а) in Patients with Stenotic Cаrotid Atherosclerosis]. ACTA ACUST UNITED AC 2019; 59:20-27. [PMID: 31849309 DOI: 10.18087/cardio.2019.12.n727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/20/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Аim. Comparative assessment of respiratory indicators according to multifunctional monitoring (PFM) with the recommended standard for a complete polysomnographic study and an assessment of the effect of blood pressure (BP) measurements in PFM on sleep quality. Triаls on the аssociаtion of Lp(а) and cаrotid аtherosclerosis аre limited. The аim of the study wаs to investigаte the аssociаtion of Lp(а), аpolipoprotein(а) [apo(а)] polymorphism аnd аutoаntibodies to Lp(а) with stenotic (≥50%) cаrotid аtherosclerosis in dependence on CHD presence. Materials and methods. The study included 785 pаtients аt the аge from 21 to 92 with dаtа of instrumentаl exаmination of coronаry, cаrotid аnd lower limbs аrteries. Stenotic cаrotid аtherosclerosis wаs diаgnosed in 447 pаtients who were divided into two groups depending on presence (n=344) or аbsence (n=103) of CHD. The control group comprised of 338 pаtients without stenotic аtherosclerosis of coronаry, cаrotid аnd lower limbs аrteries. In the blood serum of pаtients levels of Lp(а), аutoаntibodies to Lp(а) were determined аnd аlso аpo(а) phenotyping wаs conducted. Results. There were more mаles, higher аverаge аge аnd frequency of hypertension, type 2 diаbetes mellitus, smoking, Lp(а) concentrаtion (mediаn [interquаrtile rаnge]): 30 [11; 63] vs. 14 [5; 30] mg/dl, p<0.01) in the group with stenotic cаrotid аtherosclerosis in compаrison with control group. Besides, Lp(а) level wаs higher in CHD subgroup thаn in pаtients with stenotic cаrotid аtherosclerosis without CHD: 32 [12; 72] vs. 24 [8; 50] mg/dl, respectively, p=0.01. Elevаted (≥30 mg/dl) Lp(а) level, low moleculаr weight аpolipoprotein(а) [(LMW аpo(а)] phenotype were аssociаted with stenotic cаrotid аtherosclerosis (odds rаtio (OR) 2.9; 95% confidence intervаl (CI) 2.1-4.0, p<0.01 аnd OR 2.3; 95% CI 1.6-3.4, p<0.01, respectively). Logistic regression аnаlysis showed independent аssociаtion of elevаted Lp(а) level аnd LMW аpo(а) phenotype with stenotic cаrotid аtherosclerosis both in the presence аnd absence of CHD. The level of IgM аutoаntibodies to Lp(а) wаs higher in control group thаn in pаtients with stenotic cаrotid аtherosclerosis, p=0.02. Conclusion The level of Lp(a) ≥30 mg/dl and low molecular weight phenotype of aprotein(a) are predictors of stenotic atherosclerosis CA, regardless of the presence of coronary heart disease and other risk factors, while a reverse relationship was found between the level of autoantibodies of the IgM class against Lp(a) and the severity of atherosclerosis CA.
Collapse
Affiliation(s)
- N A Tmoyan
- National Medical Research Center for Cardiology
| | | | - M V Ezhov
- National Medical Research Center for Cardiology
| | | | | | - O A Razova
- National Medical Research Center for Cardiology
| | | | | |
Collapse
|
42
|
Small HY, Guzik TJ. High impact Cardiovascular Research: beyond the heart and vessels. Cardiovasc Res 2019; 115:e166-e171. [PMID: 31697316 DOI: 10.1093/cvr/cvz272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Heather Y Small
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, 31-008 Anny 12, Krakow, Poland
| |
Collapse
|
43
|
Dinter F, Burdukiewicz M, Schierack P, Lehmann W, Nestler J, Dame G, Rödiger S. Simultaneous detection and quantification of DNA and protein biomarkers in spectrum of cardiovascular diseases in a microfluidic microbead chip. Anal Bioanal Chem 2019; 411:7725-7735. [PMID: 31760445 PMCID: PMC6881413 DOI: 10.1007/s00216-019-02199-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Abstract
The rapid and simultaneous detection of DNA and protein biomarkers is necessary to detect the outbreak of a disease or to monitor a disease. For example, cardiovascular diseases are a major cause of adult mortality worldwide. We have developed a rapidly adaptable platform to assess biomarkers using a microfluidic technology. Our model mimics autoantibodies against three proteins, C-reactive protein (CRP), brain natriuretic peptide (BNP), and low-density lipoprotein (LDL). Cell-free mitochondrial DNA (cfmDNA) and DNA controls are detected via fluorescence probes. The biomarkers are covalently bound on the surface of size- (11–15 μm) and dual-color encoded microbeads and immobilized as planar layer in a microfluidic chip flow cell. Binding events of target molecules were analyzed by fluorescence measurements with a fully automatized fluorescence microscope (end-point and real-time) developed in house. The model system was optimized for buffers and immobilization strategies of the microbeads to enable the simultaneous detection of protein and DNA biomarkers. All prime target molecules (anti-CRP, anti-BNP, anti-LDL, cfmDNA) and the controls were successfully detected both in independent reactions and simultaneously. In addition, the biomarkers could also be detected in spiked human serum in a similar way as in the optimized buffer system. The detection limit specified by the manufacturer is reduced by at least a factor of five for each biomarker as a result of the antibody detection and kinetic experiments indicate that nearly 50 % of the fluorescence intensity is achieved within 7 min. For rapid data inspection, we have developed the open source software digilogger, which can be applied for data evaluation and visualization. Graphical abstract ![]()
Collapse
Affiliation(s)
- Franziska Dinter
- Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Michał Burdukiewicz
- Faculty of Mathematics and Informations Science, Warsaw University of Technology, plac Politechniki 1, 00-661, Warsaw, Poland
| | - Peter Schierack
- Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | | | - Jörg Nestler
- BiFlow Systems GmbH, Technologie-Campus 1, 09126, Chemnitz, Germany
| | - Gregory Dame
- Institute of Microbiology and Virology-Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Stefan Rödiger
- Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany. .,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany.
| |
Collapse
|
44
|
Bagchi-Chakraborty J, Francis A, Bray T, Masters L, Tsiantoulas D, Nus M, Harrison J, Broekhuizen M, Leggat J, Clatworthy MR, Espéli M, Smith KG, Binder CJ, Mallat Z, Sage AP. B Cell Fcγ Receptor IIb Modulates Atherosclerosis in Male and Female Mice by Controlling Adaptive Germinal Center and Innate B-1-Cell Responses. Arterioscler Thromb Vasc Biol 2019; 39:1379-1389. [PMID: 31092015 PMCID: PMC6636804 DOI: 10.1161/atvbaha.118.312272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/22/2019] [Indexed: 02/02/2023]
Abstract
Objective- Investigate the impact of modulating B cell FcγRIIb (Fcγ receptor IIb) expression on atherosclerosis. Approach and Results- Western diet-induced atherosclerosis was assessed in Ldlr-/- or Apoe-/- mice with B cell-specific overexpression of FcγRIIb or with an FcγRIIb promoter mutation that alters FcγRIIb expression in germinal center (GC) B cells. In males, overexpression of FcγRIIb on B cells severely reduced activated, class switched B cell responses, as indicated by reductions in GC B cells, plasma cells, and serum IgG but not IgM antibodies. Male mice overexpressing FcγRIIb developed less atherosclerosis, suggesting a pathogenic role for GC B cell IgG responses. In support of this hypothesis, male mice with a promoter polymorphism-driven reduction in FcγRIIb on GC B cells but not plasma cells have a converse phenotype of enhanced GC responses and IgG2c antibodies and enhanced atherosclerosis. IgG2c significantly enhanced TNF (tumor necrosis factor) secretion by CD11b+ CD11c+ cells expressing the high-affinity receptor FcγRIV. In females, overexpression of FcγRIIb on B cells not only reduced GC B cell responses but also substantially reduced B-1 cells and IgM antibodies, which translated into acceleration of atherosclerosis. Promoter-driven reduction in FcγRIIb did not alter GC B cell responses in females and, therefore, had no impact on atherosclerosis. Conclusions- B cell FcγRIIb differentially alters proatherogenic adaptive GC B cell and atheroprotective innate B-1 responses in male and female mice fed a western diet. Our results highlight the importance of a better understanding and ability to selectively target B cell responses in future immunotherapeutic approaches against human cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Jayashree Bagchi-Chakraborty
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Anna Francis
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Toni Bray
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Leanne Masters
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Dimitrios Tsiantoulas
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Meritxell Nus
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - James Harrison
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Michelle Broekhuizen
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Jennifer Leggat
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
| | - Marion Espéli
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France (M.E.)
| | - Kenneth G.C. Smith
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria (C.J.B.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (C.J.B.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
- Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, France (Z.M.)
| | - Andrew P. Sage
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
45
|
Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7092151. [PMID: 31341533 PMCID: PMC6612399 DOI: 10.1155/2019/7092151] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.
Collapse
|
46
|
Yang G, Lin CC, Yang Y, Yuan L, Wang P, Wen X, Pan MH, Zhao H, Ho CT, Li S. Nobiletin Prevents Trimethylamine Oxide-Induced Vascular Inflammation via Inhibition of the NF-κB/MAPK Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6169-6176. [PMID: 31117553 DOI: 10.1021/acs.jafc.9b01270] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dietary choline and its containing foods are biotransformed to trimethylamine (TMA) via gut microbial metabolism. Subsequently, as an intermediate molecule, TMA is quickly transported and oxidized in the liver by hepatic flavin monooxygenases to form trimethylamine oxide (TMAO). TMAO was treated as a waste byproduct from choline metabolism, but recent convincing evidence demonstrated the association between the small molecule TMAO and inflammation-related diseases, including blood vessel inflammation and vascular diseases. The scope of this study is to investigate the preventive effect of nobiletin on TMAO-induced blood vessel inflammation. Our results from Western blot showed that the inhibition of TMAO-induced cardiovascular inflammation was correlated with nobiletin-mediated inhibitory effects on NF-κB and MAPK/ERK related pathways. More specifically, nobiletin prevented the oxidative damage of vascular sites (proximal aorta), inhibited the activity of MAPK/ERK, reduced the expression of NF-κB p65 and phospho-NF-κB p65, and consequently decreased the inflammatory response. Flow cytometry analyses showed that nobiletin decreased TMAO-induced apoptosis of HUVEC cells and counteracted TMAO-induced HUVEC cell proliferation. Results from HE staining and immunohistochemical results also showed that nobiletin reduced the degree of inflammation of the proximal aorta in Sprague-Dawley rats. In summary, nobiletin significantly reduced TMAO-induced vascular inflammation via inhibition of the NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Guliang Yang
- Hubei Key Laboratory of EFGIR , Huanggang Normal University , Huanggang , Hubei 438000 , China
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science , Tianjin University of Commerce , Tianjin 300072 , China
- National Engineering Laboratory for Rice and Byproducts Processing, Food Science and Engineering College , Central South University of Forestry and Technology , Changsha , Hunan 410004 , China
| | - Chi-Chen Lin
- Institute of Biomedical Science , National Chung-Hsing University , Taichung 40227 , Taiwan
| | - Yiwen Yang
- Hubei Key Laboratory of EFGIR , Huanggang Normal University , Huanggang , Hubei 438000 , China
| | - Li Yuan
- Hubei Key Laboratory of EFGIR , Huanggang Normal University , Huanggang , Hubei 438000 , China
| | - Peilei Wang
- Hubei Key Laboratory of EFGIR , Huanggang Normal University , Huanggang , Hubei 438000 , China
| | - Xiang Wen
- Hubei Key Laboratory of EFGIR , Huanggang Normal University , Huanggang , Hubei 438000 , China
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science , Tianjin University of Commerce , Tianjin 300072 , China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology , National Taiwan University , Taipei 10617 , Taiwan
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science , Tianjin University of Commerce , Tianjin 300072 , China
| | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Shiming Li
- Hubei Key Laboratory of EFGIR , Huanggang Normal University , Huanggang , Hubei 438000 , China
| |
Collapse
|
47
|
Ganguly A, Sharma K, Majumder K. Food-derived bioactive peptides and their role in ameliorating hypertension and associated cardiovascular diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:165-207. [PMID: 31351525 DOI: 10.1016/bs.afnr.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-communicable diseases including cardiovascular diseases (CVDs) and associated metabolic disorders are responsible for nearly 40 million deaths globally per year. Hypertension or high blood pressure (BP) is one of the primary reasons for the development of CVDs. A healthy nutritional strategy complementing with physical activity can substantially reduce high BP and prevent the occurrence of CVD-associated morbidity and mortality. Bioactive peptides currently are the next wave of the promising bench to clinic options for potential targeting chronic and acute health issues including hypertension. Peptides demonstrating anti-inflammatory, anti-oxidant, and angiotensin-converting enzyme-I inhibitory activity are widely studied for the amelioration of hypertension and associated CVDs. Isolating these potent bioactive peptides from different food sources is a promising endeavor toward nutraceutical based dietary management and prevention of hypertension. Understanding the pathophysiology of hypertension and the action mechanisms of the bioactive peptides would complement in designing and characterizing more potent peptides and suitable comprehensive dietary plans for the prevention of hypertension and associated CVDs.
Collapse
Affiliation(s)
- Advaita Ganguly
- Comprehensive Tissue Centre, UAH Transplant Services, Alberta Health Services, Edmonton, AB, Canada
| | - Kumakshi Sharma
- Health, Safety and Environment Branch, National Research Council Canada, Edmonton, AB, Canada
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
48
|
Knudsen EC, Seljeflot I, Aksnes TA, Eritsland J, Arnesen H, Andersen GØ. IgM antibodies against phosphorylcholine measured early after acute ST-elevation myocardial infarction in relation to atherosclerotic disease burden and long-term clinical outcome. PLoS One 2019; 14:e0215640. [PMID: 31002684 PMCID: PMC6474742 DOI: 10.1371/journal.pone.0215640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 04/07/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Studies have reported an association between low levels of natural immunoglobulin M antibodies against phosphorylcholine(IgM anti-PC) and worse prognosis in patients with coronary artery disease (CAD). The aims of the present study were, in patients with ST-elevation myocardial infarction (STEMI); 1) to compare serum levels of IgM anti-PC measured acutely and after 3 months; 2) to study an association between levels of IgM anti-PC and the severity ofCAD, and; 3) to investigate whether IgM anti-PC levels are associated with long-term clinical outcome. METHODS A total of 213 patients without known diabetes (median age 59 years) with a PCI treated STEMI were enrolled. IgM anti-PC was measured in-hospital and after 3 months. Median follow-up time was 6.5 years (all-cause mortality, non-fatal myocardial re-infarction, recurrent ischemia causing hospital admission, heart failure and stroke). The severity of CAD was evaluated by coronary angiograms and patients were classified as having single- or multi-vessel disease and by SYNTAX score (SXscore). RESULTS IgM anti-PC levels were stable over time when measured acutely and after 3 months. Patients with multi-vessel disease and high SXscore had significantly lower levels of IgM anti-PC in the acute phase of STEMI. Low levels of IgM anti-PC (the 25 percentile) measured acutely were associated with a 2-fold increase in the odds of having multi-vessel disease (adjusted OR 2.28 (95% CI 1.17, 4.44), p = 0.016), but not with high SXscore (Crude OR 2.20 (95% CI 0.96, 5.07), p = 0.06). Fifty-three patients experienced a new clinical event during long-term follow-up. Low levels of IgM anti PC were not associated with worse prognosis, (crude HR 1.54 (0.87-2.76), p = 0.14). CONCLUSION STEMI patients with multi-vessel disease or high SXscore had significantly lower levels of IgM anti-PC in the acute phase and low levels were associated with multi-vessel disease, but not with worse clinical outcome during long-term follow-up.
Collapse
Affiliation(s)
- Eva Cecilie Knudsen
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital, Oslo, Norway
- * E-mail:
| | - Ingebjørg Seljeflot
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Tonje Amb Aksnes
- Section for Interventional Cardiology, Heart-, lung-, and Vascular-Disease Clinic and Section of Cardiovascular and Renal Research, Oslo University Hospital, Oslo, Norway
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital, Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Geir Øystein Andersen
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
49
|
Vaccination against atherosclerosis. Curr Opin Immunol 2019; 59:15-24. [PMID: 30928800 DOI: 10.1016/j.coi.2019.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that causes most heart attacks and strokes, making it the biggest killer in the world. Although cholesterol-lowering drugs have dramatically reduced these major adverse cardiovascular events, there remains a high residual risk called inflammatory risk. Atherosclerosis has an autoimmune component that can be manipulated by immunologic approaches including vaccination. Vaccination is attractive, because it is antigen-specific, does not impair host defense, and provides long-term protection. Several candidate antigens for atherosclerosis vaccine development have been identified and have been shown to reduce atherosclerosis in animal models. In this review, we focus on two different types of atherosclerosis vaccines: antibody-inducing and regulatory T cell-inducing.
Collapse
|
50
|
Balogh E, Pusztai A, Hamar A, Végh E, Szamosi S, Kerekes G, McCormick J, Biniecka M, Szántó S, Szűcs G, Nagy Z, Fearon U, Veale DJ, Szekanecz Z. Autoimmune and angiogenic biomarkers in autoimmune atherosclerosis. Clin Immunol 2019; 199:47-51. [DOI: 10.1016/j.clim.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|