1
|
Wang F, Zhang J, Zhang Q, Song Z, Xin C. Antifungal activities of Equol against Candida albicans in vitro and in vivo. Virulence 2024; 15:2404256. [PMID: 39267283 PMCID: PMC11409501 DOI: 10.1080/21505594.2024.2404256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can cause systemic infections in immunocompromised individuals. Morphological transition and biofilm formation are major virulence factors of C. albicans. Moreover, biofilm enhances resistance to antifungal agents. Therefore, it is urgent to identify new and effective compounds to target the biofilm of C. albicans. In the present study, the antifungal activities of equol against C. albicans were investigated. In vitro, the microdilution analysis and spot assay result showed that equol exhibited potent inhibitory activities against C. albicans. Further investigations confirmed that the antifungal effects of equol involved interference with the transition from yeast to hypha and biofilm formation of C. albicans. In addition, transcriptome sequencing and reverse transcription-quantitative PCR (qRT-PCR) analysis showed that equol significantly downregulated the expression of several genes in the Ras1-cAMP-PKA pathway related to hyphae and biofilm formation and significantly upregulated the expression of the negative transcriptional repressors RFG1 and TUP1. Moreover, equol effectively reduced the production of cAMP, a key messenger in the Ras1-cAMP-PKA pathway, while supplementation with cAMP partly rescued the equol-induced defects in hyphal development. Furthermore, in a mouse model of systemic candidiasis (SC), equol treatment significantly decreased the fungal burden (liver, kidneys, and lung) in mice and local tissue damage, while enhancing the production of interleukin-10 (IL-10). Together, these findings confirm that equol is a potentially effective agent for treatment of SC.
Collapse
Affiliation(s)
- Fen Wang
- Nanobiosensing and Microfluidic Point-of-Care Testing Key Laboratory of LuZhou, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jinping Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, People's Republic of China
| | - Qian Zhang
- Department of blood transfusion, Zhejiang people's hospital, Yichang, China
| | - Zhangyong Song
- School of Basic Medical Science, Southwest Medical University, Luzhou, People's Republic of China
- Technical Platform for the Molecular Biology, Research Core Facility, Southwest Medical University, Luzhou, People's Republic of China
- Southwest Medical University, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Caiyan Xin
- School of Basic Medical Science, Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
2
|
Kantroo HA, Mubarak MM, Chowdhary R, Rai R, Ahmad Z. Antifungal Efficacy of Ultrashort β-Peptides against Candida Species: Mechanistic Understanding and Therapeutic Implications. ACS Infect Dis 2024. [PMID: 39392829 DOI: 10.1021/acsinfecdis.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Candidiasis, a condition spurred by the unchecked proliferation of Candida species, poses a formidable global health threat, particularly in immunocompromised individuals. The emergence of drug-resistant strains complicates management strategies, necessitating novel therapeutic avenues. Antimicrobial peptides (AMPs) have garnered attention for their potent antifungal properties and broad-spectrum activity against Candida species. This study assessed the antifungal effectiveness of ultrashort β-peptides against Candida strains, with a specific focus on peptide P3 (LAU-β3,3-Pip-β2,2-Ac6c-PEA). Our findings showed P3's remarkable fungistatic and fungicidal activities against Candida albicans, exhibiting an MIC of 4 μg/mL, comparable to those of standard antifungal drugs. The MIC value remained unchanged in the presence of ADC and BSA, indicating that serum albumin does not diminish the activity of P3. P3 demonstrates synergistic effects when combined with Fluconazole (FLU), Itraconazole (ITR), and Nystatin (NYS) to the extent that it becomes effective at 0.125, 0.125, and 0.03125 μg/mL, respectively. Concentration versus time-kill kinetics showed its time-dependent activity up to the first 12 h against C. albicans, and later concentration also played a role; indeed, at 24 h the whole culture was sterilized at 8× MIC. Post-antifungal effect assays confirmed prolonged suppression of pathogen growth after the removal of P3 from the media for significant durations. More importantly, P3 inhibits hyphae formation and biofilm development of Candida, outperforming Fluconazole with respect to these properties. Mechanistic insights display P3's potential to disrupt fungal cell membrane integrity and dose-dependent inhibition of ergosterol biosynthesis, essential for fungal cell wall integrity. Using the Bradford assay, it was observed that extracellular protein concentrations increased with higher doses of the compound, thereby validating the effect of P3 on membrane integrity. A comparative gene analysis using RT-PCR showed that P3 downregulates ERG3, ERG11, and HWP1, which are crucial for the survival and pathogenicity of C. albicans. The impact of P3 on ERG11 and ERG3 is more effective than that of Fluconazole. Molecular docking studies revealed strong binding of P3 to various isoforms of lanosterol 14-α-demethylase, a key enzyme in ergosterol synthesis. Furthermore, molecular dynamic simulations validated the stability of the most promising docking complex. Overall, our findings underscore P3's potential as a leading candidate for the development of innovative antifungal therapies, warranting further investigation and optimization.
Collapse
Affiliation(s)
- Hadiya Amin Kantroo
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar-190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohamad Mosa Mubarak
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar-190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rubina Chowdhary
- Natural Products & Medicinal Chemistry Division, CSIR - Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajkishor Rai
- Natural Products & Medicinal Chemistry Division, CSIR - Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Zahoor Ahmad
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar-190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Brown JC, Ballou ER. Is Cryptococcus neoformans a pleomorphic fungus? Curr Opin Microbiol 2024; 82:102539. [PMID: 39260180 DOI: 10.1016/j.mib.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Improved understanding of the human fungal pathogen Cryptococcus neoformans, classically described as a basidiomycete budding yeast, has revealed new infection-relevant single cell morphologies in vivo and in vitro. Here, we ask whether these morphologies constitute true morphotypes, requiring updated classification of C. neoformans as a pleomorphic fungus. We profile recent discoveries of C. neoformans seed cells and titan cells and provide a framework for determining whether these and other recently described single-cell morphologies constitute true morphotypes. We demonstrate that multiple C. neoformans single-cell morphologies are transcriptionally distinct, stable, heritable, and associated with active growth and therefore should be considered true morphotypes in line with the classification in other well-studied fungi. We conclude that C. neoformans is a pleomorphic fungus with an important capacity for morphotype switching that underpins pathogenesis.
Collapse
Affiliation(s)
- Jessica Cs Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Elizabeth R Ballou
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
4
|
Gavandi T, Patil S, Basrani S, Yankanchi S, Chougule S, Karuppayil SM, Jadhav A. MIG1, TUP1 and NRG1 mediated yeast to hyphal morphogenesis inhibition in Candida albicans by ganciclovir. Braz J Microbiol 2024; 55:2047-2056. [PMID: 38789908 PMCID: PMC11405576 DOI: 10.1007/s42770-024-01344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
Candida albicans is a polymorphic human fungal pathogen and the prime etiological agent responsible for candidiasis. The main two aspects of C. albicans virulence that have been suggested are yeast-to-hyphal (Y-H) morphological transitions and biofilm development. Anti-fungal agents targeting these virulence attributes enhances the antifungal drug development process. Repositioning with other non-fungal drugs offered a one of the new strategies and a potential alternative option to counter the urgent need for antifungal drug development. In the current study, an antiviral drug ganciclovir was screened as an antifungal agent against ATCC 90028, 10231 and clinical isolate (C1). Ganciclovir at 0.5 mg/ml concentration reduced 50% hyphal development on a silicon-based urinary catheter and was visualized using scanning electron microscopy. Ganciclovir reduced ergosterol biosynthesis in both strains and C1 isolate of C. albicans in a concentration-dependent manner. Additionally, a gene expression profile study showed that ganciclovir treatment resulted in upregulation of hyphal-specific repressors MIG1, TUP1, and NRG1 in C. albicans. Additionally, an in vivo study on the Bombyx mori silkworm model further evidenced the virulence inhibitory ability of ganciclovir (0.5 mg/ml) against C. albicans. This is the first report that explore the novel anti-morphogenic activities of ganciclovir against the pathogenic C. albicans strains, along with clinical isolates. Further, ganciclovir may be considered for therapeutic purpose after combinations with standard antifungal agents.
Collapse
Affiliation(s)
- Tanjila Gavandi
- Department of Stem cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), 416006, Kolhapur, Maharashtra, India
| | - Shivani Patil
- Department of Stem cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), 416006, Kolhapur, Maharashtra, India
| | - Sargun Basrani
- Department of Stem cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), 416006, Kolhapur, Maharashtra, India
| | - Shivanand Yankanchi
- Department of Zoology, Shivaji University, Vidya Nagar, 416004, Kolhapur, Maharashtra, India
| | - Sayali Chougule
- Department of Stem cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), 416006, Kolhapur, Maharashtra, India
| | - S Mohan Karuppayil
- Department of Stem cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), 416006, Kolhapur, Maharashtra, India.
| | - Ashwini Jadhav
- Department of Stem cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), 416006, Kolhapur, Maharashtra, India.
| |
Collapse
|
5
|
Williams C, Carnahan BR, Hyland SN, Grimes CL. Bioorthogonal labeling of chitin in pathogenic Candida species reveals biochemical mechanisms of hyphal growth and homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609898. [PMID: 39253419 PMCID: PMC11383299 DOI: 10.1101/2024.08.27.609898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pathogenic fungi rely on the cell wall component, chitin, for critical structural and immunological functions. Here a chitin labeling method to visualize the hyphal pathogenic response was developed. The data show that filamentous fungi, Candida albicans , transport N -acetylglucosamine (NAG) bio-orthogonal probes and incorporate them into the cell wall, indicating the probes utility for in vivo study of the morphological, pathogenic switch. As yeast reside in complex microenvironments, The data show that the opportunistic microbe C. albicans , has developed processes to utilize surrounding bacterial cell wall fragments to initiate the morphogenic switch. The probes are utilized for visualization of growth patterns of pathogenic fungi, providing insights into novel mechanisms for the development of antifungals. Remodeling chitin in fungi using NAG derivatives will advance yeast pathogenic studies.
Collapse
|
6
|
Lorenz MC. Regulatory complexity of cellular differentiation in Candida albicans revealed through systematic screening of protein kinase mutants. mBio 2024; 15:e0169824. [PMID: 39058031 PMCID: PMC11323536 DOI: 10.1128/mbio.01698-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
A recent study in mBio reports the construction and preliminary screening of a library containing mutants of 99 of the 119 predicted protein kinases in Candida albicans (the majority of the remaining 20 are probably essential) (J. Kramara, M.-J. Kim, T. L. Ollinger, L. C. Ristow, et al., mBio e01249-24, 2024, https://doi.org/10.1128/mbio.01249-24). Using a quantitative competition assay in 10 conditions that represent nutritional, osmotic, cell wall, and pH stresses that are considered to model various aspects of the host environment allowed them to phenotypically cluster kinases, which highlight both the integration and specialization of signaling pathways, suggesting novel functions for many kinases. In addition, they tackle two complex and partially overlapping differentiation events, hyphal morphogenesis and biofilm formation. They find that a remarkable 88% of the viable kinase mutants in C. albicans affect hyphal growth, illustrating how integrated morphogenesis is in the overall biology of this organism, and begin to dissect the regulatory relationships that control this key virulence trait.
Collapse
Affiliation(s)
- Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
7
|
Razmi M, Kim J, Chinnici J, Busarajan S, Vuppalapaty H, Lankipalli D, Li R, Maddi A. Candida albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis. J Fungi (Basel) 2024; 10:525. [PMID: 39194851 DOI: 10.3390/jof10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Candida albicans is an oral mucosal commensal fungus that transforms into an opportunistic pathogen under specific conditions, including immunosuppression. It causes oral and systemic candidiasis, which results in a significant health burden. Furthermore, an alarming rise in antifungal drug resistance in Candida species raises the urgent need for novel drugs and drug targets. C. albicans Dfg5 and Dcw1 are homologous cell wall alpha-1,6-mannosidases with critical functions and represent potential new drug targets. Our past studies have shown that Dfg5 and Dcw1 function in cell wall biogenesis through the cross-linking of glycoproteins into the cell wall, thus playing a key role in cell wall integrity. Additionally, Dfg5 and Dcw1 are required for hyphal morphogenesis. However, the exact functions of Dfg5 and Dcw1 in cell wall integrity, hyphal morphogenesis, and pathogenesis are not known. In this study, we determined the relation of Dfg5 and Dcw1 with Hog1 MAPK, which plays a key role in cell wall integrity via the regulation of chitin synthesis in C. albicans. Additionally, we also determined the effects of dfg5 and dcw1 mutations on the gene expression of transcriptional regulators of hyphal morphogenesis. Furthermore, we determined the effects of dfg5 and dcw1 mutations on pathogenesis in a mouse model of oral candidiasis. Our results demonstrate that dfg5 and dcw1 mutations, as well as a hog1 knockout mutation, result in the dysregulation of chitin synthesis, resulting in a cell separation defect. Heterozygous and conditional mutations in dfg5 and dcw1 resulted in decreased transcriptional levels of cst20, a positive regulator of hyphal morphogenesis. However, dfg5 and dcw1 mutations resulted in increased levels of all the five negative regulators of hyphal morphogenesis-Tup1, Nrg1, Mig1, Rbf1, and Rfg1. Additionally, Tup1 levels were significantly higher than other negative regulators, indicating that Dfg5 and Dcw1 function in hyphal morphogenesis by repressing Tup1. Finally, dfg5 and dcw1 mutations affected the ability of C. albicans to cause oral candidiasis in mice. Thus, the cell wall glycosidases Dfg5 and Dcw1 are required for virulence and pathogenesis and represent novel drug targets.
Collapse
Affiliation(s)
- Maryam Razmi
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Jaewon Kim
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Jennifer Chinnici
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Sujay Busarajan
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Hema Vuppalapaty
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Deepika Lankipalli
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Rui Li
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Abhiram Maddi
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Division of Regenerative Sciences & Periodontics, Department of Advanced Specialty Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Esfahani MB, Khodavandi A, Alizadeh F, Bahador N. Possible Molecular Targeting of Biofilm-Associated Genes by Nano-Ag in Candida albicans. Appl Biochem Biotechnol 2024; 196:4205-4233. [PMID: 37922031 DOI: 10.1007/s12010-023-04758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/05/2023]
Abstract
The treatment of candidiasis infections is hindered by the presence of biofilms. Here, we report the biofilm-associated genes as potential molecular targets by silver nanoparticles (nano-Ag) in Candida albicans. Nano-Ag was biosynthesized using Bacillus licheniformis, Bacillus cereus, and Fusarium oxysporum. The physicochemical properties of the microbial-synthesized of nano-Ag are widely characterized by visual observation, ultraviolet-visible spectroscopy, scanning electron microscopy, X-ray diffraction spectroscopy, and Fourier transform infrared spectroscopy. Characterization results revealed the formation of nano-Ag. Antiplanktonic cells and antibiofilm activities of nano-Ag were also demonstrated by minimum inhibition concentrations (MIC), minimum fungicidal concentration (MFC), MFC/MIC ratio, crystal violet staining, 2,3-bis (2-methoxy-4-nitro-5 sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT), and microscopic image analysis. We have analyzed the expressions of biofilm-associated genes in C. albicans treated with different concentrations of nano-Ag based on MIC. The expression profile of BCR1, ALS1, ALS3, HWP1, and ECE1 showed downregulated genes involved in these pathways by the treatment with nanoparticles. Negative regulators, TUP1, NRG1, and TOR1, were upregulated by the treatment of nano-Ag. Our study suggests that nano-Ag affects gene expression and may subsequently decrease the pathogenesis of C. albicans by inhibiting biofilm formation. Molecular targeting of biofilm-associated genes involved in biofilm formation by nano-Ag may be an effective treatment strategy for candidiasis infections.
Collapse
Affiliation(s)
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Nima Bahador
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
9
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
El Hachem S, Fattouh N, Chedraoui C, Finianos M, Bitar I, Khalaf RA. Sequential Induction of Drug Resistance and Characterization of an Initial Candida albicans Drug-Sensitive Isolate. J Fungi (Basel) 2024; 10:347. [PMID: 38786702 PMCID: PMC11122215 DOI: 10.3390/jof10050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The pathogenic fungus Candida albicans is a leading agent of death in immunocompromised individuals with a growing trend of antifungal resistance. METHODS The purpose is to induce resistance to drugs in a sensitive C. albicans strain followed by whole-genome sequencing to determine mechanisms of resistance. Strains will be assayed for pathogenicity attributes such as ergosterol and chitin content, growth rate, virulence, and biofilm formation. RESULTS We observed sequential increases in ergosterol and chitin content in fluconazole-resistant isolates by 78% and 44%. Surface thickening prevents the entry of the drug, resulting in resistance. Resistance imposed a fitness trade-off that led to reduced growth rates, biofilm formation, and virulence in our isolates. Sequencing revealed mutations in genes involved in resistance and pathogenicity such as ERG11, CHS3, GSC2, CDR2, CRZ2, and MSH2. We observed an increase in the number of mutations in key genes with a sequential increase in drug-selective pressures as the organism increased its odds of adapting to inhospitable environments. In ALS4, we observed two mutations in the susceptible strain and five mutations in the resistant strain. CONCLUSION This is the first study to induce resistance followed by genotypic and phenotypic analysis of isolates to determine mechanisms of drug resistance.
Collapse
Affiliation(s)
- Setrida El Hachem
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| | - Nour Fattouh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
- Department of Biology, Saint George University of Beirut, Beirut 1100-2807, Lebanon
| | - Christy Chedraoui
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (M.F.); (I.B.)
- Biomedical Center, Faculty of Medicine, Charles University, 32300 Pilsen, Czech Republic
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (M.F.); (I.B.)
- Biomedical Center, Faculty of Medicine, Charles University, 32300 Pilsen, Czech Republic
| | - Roy A. Khalaf
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| |
Collapse
|
11
|
McCrory C, Lenardon M, Traven A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol 2024:S0966-842X(24)00089-1. [PMID: 38729839 DOI: 10.1016/j.tim.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The human gastrointestinal microbiome encompasses bacteria, fungi, and viruses forming complex bionetworks which, for organismal health, must be in a state of homeostasis. An important homeostatic mechanism derives from microbial competition, which maintains the relative abundance of microbial species in a healthy balance. Microbes compete for nutrients and secrete metabolites that inhibit other microbes. Short-chain fatty acids (SCFAs) are one such class of metabolites made by gut bacteria to very high levels. SCFAs are metabolised by microbes and host cells and have multiple roles in regulating cell physiology. Here, we review the mechanisms by which SCFAs regulate the fungal gut commensal Candida albicans. We discuss SCFA's ability to inhibit fungal growth, limit invasive behaviours and modulate cell surface antigens recognised by immune cells. We review the mechanisms underlying these roles: regulation of gene expression, metabolism, signalling and SCFA-driven post-translational protein modifications by acylation, which contribute to changes in acylome dynamics of C. albicans with potentially large consequences for cell physiology. Given that the gut mycobiome is a reservoir for systemic disease and has also been implicated in inflammatory bowel disease, understanding the mechanisms by which bacterial metabolites, such as SCFAs, control the mycobiome might provide therapeutic avenues.
Collapse
Affiliation(s)
- Christopher McCrory
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton 3800, Victoria, Australia
| | - Megan Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
12
|
Wakade RS, Wellington M, Krysan DJ. The role of the C. albicans transcriptional repressor NRG1 during filamentation and disseminated candidiasis is strain dependent. mSphere 2024; 9:e0078523. [PMID: 38376205 PMCID: PMC10964420 DOI: 10.1128/msphere.00785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Candida albicans is one of the most common causes of superficial and invasive fungal diseases in humans. Its ability to cause disease is closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The extent to which C. albicans strains isolated from patients undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles for four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation but are predominately yeast phase under in vitro hypha induction; the two low-virulence strains (94015 and 78042) do not undergo filamentation well under either condition. In vitro, deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250, but only pseudohyphae are formed in the clinical isolates. Deletion of NRG1 modestly increased the virulence of 78042, which was accompanied by increased expression of hypha-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation in vivo, expression of candidalysin (ECE1), and virulence without dramatically altering establishment of infection. Thus, the function of the conserved repressor NRG1 in C. albicans shows strain-based heterogeneity during infection.IMPORTANCEClinical isolates of the human fungal pathogen Candida albicans show significant variation in their ability to undergo in vitro filamentation and in the function of well-characterized transcriptional regulators of filamentation. Here, we show that Nrg1, a key repressor of filamentation and filament specific gene expression in standard reference strains, has strain-dependent functions, particularly during infection. Most strikingly, loss of NRG1 function can reduce filamentation, hypha-specific gene expression such as the toxin candidalysin, and virulence in some strains. Our data emphasize that the functions of seemingly fundamental and well-conserved transcriptional regulators such as Nrg1 are contextual with respect to both environment and genetic backgrounds.
Collapse
Affiliation(s)
- Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Zhou X, Hilk A, Solis NV, Hogan BM, Bierbaum TA, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on azole susceptibility, filamentation, and stress response phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583770. [PMID: 38496635 PMCID: PMC10942443 DOI: 10.1101/2024.03.06.583770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Dysfunction of ERG251 resulted in transcriptional upregulation of the alternate sterol biosynthesis pathway and ZRT2, a Zinc transporter. Notably, we determined that overexpression of ZRT2 is sufficient to increase azole tolerance in C. albicans. Our combined transcriptional and phenotypic analyses revealed the pleiotropic effects of ERG251 on stress responses including cell wall, osmotic and oxidative stress. Interestingly, while loss of either allele of ERG251 resulted in similar antifungal drug responses, we observed functional divergence in filamentation regulation between the two alleles of ERG251 (ERG251-A and ERG251-B) with ERG251-A exhibiting a dominant role in the SC5314 genetic background. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study provides extensive genetic, transcriptional and phenotypic analysis for the effects of ERG251 on drug susceptibility, fitness, filamentation and stress responses.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
15
|
Pinsky M, Kornitzer D. Genetic Analysis of Candida albicans Filamentation by the Iron Chelator BPS Reveals a Role for a Conserved Kinase-WD40 Protein Pair. J Fungi (Basel) 2024; 10:83. [PMID: 38276029 PMCID: PMC10820326 DOI: 10.3390/jof10010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Candida albicans is a major human pathogenic fungus that is distinguished by its capability to switch from a yeast to a hyphal morphology under different conditions. Here, we analyze the cellular effects of high concentrations of the iron chelator bathophenanthroline disulfonate (BPS). BPS inhibits cellular growth by withholding iron, but when iron chelation is overcome by the addition of hemoglobin as an iron source, the cells resume growth as hyphae. The BPS hyphal induction pathway was characterized by identifying the hyphal-specific transcription factors that it requires and by a forward genetic screen for mutants that fail to form hyphae in BPS using a transposon library generated in a haploid strain. Among the mutants identified are the DYRK1-like kinase Yak1 and Orf19.384, a homolog of the DYRK1-associated protein WDR68/DCAF7. Orf19.384 nuclear localization depends on Yak1, similar to their mammalian counterparts. We identified the hyphal suppressor transcription factor Sfl1 as a candidate target of Yak1-Orf19.384 and show that Sfl1 modification is similarly affected in the yak1 and orf19.384 mutant strains. These results suggest that DYRK1/Yak1 and WDR68/Orf19.384 represent a conserved protein pair that regulates cell differentiation from fungi to animals.
Collapse
Affiliation(s)
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion—I.I.T., Haifa 31096, Israel;
| |
Collapse
|
16
|
Wakade RS, Wellington M, Krysan DJ. The role of the C. albicans transcriptional repressor NRG1 during filamentation and disseminated candidiasis is strain-dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571891. [PMID: 38168187 PMCID: PMC10760072 DOI: 10.1101/2023.12.15.571891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Candida albicans is one of the most common causes of superficial and invasive fungal disease in humans. Its ability to cause disease has been closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The ability of C. albicans strains isolated from patients to undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles of four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation while remaining predominately yeast phase exposed to RPMI+10% bovine calf serum at 37°C; the two low virulence strains (94015 and 78042) do not filament well under either condition. Deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250 but only pseudohyphae are formed in the clinical isolates in vivo. Deletion of NRG1 modestly increased the virulence of 78042 which was accompanied by increased expression of hyphae-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation, expression of candidalysin (ECE1) and virulence in vivo without dramatically altering establishment of infection. Thus, the function of NRG1 varies significantly within this set of C. albicans isolates and can actually suppress filamentation in vivo.
Collapse
Affiliation(s)
- Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA
| |
Collapse
|
17
|
Bravo-Chaucanés CP, Chitiva LC, Vargas-Casanova Y, Diaz-Santoyo V, Hernández AX, Costa GM, Parra-Giraldo CM. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules 2023; 13:1729. [PMID: 38136600 PMCID: PMC10742119 DOI: 10.3390/biom13121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Plant-derived compounds have proven to be a source of inspiration for new drugs. In this study, piperine isolated from the fruits of Piper nigrum showed anti-Candida activity. Furthermore, the mechanisms of action of piperine and its impact on virulence factors in Candida albicans, which have not been comprehensively understood, were also assessed. Initially, piperine suppressed the hyphal transition in both liquid and solid media, hindered biofilm formation, and resulted in observable cell distortions in scanning electron microscope (SEM) samples, for both fluconazole-sensitive and fluconazole-resistant C. albicans strains. Additionally, the morphogenetic switches triggered by piperine were found to rely on the activity of mutant C. albicans strains. Secondly, piperine treatment increased cell membrane permeability and disrupted mitochondrial membrane potential, as evidenced by propidium iodine and Rhodamine 123 staining, respectively. Moreover, it induced the accumulation of intracellular reactive oxygen species in C. albicans. Synergy was obtained between the piperine and the fluconazole against the fluconazole-sensitive strain. Interestingly, there were no hemolytic effects of piperine, and it resulted in reduced cytotoxicity on fibroblast cells at low concentrations. The results suggest that piperine could have a dual mode of action inhibiting virulence factors and modulating cellular processes, leading to cell death in C. albicans.
Collapse
Affiliation(s)
- Claudia Patricia Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Luis Carlos Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Valentina Diaz-Santoyo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Andrea Ximena Hernández
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Claudia Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Fang T, Xiong J, Wang L, Feng Z, Hang S, Yu J, Li W, Feng Y, Lu H, Jiang Y. Unexpected Inhibitory Effect of Octenidine Dihydrochloride on Candida albicans Filamentation by Impairing Ergosterol Biosynthesis and Disrupting Cell Membrane Integrity. Antibiotics (Basel) 2023; 12:1675. [PMID: 38136708 PMCID: PMC10741164 DOI: 10.3390/antibiotics12121675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Candida albicans filamentation plays a significant role in developing both mucosal and invasive candidiasis, making it a crucial virulence factor. Consequently, exploring and identifying inhibitors that impede fungal hyphal formation presents an intriguing approach toward antifungal strategies. In line with this anti-filamentation strategy, we conducted a comprehensive screening of a library of FDA-approved drugs to identify compounds that possess inhibitory properties against hyphal growth. The compound octenidine dihydrochloride (OCT) exhibits potent inhibition of hyphal growth in C. albicans across different hyphae-inducing media at concentrations below or equal to 3.125 μM. This remarkable inhibitory effect extends to biofilm formation and the disruption of mature biofilm. The mechanism underlying OCT's inhibition of hyphal growth is likely attributed to its capacity to impede ergosterol biosynthesis and induce the generation of reactive oxygen species (ROS), compromising the integrity of the cell membrane. Furthermore, it has been observed that OCT demonstrates protective attributes against invasive candidiasis in Galleria mellonella larvae through its proficient eradication of C. albicans colonization in infected G. mellonella larvae by impeding hyphal formation. Although additional investigation is required to mitigate the toxicity of OCT in mammals, it possesses considerable promise as a potent filamentation inhibitor against invasive candidiasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
19
|
Carlson SL, Mathew L, Savage M, Kok K, Lindsay JO, Munro CA, McCarthy NE. Mucosal Immunity to Gut Fungi in Health and Inflammatory Bowel Disease. J Fungi (Basel) 2023; 9:1105. [PMID: 37998910 PMCID: PMC10672531 DOI: 10.3390/jof9111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
The gut microbiome is a diverse microbial community composed of bacteria, viruses, and fungi that plays a major role in human health and disease. Dysregulation of these gut organisms in a genetically susceptible host is fundamental to the pathogenesis of inflammatory bowel disease (IBD). While bacterial dysbiosis has been a predominant focus of research for many years, there is growing recognition that fungal interactions with the host immune system are an important driver of gut inflammation. Candida albicans is likely the most studied fungus in the context of IBD, being a near universal gut commensal in humans and also a major barrier-invasive pathogen. There is emerging evidence that intra-strain variation in C. albicans virulence factors exerts a critical influence on IBD pathophysiology. In this review, we describe the immunological impacts of variations in C. lbicans colonisation, morphology, genetics, and proteomics in IBD, as well as the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sean L. Carlson
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Liya Mathew
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Michael Savage
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Klaartje Kok
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - James O. Lindsay
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Neil E. McCarthy
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
20
|
Wakade RS, Ristow LC, Wellington M, Krysan DJ. Intravital imaging-based genetic screen reveals the transcriptional network governing Candida albicans filamentation during mammalian infection. eLife 2023; 12:e85114. [PMID: 36847358 PMCID: PMC9995110 DOI: 10.7554/elife.85114] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2023] [Indexed: 03/01/2023] Open
Abstract
Candida albicans is one of the most common human fungal pathogens. C. albicans pathogenesis is tightly linked to its ability to under a morphogenetic transition from typically budding yeast to filamentous forms of hyphae and pseudohyphae. Filamentous morphogenesis is the most intensively studied C. albicans virulence traits; however, nearly all of these studies have been based on in vitro induction of filamentation. Using an intravital imaging assay of filamentation during mammalian (mouse) infection, we have screened a library of transcription factor mutants to identify those that modulate both the initiation and maintenance of filamentation in vivo. We coupled this initial screen with genetic interaction analysis and in vivo transcription profiling to characterize the transcription factor network governing filamentation in infected mammalian tissue. Three core positive (Efg1, Brg1, and Rob1) and two core negative regulators (Nrg1 and Tup1) of filament initiation were identified. No previous systematic analysis of genes affecting the elongation step has been reported and we found that large set of transcription factors affect filament elongation in vivo including four (Hms1, Lys14, War1, Dal81) with no effect on in vitro elongation. We also show that the gene targets of initiation and elongation regulators are distinct. Genetic interaction analysis of the core positive and negative regulators revealed that the master regulator Efg1 primarily functions to mediate relief of Nrg1 repression and is dispensable for expression of hypha-associated genes in vitro and in vivo. Thus, our analysis not only provide the first characterization of the transcriptional network governing C. albicans filamentation in vivo but also revealed a fundamentally new mode of function for Efg1, one of the most widely studied C. albicans transcription factors.
Collapse
Affiliation(s)
- Rohan S Wakade
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
- Departments of Microbiology and Immunology, Carver College of Medicine, University of IowaIowa CityUnited States
- Molecular Physiology and Biophysics, Carver College of Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
21
|
Advances in the Application of the Non-Conventional Yeast Pichia kudriavzevii in Food and Biotechnology Industries. J Fungi (Basel) 2023; 9:jof9020170. [PMID: 36836285 PMCID: PMC9961021 DOI: 10.3390/jof9020170] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Pichia kudriavzevii is an emerging non-conventional yeast which has attracted increased attention for its application in food and biotechnology areas. It is widespread in various habitats and often occurs in the spontaneous fermentation process of traditional fermented foods and beverages. The contributions of P. kudriavzevii in degrading organic acid, releasing various hydrolase and flavor compounds, and displaying probiotic properties make it a promising starter culture in the food and feed industry. Moreover, its inherent characteristics, including high tolerance to extreme pH, high temperature, hyperosmotic stress and fermentation inhibitors, allow it the potential to address technical challenges in industrial applications. With the development of advanced genetic engineering tools and system biology techniques, P. kudriavzevii is becoming one of the most promising non-conventional yeasts. This paper systematically reviews the recent progress in the application of P. kudriavzevii to food fermentation, the feed industry, chemical biosynthesis, biocontrol and environmental engineering. In addition, safety issues and current challenges to its use are discussed.
Collapse
|
22
|
Dynamic nitric oxide/drug codelivery system based on polyrotaxane architecture for effective treatment of Candida albicans infection. Acta Biomater 2023; 155:618-634. [PMID: 36371005 DOI: 10.1016/j.actbio.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
The low permeability of antifungal agents to fungal biofilms, which allows the continued survival of the fungus inside, is a key issue that makes fungal infections difficult to cure. Inspired by the unique dynamic molecule motion properties of the polyrotaxane (PR) nanomedicine, herein, a dynamic delivery system Clo@mPRP/NONOate was fabricated by co-loading nitric oxide (NO) and the antifungal drug clotrimazole (Clo) onto the α-cyclodextrin (α-CD) PR modified mesoporous polydopamine (mPDA) nanoparticles, in which pentaethylenehexamine (PEHA) was grafted to α-CDs. The cationic α-CDs endowed this dynamic NO/Clo codelivery system with the ability to effectively attach to fungal biofilms through electrostatic interaction, while the introduction of PRs with flexible molecule motion (slide and rotation of CDs) enhanced the permeability of nanoparticles to biofilms. Meanwhile, NO could effectively inhibit the formation of fungal hyphae, showing an dissipating effect on mature biofilms, and could be further combined with Clo to completely eradicate fungi inside the biofilms. In addition, the dynamic system Clo@mPRP/NONOate could efficiently and synergistically eliminate planktonic Candida albicans (C. albicans) in a safe and no toxic side effect manner, and effectively cured C. albicans-induced vaginal infection in mice. Therefore, this dynamic NO/Clo codelivery system provided an effective solution to the clinical treatment of C. albicans-induced vaginal infection, and the application prospect could even be extended to other microbial infectious diseases. STATEMENT OF SIGNIFICANCE: A dynamic codelivery system based on cationized cyclodextrin polyrotaxane combining nitric oxide and antifungal drugs clotrimazole was prepared to deal with the issue of clinical fungal biofilm infection. This dynamic codelivery system could be attached to the Candida albicans biofilms and penetrate into biofilm via flexible molecular mobility to effectively eradicate the fungi. This dynamic codelivery system could synergistically and efficiently eliminate planktonic-state Candida albicans, but did not show significant cytotoxicity to normal somatic cells.
Collapse
|
23
|
Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Salinas-Delgado GA, Reyes J, Garzon-Chavez D, Machado A. Battle royale: Immune response on biofilms – host-pathogen interactions. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100057. [PMID: 37025390 PMCID: PMC10070391 DOI: 10.1016/j.crimmu.2023.100057] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The research interest of the scientific community in biofilm-forming microorganisms is growing due to the problems caused by their infections affecting humans and animals, mainly because of the difficulty of the host immune system in eradicating these microbial complex communities and the increasing antimicrobial resistance rates worldwide. This review describes the virulence factors and their interaction with the microbial communities of four well-known and highly biofilm-forming pathogens, more exactly, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp., and Candida spp. The innate and adaptive immune responses caused by the infection with these microorganisms and their evasion to the host immune system by biofilm formation are discussed in the present work. The relevance of the differences in the expression of certain virulence factors and the immune response in biofilm-associated infections when compared to planktonic infections is usually described as the biofilm architecture protects the pathogen and alters the host immune responses, here we extensively discussed these mechanisms.
Collapse
Affiliation(s)
- Sandra Pamela Cangui-Panchi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Anahí Lizbeth Ñacato-Toapanta
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Leonardo Joshué Enríquez-Martínez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Gabriela Alexandra Salinas-Delgado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Jorge Reyes
- Hospital del Instituto Ecuatoriano de Seguridad Social (IESS) Quito-Sur, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Daniel Garzon-Chavez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Quito, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
24
|
Menthol Inhibits Candida albicans Growth by Affecting the Membrane Integrity Followed by Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1297888. [PMID: 36337581 PMCID: PMC9635957 DOI: 10.1155/2022/1297888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/29/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
Inclusion of Candida albicans in the list of pathogens with potential drug resistance threat in recent years has compelled scientists to explore novel and potent antifungal agents. In this study, we have evaluated anti-Candida potential of menthol against different growth forms and synergistic potential with fluconazole. Menthol inhibited planktonic growth of all the isolates completely at ≤3.58 mM and killed 99.9% inoculum at MIC, indicating that menthol is fungicidal. Menthol inhibited hyphal form growth completely at 0.62 mM. It has inhibited developing a biofilm by 79% at 3.58 mM, exhibiting excellent activity against recalcitrant biofilms. FIC index values of 0.182 and 0.093 indicate excellent synergistic activity between fluconazole and menthol against planktonic and biofilm growth, respectively. Menthol enhanced rate of OxPhos among 22% cells; arrested 71% cells at G2-M phase of cell cycle and induced apoptosis in 15% cells. Thus, menthol exhibits excellent anti-Candida activity against differentially susceptible isolates as well as various growth and morphological forms of C. albicans. Menthol affects membrane integrity thereby inducing oxidative stress followed by cell cycle arrest and apoptosis. Considering the excellent anti-Candida potential and as it is Generally Recognized as Safe by the Food and Drug Administration, it may find use in antifungal chemotherapy, alone or in combination.
Collapse
|
25
|
Bettauer V, Costa ACBP, Omran RP, Massahi S, Kirbizakis E, Simpson S, Dumeaux V, Law C, Whiteway M, Hallett MT. A Deep Learning Approach to Capture the Essence of Candida albicans Morphologies. Microbiol Spectr 2022; 10:e0147222. [PMID: 35972285 PMCID: PMC9604015 DOI: 10.1128/spectrum.01472-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022] Open
Abstract
We present deep learning-based approaches for exploring the complex array of morphologies exhibited by the opportunistic human pathogen Candida albicans. Our system, entitled Candescence, automatically detects C. albicans cells from differential image contrast microscopy and labels each detected cell with one of nine morphologies. This ranges from yeast white and opaque forms to hyphal and pseudohyphal filamentous morphologies. The software is based upon a fully convolutional one-stage (FCOS) object detector, a deep learning technique that uses an extensive set of images that we manually annotated with the location and morphology of each cell. We developed a novel cumulative curriculum-based learning strategy that stratifies our images by difficulty from simple yeast forms to complex filamentous architectures. Candescence achieves very good performance (~85% recall; 81% precision) on this difficult learning set, where some images contain hundreds of cells with substantial intermixing between the predicted classes. To capture the essence of each C. albicans morphology and how they intermix, we used a second technique from deep learning entitled generative adversarial networks. The resultant models allow us to identify and explore technical variables, developmental trajectories, and morphological switches. Importantly, the model allows us to quantitatively capture morphological plasticity observed with genetically modified strains or strains grown in different media and environments. We envision Candescence as a community meeting point for quantitative explorations of C. albicans morphology. IMPORTANCE The fungus Candida albicans can "shape shift" between 12 morphologies in response to environmental variables. The cytoprotective capacity provided by this polymorphism makes C. albicans a formidable pathogen to treat clinically. Microscopy images of C. albicans colonies can contain hundreds of cells in different morphological states. Manual annotation of images can be difficult, especially as a result of densely packed and filamentous colonies and of technical artifacts from the microscopy itself. Manual annotation is inherently subjective, depending on the experience and opinion of annotators. Here, we built a deep learning approach entitled Candescence to parse images in an automated, quantitative, and objective fashion: each cell in an image is located and labeled with its morphology. Candescence effectively replaces simple rules based on visual phenotypes (size, shape, and shading) with neural circuitry capable of capturing subtle but salient features in images that may be too complex for human annotators.
Collapse
Affiliation(s)
- Van Bettauer
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada
| | | | | | - Samira Massahi
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Shawn Simpson
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada
| | - Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Michael T. Hallett
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
| |
Collapse
|
26
|
Le Bars P, Kouadio AA, Bandiaky ON, Le Guéhennec L, de La Cochetière MF. Host's Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms 2022; 10:microorganisms10071437. [PMID: 35889156 PMCID: PMC9323190 DOI: 10.3390/microorganisms10071437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Denture-related Candida stomatitis, which has been described clinically in the literature, is either localized or generalized inflammation of the oral mucosa in connection with a removable prosthesis. During this inflammatory process, the mycobacterial biofilm and the host’s immune response play an essential role. Among microorganisms of this mixed biofilm, the Candida species proliferates easily and changes from a commensal to an opportunistic pathogen. In this situation, the relationship between the Candida spp. and the host is influenced by the presence of the denture and conditioned both by the immune response and the oral microbiota. Specifically, this fungus is able to hijack the innate immune system of its host to cause infection. Additionally, older edentulous wearers of dentures may experience an imbalanced and decreased oral microbiome diversity. Under these conditions, the immune deficiency of these aging patients often promotes the spread of commensals and pathogens. The present narrative review aimed to analyze the innate and adaptive immune responses of patients with denture stomatitis and more particularly the involvement of Candida albicans sp. associated with this pathology.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Correspondence: authors:
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Octave Nadile Bandiaky
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Laurent Le Guéhennec
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Marie-France de La Cochetière
- EA 3826 Thérapeutiques Cliniques Et expérimentales des Infections, Faculté de Médecine, CHU Hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France;
| |
Collapse
|
27
|
Metabolic Plasticity of Candida albicans in Response to Different Environmental Conditions. J Fungi (Basel) 2022; 8:jof8070723. [PMID: 35887478 PMCID: PMC9322845 DOI: 10.3390/jof8070723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
The ubiquitous commensal Candida albicans, part of the human microbiota, is an opportunistic pathogen able to cause a wide range of diseases, from cutaneous mycoses to life-threatening infections in immunocompromised patients. Candida albicans adapts to different environments and survives long-time starvation. The ability to switch from yeast to hyphal morphology under specific environmental conditions is associated with its virulence. Using hydrogen nuclear magnetic resonance spectroscopy, we profiled the intracellular and extracellular metabolome of C. albicans kept in water, yeast extract–peptone–dextrose (YPD), and M199 media, at selected temperatures. Experiments were carried out in hypoxia to mimic a condition present in most colonized niches and fungal infection sites. Comparison of the intracellular metabolites measured in YPD and M199 at 37 °C highlighted differences in specific metabolic pathways: (i) alanine, aspartate, glutamate metabolism, (ii) arginine and proline metabolism, (iii) glycerolipid metabolism, attributable to the diverse composition of the media. Moreover, we hypothesized that the subtle differences in the M199 metabolome, observed at 30 °C and 37 °C, are suggestive of modifications propaedeutic to a subsequent transition from yeast to hyphal form. The analysis of the metabolites’ profiles of C. albicans allows envisaging a molecular model to better describe its ability to sense and adapt to environmental conditions.
Collapse
|
28
|
Beema Shafreen RM, Seema S, Alagu Lakshmi S, Srivathsan A, Tamilmuhilan K, Shrestha A, Balasubramanian B, Dhandapani R, Paramasivam R, Al Obaid S, Salmen SH, Mohd Amin MF, Muthupandian S. In Vitro and In Vivo Antibiofilm Potential of Eicosane Against Candida albicans. Appl Biochem Biotechnol 2022; 194:4800-4816. [DOI: 10.1007/s12010-022-03984-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
29
|
Candida albicans Filamentation Does Not Require the cAMP-PKA Pathway In Vivo. mBio 2022; 13:e0085122. [PMID: 35475642 PMCID: PMC9239198 DOI: 10.1128/mbio.00851-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is one of the most prevalent human fungal pathogens. Its ability to transition between budding yeast and filamentous morphological forms (pseudohyphae and hyphae) is tightly associated with its pathogenesis. Based on in vitro studies, the cAMP-protein kinase A (PKA) pathway is a key regulator of C. albicans morphogenesis. Using an intravital imaging approach, we investigated the role of the cAMP-PKA pathway during infection. Consistent with their roles in vitro, the downstream effectors of the cAMP-PKA pathway Efg1 and Nrg1 function, respectively, as an activator and a repressor of in vivo filamentation. Surprisingly, strains lacking the adenylyl cyclase, CYR1, showed only slightly reduced filamentation in vivo despite being completely unable to filament in RPMI + 10% serum at 37°C. Consistent with these findings, deletion of the catalytic subunits of PKA (Tpk1 and Tpk2), either singly or in combination, generated strains that also filamented in vivo but not in vitro. In vivo transcription profiling of C. albicans isolated from both ear and kidney tissue showed that the expression of a set of 184 environmentally responsive genes correlated well with in vitro filamentation (R2, 0.62 to 0.68) genes. This concordance suggests that the in vivo and in vitro transcriptional responses are similar but that the upstream regulatory mechanisms are distinct. As such, these data emphatically emphasize that C. albicans filamentation is a complex phenotype that occurs in different environments through an intricate network of distinct regulatory mechanisms. IMPORTANCE The fungus Candida albicans causes a wide range of disease in humans from common diaper rash to life-threatening infections in patients with compromised immune systems. As such, the mechanisms for its ability to cause disease are of wide interest. An intensely studied virulence property of C. albicans is its ability to switch from a round yeast form to filament-like forms (hyphae and pseudohyphae). Surprisingly, we have found that a key signaling pathway that regulates this transition in vitro, the protein kinase A pathway, is not required for filamentation during infection of the host. Our work not only demonstrates that the regulation of filamentation depends upon the specific environment C. albicans inhabits but also underscores the importance of studying these mechanisms during infection.
Collapse
|
30
|
Perrine-Walker F. Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies. Braz J Microbiol 2022; 53:1101-1113. [PMID: 35352319 PMCID: PMC9433586 DOI: 10.1007/s42770-022-00739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Caspofungin and other echinocandins have been used for the treatment of human infections by the opportunistic yeast pathogen, Candida albicans. There has been an increase in infections by non-albicans Candida species such as Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida auris in clinical or hospital settings. This is problematic to public health due to the increasing prevalence of echinocandin resistant species/strains. This review will present a summary on various studies that investigated the inhibitory action of caspofungin on 1,3-β-D-glucan synthesis, on cell wall structure, and biofilm formation of C. albicans. It will highlight some of the issues linked to caspofungin resistance or reduced caspofungin sensitivity in various Candida species and the potential benefits of antimicrobial peptides and other compounds in synergy with caspofungin.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- Department of Biochemistry and Genetics, La Trobe Institute For Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
31
|
Synergistic Antibiofilm Effects of Pseudolaric Acid A Combined with Fluconazole against Candida albicans via Inhibition of Adhesion and Yeast-To-Hypha Transition. Microbiol Spectr 2022; 10:e0147821. [PMID: 35297651 PMCID: PMC9045105 DOI: 10.1128/spectrum.01478-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Candida albicans biofilms are resistant to several clinical antifungal agents. Thus, it is necessary to develop new antibiofilm intervention measures. Pseudolaric acid A (PAA), a diterpenoid mainly derived from the pine bark of Pseudolarix kaempferi, has been reported to have an inhibitory effect on C. albicans. The primary aim of the current study was to investigate the antibiofilm effect of PAA when combined with fluconazole (FLC) and explore the underlying mechanisms. Biofilm activity was assessed by tetrazolium {XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt]} reduction assays. PAA (4 μg/mL) combined with FLC (0.5 μg/mL) significantly inhibited early, developmental, and mature biofilm formation compared with the effect of PAA or FLC alone (P < 0.05). Furthermore, PAA (4 μg/mL) combined with FLC (0.5 μg/mL) produced a 56% reduction in C. albicans biofilm adhesion. The combination of PAA (4 μg/mL) and FLC (0.5 μg/mL) also performed well in inhibiting yeast-to-hypha transition. Transcriptome analysis using RNA sequencing and quantitative reverse transcription PCR indicated that the PAA-FLC combination treatment produced a strong synergistic inhibitory effect on the expression of genes involved in adhesion (ALS1, ALS4, and ALS2) and yeast-to-hypha transition (ECE1, PRA1, and TEC1). Notably, PAA, rather than FLC, may have a primary role in suppressing the expression of ALS1. In conclusion, these findings demonstrate, for the first time, that the combination of PAA and FLC has an improved antibiofilm effect against the formation of C. albicans biofilms by inhibiting adhesion and yeast-to-hypha transition; this may provide a novel therapeutic strategy for treating C. albicans biofilm-associated infection. IMPORTANCE Biofilms are the primary cause of antibiotic-resistant candida infections associated with medical implants and devices worldwide. Treating biofilm-associated infections is a challenge for clinicians because these infections are intractable and persistent. Candida albicans readily forms extensive biofilms on the surface of medical implants and mucosa. In this study, we demonstrated, for the first time, an inhibitory effect of pseudolaric acid A alone and in combination with fluconazole on C. albicans biofilms. Moreover, pseudolaric acid A in combination with fluconazole exerted an antibiofilm effect through multiple pathways, including inhibition of yeast-to-hypha transition and adhesion. This research not only provides new insights into the synergistic mechanisms of antifungal drug combinations but also brings new possibilities for addressing C. albicans drug resistance.
Collapse
|
32
|
Arita GS, Faria DR, Capoci IR, Kioshima ES, Bonfim-Mendonça PS, Svidzinski TI. Cell wall associated proteins involved in filamentation with impact on the virulence of Candida albicans. Microbiol Res 2022; 258:126996. [DOI: 10.1016/j.micres.2022.126996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/21/2022] [Accepted: 02/20/2022] [Indexed: 12/14/2022]
|
33
|
Arita GS, Vincenzi Conrado PC, Sakita KM, Vilugron Rodrigues-Vendramini FA, Faria DR, Kioshima ES, de Souza Bonfim-Mendonça P, Estivalet Svidzinski TI. Serial systemic candidiasis alters Candida albicans macromorphology associated with enhancement of virulence attributes. Microb Pathog 2022; 164:105413. [PMID: 35066070 DOI: 10.1016/j.micpath.2022.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Candida albicans is one of the major pathogens found in superficial and invasive infections. This fungus expresses several virulence factors and fitness attributes that are essential to the pathogenesis. In our previous study using a murine model of serial systemic candidiasis, virulence of the recovered C. albicans was enhanced and several virulence factors were also modified after five successive passages through mice (P1-P5). In this study, we aimed to correlate the different fungal morphologies, as well as the filamentation, invasion, and stress resistance abilities, of the cells recovered after passing through this model of infection with our previous findings regarding virulence. We obtained two colony morphology types from the recovered cells, differing in their peripheral filamentation. The morphotype 1, which presented zero to five filaments in the colony edge, was higher in P2, while morphotype 2, which presented more than five filaments in the colony edge, was predominant from P3 to P5. In general, morphotype 1 showed similar levels regarding filamentation in serum, invasion of agar and cells, and resistance to osmotic, oxidative, and thermal stress in all passages analyzed. The morphotype 2, however, exhibited an enhancement in these abilities over the passages. We observed an accordance with the increased virulence over the passages obtained in our previous study and the increased adaptability profile of morphotype 2. Therefore, we suggest that the behavior observed previously in the pathogenesis and virulence could be attributed, at least in part, to the greater presence and ability of morphotype 2.
Collapse
Affiliation(s)
- Glaucia Sayuri Arita
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Karina Mayumi Sakita
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Daniella Renata Faria
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Patrícia de Souza Bonfim-Mendonça
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
34
|
Henry M, Burgain A, Tebbji F, Sellam A. Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans. Front Cell Infect Microbiol 2022; 11:770478. [PMID: 35127551 PMCID: PMC8807691 DOI: 10.3389/fcimb.2021.770478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ability of Candida albicans, an important human fungal pathogen, to develop filamentous forms is a crucial determinant for host invasion and virulence. While hypoxia is one of the predominant host cues that promote C. albicans filamentous growth, the regulatory circuits that link oxygen availability to filamentation remain poorly characterized. We have undertaken a genetic screen and identified the two transcription factors Ahr1 and Tye7 as central regulators of the hypoxic filamentation. Both ahr1 and tye7 mutants exhibited a hyperfilamentous phenotype specifically under an oxygen-depleted environment suggesting that these transcription factors act as negative regulators of hypoxic filamentation. By combining microarray and ChIP-chip analyses, we have characterized the set of genes that are directly modulated by Ahr1 and Tye7. We found that both Ahr1 and Tye7 modulate a distinct set of genes and biological processes. Our genetic epistasis analysis supports our genomic finding and suggests that Ahr1 and Tye7 act independently to modulate hyphal growth in response to hypoxia. Furthermore, our genetic interaction experiments uncovered that Ahr1 and Tye7 repress the hypoxic filamentation via the Efg1 and Ras1/Cyr1 pathways, respectively. This study yielded a new and an unprecedented insight into the oxygen-sensitive regulatory circuit that control morphogenesis in a fungal pathogen.
Collapse
Affiliation(s)
- Manon Henry
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Anaïs Burgain
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Faiza Tebbji
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Adnane Sellam,
| |
Collapse
|
35
|
Balachandra VK, Ghosh SK. Emerging roles of SWI/SNF remodelers in fungal pathogens. Curr Genet 2022; 68:195-206. [PMID: 35001152 DOI: 10.1007/s00294-021-01219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
Fungal pathogens constantly sense and respond to the environment they inhabit, and this interaction is vital for their survival inside hosts and exhibiting pathogenic traits. Since such responses often entail specific patterns of gene expression, regulators of chromatin structure contribute to the fitness and virulence of the pathogens by modulating DNA accessibility to the transcriptional machinery. Recent studies in several human and plant fungal pathogens have uncovered the SWI/SNF group of chromatin remodelers as an important determinant of pathogenic traits and provided insights into their mechanism of function. Here, we review these studies and highlight the differential functions of these remodeling complexes and their subunits in regulating fungal fitness and pathogenicity. As an extension of our previous study, we also show that loss of specific RSC subunits can predispose the human fungal pathogen Candida albicans cells to filamentous growth in a context-dependent manner. Finally, we consider the potential of targeting the fungal SWI/SNF remodeling complexes for antifungal interventions.
Collapse
Affiliation(s)
- Vinutha K Balachandra
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
36
|
Montoya C, Kurylec J, Baraniya D, Tripathi A, Puri S, Orrego S. Antifungal Effect of Piezoelectric Charges on PMMA Dentures. ACS Biomater Sci Eng 2021; 7:4838-4846. [PMID: 34596379 DOI: 10.1021/acsbiomaterials.1c00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candida-associated denture stomatitis is a recurring disease affecting up to 67% of denture wearers. Poly(methyl methacrylate) (PMMA) remains the main material employed in the fabrication of dentures due to its desirable physical, mechanical, and aesthetic properties. However, the improvement of its antimicrobial properties remains a challenge. To address this need, we developed PMMA composite filled with piezoelectric nanoparticles of barium titanate (BaTiO3) for therapeutic effects. Candida albicans biofilms were cultivated on the surface of the composites under continuous cyclic mechanical loading to activate the piezoelectric charges and to resemble mastication patterns. The interactions between biofilms and biomaterials were evaluated by measuring the biofilm biomass, metabolic activity, and the number of viable cells. To explore the antifungal mechanisms, changes in the expression of genes encoding adhesins and superoxide dismutase were assessed using reverse transcription-polymerase chain reaction. With the addition of piezoelectric nanoparticles, we observed a significant reduction in the biofilm formation and interference in the yeast-to-hyphae transition compared to the standard PMMA. Moreover, we observed that the cyclic deformation of biomaterial surfaces without antifungal agents produced increased biomass, metabolic activity, and a number of viable cells compared to the static/no-deformed surfaces. Cyclic deformation appears to be a novel mechanobiological signal that enables pathogenicity and virulence of C. albicans cells with increased expression of the yeast-to-hyphae transition genes. The outcome of this study opens new opportunities for the design of antifungal dentures for improved clinical service and reduced need for cleaning methods.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Julia Kurylec
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Divyashri Baraniya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Aparna Tripathi
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Sumant Puri
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University. Philadelphia, Pennsylvania 19140, United States.,Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
37
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
38
|
Wakade RS, Huang M, Mitchell AP, Wellington M, Krysan DJ. Intravital Imaging of Candida albicans Identifies Differential In Vitro and In Vivo Filamentation Phenotypes for Transcription Factor Deletion Mutants. mSphere 2021; 6:e0043621. [PMID: 34160243 PMCID: PMC8265662 DOI: 10.1128/msphere.00436-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is an important cause of human fungal infections. A widely studied virulence trait of C. albicans is its ability to undergo filamentation to hyphae and pseudohyphae. Although yeast, pseudohyphae, and hyphae are present in pathological samples of infected mammalian tissue, it has been challenging to characterize the role of regulatory networks and specific genes during in vivo filamentation. In addition, the phenotypic heterogeneity of C. albicans clinical isolates is becoming increasingly recognized, while correlating this heterogeneity with pathogenesis remains an important goal. Here, we describe the use of an intravital imaging approach to characterize C. albicans filamentation in a mammalian model of infection by taking advantage of the translucence of mouse pinna (ears). Using this model, we have found that the in vitro and in vivo filamentation phenotypes of different C. albicans isolates can vary significantly, particularly when in vivo filamentation is compared to solid agar-based assays. We also show that the well-characterized transcriptional regulators Efg1 and Brg1 appear to play important roles both in vivo and in vitro. In contrast, Ume6 is much more important in vitro than in vivo. Finally, strains that are dependent on Bcr1 for in vitro filamentation are able to form filaments in vivo in its absence. This intravital imaging approach provides a new approach to the systematic characterization of this important virulence trait during mammalian infection. Our initial studies provide support for the notion that the regulation and initiation of C. albicans filamentation in vivo is distinct from in vitro induction. IMPORTANCE Candida albicans is one of the most common causes of fungal infections in humans. C. albicans undergoes a transition from a round yeast form to a filamentous form during infection, which is critical for its ability to cause disease. Although this transition has been studied in the laboratory for years, methods to do so in an animal model of infection have been limited. We have developed a microscopy method to visualize fluorescently labeled C. albicans undergoing this transition in the subcutaneous tissue of mice. Our studies indicate that the regulation of C. albicans filamentation during infection is distinct from that observed in laboratory conditions.
Collapse
Affiliation(s)
- Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manning Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
39
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
40
|
Masetti P, Sanitá PV, Jorge JH. Dynamics and metabolic profile of oral keratinocytes (NOK-si) and Candida albicans after interaction in co-culture. BIOFOULING 2021; 37:572-589. [PMID: 34210229 DOI: 10.1080/08927014.2021.1941908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Understanding the interaction between oral keratinocytes (NOK-si) and Candida albicans is fundamental for the development of prevention strategies and new therapies for oral candidiasis. This study evaluated the dynamics and metabolic profile of these cells growing in co-culture by means of cell metabolism, number of CFU ml-1, and production of enzymes, cytokines, and metabolites. The data were analyzed by ANOVAs and post hoc tests (α = 0.05). In co-cultures, there were significant decreases in the cell metabolism of NOK-si and C. albicans and increases in the CFU ml-1 values of C. albicans biofilm. There were also significant increases in the production of cytokines by NOK-si and proteinase by C. albicans biofilm after their interaction. The metabolic balance of the main metabolites, amino acids, and extracellular and intracellular metabolites was shifted in favor of the co-cultures, while aromatic alcohols were secreted in higher amounts by the biofilm of C. albicans. It was concluded that the interaction of cells in co-culture influenced their dynamics over time.
Collapse
Affiliation(s)
- Paula Masetti
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Paula Volpato Sanitá
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Janaina Habib Jorge
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
41
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
42
|
Abstract
To persist in their dynamic human host environments, fungal pathogens must sense and adapt by modulating their gene expression to fulfill their cellular needs. Understanding transcriptional regulation on a global scale would uncover cellular processes linked to persistence and virulence mechanisms that could be targeted for antifungal therapeutics. Infections associated with the yeast Candida albicans, a highly prevalent fungal pathogen, and the multiresistant related species Candida auris are becoming a serious public health threat. To define the set of a gene regulated by a transcriptional regulator in C. albicans, chromatin immunoprecipitation (ChIP)-based techniques, including ChIP with microarray technology (ChIP-chip) or ChIP-DNA sequencing (ChIP-seq), have been widely used. Here, we describe a new set of PCR-based micrococcal nuclease (MNase)-tagging plasmids for C. albicans and other Candida spp. to determine the genome-wide location of any transcriptional regulator of interest using chromatin endogenous cleavage (ChEC) coupled to high-throughput sequencing (ChEC-seq). The ChEC procedure does not require protein-DNA cross-linking or sonication, thus avoiding artifacts related to epitope masking or the hyper-ChIPable euchromatic phenomenon. In a proof-of-concept application of ChEC-seq, we provided a high-resolution binding map of the SWI/SNF chromatin remodeling complex, a master regulator of fungal fitness in C. albicans, in addition to the transcription factor Nsi1 that is an ortholog of the DNA-binding protein Reb1 for which genome-wide occupancy was previously established in Saccharomyces cerevisiae The ChEC-seq procedure described here will allow a high-resolution genomic location definition which will enable a better understanding of transcriptional regulatory circuits that govern fungal fitness and drug resistance in these medically important fungi.IMPORTANCE Systemic fungal infections caused by Candida albicans and the "superbug" Candida auris are becoming a serious public health threat. The ability of these yeasts to cause disease is linked to their faculty to modulate the expression of genes that mediate their escape from the immune surveillance and their persistence in the different unfavorable niches within the host. Comprehensive knowledge on gene expression control of fungal fitness is consequently an interesting framework for the identification of essential infection processes that could be hindered by chemicals as potential therapeutics. Here, we expanded the use of ChEC-seq, a technique that was initially developed in the yeast model Saccharomyces cerevisiae to identify genes that are modulated by a transcriptional regulator, in pathogenic yeasts from the genus Candida This robust technique will allow a better characterization of key gene expression regulators and their contribution to virulence and antifungal resistance in these pathogenic yeasts.
Collapse
|
43
|
The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans. mBio 2020; 11:mBio.01900-20. [PMID: 32817109 PMCID: PMC7439482 DOI: 10.1128/mbio.01900-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The regulation of Ace2 and morphogenesis (RAM) pathway is a key regulatory network that plays a role in many aspects of C. albicans pathobiology. In addition to characterizing the transcriptional effects of this pathway, we discovered that Cbk1 and Ace2, a key RAM pathway regulator-effector pair, mediate a specific set of the overall functions of the RAM pathway. We have also discovered a new function for the Cbk1-Ace2 axis: suppression of the hypha-to-yeast transition. Very few regulators of this transition have been described, and our data indicate that maintenance of hyphal morphogenesis requires suppression of yeast phase growth by Cbk1-regulated Ace2. The regulation of Ace2 and morphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans. The RAM pathway’s two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. To address this question, we first compared the transcriptional profiles of CBK1 and ACE2 deletion mutants. This analysis indicates that, of the large number of genes whose expression is affected by deletion of CBK1 and ACE2, only 5.5% of those genes are concordantly regulated. Our data also suggest that Ace2 directly or indirectly represses a large set of genes during hyphal morphogenesis. Second, we generated strains containing ACE2 alleles with alanine mutations at the Cbk1 phosphorylation sites. Phenotypic and transcriptional analysis of these ace2 mutants indicates that, as in Saccharomyces cerevisiae, Cbk1 regulation is important for daughter cell localization of Ace2 and cell separation during yeast-phase growth. In contrast, Cbk1 phosphorylation of Ace2 plays a minor role in C. albicans yeast-to-hypha transition. We have, however, discovered a new function for the Cbk1-Ace2 axis. Specifically, Cbk1 phosphorylation of Ace2 prevents the hypha-to-yeast transition. To our knowledge, this is one of the first regulators of the C. albicans hypha-to-yeast transition to be described. Finally, we present an integrated model for the role of Cbk1 in the regulation of hyphal morphogenesis in C. albicans.
Collapse
|