1
|
Pei J, Kinch LN, Cong Q. Computational analysis of propeptide-containing proteins and prediction of their post-cleavage conformation changes. Proteins 2024; 92:1206-1219. [PMID: 38775337 DOI: 10.1002/prot.26702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 10/26/2024]
Abstract
A propeptide is removed from a precursor protein to generate its active or mature form. Propeptides play essential roles in protein folding, transportation, and activation and are present in about 2.3% of reviewed proteins in the UniProt database. They are often found in secreted or membrane-bound proteins including proteolytic enzymes, hormones, and toxins. We identified a variety of globular and nonglobular Pfam domains in protein sequences designated as propeptides, some of which form intramolecular interactions with other domains in the mature proteins. Propeptide-containing enzymes mostly function as proteases, as they are depleted in other enzyme classes such as hydrolases acting on DNA and RNA, isomerases, and lyases. We applied AlphaFold to generate structural models for over 7000 proteins with propeptides having no less than 20 residues. Analysis of residue contacts in these models revealed conformational changes for over 300 proteins before and after the cleavage of the propeptide. Examples of conformation change occur in several classes of proteolytic enzymes in the families of subtilisins, trypsins, aspartyl proteases, and thermolysin-like metalloproteases. In most of the observed cases, cleavage of the propeptide releases the constraints imposed by the covalent bond between the propeptide and the mature protein, and cleavage enables stronger interactions between the propeptide and the mature protein. These findings suggest that post-cleavage propeptides could play critical roles in regulating the activity of mature proteins.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Zhou XY, Liu RK, Zeng CP. Exploring the novel SNPs in neuroticism and birth weight based on GWAS datasets. BMC Med Genomics 2023; 16:167. [PMID: 37454083 PMCID: PMC10349512 DOI: 10.1186/s12920-023-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVES Epidemiological studies have confirmed that low birth weight (BW) is related to neuroticism and they may have a common genetic mechanism based on phenotypic correlation research. We conducted our study on a European population with 159,208 neuroticism and 289,142 birth weight samples. In this study, we aimed to identify new neuroticism single nucleotide polymorphisms (SNPs) and pleiotropic SNPs associated with neuroticism and BW and to provide more theoretical basis for the pathogenesis of the disease. METHODS We estimated the pleiotropic enrichment between neuroticism and BW in two independent Genome-wide association studies (GWAS) when the statistical thresholds were Conditional False Discovery Rate (cFDR) < 0.01 and Conjunctional Conditional False Discovery Rate (ccFDR) < 0.05. We performed gene annotation and gene functional analysis on the selected significant SNPs to determine the biological role of gene function and pathogenesis. Two-sample Mendelian Randomization (TSMR) analysis was performed to explore the causal relationship between the neuroticism and BW. RESULTS The conditional quantile-quantile plots (Q-Q plot) indicated that neuroticism and BW have strong genetic pleiotropy enrichment trends. With the threshold of cFDR < 0.001, we identified 126 SNPs related to neuroticism and 172 SNPs related to BW. With the threshold of ccFDR < 0.05, we identified 62 SNPs related to both neuroticism and BW. Among these SNPs, rs8039305 and rs35755513 have eQTL (expressed quantitative trait loci) and meQTL (methylation quantitative trait loci) effects simultaneously. Through GO enrichment analysis we also found that the two pathways of positive regulation of "mesenchymal cell proliferation" and "DNA-binding transcription factor activity" were significantly enriched in neuroticism and BW. Mendelian randomization analysis results indicate that there is no obvious causal relationship between neuroticism and birth weight. CONCLUSION We found 126 SNPs related to neuroticism, 172 SNPs related to BW and 62 SNPs associated with both neuroticism and BW, which provided a theoretical basis for their genetic mechanism and novel potential targets for treatment/intervention development.
Collapse
Affiliation(s)
- Xiao-Ying Zhou
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510330, China
- Department of Endocrinology and Metabolism, SSL Central Hospital of Dongguan City, No.1, Xianglong Road, Dongguan, 523326, China
| | - Rui-Ke Liu
- Department of Endocrinology and Metabolism, SSL Central Hospital of Dongguan City, No.1, Xianglong Road, Dongguan, 523326, China.
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510330, China.
| |
Collapse
|
3
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Conserved Expression and Functionality of Furin between Chickens and Ducks as an Activating Protease of Highly Pathogenic Avian Influenza Virus Hemagglutinins. Microbiol Spectr 2023; 11:e0460222. [PMID: 36916982 PMCID: PMC10100678 DOI: 10.1128/spectrum.04602-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) typically emerge from low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes upon spillover from wild aquatic birds into poultry. The conversion from LPAIV to HPAIV is characterized by the acquisition of a multibasic cleavage site (MBCS) at the proteolytic cleavage site in the viral binding and fusion protein, hemagglutinin (HA), resulting in cleavage and activation of HA by ubiquitously expressed furin-like proteases. The ensuing HPAIVs disseminate systemically in gallinaceous poultry, are endotheliotropic, and cause hemorrhagic disease with high mortality. HPAIV infections in wild aquatic birds are generally milder, often asymptomatic, and generally not associated with systemic dissemination nor endotheliotropic. As MBCS cleavage by host proteases is the main virulence determinant of HPAIVs in poultry, we set out to determine whether cleavage of HPAIV HA by host proteases might influence the observed species-specific pathogenesis and tropism. Here, we sequenced, cloned, and characterized the expression and functionality of duck furin. The furin sequence was strongly conserved between chickens and ducks, and duck furin cleaved HPAIV and tetrabasic HA in an overexpression system, confirming its functionality. Furin was expressed ubiquitously and to similar extents in duck and chicken tissues, including in primary duck endothelial cells, which sustained multicycle replication of H5N1 HPAIV but not LPAIVs. In conclusion, differences in furin-like protease biology between wild aquatic birds and gallinaceous poultry are unlikely to largely determine the stark differences observed in species-specific pathogenesis of HPAIVs. IMPORTANCE HPAIV outbreaks are a global concern due to the health risks for poultry, wildlife, and humans and their major economic impact. The number of LPAIV-to-HPAIV conversions, which is associated with spillover from wild birds to poultry, has been increasing over recent decades. Furthermore, H5 HPAIVs from the A/goose/Guangdong/1/96 lineage have been circulating in migratory birds, causing increasingly frequent epizootics in poultry and wild birds. Milder symptoms in migratory birds allow for dispersion of HPAIVs over long distances, justifying the importance of understanding the pathogenesis of HPAIVs in wild birds. Here, we examined whether host proteases are a likely candidate to explain some differences in the degree of HPAIV systemic dissemination between avian species. This is the first report to show that furin function and expression is comparable between chickens and ducks, which renders the hypothesis unlikely that furin-like protease differences influence the HPAIV species-specific pathogenesis and tropism.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
5
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
6
|
Wang R, Li Q, Liu F, Dang X, Sun Q, Sheng X, Hu M, Bao J, Chen J, Pan G, Zhou Z. Maturation of subtilisin-like protease NbSLP1 from microsporidia Nosema bombycis. Front Cell Infect Microbiol 2022; 12:897509. [PMID: 36046739 PMCID: PMC9421246 DOI: 10.3389/fcimb.2022.897509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Microsporidia are obligate intracellular parasites and possess a unique way of invading hosts, namely germination. Microsporidia are able to infect almost all animal cells by germination. During the process, the polar tube extrudes from the spores within, thus injecting infectious sporoplasm into the host cells. Previous studies indicated that subtilisin-like protease 1 (NbSLP1) of microsporidia Nosema bombycis were located at the polar cap of germinated spores where the polar tube extrusion. We hypothesized that NbSLP1 is an essential player in the germination process. Normally, SLP need to be activated by autoproteolysis under conditions. In this study, we found that the signal peptide of NbSLP1 affected the activation of protease, two self-cleavage sites were involved in NbSLP1 maturation between Ala104Asp105 and Ala124Asp125 respectively. Mutants at catalytic triad of NbSLP1 confirmed the decreasing of autoproteolysis. This study demonstrates that intramolecular proteolysis is required for NbSLP1 maturation. The protease undergoes a series of sequential N-terminal cleavage events to generate the mature enzyme. Like other subtilisin-like enzymes, catalytic triad of NbSLP1 are significant for the self-activation of NbSLP1. In conclusion, clarifying the maturation of NbSLP1 will be valuable for understanding the polar tube ejection mechanism of germination.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Qingyan Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Fangyan Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xiaoqun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Quan Sun
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xiaotian Sheng
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Mingyu Hu
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
7
|
Patra S, Patil S, Das S, Bhutia SK. Epigenetic dysregulation in autophagy signaling as a driver of viral manifested oral carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166517. [DOI: 10.1016/j.bbadis.2022.166517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
|
8
|
Khan N, Afghah Z, Baral A, Geiger JD, Chen X. Dimethoxycurcumin Acidifies Endolysosomes and Inhibits SARS-CoV-2 Entry. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.923018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by infection by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) continues to take a huge toll on global health. Although improving, currently there are only limited therapies against SARS-CoV-2. Curcumin, a natural polyphenol, exerts antiviral effects against a wide variety of viruses and can inhibit SARS-CoV-2 entry. However, undesirable physicochemical and pharmacokinetic properties of curcumin limit its clinical application. Here, we determined the effects of dimethoxycurcumin (DiMC), a methylated analog of curcumin with improved bioavailability, on the entry of SARS-CoV-2. DiMC blocked entry of pseudo-SARS-CoV-2 into Calu-3 human non-small cell lung adenocarcinoma cells and Vero E6 green monkey kidney epithelial cells. Mechanistically, DiMC acidified lysosomes, enhanced lysosome degradation capabilities, and promoted lysosome degradation of angiotensin converting enzyme 2 (ACE2), a major receptor for SARS-CoV-2 entry, as well as pseudo-SARS-CoV-2 and the SARS-CoV-2 S1 protein. Furthermore, other lysosome acidifying agents, including the TRPML1 agonist ML-SA1 and the BK channel activator NS1619, also blocked the entry of pseudo-SARS-CoV-2. Thus, the anti-SARS-CoV-2 potential of DiMC and lysosome acidifying agents might be explored further as possible effective therapeutic strategies against COVID-19.
Collapse
|
9
|
Furin extracellularly cleaves secreted PTENα/β to generate C-terminal fragment with a tumor-suppressive role. Cell Death Dis 2022; 13:532. [PMID: 35668069 PMCID: PMC9170693 DOI: 10.1038/s41419-022-04988-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
PTENα and PTENβ (PTENα/β), two long translational variants of phosphatase and tensin homolog on chromosome 10 (PTEN), exert distinct roles from canonical PTEN, including promoting carcinogenesis and accelerating immune-resistant cancer progression. However, their roles in carcinogenesis remain greatly unknown. Herein, we report that, after secreting into the extracellular space, PTENα/β proteins are efficiently cleaved into a short N-terminal and a long C-terminal fragment by the proprotein convertase Furin at a polyarginine stretch in their N-terminal extensions. Although secreted PTENα/β and their cleaved fragment cannot enter cells, treatment of the purified C-terminal fragment but not cleavage-resistant mutants of PTENα exerts a tumor-suppressive role in vivo. As a result, overexpression of cleavage-resistant PTENα mutants manifest a tumor-promoting role more profound than that of wild-type PTENα. In line with these, the C-terminal fragment is significantly downregulated in liver cancer tissues compared to paired normal tissues, which is consistent with the downregulated expression of Furin. Collectively, we show that extracellular PTENα/β present opposite effects on carcinogenesis from intracellular PTENα/β, and propose that the tumor-suppressive C-terminal fragment of PTENα/β might be used as exogenous agent to treat cancer.
Collapse
|
10
|
Thomas G, Couture F, Kwiatkowska A. The Path to Therapeutic Furin Inhibitors: From Yeast Pheromones to SARS-CoV-2. Int J Mol Sci 2022; 23:3435. [PMID: 35408793 PMCID: PMC8999023 DOI: 10.3390/ijms23073435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The spurious acquisition and optimization of a furin cleavage site in the SARS-CoV-2 spike protein is associated with increased viral transmission and disease, and has generated intense interest in the development and application of therapeutic furin inhibitors to thwart the COVID-19 pandemic. This review summarizes the seminal studies that informed current efforts to inhibit furin. These include the convergent efforts of endocrinologists, virologists, and yeast geneticists that, together, culminated in the discovery of furin. We describe the pioneering biochemical studies which led to the first furin inhibitors that were able to block the disease pathways which are broadly critical for pathogen virulence, tumor invasiveness, and atherosclerosis. We then summarize how these studies subsequently informed current strategies leading to the development of small-molecule furin inhibitors as potential therapies to combat SARS-CoV-2 and other diseases that rely on furin for their pathogenicity and progression.
Collapse
Affiliation(s)
- Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Frédéric Couture
- TransBIOTech, Lévis, QC G6V 6Z3, Canada;
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Intégré de Santé et de Services Sociaux de Chaudière-Appalaches, Lévis, QC G6V 3Z1, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
11
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Golgi Metal Ion Homeostasis in Human Health and Diseases. Cells 2022; 11:cells11020289. [PMID: 35053405 PMCID: PMC8773785 DOI: 10.3390/cells11020289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi apparatus is a membrane organelle located in the center of the protein processing and trafficking pathway. It consists of sub-compartments with distinct biochemical compositions and functions. Main functions of the Golgi, including membrane trafficking, protein glycosylation, and sorting, require a well-maintained stable microenvironment in the sub-compartments of the Golgi, along with metal ion homeostasis. Metal ions, such as Ca2+, Mn2+, Zn2+, and Cu2+, are important cofactors of many Golgi resident glycosylation enzymes. The homeostasis of metal ions in the secretory pathway, which is required for proper function and stress response of the Golgi, is tightly regulated and maintained by transporters. Mutations in the transporters cause human diseases. Here we provide a review specifically focusing on the transporters that maintain Golgi metal ion homeostasis under physiological conditions and their alterations in diseases.
Collapse
|
13
|
Altulea D, Maassen S, Baranov MV, van den Bogaart G. What makes (hydroxy)chloroquine ineffective against COVID-19: insights from cell biology. J Mol Cell Biol 2021; 13:175-184. [PMID: 33693723 PMCID: PMC7989365 DOI: 10.1093/jmcb/mjab016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Since chloroquine (CQ) and hydroxychloroquine (HCQ) can inhibit the invasion and proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured cells, the repurposing of these antimalarial drugs was considered a promising strategy for treatment and prevention of coronavirus disease (COVID-19). However, despite promising preliminary findings, many clinical trials showed neither significant therapeutic nor prophylactic benefits of CQ and HCQ against COVID-19. Here, we aim to answer the question of why these drugs are not effective against the disease by examining the cellular working mechanisms of CQ and HCQ in prevention of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Dania Altulea
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Sjors Maassen
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Maksim V Baranov
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - G van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
14
|
Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea. Genes (Basel) 2021; 12:genes12050710. [PMID: 34068683 PMCID: PMC8151971 DOI: 10.3390/genes12050710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/03/2023] Open
Abstract
Proprotein convertase 1/3 (PC1/3), encoded by the PCSK1 gene, is expressed in neuronal and (entero)endocrine cell types, where it cleaves and hence activates a number of protein precursors that play a key role in energy homeostasis. Loss-of-function mutations in PCSK1 cause a recessive complex endocrinopathy characterized by malabsorptive diarrhea and early-onset obesity. Despite the fact that neonatal malabsorptive diarrhea is observed in all patients, it has remained understudied. The aim of this study was to investigate the enteroendocrine pathologies in a male patient with congenital PCSK1 deficiency carrying the novel homozygous c.1034A>C (p.E345A) mutation. This patient developed malabsorptive diarrhea and metabolic acidosis within the first week of life, but rapid weight gain was observed after total parenteral nutrition, and he displayed high proinsulin levels and low adrenocorticotropin. In vitro analysis showed that the p.E345A mutation in PC1/3 resulted in a (near) normal autocatalytic proPC1/3 processing and only partially impaired PC1/3 secretion, but the processing of a substrate in trans was completely blocked. Immunohistochemical staining did not reveal changes in the proGIP/GIP and proglucagon/GLP-1 ratio in colonic tissue. Hence, we report a novel PCSK1 deficient patient who, despite neonatal malabsorptive diarrhea, showed a normal morphology in the small intestine.
Collapse
|
15
|
Zhou B, Gao S. Pan-Cancer Analysis of FURIN as a Potential Prognostic and Immunological Biomarker. Front Mol Biosci 2021; 8:648402. [PMID: 33968987 PMCID: PMC8100462 DOI: 10.3389/fmolb.2021.648402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Furin is a calcium-dependent protease that processes various precursor proteins through diverse secretory pathways. The deregulation of FURIN correlated with the prognosis of patients in numerous diseases. However, the role of FURIN in human pan-cancer is still largely unknown. Methods Multiple bioinformatic methods were employed to comprehensively analyze the correlation of FURIN expression with prognosis, mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, tumor immune infiltration, and common immune checkpoint inhibitors (ICIs) from the public database, and aim to evaluate the potential prognostic value of FURIN across cancers. Results FURIN was aberrantly expressed and was strongly correlated with MMR, MSI, TMB, and DNA methylation in multiple types of cancer. Moreover, survival analysis across cancers revealed that FURIN expression was correlated with overall survival (OS) in four cancers, disease-specific survival (DSS) in five cancers, progression-free interval (PFI) in seven cancers, and disease-free interval (DFI) in two cancers. Also, FURIN expression was related to immune cell infiltration in 6 cancers and ImmuneScore/StromalScore in 10 cancers, respectively. In addition, FURIN expression also showed strong association between expression levels and immune checkpoint markers in three cancers. Conclusion FURIN can serve as a significant prognostic biomarker and correlate with tumor immunity in human pan-cancer.
Collapse
Affiliation(s)
- Bolun Zhou
- Thoracic Surgery Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Thoracic Surgery Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Paria K, Paul D, Chowdhury T, Pyne S, Chakraborty R, Mandal SM. Synergy of melanin and vitamin-D may play a fundamental role in preventing SARS-CoV-2 infections and halt COVID-19 by inactivating furin protease. TRANSLATIONAL MEDICINE COMMUNICATIONS 2020; 5:21. [PMID: 33169107 PMCID: PMC7642579 DOI: 10.1186/s41231-020-00073-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 05/28/2023]
Abstract
Since the birth of Christ, in these 2019 years, the man on earth has never experienced a survival challenge from any acellular protist compared to SARS-CoV-2. No specific drugs yet been approved. The host immunity is the only alternative to prevent and or reduce the infection and mortality rate as well. Here, a novel mechanism of melanin mediated host immunity is proposed having potent biotechnological prospects in health care management of COVID-19. Vitamin D is known to enhance the rate of melanin synthesis; and this may concurrently regulate the expression of furin expression. In silico analyses have revealed that the intermediates of melanin are capable of binding strongly with the active site of furin protease. On the other hand, furin expression is negatively regulated via 1-α-hydroxylase (CYP27B1), that belongs to vitamin-D pathway and controls cellular calcium levels. Here, we have envisaged the availability of biological melanin and elucidated the bio-medical potential. Thus, we propose a possible synergistic application of melanin and the enzyme CYP27B1 (regulates vitamin D biosynthesis) as a novel strategy to prevent viral entry through the inactivation of furin protease and aid in boosting our immunity at the cellular and humoral levels.
Collapse
Affiliation(s)
- Kishalay Paria
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, Sector 125 201313 India
| | - Trinath Chowdhury
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Smritikana Pyne
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Ranadhir Chakraborty
- Department of Biotechnology, University of North Bengal, Raja Rammohanpur, Darjeeling, West Bengal 734013 India
| | - Santi M. Mandal
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
17
|
Chen X, Geiger JD. Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell Signal 2020; 73:109706. [PMID: 32629149 PMCID: PMC7333634 DOI: 10.1016/j.cellsig.2020.109706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ) have been thrust into our everyday vernacular because some believe, based on very limited basic and clinical data, that they might be helpful in preventing and/or lessening the severity of the pandemic coronavirus disease 2019 (COVID-19). However, lacking is a temperance in enthusiasm for their possible use as well as sufficient perspective on their effects and side-effects. CQ and HCQ have well-known properties of being diprotic weak bases that preferentially accumulate in acidic organelles (endolysosomes and Golgi apparatus) and neutralize luminal pH of acidic organelles. These primary actions of CQ and HCQ are responsible for their anti-malarial effects; malaria parasites rely on acidic digestive vacuoles for survival. Similarly, de-acidification of endolysosomes and Golgi by CQ and HCQ may block severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) integration into host cells because SARS-CoV-2 may require an acidic environment for its entry and for its ability to bud and infect bystander cells. Further, de-acidification of endolysosomes and Golgi may underly the immunosuppressive effects of these two drugs. However, modern cell biology studies have shown clearly that de-acidification results in profound changes in the structure, function and cellular positioning of endolysosomes and Golgi, in signaling between these organelles and other subcellular organelles, and in fundamental cellular functions. Thus, studying the possible therapeutic effects of CQ and HCQ against COVID-19 must occur concurrent with studies of the extent to which these drugs affect organellar and cell biology. When comprehensively examined, a better understanding of the Janus sword actions of these and other drugs might yield better decisions and better outcomes.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America.
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
18
|
Shedding of cancer susceptibility candidate 4 by the convertases PC7/furin unravels a novel secretory protein implicated in cancer progression. Cell Death Dis 2020; 11:665. [PMID: 32820145 PMCID: PMC7441151 DOI: 10.1038/s41419-020-02893-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients’ data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.
Collapse
|
19
|
Chen L, Chen H, Dong S, Huang W, Chen L, Wei Y, Shi L, Li J, Zhu F, Zhu Z, Wang Y, Lv X, Yu X, Li H, Wei W, Zhang K, Zhu L, Qu C, Hong J, Hu C, Dong J, Qi R, Lu D, Wang H, Peng S, Hao G. The Effects of Chloroquine and Hydroxychloroquine on ACE2-Related Coronavirus Pathology and the Cardiovascular System: An Evidence-Based Review. FUNCTION 2020; 1:zqaa012. [PMID: 38626250 PMCID: PMC7454642 DOI: 10.1093/function/zqaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health and there is currently no effective antiviral therapy. It has been suggested that chloroquine (CQ) and hydroxychloroquine (HCQ), which were primarily employed as prophylaxis and treatment for malaria, could be used to treat COVID-19. CQ and HCQ may be potential inhibitors of SARS-CoV-2 entry into host cells, which are mediated via the angiotensin-converting enzyme 2 (ACE2), and may also inhibit subsequent intracellular processes which lead to COVID-19, including damage to the cardiovascular (CV) system. However, paradoxically, CQ and HCQ have also been reported to cause damage to the CV system. In this review, we provide a critical examination of the published evidence. CQ and HCQ could potentially be useful drugs in the treatment of COVID-19 and other ACE2 involved virus infections, but the antiviral effects of CQ and HCQ need to be tested in more well-designed clinical randomized studies and their actions on the CV system need to be further elucidated. However, even if it were to turn out that CQ and HCQ are not useful drugs in practice, further studies of their mechanism of action could be helpful in improving our understanding of COVID-19 pathology.
Collapse
Affiliation(s)
- Li Chen
- Department of Medicine, Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Haiyan Chen
- Department of Endemic Disease, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shan Dong
- Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sports University, Guangzhou 510500, China
| | - Liping Shi
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Fengfeng Zhu
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital Of University of South China, Hengyang 421001, China
| | - Zhu Zhu
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital Of University of South China, Hengyang 421001, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaohui Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wei Wei
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chaofeng Hu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jun Dong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Renbin Qi
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guang Hao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Stasic AJ, Chasen NM, Dykes EJ, Vella SA, Asady B, Starai VJ, Moreno SNJ. The Toxoplasma Vacuolar H +-ATPase Regulates Intracellular pH and Impacts the Maturation of Essential Secretory Proteins. Cell Rep 2020; 27:2132-2146.e7. [PMID: 31091451 PMCID: PMC6760873 DOI: 10.1016/j.celrep.2019.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Vacuolar-proton ATPases (V-ATPases) are conserved complexes that couple the hydrolysis of ATP to the pumping of protons across membranes. V-ATPases are known to play diverse roles in cellular physiology. We studied the Toxoplasma gondii V-ATPase complex and discovered a dual role of the pump in protecting parasites against ionic stress and in the maturation of secretory proteins in endosomal-like compartments. Toxoplasma V-ATPase subunits localize to the plasma membrane and to acidic vesicles, and characterization of conditional mutants of the a1 subunit highlighted the functionality of the complex at both locations. Microneme and rhoptry proteins are required for invasion and modulation of host cells, and they traffic via endosome-like compartments in which proteolytic maturation occurs. We show that the V-ATPase supports the maturation of rhoptry and microneme proteins, and their maturases, during their traffic to their corresponding organelles. This work underscores a role for V-ATPases in regulating virulence pathways. Stasic et al. characterize the function of the vacuolar proton ATPase in the life cycle of Toxoplasma gondii, a widespread parasite that infects almost one-third of the world’s population. The work presents molecular evidence of the pump’s role in the synthesis of virulence factors of a highly successful pathogen.
Collapse
Affiliation(s)
- Andrew J Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA
| | - Nathan M Chasen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Eric J Dykes
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA
| | - Beejan Asady
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602-7400, USA.
| |
Collapse
|
21
|
Chauhan A, Ghoshal S, Pal A. Increased susceptibility of SARS-CoV2 infection on oral cancer patients; cause and effects: An hypothesis. Med Hypotheses 2020; 144:109987. [PMID: 32562913 PMCID: PMC7282763 DOI: 10.1016/j.mehy.2020.109987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022]
Abstract
In 2019, a new coronavirus (SARS CoV2) infecting humans has emerged in Wuhan, China which caused an unprecedented pandemic involving at least 185 countries infecting 2.5 million people till date. This virus is transmitted directly or indirectly through the upper aerodigestive tract. As it is evident from the recent studies that SARS-CoV-2 requires host enzyme Furin to activate receptor binding domain of its S protein and host Angiotensin Convertase Enzyme 2 (ACE2) is required as binding receptor, facilitating the entry of virus into the host cell. Evidence from literature shows that oral cancer tissues as well as paracarcinoma tissue exhibit higher expression of both Furin and ACE2, giving rise to the hypothesis that patients with oral cancer have higher chances of SARS CoV2 infection. It is also hypothesised that there will be increased severity of disease due to facilitated entry of the virus into the cells. Therefore, we suggest oral cancer patients require extra attention during COVID-19 pandemic and re-evaluation of current treatment paradigms in oral oncology is also needed.
Collapse
Affiliation(s)
- Anshika Chauhan
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
22
|
Nemunaitis J, Stanbery L, Senzer N. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection: let the virus be its own demise. Future Virol 2020. [PMCID: PMC7249572 DOI: 10.2217/fvl-2020-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a collaborative global effort to construct novel therapeutic and prophylactic approaches to SARS-CoV-2 management. Although vaccine development is crucial, acute management of newly infected patients, especially those with severe acute respiratory distress syndrome, is a priority. Herein we describe the rationale and potential of repurposing a dual plasmid, Vigil (pbi-shRNAfurin-GM-CSF), now in Phase III cancer trials, for the treatment of and, in certain circumstances, enhancement of the immune response to SARS-CoV-2.
Collapse
|
23
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Iron Pathophysiology in Alzheimer’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:67-104. [DOI: 10.1007/978-981-13-9589-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin Transl Immunology 2019; 8:e1073. [PMID: 31406574 PMCID: PMC6682551 DOI: 10.1002/cti2.1073] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Proteolytic cleavage regulates numerous processes in health and disease. One key player is the ubiquitously expressed serine protease furin, which cleaves a plethora of proteins at polybasic recognition motifs. Mammalian substrates of furin include cytokines, hormones, growth factors and receptors. Thus, it is not surprising that aberrant furin activity is associated with a variety of disorders including cancer. Furthermore, the enzymatic activity of furin is exploited by numerous viral and bacterial pathogens, thereby enhancing their virulence and spread. In this review, we describe the physiological and pathophysiological substrates of furin and discuss how dysregulation of a simple proteolytic cleavage event may promote infectious diseases and cancer. One major focus is the role of furin in viral glycoprotein maturation and pathogenicity. We also outline cellular mechanisms regulating the expression and activation of furin and summarise current approaches that target this protease for therapeutic intervention.
Collapse
Affiliation(s)
- Elisabeth Braun
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | - Daniel Sauter
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| |
Collapse
|
26
|
Ginefra P, Filippi BGH, Donovan P, Bessonnard S, Constam DB. Compartment-Specific Biosensors Reveal a Complementary Subcellular Distribution of Bioactive Furin and PC7. Cell Rep 2019; 22:2176-2189. [PMID: 29466742 DOI: 10.1016/j.celrep.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/13/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Furin trafficking, and that of related proprotein convertases (PCs), may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN). Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Bruno G H Filippi
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Prudence Donovan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Sylvain Bessonnard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Li X, Cao C, Wei P, Xu M, Liu Z, Liu L, Zhong Y, Li R, Zhou Y, Yi T. Self-Assembly of Amphiphilic Peptides for Recognizing High Furin-Expressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12327-12334. [PMID: 30864434 DOI: 10.1021/acsami.9b01281] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembled nanostructures of amphiphilic peptides have a wide range of applications in bioimaging and delivery systems. In this study, we design and synthesize a biocompatible amphiphilic peptide (C-3) consisting of an RVRRFFF sequence and a nitrobenzoxadiazole fluorophore that can self-assemble into stable micelles for specifically detecting furin, a kind of proprotein convertase with promoting tumor progression. The self-assembly of C-3 with a β-sheet nanostructure is capable of a rapid and specific response to furin in only 5 min in aqueous solution because of the existence of the RVRR motif in the C-3 molecule. The C-3 nanostructures thus can selectively distinguish high furin-expressing cancer cells, like MDA-MB-231 cells, a kind of human breast cancer cells, from normal cells. Furthermore, the C-3 self-assembly can stay in living cells for a long time and are capable of durable detection of intracellular furin, being good for tracer analysis. To our knowledge, this is the first example of self-assembly of a soluble amphiphilic peptide that can selectively detect furin in high furin-expressing live cells.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Haiquan Road , Shanghai 201418 , P. R. China
| | - Chunyan Cao
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , P. R. China
| | - Peng Wei
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , P. R. China
| | - Mengyin Xu
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Haiquan Road , Shanghai 201418 , P. R. China
| | - Zhongkuan Liu
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , P. R. China
| | - Lingyan Liu
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , P. R. China
| | - Yaping Zhong
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , P. R. China
| | - Ruohan Li
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , P. R. China
| | - Yifeng Zhou
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Haiquan Road , Shanghai 201418 , P. R. China
| | - Tao Yi
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , P. R. China
| |
Collapse
|
28
|
Clarke C, Gallagher C, Kelly RM, Henry M, Meleady P, Frye CC, Osborne MD, Brady CP, Barron N, Clynes M. Transcriptomic analysis of IgG4 Fc‐fusion protein degradation in a panel of clonally‐derived CHO cell lines using RNASeq. Biotechnol Bioeng 2019; 116:1556-1562. [DOI: 10.1002/bit.26958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Colin Clarke
- National Institute for Bioprocessing Research and TrainingBlackrock, Co. Dublin Ireland
| | - Clair Gallagher
- National Institute for Cellular BiotechnologyDublin City UniversityGlasnevin Dublin Ireland
| | - Ronan M. Kelly
- Bioprocess Research & Development, Bioprocess Research and DevelopmentEli Lilly and Company, LTC‐North Indianapolis
| | - Michael Henry
- National Institute for Cellular BiotechnologyDublin City UniversityGlasnevin Dublin Ireland
| | - Paula Meleady
- National Institute for Cellular BiotechnologyDublin City UniversityGlasnevin Dublin Ireland
| | - Christopher C. Frye
- Bioprocess Research & Development, Bioprocess Research and DevelopmentEli Lilly and Company, LTC‐North Indianapolis
| | - Matthew D. Osborne
- Biotech Technical Services/ Manufacturing SciencesEli Lilly S. A. Irish BranchKinsale Cork Ireland
| | - Ciaran P Brady
- Bioprocess Research & Development, Bioprocess Research and DevelopmentEli Lilly and Company, LTC‐North Indianapolis
| | - Niall Barron
- National Institute for Bioprocessing Research and TrainingBlackrock, Co. Dublin Ireland
- National Institute for Cellular BiotechnologyDublin City UniversityGlasnevin Dublin Ireland
- UCD School of Chemical and Bioprocess Engineering, UCD Engineering and Materials Science CentreUniversity College DublinBelfield Dublin Ireland
| | - Martin Clynes
- National Institute for Cellular BiotechnologyDublin City UniversityGlasnevin Dublin Ireland
| |
Collapse
|
29
|
Top O, Geisen U, Decker EL, Reski R. Critical Evaluation of Strategies for the Production of Blood Coagulation Factors in Plant-Based Systems. FRONTIERS IN PLANT SCIENCE 2019; 10:261. [PMID: 30899272 PMCID: PMC6417376 DOI: 10.3389/fpls.2019.00261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/19/2019] [Indexed: 05/30/2023]
Abstract
The use of plants as production platforms for pharmaceutical proteins has been on the rise for the past two decades. The first marketed plant-made pharmaceutical, taliglucerase alfa against Gaucher's disease produced in carrot cells by Pfizer/Protalix Biotherapeutics, was approved by the US Food and Drug Administration (FDA) in 2012. The advantages of plant systems are low cost and highly scalable biomass production compared to the fermentation systems, safety compared with other expression systems, as plant-based systems do not produce endotoxins, and the ability to perform complex eukaryotic post-translational modifications, e.g., N-glycosylation that can be further engineered to achieve humanized N-glycan structures. Although bleeding disorders affect only a small portion of the world population, costs of clotting factor concentrates impose a high financial burden on patients and healthcare systems. The majority of patients, ∼75% in the case of hemophilia, have no access to an adequate treatment. The necessity of large-scale and less expensive production of human blood coagulation factors, particularly factors associated with rare bleeding disorders, may be an important area for plant-based systems, as coagulation factors do not fit into the industry-favored production models. In this review, we explore previous studies on recombinant production of coagulation Factor II, VIII, IX, and XIII in different plant species. Production of bioactive FII and FIX in plants was not achieved yet due to complex post-translational modifications, including vitamin K-dependent γ-carboxylation and propeptide removal. Although plant-made FVIII and FXIII showed specific activities, there are no follow-up studies like pre-clinical/clinical trials. Significant progress has been achieved in oral delivery of bioencapsulated FVIII and FIX to induce immune tolerance in murine models of hemophilia A and B, resp. Potential strategies to overcome bottlenecks in the production systems are also addressed in this review.
Collapse
Affiliation(s)
- Oguz Top
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ulrich Geisen
- Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
30
|
Investigation on the processing and improving the cleavage efficiency of furin cleavage sites in Pichia pastoris. Microb Cell Fact 2018; 17:172. [PMID: 30409181 PMCID: PMC6223083 DOI: 10.1186/s12934-018-1020-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background Proprotein convertase furin is responsible for the processing of a wide variety of precursors consisted of signal peptide, propeptide and mature peptide in mammal. Many precursors processed by furin have important physiological functions and can be recombinantly expressed in Pichia pastoris expression system for research, pharmaceutical and vaccine applications. However, it is not clear whether the furin cleavage sites between the propeptide and mature peptide can be properly processed in P. pastoris, bringing uncertainty for proper expression of the coding DNA sequences of furin precursors containing the propeptides and mature peptides. Results In this study, we evaluated the ability of P. pastoris to process furin cleavage sites and how to improve the cleavage efficiencies of furin cleavage sites in P. pastoris. The results showed that P. pastoris can process furin cleavage sites but the cleavage efficiencies are not high. Arg residue at position P1 or P4 in furin cleavage sites significantly affect cleavage efficiency in P. pastoris. Kex2 protease, but not YPS1, in P. pastoris is responsible for processing furin cleavage sites. Heterologous expression of furin or overexpression of Kex2 in P. pastoris effectively increased cleavage efficiencies of furin cleavage sites. Conclusions Our investigation on the processing of furin cleavage sites provides important information for recombinant expression of furin precursors in P. pastoris. Furin or Kex2 overexpressing strains may be good choices for expressing precursors processed by furin in P. pastoris.
Collapse
|
31
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
32
|
Al Rifai O, Chow J, Lacombe J, Julien C, Faubert D, Susan-Resiga D, Essalmani R, Creemers JW, Seidah NG, Ferron M. Proprotein convertase furin regulates osteocalcin and bone endocrine function. J Clin Invest 2017; 127:4104-4117. [PMID: 28972540 DOI: 10.1172/jci93437] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
Osteocalcin (OCN) is an osteoblast-derived hormone that increases energy expenditure, insulin sensitivity, insulin secretion, and glucose tolerance. The cDNA sequence of OCN predicts that, like many other peptide hormones, OCN is first synthesized as a prohormone (pro-OCN). The importance of pro-OCN maturation in regulating OCN and the identity of the endopeptidase responsible for pro-OCN cleavage in osteoblasts are still unknown. Here, we show that the proprotein convertase furin is responsible for pro-OCN maturation in vitro and in vivo. Using pharmacological and genetic experiments, we also determined that furin-mediated pro-OCN cleavage occurred independently of its γ-carboxylation, a posttranslational modification that is known to hamper OCN endocrine action. However, because pro-OCN is not efficiently decarboxylated and activated during bone resorption, inactivation of furin in osteoblasts in mice resulted in decreased circulating levels of undercarboxylated OCN, impaired glucose tolerance, and reduced energy expenditure. Furthermore, we show that Furin deletion in osteoblasts reduced appetite, a function not modulated by OCN, thus suggesting that osteoblasts may secrete additional hormones that regulate different aspects of energy metabolism. Accordingly, the metabolic defects of the mice lacking furin in osteoblasts became more apparent under pair-feeding conditions. These findings identify furin as an important regulator of bone endocrine function.
Collapse
Affiliation(s)
- Omar Al Rifai
- Integrative and Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.,Molecular Biology Programs of the Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Jacqueline Chow
- Integrative and Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Julie Lacombe
- Integrative and Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Catherine Julien
- Integrative and Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | | | | | - Rachid Essalmani
- Biochemical Neuroendocrinology Research Unit, IRCM, Québec, Canada
| | | | - Nabil G Seidah
- Biochemical Neuroendocrinology Research Unit, IRCM, Québec, Canada.,Department of Medicine, Université de Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Mathieu Ferron
- Integrative and Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.,Molecular Biology Programs of the Faculty of Medicine, Université de Montréal, Québec, Canada.,Department of Medicine, Université de Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
33
|
Solovyeva NI, Gureeva TA, Timoshenko OS, Moskvitina TA, Kugaevskaya EV. Furin as proprotein convertase and its role in normal and pathological biological processes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817020081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Jaaks P, Bernasconi M. The proprotein convertase furin in tumour progression. Int J Cancer 2017; 141:654-663. [PMID: 28369813 DOI: 10.1002/ijc.30714] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
Proprotein convertases are proteases that have been implicated in the activation of a wide variety of proteins. These proteins are generally synthesised as precursor proteins and require limited proteolysis for conversion into their mature bioactive counterparts. Many of these proteins, including metalloproteases, growth factors and their receptors or adhesion molecules, have been shown to facilitate tumour formation and progression. Hence, this review will focus on the proprotein convertase furin and its role in cancer. The expression of furin has been confirmed in a large spectrum of cancers such as head and neck squamous cell carcinoma, breast cancer and rhabdomyosarcoma. Functional studies modulating furin activity uncovered its importance for the processing of many cancer-related substrates and strongly indicate that high furin activity promotes the malignant phenotype of cancer cells. In this review, we summarise the expression and function of furin in different cancer types, discuss its role in processing cancer-related proproteins and give examples of potential therapeutic approaches that take advantage of the proteolytic activity of furin in cancer cells.
Collapse
Affiliation(s)
- Patricia Jaaks
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michele Bernasconi
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JWM. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr Rev 2016; 37:347-71. [PMID: 27187081 DOI: 10.1210/er.2015-1117] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.
Collapse
Affiliation(s)
- Pieter Stijnen
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
36
|
Meyer M, Leptihn S, Welz M, Schaller A. Functional Characterization of Propeptides in Plant Subtilases as Intramolecular Chaperones and Inhibitors of the Mature Protease. J Biol Chem 2016; 291:19449-61. [PMID: 27451395 DOI: 10.1074/jbc.m116.744151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Indexed: 12/23/2022] Open
Abstract
Subtilisin-like serine proteases (SBTs) are extracellular proteases that depend on their propeptides for zymogen maturation and activation. The function of propeptides in plant SBTs is poorly understood and was analyzed here for the propeptide of tomato subtilase 3 (SBT3PP). SBT3PP was found to be required as an intramolecular chaperone for zymogen maturation and secretion of SBT3 in vivo Secretion was impaired in a propeptide-deletion mutant but could be restored by co-expression of the propeptide in trans SBT3 was inhibited by SBT3PP with a Kd of 74 nm for the enzyme-inhibitor complex. With a melting point of 87 °C, thermal stability of the complex was substantially increased as compared with the free protease suggesting that propeptide binding stabilizes the structure of SBT3. Even closely related propeptides from other plant SBTs could not substitute for SBT3PP as a folding assistant or autoinhibitor, revealing high specificity for the SBT3-SBT3PP interaction. Separation of the chaperone and inhibitor functions of SBT3PP in a domain-swap experiment indicated that they are mediated by different regions of the propeptide and, hence, different modes of interaction with SBT3. Release of active SBT3 from the autoinhibited complex relied on a pH-dependent cleavage of the propeptide at Asn-38 and Asp-54. The remarkable stability of the autoinhibited complex and pH dependence of the secondary cleavage provide means for stringent control of SBT3 activity, to ensure that the active enzyme is not released before it reaches the acidic environment of the trans-Golgi network or its final destination in the cell wall.
Collapse
Affiliation(s)
- Michael Meyer
- From the Institute of Plant Physiology and Biotechnology and
| | - Sebastian Leptihn
- the Department of Microbiology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Max Welz
- From the Institute of Plant Physiology and Biotechnology and
| | | |
Collapse
|
37
|
Ramos-Molina B, Martin MG, Lindberg I. PCSK1 Variants and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:47-74. [PMID: 27288825 DOI: 10.1016/bs.pmbts.2015.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PCSK1, encoding prohormone convertase 1/3 (PC1/3), was one of the first genes linked to monogenic early-onset obesity. PC1/3 is a protease involved in the biosynthetic processing of a variety of neuropeptides and prohormones in endocrine tissues. PC1/3 activity is essential for the activating cleavage of many peptide hormone precursors implicated in the regulation of food ingestion, glucose homeostasis, and energy homeostasis, for example, proopiomelanocortin, proinsulin, proglucagon, and proghrelin. A large number of genome-wide association studies in a variety of different populations have now firmly established a link between three PCSK1 polymorphisms frequent in the population and increased risk of obesity. Human subjects with PC1/3 deficiency, a rare autosomal-recessive disorder caused by the presence of loss-of-function mutations in both alleles, are obese and display a complex set of endocrinopathies. Increasing numbers of genetic diagnoses of infants with persistent diarrhea has recently led to the finding of many novel PCSK1 mutations. PCSK1-deficient infants experience severe intestinal malabsorption during the first years of life, requiring controlled nutrition; these children then become hyperphagic, with associated obesity. The biochemical characterization of novel loss-of-function PCSK1 mutations has resulted in the discovery of new pathological mechanisms affecting the cell biology of the endocrine cell beyond simple loss of enzyme activity, for example, dominant-negative effects of certain mutants on wild-type PC1/3 protein, and activation of the cellular unfolded protein response by endoplasmic reticulum-retained mutants. A better understanding of these molecular and cellular pathologies may illuminate possible treatments for the complex endocrinopathy of PCSK1 deficiency, including obesity.
Collapse
Affiliation(s)
- B Ramos-Molina
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - M G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - I Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, United States of America.
| |
Collapse
|
38
|
Solovyeva N, Gureeva T, Timoshenko O, Moskvitina T, Kugaevskaya E. Furin as proprotein convertase and its role in normal and pathological biological processes. ACTA ACUST UNITED AC 2016; 62:609-621. [DOI: 10.18097/pbmc20166206609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Furin belongs to serine intracellular Ca2+-dependent endopeptidases of the subtilisin family, also known as proprotein convertase (PC). Human furin is synthesized as zymogen with a molecular weight of 104 kDa, which is then activated by autocatalytic in two stages. This process can occur when zymogen migrates from the endoplasmic reticulum to the Golgi apparatus, where a large part of furin is accumulated. The molecular weigh t of the active furin is 98 kDa. Furin relates to enzymes with a narrow substrate specificity: it hydrolyzes peptide bonds at the site of paired basic amino acids and furin activity exhibits in a wide pH range 5-8. Its main biological function is activation of the functionally important protein precursors. It is accompanied by the launch of a cascade of reactions, which lead to appearance of biologically active molecules involved in realization of specific biological functions both in normal and in some patologicheskih processes. Furin substrates are biologically important proteins such as enzymes, hormones, growth factors and differentiation, receptors, adhesion proteins, proteins of blood plasma. Furin plays an important role in the development of processes such as proliferation, invasion, cell migration, survival, maintenance of homeostasis, embryogenesis, as well as the development of a number of pathologies, including cardiovascular, oncologic and neurodegenerative diseases. Furin and furin-like proprotein convertases participate as key factors in the realization of the regulatory functions of proteolytic enzymes, the value of which is currently being evaluated as most important in comparison with the degradative function of proteases.
Collapse
Affiliation(s)
| | - T.A. Gureeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | |
Collapse
|
39
|
Elferich J, Williamson DM, David LL, Shinde U. Determination of Histidine pKa Values in the Propeptides of Furin and Proprotein Convertase 1/3 Using Histidine Hydrogen-Deuterium Exchange Mass Spectrometry. Anal Chem 2015; 87:7909-17. [PMID: 26110992 PMCID: PMC4903077 DOI: 10.1021/acs.analchem.5b01721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Propeptides of proprotein convertases regulate activation of their protease domains by sensing the organellar pH within the secretory pathway. Earlier experimental work highlighted the importance of a conserved histidine residue within the propeptide of a widely studied member, furin. A subsequent evolutionary analysis found an increase in histidine content within propeptides of secreted eukaryotic proteases compared with their prokaryotic orthologs. However, furin activates in the trans-golgi network at a pH of 6.5 while a paralog, proprotein convertase 1/3, activates in secretory vesicles at a pH of 5.5. It is unclear how a conserved histidine can mediate activation at two different pH values. In this manuscript, we measured the pKa values of histidines within the propeptides of furin and proprotein convertase 1/3 using a histidine hydrogen-deuterium exchange mass spectrometry approach. The high density of histidine residues combined with an abundance of basic residues provided challenges for generation of peptide ions with unique histidine residues, which were overcome by employing ETD fragmentation. During this analysis, we found slow hydrogen-deuterium exchange in residues other than histidine at basic pH. Finally, we demonstrate that the pKa of the conserved histidine in proprotein convertase 1/3 is acid-shifted compared with furin and is consistent with its lower pH of activation.
Collapse
Affiliation(s)
- Johannes Elferich
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Danielle M. Williamson
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Larry L. David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|
40
|
Wang JW, Matsui K, Pan Y, Kwak K, Peng S, Kemp T, Pinto L, Roden RB. Production of Furin-Cleaved Papillomavirus Pseudovirions and Their Use for In Vitro Neutralization Assays of L1- or L2-Specific Antibodies. CURRENT PROTOCOLS IN MICROBIOLOGY 2015; 38:14B.5.1-26. [PMID: 26237105 PMCID: PMC4533841 DOI: 10.1002/9780471729259.mc14b05s38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunization with Human Papillomavirus (HPV) L1 virus-like particles or L2 capsid protein elicits neutralizing antibodies that mediate protection. A high-throughput and sensitive in vitro neutralization assay is therefore valuable for prophylactic HPV vaccine studies. Over several hours during infection of the genital tract, virions take on a distinct intermediate conformation, including a required furin cleavage of L2 at its N-terminus. This intermediate is an important target for neutralization by L2-specific antibody, but it is very transiently exposed during in vitro infection of most cell lines resulting in insensitive measurement for L2, but not L1-specific neutralizing antibodies. To model this intermediate, we describe a protocol to generate furin-cleaved HPV pseudovirions (fc-PsV), which deliver an encapsidated reporter plasmid to facilitate infectivity measurements. We also describe a protocol for use of fc-PsV in a high-throughput in vitro neutralization assay for the sensitive measurement of both L1 and L2-specific neutralizing antibodies.
Collapse
Affiliation(s)
- Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 USA
| | - Ken Matsui
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Yuanji Pan
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Kihyuck Kwak
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 USA
| | - Shiwen Peng
- Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287 USA
| | - Troy Kemp
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Ligia Pinto
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Richard B.S Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 USA
- Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287 USA
- Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
41
|
Williamson DM, Elferich J, Shinde U. Mechanism of Fine-tuning pH Sensors in Proprotein Convertases: IDENTIFICATION OF A pH-SENSING HISTIDINE PAIR IN THE PROPEPTIDE OF PROPROTEIN CONVERTASE 1/3. J Biol Chem 2015; 290:23214-25. [PMID: 26229104 DOI: 10.1074/jbc.m115.665430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 12/15/2022] Open
Abstract
The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a "gatekeeper" that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion.
Collapse
Affiliation(s)
- Danielle M Williamson
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Johannes Elferich
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Ujwal Shinde
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
42
|
Doi K, Imai T, Kressler C, Yagita H, Agata Y, Vooijs M, Hamazaki Y, Inoue J, Minato N. Crucial role of the Rap G protein signal in Notch activation and leukemogenicity of T-cell acute lymphoblastic leukemia. Sci Rep 2015; 5:7978. [PMID: 25613394 PMCID: PMC4303867 DOI: 10.1038/srep07978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023] Open
Abstract
The Rap G protein signal regulates Notch activation in early thymic progenitor cells, and deregulated Rap activation (Rap(high)) results in the development of Notch-dependent T-cell acute lymphoblastic leukemia (T-ALL). We demonstrate that the Rap signal is required for the proliferation and leukemogenesis of established Notch-dependent T-ALL cell lines. Attenuation of the Rap signal by the expression of a dominant-negative Rap1A17 or Rap1GAP, Sipa1, in a T-ALL cell line resulted in the reduced Notch processing at site 2 due to impaired maturation of Adam10. Inhibition of the Rap1 prenylation with a geranylgeranyl transferase inhibitor abrogated its membrane-anchoring to Golgi-network and caused reduced proprotein convertase activity required for Adam10 maturation. Exogenous expression of a mature form of Adam10 overcame the Sipa1-induced inhibition of T-ALL cell proliferation. T-ALL cell lines expressed Notch ligands in a Notch-signal dependent manner, which contributed to the cell-autonomous Notch activation. Although the initial thymic blast cells barely expressed Notch ligands during the T-ALL development from Rap(high) hematopoietic progenitors in vivo, the ligands were clearly expressed in the T-ALL cells invading extrathymic vital organs. These results reveal a crucial role of the Rap signal in the Notch-dependent T-ALL development and the progression.
Collapse
Affiliation(s)
- Keiko Doi
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takahiko Imai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Christopher Kressler
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasutoshi Agata
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Marc Vooijs
- Maastricht Radiation Oncology and School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Joe Inoue
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
43
|
da Palma JR, Burri DJ, Oppliger J, Salamina M, Cendron L, de Laureto PP, Seidah NG, Kunz S, Pasquato A. Zymogen activation and subcellular activity of subtilisin kexin isozyme 1/site 1 protease. J Biol Chem 2014; 289:35743-56. [PMID: 25378398 DOI: 10.1074/jbc.m114.588525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B'/B followed by the herein newly identified C'/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B'/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1-P8) and P1' are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates.
Collapse
Affiliation(s)
- Joel Ramos da Palma
- From the Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Dominique Julien Burri
- From the Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Joël Oppliger
- From the Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | - Patrizia Polverino de Laureto
- the Department of Pharmaceutical Sciences, Centro Ricerche Interdipartimentale Biotecnologie Innovative, University of Padua, 35121 Padua, Italy, and
| | - Nabil Georges Seidah
- the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Stefan Kunz
- From the Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland,
| | - Antonella Pasquato
- From the Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland,
| |
Collapse
|
44
|
Chorba JS, Shokat KM. The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J Biol Chem 2014; 289:29030-43. [PMID: 25210046 DOI: 10.1074/jbc.m114.594861] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biologic-based strategies to inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) show promise as anti-hypercholesterolemic and, therefore, anti-atherosclerotic therapies. Despite substantial effort, no small molecule strategy to inhibit PCSK9 has demonstrated feasibility. In this study we interrogated the chemistry of the PCSK9 active site and its adjacent residues to identify a foothold with which to drug the PCSK9 processing pathway and ultimately disrupt the interaction with the LDL receptor. Here, we develop a system in which we amplify the readout of PCSK9 proteolysis with a highly specific substrate in cells, showing that the PCSK9 catalytic domain is capable of proteolysis in trans. We use this system to show that the substrate specificity for PCSK9 proteolysis is distinct from the specificity for PCSK9 secretion, demonstrating that PCSK9 processing occurs in two separate sequential steps: that of proteolysis followed by secretion. We show that specific residues in the protease recognition sequence can differentially modulate the effects on proteolysis and secretion. Additionally, we demonstrate that the clinically described, dominant negative Q152H mutation restricts proteolysis and secretion independently. Our results suggest that the PCSK9 active site and its adjacent residues serve as an allosteric modulator of protein secretion independent of its role in proteolysis, revealing a new strategy for intracellular PCSK9 inhibition.
Collapse
Affiliation(s)
- John S Chorba
- From the Division of Cardiology, San Francisco General Hospital, Department of Medicine, University of California, San Francisco, California 94110, Cardiovascular Research Institute, University of California, San Francisco, California 94158, and
| | - Kevan M Shokat
- Cardiovascular Research Institute, University of California, San Francisco, California 94158, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158 and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
45
|
Tewari R, Jarvela T, Linstedt AD. Manganese induces oligomerization to promote down-regulation of the intracellular trafficking receptor used by Shiga toxin. Mol Biol Cell 2014; 25:3049-58. [PMID: 25079690 PMCID: PMC4230593 DOI: 10.1091/mbc.e14-05-1003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Manganese down-regulates the Shiga toxin receptor GPP130, which protects against lethal toxin doses. This study reveals a major aspect of the mechanism. Manganese binds GPP130, inducing GPP130 oligomerization, which is required and sufficient to redirect GPP130 out of the Golgi toward lysosomes. Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown. Here we show that a transferable trafficking determinant within GPP130 bound Mn and that Mn binding induced GPP130 oligomerization in the Golgi. Alanine substitutions blocking Mn binding abrogated both oligomerization of GPP130 and GPP130 sorting from the Golgi to lysosomes. Further, oligomerization was sufficient because forced aggregation, using a drug-controlled polymerization domain, redirected GPP130 to lysosomes in the absence of Mn. These experiments reveal metal-induced oligomerization as a Golgi sorting mechanism for a medically relevant receptor for Shiga toxin.
Collapse
Affiliation(s)
- Ritika Tewari
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Timothy Jarvela
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
46
|
Yang Y, Bai ZG, Yin J, Wu GC, Zhang ZT. Role of c-Src activity in the regulation of gastric cancer cell migration. Oncol Rep 2014; 32:45-9. [PMID: 24841138 PMCID: PMC4067425 DOI: 10.3892/or.2014.3188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/04/2014] [Indexed: 01/29/2023] Open
Abstract
Gastric cancer is associated with increased migration and invasion. In the present study, we explored the role of c-Src in gastric cancer cell migration and invasion. BGC-823 gastric cancer cells were used to investigate migration following treatment of these cells with the c-Src inhibitors, PP2 and SU6656. Migration and invasion were analyzed by wound healing and Transwell assays. Western blot analysis was used to detect the expression of MT1-MMP and VEGF-C, while the activity of MMP2 and MMP9 was monitored with gelatin zymography assay. Immunoprecipitation was used to detect interactions among furin, pro-MT1-MMP and pro-VEGF-C. MT1-MMP and VEGF-C expression levels were inhibited by PP2 and SU6656 treatment, in accordance with decreased c-Src activity. Similarly, the zymography assay demonstrated that the activity of MMP2 and MMP9 was decreased following PP2 or SU6656 treatment. Blockade of c-Src also inhibited the invasive and migratory capacity of BGC-823 cells. Notably, c-Src interacted with furin in vivo, while interactions between furin and its substrates, pro-MT1-MMP and pro-VEGF-C, were decreased by c-Src inhibitors. In conclusion, the interaction among furin and pro-MT1-MMP or pro-VEGF-C or other tumor-associated precursor enzymes can be regulated by c-Src activity, thus reducing or changing the expression of these enzymes in order to reduce the development of gastric cancer, invasion and metastasis.
Collapse
Affiliation(s)
- Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Zhi-Gang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Guo-Cong Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| |
Collapse
|
47
|
Sadeqzadeh E, de Bock CE, Wojtalewicz N, Holt JE, Smith ND, Dun MD, Schwarte-Waldhoff I, Thorne RF. Furin processing dictates ectodomain shedding of human FAT1 cadherin. Exp Cell Res 2014; 323:41-55. [PMID: 24560745 DOI: 10.1016/j.yexcr.2014.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/09/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Fat1 is a single pass transmembrane protein and the largest member of the cadherin superfamily. Mouse knockout models and in vitro studies have suggested that Fat1 influences cell polarity and motility. Fat1 is also an upstream regulator of the Hippo pathway, at least in lower vertebrates, and hence may play a role in growth control. In previous work we have established that FAT1 cadherin is initially cleaved by proprotein convertases to form a noncovalently linked heterodimer prior to expression on the cell surface. Such processing was not a requirement for cell surface expression, since melanoma cells expressed both unprocessed FAT1 and the heterodimer on the cell surface. Here we further establish that the site 1 (S1) cleavage step to promote FAT1 heterodimerisation is catalysed by furin and we identify the cleavage site utilised. For a number of other transmembrane receptors that undergo heterodimerisation the S1 processing step is thought to occur constitutively but the functional significance of heterodimerisation has been controversial. It has also been generally unclear as to the significance of receptor heterodimerisation with respect to subsequent post-translational proteolysis that often occurs in transmembrane proteins. Exploiting the partial deficiency of FAT1 processing in melanoma cells together with furin-deficient LoVo cells, we manipulated furin expression to demonstrate that only the heterodimer form of FAT1 is subject to cleavage and subsequent release of the extracellular domain. This work establishes S1-processing as a clear functional prerequisite for ectodomain shedding of FAT1 with general implications for the shedding of other transmembrane receptors.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Charles E de Bock
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Natalie Wojtalewicz
- Department of Internal Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Janet E Holt
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nathan D Smith
- ABRF, Research Services, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Hunter Translational Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - Rick F Thorne
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Hunter Translational Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
48
|
Liu B, Li G, Wang X, Liu Y. A furin inhibitor downregulates osteosarcoma cell migration by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway. Oncol Lett 2014; 7:1033-1038. [PMID: 24944664 PMCID: PMC3961323 DOI: 10.3892/ol.2014.1839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/20/2013] [Indexed: 01/25/2023] Open
Abstract
This study aimed to explore the exact mechanism of the effect of a furin inhibitor on the migration and invasion of MG-63 and Saos-2 osteosarcoma cells. MG-63 and Saos-2 osteosarcoma cells were treated with regular culture medium in the presence or absence of 480 nM α1-antitrypsin Portland (α1-PDX). Wound-healing and Transwell assays were used for the detection of the effects of α1-PDX on MG-63 and Saos-2 osteosarcoma cell migration and invasion. Western blot analysis and reverse transcription-polymerase chain reaction were performed to detect the expression levels of membrane type I matrix metalloproteinase (MT1-MMP), Wnt and β-catenin. A chromatin immunoprecipitation assay was used for detection of the levels of MT1-MMP gene transcription activity. The results showed that α1-PDX treatment significantly reduced the migration and invasion ability of the cells. Notably, the expression levels of MT1-MMP decreased evidently upon α1-PDX treatment, paralleled with reductions in the expression levels of Wnt and β-catenin. Further analysis of the transcriptional activity of MT1-MMP revealed that the α1-PDX-induced downregulation of the levels of MT1-MMP was mediated by the Wnt signaling pathway. These data suggest that α1-PDX plays a vital role in inhibiting MG-63 and Saos-2 osteosarcoma cell migration and invasion by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway.
Collapse
Affiliation(s)
- Bingshan Liu
- Department of Orthopaedics, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Guojun Li
- Department of Orthopaedics, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Xiao Wang
- Department of Orthopaedics, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Yang Liu
- Department of Orthopaedics, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| |
Collapse
|
49
|
Wang JW, Jagu S, Kwak K, Wang C, Peng S, Kirnbauer R, Roden RBS. Preparation and properties of a papillomavirus infectious intermediate and its utility for neutralization studies. Virology 2013; 449:304-16. [PMID: 24418565 DOI: 10.1016/j.virol.2013.10.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/18/2013] [Accepted: 10/29/2013] [Indexed: 02/07/2023]
Abstract
We show that minor capsid protein L2 is full length in clinical virion isolates and prepare furin-cleaved pseudovirus (fcPsV) as a model of the infectious intermediate for multiple human papillomavirus (HPV) types. These fcPsV do not require furin for in vitro infection, and are fully infectious in vivo. Both the γ-secretase inhibitor XXI and carrageenan block fcPsV infection in vitro and in vivo implying that they act after furin-cleavage of L2. Despite their enhanced exposure of L2 epitopes, vaccination with fcPsV particles fails to induce L2 antibody, although L1-specific responses are similar to PsV with intact L2. FcPsV can be applied in a simple, high-throughput neutralization assay that detects L2-specific neutralizing antibodies with >10-fold enhanced sensitivity compared with the PsV-based assay. The PsV and fcPsV-based assays exhibit similar sensitivity for type-specific antibodies elicited by L1 virus-like particles (VLP), but the latter improves detection of L1-specific cross-type neutralizing antibodies.
Collapse
Affiliation(s)
- Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Subhashini Jagu
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kihyuck Kwak
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Chenguang Wang
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Shiwen Peng
- Department of Oncology, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology, Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University Vienna (MUW), Vienna, Austria
| | - Richard B S Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21231, USA; Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
50
|
Child MA, Harris PK, Collins CR, Withers-Martinez C, Yeoh S, Blackman MJ. Molecular determinants for subcellular trafficking of the malarial sheddase PfSUB2. Traffic 2013; 14:1053-64. [PMID: 23834729 DOI: 10.1111/tra.12092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/29/2022]
Abstract
The malaria merozoite invades erythrocytes in the vertebrate host. Iterative rounds of asexual intraerythrocytic replication result in disease. Proteases play pivotal roles in erythrocyte invasion, but little is understood about their mode of action. The Plasmodium falciparum malaria merozoite surface sheddase, PfSUB2, is one such poorly characterized example. We have examined the molecular determinants that underlie the mechanisms by which PfSUB2 is trafficked initially to invasion-associated apical organelles (micronemes) and then across the surface of the free merozoite. We show that authentic promoter activity is important for correct localization of PfSUB2, likely requiring canonical features within the intergenic region 5' of the pfsub2 locus. We further demonstrate that trafficking of PfSUB2 beyond an early compartment in the secretory pathway requires autocatalytic protease activity. Finally, we show that the PfSUB2 transmembrane domain is required for microneme targeting, while the cytoplasmic domain is essential for surface translocation of the protease to the parasite posterior following discharge from micronemes. The interplay of pre- and post-translational regulatory elements that coordinate subcellular trafficking of PfSUB2 provides the parasite with exquisite control over enzyme-substrate interactions.
Collapse
Affiliation(s)
- Matthew A Child
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK; Present address: Pathology Department, Stanford University School of Medicine, CA, USA
| | | | | | | | | | | |
Collapse
|