1
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
3
|
Oliveira DN, Tavares-Júnior JWL, Feitosa WLQ, Cunha LCV, Gomes CMP, Moreira-Nunes CA, Silva JBSD, Sousa AVM, Gaspar SDB, Sobreira EST, Oliveira LLBD, Montenegro RC, Moraes MEAD, Sobreira-Neto MA, Braga-Neto P. Long-COVID olfactory dysfunction: allele E4 of apolipoprotein E as a possible protective factor. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-7. [PMID: 39025107 DOI: 10.1055/s-0044-1788272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
BACKGROUND Olfactory dysfunction (OD) represents a frequent manifestation of the coronavirus disease 2019 (COVID-19). Apolipoprotein E (APOE) is a protein that interacts with the angiotensin-converting enzyme receptor, essential for viral entry into the cell. Previous publications have suggested a possible role of APOE in COVID-19 severity. As far as we know, no publications found significant associations between this disease's severity, OD, and APOE polymorphisms (E2, E3, and E4). OBJECTIVE To analyze the epidemiology of OD and its relationship with APOE polymorphisms in a cohort of Long-COVID patients. METHODS We conducted a prospective cohort study with patients followed in a post-COVID neurological outpatient clinic, with OD being defined as a subjective reduction of olfactory function after infection, and persistent OD being defined when the complaint lasted more than 3 months after the COVID-19 infection resolution. This cross-sectional study is part of a large research with previously reported data focusing on the cognitive performance of our sample. RESULTS The final sample comprised 221 patients, among whom 186 collected blood samples for APOE genotyping. The persistent OD group was younger and had a lower hospitalization rate during the acute phase of the disease (p < 0.001). Furthermore, the APOE variant E4 allele frequency was lower in this group (p = 0.035). This study evaluated OD in an outpatient population with COVID-19. In the current literature on this disease, anosmia is associated with better clinical outcomes and the E4 allele is associated with worse outcomes. CONCLUSION Our study provides new information to these correlations, suggesting APOE E4 as a protective factor for OD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Raquel Carvalho Montenegro
- Universidade Federal do Ceará, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Fortaleza CE, Brazil
| | | | | | - Pedro Braga-Neto
- Universidade Federal do Ceará, Faculdade de Medicina, Fortaleza CE, Brazil
- Universidade Estadual do Ceará, Centro de Ciências da Saúde, Fortaleza CE, Brazil
| |
Collapse
|
4
|
Zuniga NR, Earls NE, Denos AEA, Elison JM, Jones BS, Smith EG, Moran NG, Brown KL, Romero GM, Hyer CD, Wagstaff KB, Almughamsi HM, Transtrum MK, Price JC. Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis Adaptations in Mouse Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607719. [PMID: 39185235 PMCID: PMC11343127 DOI: 10.1101/2024.08.13.607719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Apolipoprotein E (ApoE) polymorphisms modify the risk of neurodegenerative disease with the ApoE4 isoform increasing and ApoE2 isoform decreasing risk relative to the 'wild-type control' ApoE3 isoform. To elucidate how ApoE isoforms alter the proteome, we measured relative protein abundance and turnover in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). This data provides insight into how ApoE isoforms affect the in vivo synthesis and degradation of a wide variety of proteins. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type control ApoE3. In ApoE4 mice, this regulation is not cohesive suggesting that aerobic respiration is impacted by proteasomal and autophagic dysregulation. ApoE2 mice exhibited a matching change in mitochondrial matrix proteins and the membrane which suggests coordinated maintenance of the entire organelle. In the liver, we did not observe these changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to other tissues. Our findings underscore the utility of combining protein abundance and turnover rates to decipher proteome regulatory mechanisms and their potential role in biology.
Collapse
Affiliation(s)
- Nathan R. Zuniga
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Noah E. Earls
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Ariel E. A. Denos
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Jared M. Elison
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Benjamin S. Jones
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Ethan G. Smith
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Noah G. Moran
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Katie L. Brown
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Gerome M. Romero
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Chad D. Hyer
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Kimberly B. Wagstaff
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mark K. Transtrum
- Department of Physics and Astronomy, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - John C. Price
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
5
|
Kryńska K, Kuliś K, Mazurek W, Gudowska-Sawczuk M, Zajkowska M, Mroczko B. The Influence of SARS-CoV-2 Infection on the Development of Selected Neurological Diseases. Int J Mol Sci 2024; 25:8715. [PMID: 39201402 PMCID: PMC11354773 DOI: 10.3390/ijms25168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
In 2024, over 775 million cases of COVID-19 were recorded, including approximately 7 million deaths, indicating its widespread and dangerous nature. The disease is caused by the SARS-CoV-2 virus, which can manifest a wide spectrum of symptoms, from mild infection to respiratory failure and even death. Neurological symptoms, such as headaches, confusion, and impaired consciousness, have also been reported in some COVID-19 patients. These observations suggest the potential of SARS-CoV-2 to invade the central nervous system and induce neuroinflammation during infection. This review specifically explores the relationship between SARS-CoV-2 infection and selected neurological diseases such as multiple sclerosis (MS), ischemic stroke (IS), and Alzheimer's disease (AD). It has been observed that the SARS-CoV-2 virus increases the production of cytokines whose action can cause the destruction of the myelin sheaths of nerve cells. Subsequently, the body may synthesize autoantibodies that attack nerve cells, resulting in damage to the brain's anatomical elements, potentially contributing to the onset of multiple sclerosis. Additionally, SARS-CoV-2 exacerbates inflammation, worsening the clinical condition in individuals already suffering from MS. Moreover, the secretion of pro-inflammatory cytokines may lead to an escalation in blood clot formation, which can result in thrombosis, obstructing blood flow to the brain and precipitating an ischemic stroke. AD is characterized by intense inflammation and heightened oxidative stress, both of which are exacerbated during SARS-CoV-2 infection. It has been observed that the SARS-CoV-2 demonstrates enhanced cell entry in the presence of both the ACE2 receptor, which is already elevated in AD and the ApoE ε4 allele. Consequently, the condition worsens and progresses more rapidly, increasing the mortality rate among AD patients. The above information underscores the numerous connections between SARS-CoV-2 infection and neurological diseases.
Collapse
Affiliation(s)
- Klaudia Kryńska
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Katarzyna Kuliś
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Wiktoria Mazurek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| |
Collapse
|
6
|
Lehrer S, Rheinstein P. The paired immunoglobulin-like type 2 receptor alpha (PILRA) gene polymorphism rs1859788 reduces risk of Alzheimer's Disease in men homozygous for the ApoE ε4 allele. RESEARCH SQUARE 2024:rs.3.rs-4798019. [PMID: 39149451 PMCID: PMC11326400 DOI: 10.21203/rs.3.rs-4798019/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background The APOE gene has long been associated with Alzheimer Disease (AD) risk. Emerging research indicates that other genetic loci, including the paired immunoglobulin-like type 2 receptor alpha (PILRA) gene, may play a crucial role. In the current study we used UK Biobank data to assess the relationship between PILRA and AD. Methods We examined the PILRA polymorphism rs1859788, a single nucleotide missense variant, G > A, minor allele frequency 0.3. Single nucleotide polymorphism (SNP) data for rs429358 and rs7412 determined APOE isoform. We used PheWeb to perform a phenome wide association study (phewas) of rs1859788 and identify other conditions that might be related to both AD and rs1859788. Results In male subjects homozygous for ApoE isoform ε4/ε4, of the men without AD, 9.7% had AA genotype; of the men with AD, 1.8% had AA genotype. This difference was significant (p = 0.006, two tail Fisher exact test). In female subjects homozygous for ApoE isoform ε4/ε4, of the women without AD, 10.4% had AA genotype; of the women with AD 7.9% had AA genotype. This difference was not significant (p = 0.481). In subjects not homozygous for ApoE isoform ε4/ε4, the effect of PILRA genotype was not significant. A phewas of rs1859788 found an association with megaloblastic anemia. Conclusion We have confirmed the previously noted PILRA snp rs1859788 risk reduction of AD, as well as a PILRA link to the ApoE ε4 isoform that has been previously described. We are uncertain why the significant association is only with men who are homozygous for the ε4/ε4 isoform. A phewas indicated that PILRA SNP rs1859788 is associated with megaloblastic anemia, which may explain an observed association between AD and anemia. The identification of PILRA as a potential risk gene for Alzheimer's disease underscores the complexity of the genetic landscape contributing to AD. Alongside APOE, PILRA may play a significant role in modulating key pathological processes such as neuroinflammation and amyloid-beta accumulation.
Collapse
|
7
|
Kovanda A, Lukežič T, Maver A, Vokač Križaj H, Čižek Sajko M, Šelb J, Rijavec M, Bidovec-Stojković U, Bitežnik B, Rituper B, Korošec P, Peterlin B. Genomic Landscape of Susceptibility to Severe COVID-19 in the Slovenian Population. Int J Mol Sci 2024; 25:7674. [PMID: 39062917 PMCID: PMC11277002 DOI: 10.3390/ijms25147674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Determining the genetic contribution of susceptibility to severe SARS-CoV-2 infection outcomes is important for public health measures and individualized treatment. Through intense research on this topic, several hundred genes have been implicated as possibly contributing to the severe infection phenotype(s); however, the findings are complex and appear to be population-dependent. We aimed to determine the contribution of human rare genetic variants associated with a severe outcome of SARS-CoV-2 infections and their burden in the Slovenian population. A panel of 517 genes associated with severe SARS-CoV-2 infection were obtained by combining an extensive review of the literature, target genes identified by the COVID-19 Host Genetic Initiative, and the curated Research COVID-19 associated genes from PanelApp, England Genomics. Whole genome sequencing was performed using PCR-free WGS on DNA from 60 patients hospitalized due to severe COVID-19 disease, and the identified rare genomic variants were analyzed and classified according to the ACMG criteria. Background prevalence in the general Slovenian population was determined by comparison with sequencing data from 8025 individuals included in the Slovenian genomic database (SGDB). Results show that several rare pathogenic/likely pathogenic genomic variants in genes CFTR, MASP2, MEFV, TNFRSF13B, and RNASEL likely contribute to the severe infection outcomes in our patient cohort. These results represent an insight into the Slovenian genomic diversity associated with a severe COVID-19 outcome.
Collapse
Affiliation(s)
- Anja Kovanda
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Lukežič
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Hana Vokač Križaj
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Čižek Sajko
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Julij Šelb
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | | | - Barbara Bitežnik
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Boštjan Rituper
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Biasetti L, Zervogiannis N, Shaw K, Trewhitt H, Serpell L, Bailey D, Wright E, Hall CN. Risk factors for severe COVID-19 disease increase SARS-CoV-2 infectivity of endothelial cells and pericytes. Open Biol 2024; 14:230349. [PMID: 38862017 DOI: 10.1098/rsob.230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.
Collapse
Affiliation(s)
- Luca Biasetti
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Nikos Zervogiannis
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Kira Shaw
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Harry Trewhitt
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Louise Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex , East Sussex BN1 9QG, UK
| | | | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex , , East Sussex BN1 9QG, UK
| | - Catherine N Hall
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| |
Collapse
|
9
|
Pszczołowska M, Walczak K, Misków W, Antosz K, Batko J, Karska J, Leszek J. Molecular cross-talk between long COVID-19 and Alzheimer's disease. GeroScience 2024; 46:2885-2899. [PMID: 38393535 PMCID: PMC11009207 DOI: 10.1007/s11357-024-01096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The long COVID (coronavirus disease), a multisystemic condition following severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the widespread problems. Some of its symptoms affect the nervous system and resemble symptoms of Alzheimer's disease (AD)-a neurodegenerative condition caused by the accumulation of amyloid beta and hyperphosphorylation of tau proteins. Multiple studies have found dependence between these two conditions. Patients with Alzheimer's disease have a greater risk of SARS-CoV-2 infection due to increased levels of angiotensin-converting enzyme 2 (ACE2), and the infection itself promotes amyloid beta generation which enhances the risk of AD. Also, the molecular pathways are alike-misregulations in folate-mediated one-carbon metabolism, a deficit of Cq10, and disease-associated microglia. Medical imaging in both of these diseases shows a decrease in the volume of gray matter, global brain size reduction, and hypometabolism in the parahippocampal gyrus, thalamus, and cingulate cortex. In some studies, a similar approach to applied medication can be seen, including the use of amino adamantanes and phenolic compounds of rosemary. The significance of these connections and their possible application in medical practice still needs further study but there is a possibility that they will help to better understand long COVID.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Misków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Antosz
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Joanna Batko
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Julia Karska
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
10
|
Zhang LY, Liu X, Wu YC, Wang GD. New-onset seizure and acute encephalopathy. Pract Neurol 2024; 24:252-256. [PMID: 38378268 DOI: 10.1136/pn-2023-003994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Affiliation(s)
- Lin-Yuan Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Liu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Dong Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and COVID-19-therapeutic opportunities at the host/virus interface during cell entry. Life Sci Alliance 2024; 7:e202302453. [PMID: 38388172 PMCID: PMC10883773 DOI: 10.26508/lsa.202302453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid development of vaccines to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been critical to reduce the severity of COVID-19. However, the continuous emergence of new SARS-CoV-2 subtypes highlights the need to develop additional approaches that oppose viral infections. Targeting host factors that support virus entry, replication, and propagation provide opportunities to lower SARS-CoV-2 infection rates and improve COVID-19 outcome. This includes cellular cholesterol, which is critical for viral spike proteins to capture the host machinery for SARS-CoV-2 cell entry. Once endocytosed, exit of SARS-CoV-2 from the late endosomal/lysosomal compartment occurs in a cholesterol-sensitive manner. In addition, effective release of new viral particles also requires cholesterol. Hence, cholesterol-lowering statins, proprotein convertase subtilisin/kexin type 9 antibodies, and ezetimibe have revealed potential to protect against COVID-19. In addition, pharmacological inhibition of cholesterol exiting late endosomes/lysosomes identified drug candidates, including antifungals, to block SARS-CoV-2 infection. This review describes the multiple roles of cholesterol at the cell surface and endolysosomes for SARS-CoV-2 entry and the potential of drugs targeting cholesterol homeostasis to reduce SARS-CoV-2 infectivity and COVID-19 disease severity.
Collapse
Affiliation(s)
- Thomas Grewal
- https://ror.org/0384j8v12 School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Mai Khanh Linh Nguyen
- https://ror.org/0384j8v12 School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Christa Buechler
- https://ror.org/01226dv09 Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
12
|
Best LG, Erdei E, Haack K, Kent JW, Malloy KM, Newman DE, O’Leary M, O’Leary RA, Sun Q, Navas-Acien A, Franceschini N, Cole SA. Genetic variant rs1205 is associated with COVID-19 outcomes: The Strong Heart Study and Strong Heart Family Study. PLoS One 2024; 19:e0302464. [PMID: 38662664 PMCID: PMC11045144 DOI: 10.1371/journal.pone.0302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Although COVID-19 infection has been associated with a number of clinical and environmental risk factors, host genetic variation has also been associated with the incidence and morbidity of infection. The CRP gene codes for a critical component of the innate immune system and CRP variants have been reported associated with infectious disease and vaccination outcomes. We investigated possible associations between COVID-19 outcome and a limited number of candidate gene variants including rs1205. METHODOLOGY/PRINCIPAL FINDINGS The Strong Heart and Strong Heart Family studies have accumulated detailed genetic, cardiovascular risk and event data in geographically dispersed American Indian communities since 1988. Genotypic data and 91 COVID-19 adjudicated deaths or hospitalizations from 2/1/20 through 3/1/23 were identified among 3,780 participants in two subsets. Among 21 candidate variants including genes in the interferon response pathway, APOE, TMPRSS2, TLR3, the HLA complex and the ABO blood group, only rs1205, a 3' untranslated region variant in the CRP gene, showed nominally significant association in T-dominant model analyses (odds ratio 1.859, 95%CI 1.001-3.453, p = 0.049) after adjustment for age, sex, center, body mass index, and a history of cardiovascular disease. Within the younger subset, association with the rs1205 T-Dom genotype was stronger, both in the same adjusted logistic model and in the SOLAR analysis also adjusting for other genetic relatedness. CONCLUSION A T-dominant genotype of rs1205 in the CRP gene is associated with COVID-19 death or hospitalization, even after adjustment for relevant clinical factors and potential participant relatedness. Additional study of other populations and genetic variants of this gene are warranted.
Collapse
Affiliation(s)
- Lyle G. Best
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
- Pathology Department, University of North Dakota, Grand Forks, ND, United States of America
| | - Esther Erdei
- Pharmaceutical Sciences, University of New Mexico—Albuquerque, Albuquerque, New Mexico, United States of America
| | - Karin Haack
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Jack W. Kent
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Kimberly M. Malloy
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Deborah E. Newman
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Marcia O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Rae A. O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shelley A. Cole
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| |
Collapse
|
13
|
Lehrer S, Rheinstein P. rs140926439 variant in the Fibronectin FN1 gene protects against Alzheimer's disease in APOEε4 carriers in the UK Biobank cohort. RESEARCH SQUARE 2024:rs.3.rs-4287946. [PMID: 38699298 PMCID: PMC11065070 DOI: 10.21203/rs.3.rs-4287946/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background A protective genetic variant in the fibronectin FN1 gene reduces the odds of developing AD by up to 70%. This variant, rs140926439, seems to prevent the buildup of excess fibronectin at the blood brain barrier. Increased fibronectin levels are typically observed in people with Alzheimer's Disease (AD), but the protective variant appears to counteract its effects. Methods In the current study, we analyzed the relationship of FN1 SNP rs140926439, APOEε4, and AD in the UK Biobank cohort. Results When rs140926439 was absent, 0.10% of APOEε2/3 carriers had AD while 0.40% of APOEε4 carriers or homozygotes had AD. This difference was significant (p < 0.001, 2 tail Fisher exact test). When rs140926439 was present, 0.10% of APOEε2/3 carriers had AD while 0.10% of APOEε4 carriers or homozygotes had AD. This difference was insignificant (p = 1). To examine the overall relationship of rs140926439 and APOE isoform to AD, we used the univariate general linear model, AD (present or absent) dependent variable, rs140926439 (present or absent) and APOE isoform (APOEε2/3 or APOEε4 carrier or homozygote) as fixed factors. The effect of rs140926439 was significant (p = 0.030). The effect of APOE isoform was significant (p = 0.034). There was also a significant interaction between rs140926439 and APOE isoform (p = 0.030). Conclusion Fibronectin is an adhesive molecule that is essential to wound healing, especially to the production of extracellular matrix and reepithelialization. Some cases of AD may be due to the initiation of the brain wound healing process, often in the absence of any actual wound. NSAIDS may reduce risk of AD because they potently inhibit wound healing. FN1 appears to be a key player in AD, and its protective variant could offer insights into potential therapeutic targets. However, further research is needed to fully understand the intricate mechanisms underlying AD and to develop effective treatments.
Collapse
|
14
|
Angulo-Aguado M, Carrillo-Martinez JC, Contreras-Bravo NC, Morel A, Parra-Abaunza K, Usaquén W, Fonseca-Mendoza DJ, Ortega-Recalde O. Next-generation sequencing of host genetics risk factors associated with COVID-19 severity and long-COVID in Colombian population. Sci Rep 2024; 14:8497. [PMID: 38605121 PMCID: PMC11009356 DOI: 10.1038/s41598-024-57982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/24/2024] [Indexed: 04/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was considered a major public health burden worldwide. Multiple studies have shown that susceptibility to severe infections and the development of long-term symptoms is significantly influenced by viral and host factors. These findings have highlighted the potential of host genetic markers to identify high-risk individuals and develop target interventions to reduce morbimortality. Despite its importance, genetic host factors remain largely understudied in Latin-American populations. Using a case-control design and a custom next-generation sequencing (NGS) panel encompassing 81 genetic variants and 74 genes previously associated with COVID-19 severity and long-COVID, we analyzed 56 individuals with asymptomatic or mild COVID-19 and 56 severe and critical cases. In agreement with previous studies, our results support the association between several clinical variables, including male sex, obesity and common symptoms like cough and dyspnea, and severe COVID-19. Remarkably, thirteen genetic variants showed an association with COVID-19 severity. Among these variants, rs11385942 (p < 0.01; OR = 10.88; 95% CI = 1.36-86.51) located in the LZTFL1 gene, and rs35775079 (p = 0.02; OR = 8.53; 95% CI = 1.05-69.45) located in CCR3 showed the strongest associations. Various respiratory and systemic symptoms, along with the rs8178521 variant (p < 0.01; OR = 2.51; 95% CI = 1.27-4.94) in the IL10RB gene, were significantly associated with the presence of long-COVID. The results of the predictive model comparison showed that the mixed model, which incorporates genetic and non-genetic variables, outperforms clinical and genetic models. To our knowledge, this is the first study in Colombia and Latin-America proposing a predictive model for COVID-19 severity and long-COVID based on genomic analysis. Our study highlights the usefulness of genomic approaches to studying host genetic risk factors in specific populations. The methodology used allowed us to validate several genetic variants previously associated with COVID-19 severity and long-COVID. Finally, the integrated model illustrates the importance of considering genetic factors in precision medicine of infectious diseases.
Collapse
Affiliation(s)
- Mariana Angulo-Aguado
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Juan Camilo Carrillo-Martinez
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Nora Constanza Contreras-Bravo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Adrien Morel
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | | | - William Usaquén
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, D.C, Colombia
| | - Dora Janeth Fonseca-Mendoza
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Oscar Ortega-Recalde
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia.
- Departamento de Morfología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
| |
Collapse
|
15
|
Nouraeinejad A. The bidirectional links between coronavirus disease 2019 and Alzheimer's disease. Int J Neurosci 2024:1-15. [PMID: 38451045 DOI: 10.1080/00207454.2024.2327403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Coronavirus disease 2019 (COVID-19) can be a critical disease, particularly in the elderly and those with comorbidities. Patients with Alzheimer's disease are more vulnerable to COVID-19 consequences. The latest results have indicated some common risk factors for both diseases. An understanding of the pathological link between COVID-19 and Alzheimer's disease will help develop timely strategies to treat both diseases. This review explores the bidirectional links between COVID-19 and Alzheimer's disease.
Collapse
Affiliation(s)
- Ali Nouraeinejad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| |
Collapse
|
16
|
Xu Z, Wang H, Jiang S, Teng J, Zhou D, Chen Z, Wen C, Xu Z. Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neurosci Bull 2024; 40:383-400. [PMID: 37715924 PMCID: PMC10912108 DOI: 10.1007/s12264-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 09/18/2023] Open
Abstract
Neurological manifestations of coronavirus disease 2019 (COVID-19) are less noticeable than the respiratory symptoms, but they may be associated with disability and mortality in COVID-19. Even though Omicron caused less severe disease than Delta, the incidence of neurological manifestations is similar. More than 30% of patients experienced "brain fog", delirium, stroke, and cognitive impairment, and over half of these patients presented abnormal neuroimaging outcomes. In this review, we summarize current advances in the clinical findings of neurological manifestations in COVID-19 patients and compare them with those in patients with influenza infection. We also illustrate the structure and cellular invasion mechanisms of SARS-CoV-2 and describe the pathway for central SARS-CoV-2 invasion. In addition, we discuss direct damage and other pathological conditions caused by SARS-CoV-2, such as an aberrant interferon response, cytokine storm, lymphopenia, and hypercoagulation, to provide treatment ideas. This review may offer new insights into preventing or treating brain damage in COVID-19.
Collapse
Affiliation(s)
- Zhixing Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siya Jiang
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiao Teng
- Affiliated Lin'an People's Hospital of Hangzhou Medical College, First People's Hospital of Hangzhou Lin'an District, Lin'an, Hangzhou, 311300, China
| | - Dongxu Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhenghao Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
17
|
Zheng C, Zhao W, Yang Z, Tang D, Feng M, Guo S. Resolving heterogeneity in Alzheimer's disease based on individualized structural covariance network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110873. [PMID: 37827426 DOI: 10.1016/j.pnpbp.2023.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The heterogeneity of Alzheimer's disease (AD) poses a challenge to precision medicine. We aimed to identify distinct subtypes of AD based on the individualized structural covariance network (IDSCN) analysis and to research the underlying neurobiology mechanisms. In this study, 187 patients with AD (age = 73.57 ± 6.00, 50% female) and 143 matched normal controls (age = 74.30 ± 7.80, 44% female) were recruited from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project database, and T1 images were acquired. We utilized the IDSCN analysis to generate individual-level altered structural covariance network and performed k-means clustering to subtype AD based on structural covariance network. Cognition, disease progression, morphological features, and gene expression profiles were further compared between subtypes, to characterize the heterogeneity in AD. Two distinct AD subtypes were identified in a reproducible manner, and we named the two subtypes as slow progression type (subtype 1, n = 104, age = 76.15 ± 6.44, 42% female) and rapid progression type (subtype 2, n = 83, age = 71.98 ± 8.72, 47% female), separately. Subtype 1 had better baseline visuospatial function than subtype 2 (p < 0.05), whereas subtype 2 had better baseline memory function than subtype 1 (p < 0.05). Subtype 2 showed worse progression in memory (p = 0.003), language (p = 0.003), visuospatial function (p = 0.020), and mental state (p = 0.038) than subtype 1. Subtype 1 often shared increased structural covariance network, mainly in the frontal lobe and temporal lobe regions, whereas subtype 2 often shared increased structural covariance network, mainly in occipital lobe regions and temporal lobe regions. Functional annotation further revealed that all differential structural covariance network between the two AD subtypes were mainly implicated in memory, learning, emotion, and cognition. Additionally, differences in gray matter volume (GMV) between AD subtypes were identified, and genes associated with GMV differences were found to be enriched in the terms potassium ion transport, synapse organization, and histone modification and the pathways viral infection, neurodegeneration-multiple diseases, and long-term depression. The two distinct AD subtypes were identified and characterized with neuroanatomy, cognitive trajectories, and gene expression profiles. These comprehensive results have implications for neurobiology mechanisms and precision medicine.
Collapse
Affiliation(s)
- Chuchu Zheng
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Wei Zhao
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Zeyu Yang
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Dier Tang
- School of Mathematics, Jilin University, Changchun 130015, China
| | - Muyi Feng
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Shuixia Guo
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China.
| |
Collapse
|
18
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
19
|
Ramachandran AK, Das S, Shenoy GG, Mudgal J, Joseph A. Relation between Apolipoprotein E in Alzheimer's Disease and SARS-CoV-2 and their Treatment Strategy: A Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:9-20. [PMID: 36573058 DOI: 10.2174/1871527322666221226145141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022]
Abstract
COVID-19, which primarily affects the pulmonary system, turned out to be a global pandemic, whereas the effects on other systems are still unknown. SARS-CoV-2, binds to angiotensinconverting enzyme 2 (ACE2) receptors in the lungs, causing pneumonia-like symptoms. The same ACE receptors are also present in organs other than the lungs. Therefore, there is a need to study the impact of coronavirus on other human body organs. Recently, UK Biobank reports on the genetic risk factor of the virus attack. A double mutation in the apolipoprotein E (APOE4) allele has shown a significant role in COVID-19. The same APOE4 mutation has already been proven to hold a key role in developing early-onset Alzheimer's disease (EOAD). Despite this data, Alzheimer's disease is believed to be a comorbidity of COVID-19. Previous virus attacks on the same viral family, Coronaviridae, produced neurological effects like neurodegeneration, neuronal inflammation, and other central nervous system-related dysfunctions. Since the long-term implications of COVID-19 are unknown, more research into the impact of the virus on the central nervous system is needed. Both COVID-19 and AD share a common genetic factor, so that AD patients may have a greater risk of SARS-CoV-2. Here, in this review, we have briefly discussed the role of APOE4 in the pathogenesis of AD and SARS-CoV-2, along with their treatment strategy, current scenario, and possible future directions.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Gurupur Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
20
|
Rodrigues JFR, Rodrigues LP, de Araújo Filho GM. Alzheimer's Disease and Suicide: An Integrative Literature Review. Curr Alzheimer Res 2024; 20:758-768. [PMID: 38409712 DOI: 10.2174/0115672050292472240216052614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Suicide has been described in patients with Alzheimer's disease. Some promising medications for treating Alzheimer's disease have had their studies suspended because they increase the risk of suicide. Understanding the correlations between suicide and Alzheimer's disease is essential in an aging world. METHODS A search was carried out on electronic websites (PubMed and Scielo) using the MeSH Terms "suicide" and "Alzheimer" (1986-2023). Of a total of 115 articles, 26 were included in this review. RESULTS Depression and the allele ε4 of Apolipoprotein (APOE4) were demonstrated to be the main risk factors for suicide in patients with Alzheimer's disease. CONCLUSION Adequately delineating which elderly people are vulnerable to suicide is important so that new treatments for Alzheimer's disease can be successful. This review showed a need for new studies to investigate the interface between Alzheimer's disease and suicide.
Collapse
Affiliation(s)
- Juliano Flávio Rubatino Rodrigues
- Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
- Unimed Bauru Cooperativa de Trabalho Médico, Bauru, SP, Brazil
| | - Livia Peregrino Rodrigues
- Faculdade de Medicina de Barbacena (FAME), Barbacena, MG, Brazil
- Faculdade de Medicina da Universidade de Marília (UNIMAR), Marília, SP, Brazil
| | | |
Collapse
|
21
|
Liang N, Harsch BA, Zhou S, Borkowska A, Shearer GC, Kaddurah-Daouk R, Newman JW, Borkowski K. Oxylipin transport by lipoprotein particles and its functional implications for cardiometabolic and neurological disorders. Prog Lipid Res 2024; 93:101265. [PMID: 37979798 DOI: 10.1016/j.plipres.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.
Collapse
Affiliation(s)
- Nuanyi Liang
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sitong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA 95616, USA
| | - Alison Borkowska
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Nutrition, University of California - Davis, Davis, CA 95616, USA; Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA 95616, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Greenblatt CL, Lathe R. Vaccines and Dementia: Part II. Efficacy of BCG and Other Vaccines Against Dementia. J Alzheimers Dis 2024; 98:361-372. [PMID: 38393913 DOI: 10.3233/jad-231323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
There is growing awareness that infections may contribute to the development of senile dementia including Alzheimer's disease (AD), and that immunopotentiation is therefore a legitimate target in the management of diseases of the elderly including AD. In Part I of this work, we provided a historical and molecular background to how vaccines, adjuvants, and their component molecules can elicit broad-spectrum protective effects against diverse agents, culminating in the development of the tuberculosis vaccine strain Bacille Calmette-Guérin (BCG) as a treatment for some types of cancer as well as a prophylactic against infections of the elderly such as pneumonia. In Part II, we critically review studies that BCG and other vaccines may offer a measure of protection against dementia development. Five studies to date have determined that intravesicular BCG administration, the standard of care for bladder cancer, is followed by a mean ∼45% reduction in subsequent AD development in these patients. Although this could potentially be ascribed to confounding factors, the finding that other routine vaccines such as against shingles (herpes zoster virus) and influenza (influenza A virus), among others, also offer a degree of protection against AD (mean 29% over multiple studies) underlines the plausibility that the protective effects are real. We highlight clinical trials that are planned or underway and discuss whether BCG could be replaced by key components of the mycobacterial cell wall such as muramyl dipeptide. We conclude that BCG and similar agents merit far wider consideration as prophylactic agents against dementia.
Collapse
Affiliation(s)
- Charles L Greenblatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
23
|
Kusumoto T, Chubachi S, Namkoong H, Tanaka H, Lee H, Otake S, Nakagawara K, Fukushima T, Morita A, Watase M, Asakura T, Masaki K, Kamata H, Ishii M, Hasegawa N, Harada N, Ueda T, Ueda S, Ishiguro T, Arimura K, Saito F, Yoshiyama T, Nakano Y, Mutoh Y, Suzuki Y, Edahiro R, Murakami K, Sato Y, Okada Y, Koike R, Kitagawa Y, Tokunaga K, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K. Characteristics of patients with COVID-19 who have deteriorating chest X-ray findings within 48 h: a retrospective cohort study. Sci Rep 2023; 13:22054. [PMID: 38086863 PMCID: PMC10716517 DOI: 10.1038/s41598-023-49340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
The severity of chest X-ray (CXR) findings is a prognostic factor in patients with coronavirus disease 2019 (COVID-19). We investigated the clinical and genetic characteristics and prognosis of patients with worsening CXR findings during early hospitalization. We retrospectively included 1656 consecutive Japanese patients with COVID-19 recruited through the Japan COVID-19 Task Force. Rapid deterioration of CXR findings was defined as increased pulmonary infiltrates in ≥ 50% of the lung fields within 48 h of admission. Rapid deterioration of CXR findings was an independent risk factor for death, most severe illness, tracheal intubation, and intensive care unit admission. The presence of consolidation on CXR, comorbid cardiovascular and chronic obstructive pulmonary diseases, high body temperature, and increased serum aspartate aminotransferase, potassium, and C-reactive protein levels were independent risk factors for rapid deterioration of CXR findings. Risk variant at the ABO locus (rs529565-C) was associated with rapid deterioration of CXR findings in all patients. This study revealed the clinical features, genetic features, and risk factors associated with rapid deterioration of CXR findings, a poor prognostic factor in patients with COVID-19.
Collapse
Affiliation(s)
- Tatsuya Kusumoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsuho Morita
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mayuko Watase
- Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takanori Asakura
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Ueda
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Soichiro Ueda
- Department of Internal Medicine, Japan Community Health Care Organization (JCHO), Saitama Medical Center, Saitama, Japan
| | - Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Ken Arimura
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fukuki Saito
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Takashi Yoshiyama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yasushi Nakano
- Department of Internal Medicine, Kawasaki Municipal Ida Hospital, Kawasaki, Japan
| | - Yoshikazu Mutoh
- Department of Infectious Diseases, Tosei General Hospital, Seto, Japan
| | - Yusuke Suzuki
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- The Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Ryuji Koike
- Medical Innovation Promotion Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
24
|
Tavares-Júnior JWL, Oliveira DN, da Silva JBS, Queiroz Feitosa WL, Sousa AVM, Marinho SC, Cunha LCV, Gaspar SDB, Gomes CMP, de Oliveira LLB, Moreira-Nunes CA, Sobreira EST, de Moraes MEA, Sobreira-Neto MA, Montenegro RC, Braga-Neto P. Post-COVID-19 Cognitive Decline and Apoe Polymorphism: Towards a Possible Link? Brain Sci 2023; 13:1611. [PMID: 38137059 PMCID: PMC10742128 DOI: 10.3390/brainsci13121611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
APOE ε4 polymorphism has been recently described as a possible association with cognitive deficits in COVID-19 patients. This research aimed to establish the correlation between COVID-19 and cognitive impairment, and the APOE gene polymorphism among outpatients. We performed a cross-sectional study with confirmed COVID-19 patients and neurological symptoms that persisted for more than three months from onset. APOE genotypes were determined. The final number of patients included in this study was 219, of which 186 blood samples were collected for APOE genotyping, evaluated 4.5 months after COVID-19. Among the participants, 143 patients (65.3%) reported memory impairment symptoms as their primary concern. However, this complaint was objectively verified through screening tests (Addenbrooke Cognitive Examination-Revised and Mini-Mental State Examination) in only 36 patients (16.4%). The group experiencing cognitive decline exhibited a higher prevalence of the APOE ε4 allele than the normal group (30.8% vs. 16.4%, respectively, p = 0.038). Furthermore, the APOE ε4 allele and anxiety symptoms remained significant after multivariate analysis. This study assessed an outpatient population where cognitive changes were the primary complaint, even in mild cases. Moreover, the ε4 allele, sleep disorders, and anxiety symptoms were more frequent in the cognitive decline group.
Collapse
Affiliation(s)
- José Wagner Leonel Tavares-Júnior
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Danilo Nunes Oliveira
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Jean Breno Silveira da Silva
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Werbety Lucas Queiroz Feitosa
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Artur Victor Menezes Sousa
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
| | - Samuel Cavalcante Marinho
- Health Sciences Center, State University of Ceará (UECE), Fortaleza 60714-903, CE, Brazil; (S.C.M.); (S.d.B.G.); (C.M.P.G.)
| | - Letícia Chaves Vieira Cunha
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Safira de Brito Gaspar
- Health Sciences Center, State University of Ceará (UECE), Fortaleza 60714-903, CE, Brazil; (S.C.M.); (S.d.B.G.); (C.M.P.G.)
| | - Carmem Meyve Pereira Gomes
- Health Sciences Center, State University of Ceará (UECE), Fortaleza 60714-903, CE, Brazil; (S.C.M.); (S.d.B.G.); (C.M.P.G.)
| | - Laís Lacerda Brasil de Oliveira
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Caroline Aquino Moreira-Nunes
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Emmanuelle Silva Tavares Sobreira
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Manoel Alves Sobreira-Neto
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Raquel Carvalho Montenegro
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Pedro Braga-Neto
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
- Health Sciences Center, State University of Ceará (UECE), Fortaleza 60714-903, CE, Brazil; (S.C.M.); (S.d.B.G.); (C.M.P.G.)
| |
Collapse
|
25
|
Frontera JA, Guekht A, Allegri RF, Ashraf M, Baykan B, Crivelli L, Easton A, Garcia-Azorin D, Helbok R, Joshi J, Koehn J, Koralnik I, Netravathi M, Michael B, Nilo A, Özge A, Padda K, Pellitteri G, Prasad K, Romozzi M, Saylor D, Seed A, Thakur K, Uluduz D, Vogrig A, Welte TM, Westenberg E, Zhuravlev D, Zinchuk M, Winkler AS. Evaluation and treatment approaches for neurological post-acute sequelae of COVID-19: A consensus statement and scoping review from the global COVID-19 neuro research coalition. J Neurol Sci 2023; 454:120827. [PMID: 37856998 DOI: 10.1016/j.jns.2023.120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Post-acute neurological sequelae of COVID-19 affect millions of people worldwide, yet little data is available to guide treatment strategies for the most common symptoms. We conducted a scoping review of PubMed/Medline from 1/1/2020-4/1/2023 to identify studies addressing diagnosis and treatment of the most common post-acute neurological sequelae of COVID-19 including: cognitive impairment, sleep disorders, headache, dizziness/lightheadedness, fatigue, weakness, numbness/pain, anxiety, depression and post-traumatic stress disorder. Utilizing the available literature and international disease-specific society guidelines, we constructed symptom-based differential diagnoses, evaluation and management paradigms. This pragmatic, evidence-based consensus document may serve as a guide for a holistic approach to post-COVID neurological care and will complement future clinical trials by outlining best practices in the evaluation and treatment of post-acute neurological signs/symptoms.
Collapse
Affiliation(s)
- Jennifer A Frontera
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Alla Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Mariam Ashraf
- Department of Anesthesiology, Weill Cornell Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Betül Baykan
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine, and EMAR Medical Center, Istanbul, Turkey
| | - Lucía Crivelli
- Department of Cognitive Neurology, Fleni, Buenos Aires, Argentina
| | - Ava Easton
- The Encephalitis Society, Malton, UK; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - David Garcia-Azorin
- Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Raimund Helbok
- Department of Neurology, Neuro-Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria; Department of Neurology, Johannes Kepler University, Linz, Austria
| | - Jatin Joshi
- Department of Anesthesiology, Weill Cornell Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Julia Koehn
- Department of Neurology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Igor Koralnik
- Departmentof Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - M Netravathi
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Benedict Michael
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Annacarmen Nilo
- Clinical Neurology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Aynur Özge
- Department of Neurology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Karanbir Padda
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gaia Pellitteri
- Clinical Neurology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Kameshwar Prasad
- Chief Executive Office, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Marina Romozzi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento Universitario Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Deanna Saylor
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Internal Medicine, University Teaching Hospital, Lusaka, Zambia
| | - Adam Seed
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Kiran Thakur
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Derya Uluduz
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine, and EMAR Medical Center, Istanbul, Turkey
| | - Alberto Vogrig
- Clinical Neurology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy; Department of Medicine, University of Udine Medical School, Udine, Italy
| | - Tamara M Welte
- Department of Neurology, Universitätsklinikum Erlangen, Erlangen, Germany; Department of Neurology, Center for Global Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Erica Westenberg
- Department of Neurology, Center for Global Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dmitry Zhuravlev
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - Mikhail Zinchuk
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - Andrea S Winkler
- Department of Neurology, Center for Global Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway; Blavatnik Institute of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
27
|
Lathe R, Schultek NM, Balin BJ, Ehrlich GD, Auber LA, Perry G, Breitschwerdt EB, Corry DB, Doty RL, Rissman RA, Nara PL, Itzhaki R, Eimer WA, Tanzi RE. Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer's disease: Research outline and call for collaboration. Alzheimers Dement 2023; 19:5209-5231. [PMID: 37283269 PMCID: PMC10918877 DOI: 10.1002/alz.13076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer's disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer's Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Brian J. Balin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego and VA San Diego Healthcare System, La Jolla, CA
| | | | - Ruth Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| | - William A. Eimer
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Intracell Research Group Consortium Collaborators
- David L. Hahn (Intracell Research Group, USA), Benedict C. Albensi (Nova Southeastern, USA), James St John (Griffith University, Australia), Jenny Ekberg (Griffith University, Australia), Mark L. Nelson (Intracell Research Group, USA), Gerald McLaughlin (National Institutes of Health, USA), Christine Hammond (Philadelphia College of Osteopathic Medicine, USA), Judith Whittum-Hudson (Wayne State University, USA), Alan P. Hudson (Wayne State University, USA), Guillaume Sacco (Université Cote d’Azur, Centre Hospitalier Universitaire de Nice, CoBTek, France), Alexandra Konig (Université Cote d’Azur and CoBTek, France), Bruno Pietro Imbimbo (Chiesi Farmaceutici, Parma, Italy), Nicklas Linz (Ki Elements Ltd, Saarbrücken, Germany), Nicole Danielle Bell (Author, 'What Lurks in the Woods'), Shima T. Moein (Smell and Taste Center, Department of Otorhinolaryngology, Perelman School of Medicine, University of Philadelphia, USA), Jürgen G. Haas (Infection Medicine, University of Edinburgh Medical School, UK)
| |
Collapse
|
28
|
Lehrer S, Rheinstein PH. Increased Maternal Compared to Paternal Transmission of Alzheimer's Disease May Be Due to Increased Incidence of Depression in Women. In Vivo 2023; 37:2447-2451. [PMID: 37905609 PMCID: PMC10621409 DOI: 10.21873/invivo.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Mothers transmit Alzheimer's disease (AD) more frequently than fathers. Factors other than female longevity may be at work to promote maternal transmission of AD. Among these are the X chromosome, mitochondrial DNA, and AD comorbidities, especially depression. A recent study associated mitochondrial SNP rs2853499 with AD. MATERIALS AND METHODS We used UK Biobank (UKBB) data to investigate the relation of mitochondrial SNP rs2853499, with AD. To identify cases of AD we used ICD10 code G30.9. Data processing was performed on Minerva, a Linux mainframe with Centos 7.6, at the Icahn School of Medicine at Mount Sinai. We used PLINK, a whole-genome association analysis toolset, to analyze the UKB22418 mitochondrial hard-called chromosome file. RESULTS Of 953 AD cases, 493 were male (51.7%) and 460 were female (48.3%). Mothers were twice as likely to transmit AD compared to fathers. We found that in individuals with AD, 22.3% (n=201) carried the A allele of SNP rs2853499, 77.7% (n=700) carried the G allele. In individuals without AD, 22.2% (n=10,7726) carried the A allele of SNP rs2853499, 77.8% (n=378,535) carried the G allele. This difference was not significant (p=0.91, two-tailed Fisher exact test). Therefore, factors other than mitochondrial SNP rs2853499 may be at work to promote maternal transmission of AD. CONCLUSION We conclude that depression, a multigenic illness, in the mother is most likely the basis for the fact that mothers transmit AD twice as often as fathers.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.;
| | | |
Collapse
|
29
|
Matveeva N, Kiselev I, Baulina N, Semina E, Kakotkin V, Agapov M, Kulakova O, Favorova O. Shared genetic architecture of COVID-19 and Alzheimer's disease. Front Aging Neurosci 2023; 15:1287322. [PMID: 37927339 PMCID: PMC10625425 DOI: 10.3389/fnagi.2023.1287322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the сoronavirus disease 2019 (COVID-19) have become a global health threat. At the height of the pandemic, major efforts were focused on reducing COVID-19-associated morbidity and mortality. Now is the time to study the long-term effects of the pandemic, particularly cognitive impairment associated with long COVID. In recent years much attention has been paid to the possible relationship between COVID-19 and Alzheimer's disease, which is considered a main cause of age-related cognitive impairment. Genetic predisposition was shown for both COVID-19 and Alzheimer's disease. However, the analysis of the similarity of the genetic architecture of these diseases is usually limited to indicating a positive genetic correlation between them. In this review, we have described intrinsic linkages between COVID-19 and Alzheimer's disease, pointed out shared susceptibility genes that were previously identified in genome-wide association studies of both COVID-19 and Alzheimer's disease, and highlighted a panel of SNPs that includes candidate genetic risk markers of the long COVID-associated cognitive impairment.
Collapse
Affiliation(s)
- Natalia Matveeva
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Kiselev
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Baulina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Semina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Viktor Kakotkin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Mikhail Agapov
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Kulakova
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga Favorova
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
30
|
Mohammadi S, Zarei S, Jabbari H. Prediction of Alzheimer's in People with Coronavirus Using Machine Learning. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2179-2185. [PMID: 37899921 PMCID: PMC10612562 DOI: 10.18502/ijph.v52i10.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/19/2023] [Indexed: 10/31/2023]
Abstract
Background One of the negative effects of the COVID-19 illness, which has affected people all across the world, is Alzheimer's disease. Oblivion after COVID-19 has created a variety of issues for many people. Predicting this issue in COVID-19 patients can considerably lessen the severity of the problem. Methods Alzheimer's disease was predicted in Iranian persons with COVID-19 in using three algorithms: Nave Bayes, Random Forest, and KNN. Data collected by private questioner from hospitals of Tehran Province, Iran, during Oct 2020 to Sep 2021. For ML models, performance is quantified using measures such as Precision, Recall, Accuracy, and F1-score. Results The Nave Bayes, Random Forest algorithm has a prediction accuracy of higher than 80%. The predicted accuracy of the random forest algorithm was higher than the other two algorithms. Conclusion The Random Forest algorithm outperformed the other two algorithms in predicting Alzheimer's disease in persons using COVID-19. The findings of this study could help persons with COVID-19 avoid Alzheimer's problems.
Collapse
Affiliation(s)
- Shahriar Mohammadi
- Information Technology Group, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Soraya Zarei
- Information Technology Group, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Hossain Jabbari
- Neurology Department, Penzing Teaching Hospital, Vienna, Austria
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Clement M. The association of microbial infection and adaptive immune cell activation in Alzheimer's disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad015. [PMID: 38567070 PMCID: PMC10917186 DOI: 10.1093/discim/kyad015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Early symptoms include the loss of memory and mild cognitive ability; however, as the disease progresses, these symptoms can present with increased severity manifesting as mood and behaviour changes, disorientation, and a loss of motor/body control. AD is one of the leading causes of death in the UK, and with an ever-increasing ageing society, patient numbers are predicted to rise posing a significant global health emergency. AD is a complex neurophysiological disorder where pathology is characterized by the deposition and aggregation of misfolded amyloid-beta (Aβ)-protein that in-turn promotes excessive tau-protein production which together drives neuronal cell dysfunction, neuroinflammation, and neurodegeneration. It is widely accepted that AD is driven by a combination of both genetic and immunological processes with recent data suggesting that adaptive immune cell activity within the parenchyma occurs throughout disease. The mechanisms behind these observations remain unclear but suggest that manipulating the adaptive immune response during AD may be an effective therapeutic strategy. Using immunotherapy for AD treatment is not a new concept as the only two approved treatments for AD use antibody-based approaches to target Aβ. However, these have been shown to only temporarily ease symptoms or slow progression highlighting the urgent need for newer treatments. This review discusses the role of the adaptive immune system during AD, how microbial infections may be contributing to inflammatory immune activity and suggests how adaptive immune processes can pose as therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
32
|
Chen F, Ke Q, Wei W, Cui L, Wang Y. Apolipoprotein E and viral infection: Risks and Mechanisms. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:529-542. [PMID: 37588688 PMCID: PMC10425688 DOI: 10.1016/j.omtn.2023.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein critical for lipid metabolism and cholesterol homeostasis. In addition to being a well known genetic determinant of both neurodegenerative and cardiovascular diseases, ApoE is frequently involved in various viral infection-related diseases. Human ApoE protein is functionally polymorphic with three isoforms, namely, ApoE2, ApoE3, and ApoE4, with markedly altered protein structures and functions. ApoE4 is associated with increased susceptibility to infection with herpes simplex virus type-1 and HIV. Conversely, ApoE4 protects against hepatitis C virus and hepatitis B virus infection. With the outbreak of coronavirus disease 2019, ApoE4 has been shown to determine the incidence and progression of severe acute respiratory syndrome coronavirus 2 infection. These findings clearly indicate the critical role of ApoE in viral infection. Furthermore, ApoE polymorphism has various or even opposite effects in these infection processes, which are partly related to the structural features that distinguish the different ApoE statuses. In the current review, we summarize the emerging relationship between ApoE and viral infection, discuss the potential mechanisms, and identify future directions that may help to advance our understanding of the link between ApoE and viral infection.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|
33
|
Gonzalez-Fernandez E, Huang J. Cognitive Aspects of COVID-19. Curr Neurol Neurosci Rep 2023; 23:531-538. [PMID: 37490194 DOI: 10.1007/s11910-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE OF REVIEW Since the beginning of the coronavirus disease 2019 pandemic, many lasting neurological sequelae including cognitive impairment have been recognized as part of the so-called long COVID syndrome. This narrative review summarizes the cognitive aspects of COVID-19. RECENT FINDINGS Studies have consistently identified attention, memory, and executive functions as the cognitive domains most often affected by COVID-19 infection. Many studies have also reported neuroimaging, biofluid, and neurophysiological abnormalities that could potentially reflect the pathophysiological aspects of post-COVID cognitive impairment. While patients suffering from dementia have an elevated risk of COVID-19 infection, increasing evidence has also indicated that COVID-19 infection may increase the risks of Alzheimer's disease, suggesting bidirectional relationships. Post-COVID cognitive dysfunction is a pervasive and multifaceted problem and we are surely in our infancy of understanding. Future elucidation into the long-term effects, mechanisms, and therapies will depend on a concerted effort from clinicians, researchers, patients, and policy-makers alike.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Neurology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Juebin Huang
- Department of Neurology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
34
|
Quan M, Wang X, Gong M, Wang Q, Li Y, Jia J. Post-COVID cognitive dysfunction: current status and research recommendations for high risk population. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 38:100836. [PMID: 37457901 PMCID: PMC10344681 DOI: 10.1016/j.lanwpc.2023.100836] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Post-COVID cognitive dysfunction (PCCD) is a condition in which patients with a history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, usually three months from the onset, exhibit subsequent cognitive impairment in various cognitive domains, and cannot be explained by an alternative diagnosis. While our knowledge of the risk factors and management strategy of PCCD is still incomplete, it is necessary to integrate current epidemiology, diagnosis and treatment evidence, and form consensus criteria to better understand this disease to improve disease management. Identifying the risk factors and vulnerable population of PCCD and providing reliable strategies for effective prevention and management is urgently needed. In this paper, we reviewed epidemiology, diagnostic markers, risk factors and available treatments on the disease, formed research recommendation framework for vulnerable population, under the background of post-COVID period.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
35
|
Ciurleo GCV, Tavares-Júnior JWL, Vieira CMAG, Braga-Neto P, Oriá RB. Do APOE4 and long COVID-19 increase the risk for neurodegenerative diseases in adverse environments and poverty? Front Neurosci 2023; 17:1229073. [PMID: 37694114 PMCID: PMC10483995 DOI: 10.3389/fnins.2023.1229073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Gabriella C. V. Ciurleo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Carlos Meton A. G. Vieira
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro Braga-Neto
- Neurology Division, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Health Sciences Center, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Reinaldo B. Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
36
|
Abstract
COVID-19 infections decrease total cholesterol, LDL-C, HDL-C, and apolipoprotein A-I, A-II, and B levels while triglyceride levels may be increased or inappropriately normal for the poor nutritional status. The degree of reduction in total cholesterol, LDL-C, HDL-C, and apolipoprotein A-I are predictive of mortality. With recovery lipid/lipoprotein levels return towards pre-infection levels and studies have even suggested an increased risk of dyslipidemia post-COVID-19 infection. The potential mechanisms for these changes in lipid and lipoprotein levels are discussed. Decreased HDL-C and apolipoprotein A-I levels measured many years prior to COVID-19 infections are associated with an increased risk of severe COVID-19 infections while LDL-C, apolipoprotein B, Lp (a), and triglyceride levels were not consistently associated with an increased risk. Finally, data suggest that omega-3-fatty acids and PCSK9 inhibitors may reduce the severity of COVID-19 infections. Thus, COVID-19 infections alter lipid/lipoprotein levels and HDL-C levels may affect the risk of developing COVID-19 infections.
Collapse
|
37
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Nabi AHMN, Ebihara A, Shekhar HU. Impacts of SARS-CoV-2 on diabetes mellitus: A pre and post pandemic evaluation. World J Virol 2023; 12:151-171. [PMID: 37396707 PMCID: PMC10311579 DOI: 10.5501/wjv.v12.i3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 06/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) crippled the whole world and has resulted in large number of morbidity and mortality. The origin of the SARS-CoV-2 is still disputed. The risk of infection with SARS-CoV-2 is dependent on several risk factors as observed in many studies. The severity of the disease depends on many factors including the viral strain, host immunogenetics, environmental factors, host genetics, host nutritional status and presence of comorbidities like hypertension, diabetes, Chronic Obstructive Pulmonary Disease, cardiovascular disease, renal impairment. Diabetes is a metabolic disorder mainly characterized by hyperglycemia. Diabetic individuals are intrinsically prone to infections. SARS-CoV-2 infection in patients with diabetes result in β-cell damage and cytokine storm. Damage to the cells impairs the equilibrium of glucose, leading to hyperglycemia. The ensuing cytokine storm causes insulin resistance, especially in the muscles and liver, which also causes a hyperglycemic state. All of these increase the severity of COVID-19. Genetics also play pivotal role in disease pathogenesis. This review article focuses from the probable sources of coronaviruses and SARS-CoV-2 to its impacts on individuals with diabetes and host genetics in pre- and post-pandemic era.
Collapse
Affiliation(s)
- A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
39
|
Ragnoli B, Da Re B, Galantino A, Kette S, Salotti A, Malerba M. Interrelationship between COVID-19 and Coagulopathy: Pathophysiological and Clinical Evidence. Int J Mol Sci 2023; 24:ijms24108945. [PMID: 37240292 DOI: 10.3390/ijms24108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Since the first description of COVID-19 infection, among clinical manifestations of the disease, including fever, dyspnea, cough, and fatigue, it was observed a high incidence of thromboembolic events potentially evolving towards acute respiratory distress syndrome (ARDS) and COVID-19-associated-coagulopathy (CAC). The hypercoagulation state is based on an interaction between thrombosis and inflammation. The so-called CAC represents a key aspect in the genesis of organ damage from SARS-CoV-2. The prothrombotic status of COVID-19 can be explained by the increase in coagulation levels of D-dimer, lymphocytes, fibrinogen, interleukin 6 (IL-6), and prothrombin time. Several mechanisms have been hypothesized to explain this hypercoagulable process such as inflammatory cytokine storm, platelet activation, endothelial dysfunction, and stasis for a long time. The purpose of this narrative review is to provide an overview of the current knowledge on the pathogenic mechanisms of coagulopathy that may characterize COVID-19 infection and inform on new areas of research. New vascular therapeutic strategies are also reviewed.
Collapse
Affiliation(s)
| | - Beatrice Da Re
- Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| | | | - Stefano Kette
- Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| | - Andrea Salotti
- Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| | - Mario Malerba
- Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
- Department of Traslational Medicine, University of Eastern Piedmont (UPO), 28100 Novara, Italy
| |
Collapse
|
40
|
Thunell JA, Ferido P, Zissimopoulos JM. COVID-19 hospitalization and mortality in community-dwelling racially and ethnically diverse persons living with dementia. J Am Geriatr Soc 2023; 71:1429-1439. [PMID: 36637869 PMCID: PMC10175159 DOI: 10.1111/jgs.18230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Community-dwelling persons living with dementia (PLWD) are vulnerable to COVID-19 infection, severity, and mortality due to the high prevalence of comorbidities, reliance on caregivers, and potential inability to employ risk reduction measures, among other factors. METHODS We used a retrospective cohort of Medicare Fee-For-Service beneficiaries enrolled from January 2018 to September 2020 (n = 13,068,583), a comparison cohort from January 2019 to April 2021 (n = 13,250,297), and logistic regression to estimate the effect of dementia on COVID-19 hospitalization and mortality in community-dwelling older persons. RESULTS COVID-19 diagnoses were higher among persons living with dementia (PLWD) than those without dementia. Conditional on COVID-19 in the 2020 cohort, White PLWD were at higher risk of hospitalization compared to White persons without dementia (aOR 1.31, 95% CI: 1.26-1.36) and marginal for Black PLWD (aOR 1.10, 95% CI: 1.01-1.20), no significant differences were found within other racial/ethnic groups. PLWD were 1.8 times (aOR 1.78, 95% CI: 1.72-1.84) more likely to die within 30 days of COVID-19 on average. Within racial/ethnic groups, the estimate for White PLWD, compared with White persons without dementia, was highest (aOR 2.01, 95% CI: 1.92-2.10), followed by Black PLWD (aOR 1.55, 95% CI: 1.41-1.70), and smallest among Hispanic PLWD (aOR 1.37, 95% CI: 1.24-1.50). PLWD hospitalized with COVID-19 were 1.6 times (aOR 1.59, 95% CI: 1.52-1.67) more likely to die within 30 days than similar persons without dementia. Estimates from the 2021 cohort, when vaccines were available to older persons, were similar to those in 2020. CONCLUSIONS Community-dwelling PLWD experienced worse outcomes after a COVID-19 diagnosis than their counterparts without dementia. Results demonstrating higher mortality, but not hospitalization rates, for all races/ethnicities except White PLWD suggest there may have been differential care/treatment that point to potential health care system inequities that persisted into 2021. Understanding the mechanisms underlying these differences may improve ongoing care for community-dwelling PLWD.
Collapse
Affiliation(s)
- Johanna A Thunell
- Price School of Public Policy, University of Southern California, Los Angeles, California, USA
- Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California, USA
| | - Patricia Ferido
- Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California, USA
| | - Julie M Zissimopoulos
- Price School of Public Policy, University of Southern California, Los Angeles, California, USA
- Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
41
|
Alghanem B, Mansour FA, Shaibah H, Almuhalhil K, Almourfi F, Alamri HS, Alajmi H, Rashid M, Alroqi F, Jalouli M, Harrath AH, Boudjellal M, Barhoumi T. Quantitative proteomics analysis of COVID-19 patients: Fetuin-A and tetranectin as potential modulators of innate immune responses. Heliyon 2023; 9:e15224. [PMID: 37064481 PMCID: PMC10082967 DOI: 10.1016/j.heliyon.2023.e15224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Treatment of severe cases of coronavirus disease 2019 (COVID-19) is extremely important to minimize death and end-organ damage. Here we performed a proteomic analysis of plasma samples from mild, moderate and severe COVID-19 patients. Analysis revealed differentially expressed proteins and different therapeutic potential targets related to innate immune responses such as fetuin-A, tetranectin (TN) and paraoxonase-1 (PON1). Furthermore, protein changes in plasma showed dysregulation of complement and coagulation cascades in COVID-19 patients compared to healthy controls. In conclusion, our proteomics data suggested fetuin-A and TN as potential targets that might be used for diagnosis as well as signatures for a better understanding of the pathogenesis of COVID-19 disease.
Collapse
Affiliation(s)
- Bandar Alghanem
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fatmah A Mansour
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hayat Shaibah
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Khawlah Almuhalhil
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Feras Almourfi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hassan S Alamri
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hala Alajmi
- Saudi Biobank, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Mamoon Rashid
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Sciences, Riyadh, 11451, Saudi Arabia
| | - Mohammad Boudjellal
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Cappadona C, Rimoldi V, Paraboschi EM, Asselta R. Genetic susceptibility to severe COVID-19. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105426. [PMID: 36934789 PMCID: PMC10022467 DOI: 10.1016/j.meegid.2023.105426] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Clinical manifestations of the disease range from an asymptomatic condition to life-threatening events and death, with more severe courses being associated with age, male sex, and comorbidities. Besides these risk factors, intrinsic characteristics of the virus as well as genetic factors of the host are expected to account for COVID-19 clinical heterogeneity. Genetic studies have long been recognized as fundamental to identify biological mechanisms underlying congenital diseases, to pinpoint genes/proteins responsible for the susceptibility to different inherited conditions, to highlight targets of therapeutic relevance, to suggest drug repurposing, and even to clarify causal relationships that make modifiable some environmental risk factors. Though these studies usually take long time to be concluded and, above all, to translate their discoveries to patients' bedside, the scientific community moved really fast to deliver genetic signals underlying different COVID-19 phenotypes. In this Review, besides a concise description of COVID-19 symptomatology and of SARS-CoV-2 mechanism of infection, we aimed to recapitulate the current literature in terms of host genetic factors that specifically associate with an increased severity of the disease.
Collapse
Affiliation(s)
- Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
43
|
Ostermann PN, Schaal H. Human brain organoids to explore SARS-CoV-2-induced effects on the central nervous system. Rev Med Virol 2023; 33:e2430. [PMID: 36790825 DOI: 10.1002/rmv.2430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). In less than three years, an estimated 600 million infections with SARS-CoV-2 occurred worldwide, resulting in a pandemic with tremendous impact especially on economic and health sectors. Initially considered a respiratory disease, COVID-19, along with its long-term sequelae (long-COVID) rather is a systemic disease. Neurological symptoms like dementia or encephalopathy were reported early during the pandemic as concomitants of the acute phase and as characteristics of long-COVID. An excessive inflammatory immune response is hypothesized to play a major role in this context. However, direct infection of neural cells may also contribute to the neurological aspects of (long)-COVID-19. To mainly explore such direct effects of SARS-CoV-2 on the central nervous system, human brain organoids provide a useful platform. Infecting these three-dimensional tissue cultures allows the study of viral neurotropism as well as of virus-induced effects on single cells or even the complex cellular network within the organoid. In this review, we summarize the experimental studies that used SARS-CoV-2-infected human brain organoids to unravel the complex nature of (long)-COVID-19-related neurological manifestations.
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
44
|
Grujičić D, Mirkov L, Banković D, Virijević K, Marinković D, Milošević-Djordjević O. Homozygous-Recessive Characteristics as a Biomarker of Predisposition for COVID-19. Clin Nurs Res 2023; 32:589-600. [PMID: 36695163 PMCID: PMC9902784 DOI: 10.1177/10547738221147754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coronavirus disease (COVID-19), a new form of severe acute respiratory syndrome, has caused a global pandemic. The aim of this study was to analyze homozygous-recessive characteristics (HRC) in the group of COVID-19 patients, considering their gender, forms of the disease (mild and severe symptoms), risk factors: hypertension, diabetes mellitus type 2, hyperlipidemia, smoking habits, and the distribution of ABO blood group. Using the HRC test, we analyzed 20 HRCs in a sample of 321 individuals: 205 patients and 116 controls. The average HRC in patients was significantly higher than controls, as well as in patients with severe symptoms compared to patients with mild symptoms. The patients with higher HRC (cut-off ≤5.5) experienced a significantly increased risk of disease of 2.3 times (OR = 2.315, p < .0005). Our results indicate that the HRC test could be used as a screening in recognizing predisposition for COVID-19.
Collapse
|
45
|
Toba A, Ishikawa J. Current topics of frailty in association with hypertension and other medical conditions. Hypertens Res 2023; 46:1188-1194. [PMID: 36792774 PMCID: PMC9930075 DOI: 10.1038/s41440-023-01200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023]
Abstract
Frailty is a state of increased vulnerability to stress resulting from physiological decline associated with aging. Topics of hypertension management and its association with frailty and cognitive function, recent studies of coronavirus disease 2019 infection (COVID-19) in elderly is discussed in this narrative review. While various guidelines for hypertension recommend that frailty is taken into account in treatment decisions, specific assessment tools and clinical decision criteria have not been explicitly established. Hypertension is prevalent in frail individuals, although a direct association has not been reported. Therefore, optimal blood pressure (BP) control is critical for managing cardiovascular risk reduction and preserving quality of life in frail hypertensive patients. BP typically decreases in later life or situations in which patients are dependent on nursing care. Mortality is reported to be high among frail patients with lower BP, raising questions about appropriate BP targets for frail patients. Cognitive decline is one of the domains of frailty, and is associated with a loss of autonomy, lack of self-management, and compromised quality of life. It remains to be clarified whether antihypertensive treatment is beneficial for cognitive function especially in older individuals. Increased severity and mortality of COVID-19 infection has been reported in older people. Clinical manifestations and biomarkers particular to older patients, and lifestyle changes including social isolation during the COVID-19 pandemic is reported. From the knowledge from recent literatures, future perspectives for holistic approach and management of frail older people is addressed.
Collapse
Affiliation(s)
- Ayumi Toba
- Division of Cardiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| | - Joji Ishikawa
- Division of Cardiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
46
|
Li W, Sun L, Yue L, Xiao S. Alzheimer's disease and COVID-19: Interactions, intrinsic linkages, and the role of immunoinflammatory responses in this process. Front Immunol 2023; 14:1120495. [PMID: 36845144 PMCID: PMC9947230 DOI: 10.3389/fimmu.2023.1120495] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) and COVID-19 share many common risk factors, such as advanced age, complications, APOE genotype, etc. Epidemiological studies have also confirmed the internal relationship between the two diseases. For example, studies have found that AD patients are more likely to suffer from COVID-19, and after infection with COVID-19, AD also has a much higher risk of death than other chronic diseases, and what's more interesting is that the risk of developing AD in the future is significantly higher after infection with COVID-19. Therefore, this review gives a detailed introduction to the internal relationship between Alzheimer's disease and COVID-19 from the perspectives of epidemiology, susceptibility and mortality. At the same time, we focused on the important role of inflammation and immune responses in promoting the onset and death of AD from COVID-19.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Chen F, Chen Y, Ke Q, Wang Y, Gong Z, Chen X, Cai Y, Li S, Sun Y, Peng X, Ji Y, Zhang T, Wu W, Cui L, Wang Y. ApoE4 associated with severe COVID-19 outcomes via downregulation of ACE2 and imbalanced RAS pathway. J Transl Med 2023; 21:103. [PMID: 36759834 PMCID: PMC9910247 DOI: 10.1186/s12967-023-03945-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Recent numerous epidemiology and clinical association studies reported that ApoE polymorphism might be associated with the risk and severity of coronavirus disease 2019 (COVID-19), and yielded inconsistent results. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptor expressed on host cell membranes. METHODS A meta-analysis was conducted to clarify the association between ApoE polymorphism and the risk and severity of COVID-19. Multiple protein interaction assays were utilized to investigate the potential molecular link between ApoE and the SARS-CoV-2 primary receptor ACE2, ApoE and spike protein. Immunoblotting and immunofluorescence staining methods were used to access the regulatory effect of different ApoE isoform on ACE2 protein expression. RESULTS ApoE gene polymorphism (ε4 carrier genotypes VS non-ε4 carrier genotypes) is associated with the increased risk (P = 0.0003, OR = 1.44, 95% CI 1.18-1.76) and progression (P < 0.00001, OR = 1.85, 95% CI 1.50-2.28) of COVID-19. ApoE interacts with both ACE2 and the spike protein but did not show isoform-dependent binding effects. ApoE4 significantly downregulates ACE2 protein expression in vitro and in vivo and subsequently decreases the conversion of Ang II to Ang 1-7. CONCLUSIONS ApoE4 increases SARS-CoV-2 infectivity in a manner that may not depend on differential interactions with the spike protein or ACE2. Instead, ApoE4 downregulates ACE2 protein expression and subsequently the dysregulation of renin-angiotensin system (RAS) may provide explanation by which ApoE4 exacerbates COVID-19 disease.
Collapse
Affiliation(s)
- Feng Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China ,grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yanting Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China ,grid.33199.310000 0004 0368 7223Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiongwei Ke
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zheng Gong
- grid.410560.60000 0004 1760 3078Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shengnan Li
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- grid.266871.c0000 0000 9765 6057Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Xiaoping Peng
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianzhen Zhang
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenxian Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China. .,Shenzhen Research Institute, Shandong University, Shenzhen, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
48
|
Crook H, Ramirez A, Hosseini AA, Vavougyios G, Lehmann C, Bruchfeld J, Schneider A, d'Avossa G, Lo Re V, Salmoiraghi A, Mukaetova-Ladinska E, Katshu M, Boneschi FM, Håkansson K, Geerlings M, Pracht E, Ruiz A, Jansen JF, Snyder H, Kivipelto M, Edison P. European Working Group on SARS-CoV-2: Current Understanding, Unknowns, and Recommendations on the Neurological Complications of COVID-19. Brain Connect 2023; 13:178-210. [PMID: 36719785 DOI: 10.1089/brain.2022.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The emergence of COVID-19 was rapidly followed by infection and the deaths of millions of people across the globe. With much of the research and scientific advancement rightly focused on reducing the burden of severe and critical acute COVID-19 infection, the long-term effects endured by those who survived the acute infection has been previously overlooked. Now, an appreciation for the post-COVID-19 condition, including its neurological manifestations, is growing, although there remain many unknowns regarding the aetiology and risk factors of the condition, as well as how to effectively diagnose and treat it. Here, drawing upon the experiences and expertise of the clinicians and academics of the European working group on COVID-19, we have reviewed the current literature to provide a comprehensive overview of the neurological sequalae of the post-COVID-19 condition. In this review, we provide a summary of the neurological symptoms associated with the post-COVID-19 condition, before discussing the possible mechanisms which may underly and manifest these symptoms. Following this, we explore the risk factors for developing neurological symptoms as a result of COVID-19 and the post-COVID-19 condition, as well as how COVID-19 infection may itself be a risk factor for the development of neurological disease in the future. Lastly, we evaluate how the post-COVID condition could be accurately diagnosed and effectively treated, including examples of the current guidelines, clinical outcomes and tools that have been developed to aid in this process, as well as addressing the protection provided by COVID-19 vaccines against post-COVID-19 condition. Overall, this review provides a comprehensive overview of the neurological sequalae of the post-COVID-19 condition.
Collapse
Affiliation(s)
- Harry Crook
- Imperial College London, 4615, Brain Sciences, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Alfredo Ramirez
- University of Cologne, 14309, Department of Psychiatry and Psychotherapy, Koln, Nordrhein-Westfalen, Germany
- University of Bonn, 9374, Department of Neurodegenerative diseases and Geriatric Psychiatry, Bonn, Nordrhein-Westfalen, Germany
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, Department of Psychiatry , San Antonio, Texas, United States
- German Centre for Neurodegenerative Diseases, 172279, Bonn, Nordrhein-Westfalen, Germany;
| | - Akram A Hosseini
- Nottingham University Hospitals NHS Trust, 9820, Department of Neurology, Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland;
| | - Georgios Vavougyios
- University of Cyprus, 54557, Department of Neurology, Nicosia, Nicosia, Cyprus;
| | - Clara Lehmann
- University of Cologne, 14309, Department of Internal Medicine, Koln, Nordrhein-Westfalen, Germany
- University of Cologne, 14309, Center for Molecular Medicine Cologne (CMMC), Koln, Nordrhein-Westfalen, Germany
- German Centre for Infection Research, 459706, Braunschweig, Niedersachsen, Germany;
| | - Judith Bruchfeld
- Karolinska University Hospital, 59562, Department of Infectious Diseases, Stockholm, Sweden;
| | - Anja Schneider
- University Hospital Bonn, 39062, Department of Neurodegenerative diseases and Geriatric Psychiatry, Bonn, Nordrhein-Westfalen, Germany
- German Centre for Neurodegenerative Diseases, 172279, Bonn, Nordrhein-Westfalen, Germany;
| | - Giovanni d'Avossa
- Bangor University, 1506, School of Psychology, Bangor, Gwynedd, United Kingdom of Great Britain and Northern Ireland;
| | | | - Alberto Salmoiraghi
- Betsi Cadwaladr University Health Board, 1507, Bangor, Gwynedd, United Kingdom of Great Britain and Northern Ireland
- Glyndwr University, 8725, Wrexham, Clwyd, United Kingdom of Great Britain and Northern Ireland;
| | - Elizabeta Mukaetova-Ladinska
- University of Leicester, 4488, Neuroscience, Psychology and Behaviour, University Road, Leicester, United Kingdom of Great Britain and Northern Ireland, LE1 7RH;
| | - Mohammad Katshu
- University of Nottingham, 6123, School of Medicine, Nottingham, Nottinghamshire, United Kingdom of Great Britain and Northern Ireland;
| | - Filippo M Boneschi
- University of Milan, 9304, Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Lombardia, Italy;
| | - Krister Håkansson
- Karolinska Institute, 27106, Department of Neurobiology, Care Sciences and Society, Stockholm, Stockholm, Sweden;
| | - Mirjam Geerlings
- Utrecht University, 8125, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands;
| | - Elisabeth Pracht
- University of Cologne, 14309, Department of Psychiatry and Psychotherapy, Koln, Nordrhein-Westfalen, Germany;
| | - Agustín Ruiz
- Universitat Internacional de Catalunya, 16760, Institut Català de Neurociències Aplicades, Barcelona, Catalunya, Spain;
| | - Jacobus Fa Jansen
- Maastricht University Medical Centre+, 199236, Department of Radiology and Nuclear Medicine, Maastricht, Limburg, Netherlands;
| | - Heather Snyder
- Alzheimer's Association, 44027, Chicago, Illinois, United States;
| | - Miia Kivipelto
- Karolinska Institute, 27106, Department of Neurobiology, Care Sciences and Society, Stockholm, Stockholm, Sweden;
| | - Paul Edison
- Imperial College London, 4615, Brain Sciences, Neurology Imaging Unit, 1st Floor, B - Block, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom of Great Britain and Northern Ireland, SW7 2AZ;
| |
Collapse
|
49
|
Huang P, Zhang LY, Tan YY, Chen SD. Links between COVID-19 and Parkinson's disease/Alzheimer's disease: reciprocal impacts, medical care strategies and underlying mechanisms. Transl Neurodegener 2023; 12:5. [PMID: 36717892 PMCID: PMC9885419 DOI: 10.1186/s40035-023-00337-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The impact of coronavirus disease 2019 (COVID-19) pandemic on patients with neurodegenerative diseases and the specific neurological manifestations of COVID-19 have aroused great interest. However, there are still many issues of concern to be clarified. Therefore, we review the current literature on the complex relationship between COVID-19 and neurodegenerative diseases with an emphasis on Parkinson's disease (PD) and Alzheimer's disease (AD). We summarize the impact of COVID-19 infection on symptom severity, disease progression, and mortality rate of PD and AD, and discuss whether COVID-19 infection could trigger PD and AD. In addition, the susceptibility to and the prognosis of COVID-19 in PD patients and AD patients are also included. In order to achieve better management of PD and AD patients, modifications of care strategies, specific drug therapies, and vaccines during the pandemic are also listed. At last, mechanisms underlying the link of COVID-19 with PD and AD are reviewed.
Collapse
Affiliation(s)
- Pei Huang
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Lin-Yuan Zhang
- grid.412478.c0000 0004 1760 4628Department of Neurology, Shanghai General Hospital, Shanghai, 200080 China
| | - Yu-Yan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
50
|
Rudnicka-Drożak E, Drożak P, Mizerski G, Zaborowski T, Ślusarska B, Nowicki G, Drożak M. Links between COVID-19 and Alzheimer's Disease-What Do We Already Know? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2146. [PMID: 36767513 PMCID: PMC9915236 DOI: 10.3390/ijerph20032146] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is a life-changing condition whose etiology is explained by several hypotheses. Recently, a new virus contributed to the evidence of viral involvement in AD: the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-19 coronavirus disease. AD was found to be one of the most common COVID-19 comorbidities, and it was found to increase mortality from this disease as well. Moreover, AD patients were observed to present with the distinct clinical features of COVID-19, with delirium being prevalent in this group. The SARS-CoV-2 virus enters host cells through the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is overexpressed in brains with AD, which thus increases the viral invasion. Furthermore, the inhibition of the ACE2 receptor by the SARS-CoV-2 virus may also decrease the brain-derived neurotrophic factor (BDNF), contributing to neurodegeneration. The ApoE ε4 allele, which increases the risk of AD, was found to facilitate the SARS-CoV-2 entry into cells. Furthermore, the neuroinflammation and oxidative stress existing in AD patients enhance the inflammatory response associated with COVID-19. Moreover, pandemic and associated social distancing measures negatively affected the mental health, cognitive function, and neuro-psychiatric symptoms of AD patients. This review comprehensively covers the links between COVID-19 and Alzheimer's disease, including clinical presentation, molecular mechanisms, and the effects of social distancing.
Collapse
Affiliation(s)
- Ewa Rudnicka-Drożak
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Paulina Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Grzegorz Mizerski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Tomasz Zaborowski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Grzegorz Nowicki
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Martyna Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| |
Collapse
|