1
|
Stadler A, De Liz LV, Gabriel HB, Alonso-Gil S, Crickley R, Korbula K, Žagrović B, Vaughan S, Sunter JD, Dong G. The C-terminus of CFAP410 forms a tetrameric helical bundle that is essential for its localization to the basal body. Open Biol 2024; 14:240128. [PMID: 39255848 PMCID: PMC11500688 DOI: 10.1098/rsob.240128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 09/12/2024] Open
Abstract
Cilia are antenna-like organelles protruding from the surface of many cell types in the human body. Defects in ciliary structure or function often lead to diseases that are collectively called ciliopathies. Cilia and flagella-associated protein 410 (CFAP410) localizes at the basal body of cilia/flagella and plays essential roles in ciliogenesis, neuronal development and DNA damage repair. It remains unknown how its specific basal body location is achieved. Multiple single amino acid mutations in CFAP410 have been identified in patients with various ciliopathies. One of the mutations, L224P, is located in the C-terminal domain (CTD) of human CFAP410 and causes severe spondylometaphyseal dysplasia, axial (SMDAX). However, the molecular mechanism for how the mutation causes the disorder remains unclear. Here, we report our structural studies on the CTD of CFAP410 from three distantly related organisms, Homo sapiens, Trypanosoma brucei and Chlamydomonas reinhardtii. The crystal structures reveal that the three proteins all adopt the same conformation as a tetrameric helical bundle. Our work further demonstrates that the tetrameric assembly of the CTD is essential for the correct localization of CFAP410 in T. brucei, as the L224P mutation that disassembles the tetramer disrupts its basal body localization. Taken together, our studies reveal that the basal body localization of CFAP410 is controlled by the CTD and provide a mechanistic explanation for how the mutation L224P in CFAP410 causes ciliopathies in humans.
Collapse
Affiliation(s)
- Alexander Stadler
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna1030, Austria
| | - Laryssa V. De Liz
- Department of Biological and Medical Sciences, Oxford Brookes University, OxfordOX3 0BP, UK
- Departamento de Microbiologia, Imunologia e Parasitologia,, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Heloisa B. Gabriel
- Department of Biological and Medical Sciences, Oxford Brookes University, OxfordOX3 0BP, UK
| | - Santiago Alonso-Gil
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Robbie Crickley
- Department of Biological and Medical Sciences, Oxford Brookes University, OxfordOX3 0BP, UK
| | - Katharina Korbula
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna1030, Austria
| | - Bojan Žagrović
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, OxfordOX3 0BP, UK
| | - Jack D. Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, OxfordOX3 0BP, UK
| | - Gang Dong
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna1030, Austria
| |
Collapse
|
2
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Super-resolution mapping in rod photoreceptors identifies rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway. PLoS Biol 2024; 22:e3002467. [PMID: 38190419 PMCID: PMC10773939 DOI: 10.1371/journal.pbio.3002467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient phototransduction and vision. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane, at the surface, in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
3
|
Li X, Wang Y, Wang J, Wang P, Zhang Q. Double Hyperautofluorescence Rings as a Sign of CFAP410-related Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:44. [PMID: 38153748 PMCID: PMC10756245 DOI: 10.1167/iovs.64.15.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose Variants in CFAP410 have been reported to cause retinal dystrophy with or without systemic symptoms. This study was designed to characterize the fundus changes of patients with biallelic variants in CFAP410. Methods Variants in CFAP410 were identified through whole exome sequencing and targeted exome sequencing of 10,530 probands. Biallelic variants in CFAP410 were evaluated by comprehensive in silico analysis and confirmed by Sanger sequencing and segregation analysis. Ocular phenotypes including fundus photographs, scanning laser ophthalmoscopy, autofluorescence images, ERG, and optical coherence tomography were characterized. Results Nine patients from eight families were homozygotes or compound heterozygotes for a total of four variants in CFAP410, including c.144-6_159del (novel), c.340_351dup, c.347C>T, and c.545+1G>A. Three patients were diagnosed with cone-rod dystrophy, and the remaining six patients with RP. Among eight patients performed with ultra-wide scanning laser ophthalmoscopy, double hyperautofluorescence rings inside and outside of the macular vascular arcades were observed in six patients, and the remaining two older patients demonstrated single hyperautofluorescence ring surrounded by pigmentation. CFAP410-associated retinopathy in early stage was generally tapetoretinal degeneration without noticeable bone spicule pigmentation, with more severe degeneration in the inferior nasal retina. ERG recordings delineated a severely reduced cone response and mildly to severely reduced rod response. Posterior staphyloma was seen in seven patients who underwent optical coherence tomography examinations. Conclusions The present study demonstrates the fundus characteristics of patients with biallelic variants in CFAP410 and expands the genotype-phenotype spectrum of CFAP410-related retinal degeneration, in which posterior staphyloma together with double hyperautofluorescence rings might be common peculiar signs.
Collapse
Affiliation(s)
- Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Truong HM, Cruz-Colón KO, Martínez-Márquez JY, Willer JR, Travis AM, Biswas SK, Lo WK, Bolz HJ, Pearring JN. The tectonic complex regulates membrane protein composition in the photoreceptor cilium. Nat Commun 2023; 14:5671. [PMID: 37704658 PMCID: PMC10500017 DOI: 10.1038/s41467-023-41450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The primary cilium is a signaling organelle with a unique membrane composition maintained by a diffusional barrier residing at the transition zone. Many transition zone proteins, such as the tectonic complex, are linked to preserving ciliary composition but the mechanism remains unknown. To understand tectonic's role, we generate a photoreceptor-specific Tctn1 knockout mouse. Loss of Tctn1 results in the absence of the entire tectonic complex and associated MKS proteins yet has minimal effects on the transition zone structure of rod photoreceptors. We find that the protein composition of the photoreceptor cilium is disrupted as non-resident membrane proteins accumulate in the cilium over time, ultimately resulting in photoreceptor degeneration. We further show that fluorescent rhodopsin moves faster through the transition zone in photoreceptors lacking tectonic, which suggests that the tectonic complex acts as a physical barrier to slow down membrane protein diffusion in the photoreceptor transition zone to ensure proper removal of non-resident membrane proteins.
Collapse
Affiliation(s)
- Hanh M Truong
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kevin O Cruz-Colón
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason R Willer
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA
| | - Amanda M Travis
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hanno J Bolz
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Jillian N Pearring
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Takahashi K, Kwok JC, Sato Y, Aguirre GD, Miyadera K. Molecular characterization of MAP9 in the photoreceptor sensory cilia as a modifier in canine RPGRIP1-associated cone-rod dystrophy. Front Cell Neurosci 2023; 17:1226603. [PMID: 37650070 PMCID: PMC10464610 DOI: 10.3389/fncel.2023.1226603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Photoreceptors possess a highly specialized primary cilium containing expanded ciliary membrane discs called the outer segment. The photoreceptor cilium is essential for the maintenance of the outer segment, and pathogenic variants in more than 50 cilia-related genes have been identified as causing non-syndromic inherited retinal diseases in patients. The retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1) is a structural protein localized to the photoreceptor cilium and biallelic RPGRIP1 variants have been associated with non-syndromic human inherited retinal diseases. In a canine cone-rod dystrophy model, a naturally occurring 44-bp exonic insertion in RPGRIP1 (RPGRIP1ins44/ins44) is the primary disease locus while an additional homozygous variant in MAP9 (microtubule associated protein 9) (MAP9aff/aff) acts as a modifier associated with early disease onset. MAP9 was originally identified as a microtubule-binding protein stabilizing microtubule structure during both mitosis and interphase in human cell lines. However, the roles of MAP9 in primary cilia, including photoreceptor neurosensory cilia, have not been well understood. Hence, we characterized the pathogenic phenotypes associated with homozygous MAP9 variant, and investigated the molecular function of MAP9 in primary cilia using the RPGRIP1-associated oligogenic canine cone-rod dystrophy model as well as cultured cells. Both functionally and structurally, the RPGRIP1ins44/ins44 MAP9aff/aff retina exhibited progressive cone photoreceptor degeneration starting earlier than the retina affected by RPGRIP1ins44/ins44 alone. Based on immunostaining of canine retinal sections and cultured cells, we found that MAP9 is prominently localized in the basal body of primary cilia and played an important role in maintaining the structure of ciliary microtubule axoneme. These findings suggest that the affected MAP9, together with mutant RPGRIP1, is deprived of critical roles in cilia organization and maintenance resulting in altered cilia structure and function giving rise to early onset and accelerated disease progression in the RPGRIP1ins44/ins44 MAP9aff/aff double homozygote cone-rod dystrophy canine model.
Collapse
Affiliation(s)
| | | | | | | | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Mapping rhodopsin trafficking in rod photoreceptors with quantitative super-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537413. [PMID: 37131638 PMCID: PMC10153271 DOI: 10.1101/2023.04.20.537413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient long-term phototransduction. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| |
Collapse
|
8
|
Yahya F, Escher P, Rivolta C, Scholl HP, Roulez F. SPATA7-Associated Juvenile Retinitis Pigmentosa in Two Brothers from a Consanguineous Iraqi Family in Switzerland. Klin Monbl Augenheilkd 2023; 240:544-548. [PMID: 37164434 DOI: 10.1055/a-2009-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Faady Yahya
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- University Hospital Basel Eye Clinic, Basel, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Carlo Rivolta
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Hendrik Pn Scholl
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- University Hospital Basel Eye Clinic, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Francoise Roulez
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Preclinical Models of Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:181-215. [PMID: 36481897 DOI: 10.1007/978-1-0716-2651-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is the name for a group of phenotypically-related heritable retinal degenerative disorders. Many genes have been implicated as causing variants of RP, and while the clinical phenotypes are remarkably similar, they may differ in age of onset, progression, and severity. Common inheritance patterns for specific genes connected with the development of the disorder include autosomal dominant, autosomal recessive, and X-linked. Modeling the disease in animals and other preclinical systems offers a cost-conscious, ethical, and time-efficient method for studying the disease subtypes. The history of RP models is briefly examined, and both naturally occurring and transgenic preclinical models of RP in many different organisms are discussed. Syndromic forms of RP and models thereof are reviewed as well.
Collapse
|
10
|
Lu J, Xiong K, Qian X, Choi J, Shim YK, Burnett J, Mardon G, Chen R. Spata7 is required for maintenance of the retinal connecting cilium. Sci Rep 2022; 12:5575. [PMID: 35368022 PMCID: PMC8976851 DOI: 10.1038/s41598-022-09530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
SPATA7, an early onset LCA3 retinal disease gene, encodes a putative scaffold protein that is essential for the proper assembly of the connecting cilium (CC) complex in photoreceptors. Previous studies have shown that SPATA7 interacts with other photoreceptor-specific ciliary proteins, such as RPGR and RPGRIP1, and maintains the integrity of CC integrity. However, although it is known that Spata7 is required for early formation of the CC, it is unclear if Spata7 is also required for the maintenance of the CC. To investigate Spata7 function in the retina at the adult stage, loss of function was induced in the adult retina upon tamoxifen induction of an inducible Spata7 knockout allele (Spata7flox/-; UbcCreERT2/+). The phenotype of mutant retina was characterized by a combination of histology, immunobiochemistry, and electroretinography (ERG). Our results demonstrated that Spata7 is also essential for maintaining the integrity of the mature retinal CC. Loss of Spata7 in adults caused phenotypes similar to those seen in germline mutant mice, including photoreceptor cell degeneration and defective ERG responses. Close examination of the CC revealed significantly shortened NPHP1 length as a result of Spata7 deletion. Furthermore, mislocalization of rhodopsin, leading to ER stress-mediated apoptosis, was observed in the retinal layers. Our results indicate that Spata7 is required not only for the establishment but also for the maintenance of the CC of photoreceptors.
Collapse
Affiliation(s)
- Jiaxiong Lu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kaitlyn Xiong
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Xinye Qian
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yoon-Kyung Shim
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Burnett
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Graeme Mardon
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Co-Injection of Sulfotyrosine Facilitates Retinal Uptake of Hyaluronic Acid Nanospheres Following Intravitreal Injection. Pharmaceutics 2021; 13:pharmaceutics13091510. [PMID: 34575586 PMCID: PMC8469555 DOI: 10.3390/pharmaceutics13091510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gene and drug delivery to the retina is a critical therapeutic goal. While the majority of inherited forms of retinal degeneration affect the outer retina, specifically the photoreceptors and retinal pigment epithelium, effective targeted delivery to this region requires invasive subretinal delivery. Our goal in this work was to evaluate two innovative approaches for increasing both the persistence of delivered nanospheres and their penetration into the outer retina while using the much less invasive intravitreal delivery method. We formulated novel hyaluronic acid nanospheres (HA-NS, 250 nm and 500 nm in diameter) conjugated to fluorescent reporters and delivered them intravitreally to the adult Balb/C mouse retina. They exhibited persistence in the vitreous and along the inner limiting membrane (ILM) for up to 30 days (longest timepoint examined) but little retinal penetration. We thus evaluated the ability of the small molecule, sulfotyrosine, to disrupt the ILM, and found that 3.2 µg/µL sulfotyrosine led to significant improvement in delivery to the outer retina following intravitreal injections without causing retinal inflammation, degeneration, or loss of function. Co-delivery of sulfotyrosine and HA-NS led to robust improvements in penetration of HA-NS into the retina and accumulation along the interface between the photoreceptors and the retinal pigment epithelium. These exciting findings suggest that sulfotyrosine and HA-NS may be an effective strategy for outer retinal targeting after intravitreal injection.
Collapse
|
12
|
Gene therapy reforms photoreceptor structure and restores vision in NPHP5-associated Leber congenital amaurosis. Mol Ther 2021; 29:2456-2468. [PMID: 33781914 DOI: 10.1016/j.ymthe.2021.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
The inherited childhood blindness caused by mutations in NPHP5, a form of Leber congenital amaurosis, results in abnormal development, dysfunction, and degeneration of photoreceptors. A naturally occurring NPHP5 mutation in dogs leads to a phenotype that very nearly duplicates the human retinopathy in terms of the photoreceptors involved, spatial distribution of degeneration, and the natural history of vision loss. We show that adeno-associated virus (AAV)-mediated NPHP5 gene augmentation of mutant canine retinas at the time of active degeneration and peak cell death stably restores photoreceptor structure, function, and vision with either the canine or human NPHP5 transgenes. Mutant cone photoreceptors, which failed to form outer segments during development, reform this structure after treatment. Degenerating rod photoreceptor outer segments are stabilized and develop normal structure. This process begins within 8 weeks after treatment and remains stable throughout the 6-month posttreatment period. In both photoreceptor cell classes mislocalization of rod and cone opsins is minimized or reversed. Retinal function and functional vision are restored. Efficacy of gene therapy in this large animal ciliopathy model of Leber congenital amaurosis provides a path for translation to human treatment.
Collapse
|
13
|
Zou G, Zhang T, Cheng X, Igelman AD, Wang J, Qian X, Fu S, Wang K, Koenekoop RK, Fishman GA, Yang P, Li Y, Pennesi ME, Chen R. Noncoding mutation in RPGRIP1 contributes to inherited retinal degenerations. Mol Vis 2021; 27:95-106. [PMID: 33907365 PMCID: PMC8056464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Despite the extensive use of next-generation sequencing (NGS) technology to identify disease-causing genomic variations, a major gap in our understanding of Mendelian diseases is the unidentified molecular lesion in a significant portion of patients. For inherited retinal degenerations (IRDs), although currently close to 300 disease-associated genes have been identified, the mutations in approximately one-third of patients remain unknown. With mounting evidence that noncoding mutations might contribute significantly to disease burden, we aimed to systematically investigate the contributions of noncoding regions in the genome to IRDs. Methods In this study, we focused on RPGRIP1, which has been linked to various IRD phenotypes, including Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and macular dystrophy (MD). As several noncoding mutant alleles have been reported in RPGRIP1, and we observed that the mutation carrier frequency of RPGRIP1 is higher in patient cohorts with unsolved IRDs, we hypothesized that mutations in the noncoding regions of RPGRIP1 might be a significant contributor to pathogenicity. To test this hypothesis, we performed whole-genome sequencing (WGS) for 25 patients with unassigned IRD who carry a single mutation in RPGRIP1. Results Three noncoding variants in RPGRIP1, including a 2,890 bp deletion and two deep-intronic variants (c.2710+233G>A and c.1468-263G>C), were identified as putative second hits of RPGRIP1 in three patients with LCA. The mutant alleles were validated with direct sequencing or in vitro assays. Conclusions The results highlight the significance of the contribution of noncoding pathogenic variants to unsolved IRD cases.
Collapse
Affiliation(s)
- Gang Zou
- Department of Ophthalmology, Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, China
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Tao Zhang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Austin D. Igelman
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xinye Qian
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Robert K. Koenekoop
- Department of Paediatric Surgery, Human Genetics and Adult Ophthalmology, MUHC, Montréal, Quebec, Canada
| | - Gerald A. Fishman
- Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, IL
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Mark E. Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Abstract
BACKGROUND The spermatogenesis-associated protein-7 (SPATA7) gene encodes a ciliary protein that is expressed in the photoreceptors and in spermatocytes. Mutations in the SPATA7 gene are associated with congenital and early-onset forms of retinal dystrophy. METHODS Papers and review articles on SPATA7 were retrieved from the PubMed database using the search terms "SPATA7" and "spermatogenesis-associated protein 7". Those that were relevant to retinal disease or to the function of the SPATA7 gene were selected for review. RESULTS The SPATA7 locus was mapped as LCA3 to chromosome 14, and the gene identified by screening of all genes in the refined genomic interval. Mutations in SPATA7 are associated with Leber congenital amaurosis (LCA) and early-onset retinitis pigmentosa. There are no clear-cut correlations between the genotypes and phenotypes in SPATA7-associated disease, and phenotypic heterogeneity occurs among patients with the same mutation. The SPATA7 protein is expressed in the photoreceptor connecting cilia. Murine models of Spata7 knockout have been useful in understanding the role of this gene in the retina at the cellular and molecular levels. CONCLUSION Most of the mutations in the SPATA7 are nonsense or frameshifts and are predicted to lead to loss of function. Clinical heterogeneity is often seen in patients with SPATA7 mutations. Animal models of SPATA7 knockout indicate that the protein has a key role in organizing the ciliary protein complexes.
Collapse
Affiliation(s)
- Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute , Hyderabad, India
| |
Collapse
|
16
|
Targeted sequencing of linkage region in Dominican families implicates PRIMA1 and the SPATA7-PTPN21-ZC3H14-EML5-TTC8 locus in carotid-intima media thickness and atherosclerotic events. Sci Rep 2019; 9:11621. [PMID: 31406157 PMCID: PMC6691113 DOI: 10.1038/s41598-019-48186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/29/2019] [Indexed: 11/22/2022] Open
Abstract
Carotid intima-media thickness (cIMT) is a subclinical marker for atherosclerosis. Previously, we reported a quantitative trait locus (QTL) for total cIMT on chromosome 14q and identified PRiMA1, FOXN3 and CCDC88C as candidate genes using a common variants (CVs)-based approach. Herein, we further evaluated the genetic contribution of the QTL to cIMT by resequencing. We sequenced all exons within the QTL and genomic regions of PRiMA1, FOXN3 and CCDC88C in Dominican families with evidence for linkage to the QTL. Unrelated Dominicans from the Northern Manhattan Study (NOMAS) were used for validation. Single-variant-based and gene-based analyses were performed for CVs and rare variants (RVs). The strongest evidence for association with CVs was found in PRiMA1 (p = 8.2 × 10−5 in families, p = 0.01 in NOMAS at rs12587586), and in the five-gene cluster SPATA7-PTPN21-ZC3H14-EML5-TTC8 locus (p = 1.3 × 10−4 in families, p = 0.01 in NOMAS at rs2274736). No evidence for association with RVs was found in PRiMA1. The top marker from previous study in PRiMA1 (rs7152362) was associated with fewer atherosclerotic events (OR = 0.67; p = 0.02 in NOMAS) and smaller cIMT (β = −0.58, p = 2.8 × 10−4 in Family). Within the five-gene cluster, evidence for association was found for exonic RVs (p = 0.02 in families, p = 0.28 in NOMAS), which was enriched among RVs with higher functional potentials (p = 0.05 in NOMAS for RVs in the top functional tertile). In summary, targeted resequencing provided validation and novel insights into the genetic architecture of cIMT, suggesting stronger effects for RVs with higher functional potentials. Furthermore, our data support the clinical relevance of CVs associated with subclinical atherosclerosis.
Collapse
|
17
|
Miyamichi D, Nishina S, Hosono K, Yokoi T, Kurata K, Sato M, Hotta Y, Azuma N. Retinal structure in Leber's congenital amaurosis caused by RPGRIP1 mutations. Hum Genome Var 2019; 6:32. [PMID: 31666973 PMCID: PMC6804879 DOI: 10.1038/s41439-019-0064-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 12/27/2022] Open
Abstract
This study aimed to evaluate retinal structure in the early stage of Leber’s congenital amaurosis (LCA) caused by RPGRIP1 mutations. Four patients from two families were included. Case 1 was a 13-year-old girl, cases 2 and 3 were 7-year-old monozygotic twin brothers of case 1, and case 4 was a 17-year-old boy. Comprehensive ophthalmic examinations were performed, including visual acuity measurements, perimetry, electroretinography (ERG), and optical coherence tomography (OCT). To identify potential pathogenic mutations, 74 genes known to cause retinitis pigmentosa or LCA were assessed using targeted next-generation sequencing. OCT showed photoreceptor outer nuclear layer (ONL) thinning in all patients. The lamellar structure was retained in all patients, whereas the ellipsoid zone was extinguished in cases 1, 2, and 3. In case 4, the ellipsoid zone was maintained at 9 years of age but became blurred at 17 years of age. In case 1, OCT indicated slight photoreceptor ONL thinning during the period between 7 and 11 years of age. Mutation analysis revealed RPGRIP1 mutations as the cause for autosomal recessive LCA in all patients. Photoreceptor ONL on OCT is relatively well preserved in the early stage of LCA caused by RPGRIP1 mutations. Researchers in Japan have characterized the early stages of the inherited retinal disease Leber’s congenital amaurosis (LCA), raising hope that gene therapy could help before the disease progresses too far. LCA results in early-onset blindness or severe visual impairment and has been linked with several genes, including RPGRIP1. Daisuke Miyamichi from Hamamatsu University School of Medicine, Japan, and coworkers conducted ophthalamic tests on four young patients with RPGRIP1 mutations. In all four cases, they found thinning of the photoreceptor outer nuclear layer, a layer of the retina. The outer nuclear layer progressively thinned in consecutive samples taken from the same patient at different ages, and was better retained in the younger patients. Taken together, these findings suggest that gene therapy to correct RPGRIP1 mutations could be effective if carried out in early childhood.
Collapse
Affiliation(s)
- Daisuke Miyamichi
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Sachiko Nishina
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuhiro Hosono
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tadashi Yokoi
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Kentaro Kurata
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Miho Sato
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yoshihiro Hotta
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Noriyuki Azuma
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
18
|
The photoreceptor cilium and its diseases. Curr Opin Genet Dev 2019; 56:22-33. [DOI: 10.1016/j.gde.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/21/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
|
19
|
CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS One 2019; 14:e0216705. [PMID: 31095607 PMCID: PMC6522010 DOI: 10.1371/journal.pone.0216705] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.
Collapse
|
20
|
Ying G, Frederick JM, Baehr W. Deletion of both centrin 2 (CETN2) and CETN3 destabilizes the distal connecting cilium of mouse photoreceptors. J Biol Chem 2019; 294:3957-3973. [PMID: 30647131 DOI: 10.1074/jbc.ra118.006371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Indexed: 02/03/2023] Open
Abstract
Centrins (CETN1-4) are ubiquitous and conserved EF-hand-family Ca2+-binding proteins associated with the centrosome, basal body, and transition zone. Deletion of CETN1 or CETN2 in mice causes male infertility or dysosmia, respectively, without affecting photoreceptor function. However, it remains unclear to what extent centrins are redundant with each other in photoreceptors. Here, to explore centrin redundancy, we generated Cetn3 GT/GT single-knockout and Cetn2 -/-;Cetn3 GT/GT double-knockout mice. Whereas the Cetn3 deletion alone did not affect photoreceptor function, simultaneous ablation of Cetn2 and Cetn3 resulted in attenuated scotopic and photopic electroretinography (ERG) responses in mice at 3 months of age, with nearly complete retina degeneration at 1 year. Removal of CETN2 and CETN3 activity from the lumen of the connecting cilium (CC) destabilized the photoreceptor axoneme and reduced the CC length as early as postnatal day 22 (P22). In Cetn2 -/-;Cetn3 GT/GT double-knockout mice, spermatogenesis-associated 7 (SPATA7), a key organizer of the photoreceptor-specific distal CC, was depleted gradually, and CETN1 was condensed to the mid-segment of the CC. Ultrastructural analysis revealed that in this double knockout, the axoneme of the CC expanded radially at the distal end, with vertically misaligned outer segment discs and membrane whorls. These observations suggest that CETN2 and CETN3 cooperate in stabilizing the CC/axoneme structure.
Collapse
Affiliation(s)
- Guoxin Ying
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132,
| | - Jeanne M Frederick
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Wolfgang Baehr
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132, .,the Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84112, and.,the Department of Biology, University of Utah, Salt Lake City, Utah 84132
| |
Collapse
|
21
|
Igeta H, Watanabe Y, Morikawa R, Ikeda M, Otsuka I, Hoya S, Koizumi M, Egawa J, Hishimoto A, Iwata N, Someya T. Rare compound heterozygous missense SPATA7 variations and risk of schizophrenia; whole-exome sequencing in a consanguineous family with affected siblings, follow-up sequencing and a case-control study. Neuropsychiatr Dis Treat 2019; 15:2353-2363. [PMID: 31695380 PMCID: PMC6707433 DOI: 10.2147/ndt.s218773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Whole-exome sequencing (WES) of multiplex families is a promising strategy for identifying causative variations for common diseases. To identify rare recessive risk variations for schizophrenia, we performed a WES study in a consanguineous family with affected siblings. We then performed follow-up sequencing of SPATA7 in schizophrenia-affected families. In addition, we performed a case-control study to investigate association between SPATA7 variations and schizophrenia. PATIENTS AND METHODS WES was performed on two affected siblings and their unaffected parents, who were second cousins, of a multiplex schizophrenia family. Subsequently, we sequenced the coding region of SPATA7, a potential risk gene identified by the WES analysis, in 142 affected offspring from 137 families for whom parental DNA samples were available. We further tested rare recessive SPATA7 variations, identified by WES and sequencing, for associations with schizophrenia in 2,756 patients and 2,646 controls. RESULTS Our WES analysis identified rare compound heterozygous missense SPATA7 variations, p.Asp134Gly and p.Ile332Thr, in both affected siblings. Sequencing SPATA7 coding regions from 137 families identified no rare recessive variations in affected offspring. In the case-control study, we did not detect the rare compound heterozygous SPATA7 missense variations in patients or controls. CONCLUSION Our data does not support the role of the rare compound heterozygous SPATA7 missense variations p.Asp134Gly and p.Ile332Thr in conferring a substantial risk of schizophrenia.
Collapse
Affiliation(s)
- Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Koizumi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
22
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
23
|
Zaneveld SA, Eblimit A, Liang Q, Bertrand R, Wu N, Liu H, Nguyen Q, Zaneveld J, Wang K, Li Y, Chen R. Gene Therapy Rescues Retinal Degeneration in Receptor Expression-Enhancing Protein 6 Mutant Mice. Hum Gene Ther 2018; 30:302-315. [PMID: 30101608 PMCID: PMC6437630 DOI: 10.1089/hum.2018.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary retinal dystrophy is clinically defined as a broad group of chronic and progressive disorders that affect visual function by causing photoreceptor degeneration. Previously, we identified mutations in the gene encoding receptor expression-enhancing protein 6 (REEP6), in individuals with autosomal recessive retinitis pigmentosa (RP), the most common form of inherited retinal dystrophy. One individual was molecularly diagnosed with biallelic REEP6 mutations, a missense mutation over a frameshift mutation. In this study, we generated Reep6 compound heterozygous mice, Reep6L135P/-, which mimic the patient genotype and recapitulate the early-onset retinal degeneration phenotypes observed in the individual with RP. To determine the feasibility of rescuing the Reep6 mutant phenotype via gene replacement therapy, we delivered Reep6.1, the mouse retina-specific isoform of REEP6, to photoreceptors of Reep6 mutant mice on postnatal day 20. Evaluation of the therapeutic effects 2 months posttreatment showed improvements in the photoresponse as well as preservation of photoreceptor cells. Importantly, guanylyl cyclase 1 (GC1) expression was also restored to the outer segment after treatment. Furthermore, rAAV8-Reep6.1 single treatment in Reep6 mutant mice 1 year postinjection showed significant improvements in retinal function and morphology, suggesting that the treatment is effective even after a prolonged period. Findings from this study show that gene replacement therapy in the retina with rAAV overexpressing Reep6 is effective, preserving photoreceptor function in Reep6 mutant mice. These findings provide evidence that rAAV8-based gene therapy can prolong survival of photoreceptors in vivo and can be potentially used as a therapeutic modality for treatment of patients with RP.
Collapse
Affiliation(s)
- Smriti Agrawal Zaneveld
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Aiden Eblimit
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Qingnan Liang
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Renae Bertrand
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Nathaniel Wu
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hehe Liu
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Quynh Nguyen
- 3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Jacques Zaneveld
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Keqing Wang
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
24
|
Dharmat R, Eblimit A, Robichaux MA, Zhang Z, Nguyen TMT, Jung SY, He F, Jain A, Li Y, Qin J, Overbeek P, Roepman R, Mardon G, Wensel TG, Chen R. SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. J Cell Biol 2018; 217:2851-2865. [PMID: 29899041 PMCID: PMC6080925 DOI: 10.1083/jcb.201712117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Photoreceptor-specific ciliopathies often affect a structure that is considered functionally homologous to the ciliary transition zone (TZ) called the connecting cilium (CC). However, it is unclear how mutations in certain ciliary genes disrupt the photoreceptor CC without impacting the primary cilia systemically. By applying stochastic optical reconstruction microscopy technology in different genetic models, we show that the CC can be partitioned into two regions: the proximal CC (PCC), which is homologous to the TZ of primary cilia, and the distal CC (DCC), a photoreceptor-specific extension of the ciliary TZ. This specialized distal zone of the CC in photoreceptors is maintained by SPATA7, which interacts with other photoreceptor-specific ciliary proteins such as RPGR and RPGRIP1. The absence of Spata7 results in the mislocalization of DCC proteins without affecting the PCC protein complexes. This collapse results in destabilization of the axonemal microtubules, which consequently results in photoreceptor degeneration. These data provide a novel mechanism to explain how genetic disruption of ubiquitously present ciliary proteins exerts tissue-specific ciliopathy phenotypes.
Collapse
Affiliation(s)
- Rachayata Dharmat
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Paul Overbeek
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Graeme Mardon
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
25
|
NMNAT1 E257K variant, associated with Leber Congenital Amaurosis (LCA9), causes a mild retinal degeneration phenotype. Exp Eye Res 2018; 173:32-43. [PMID: 29674119 DOI: 10.1016/j.exer.2018.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/18/2018] [Accepted: 04/13/2018] [Indexed: 01/25/2023]
Abstract
NMNAT1 (nicotinamide mononucleotide adenylyltransferase 1) encodes a rate-limiting enzyme that catalyzes the biosynthesis of NAD+ and plays a role in neuroprotection. Mutations in NMNAT1 have been identified to cause a recessive, non-syndromic early form of blindness genetically defined as Leber Congenital Amaurosis 9 (LCA9). One of the most common alleles reported so far in NMNAT1 is the c.769G > A (E257K) missense mutation, which occurs in 70% of all LCA9 cases. However, given its relatively high population frequency and the observation of individuals with homozygous E257K variant without phenotype, the pathogenicity of this allele has been questioned. To address this issue, we have studied the pathogenic effects of this allele by generating a knock-in mouse model. Interestingly, no obvious morphological or functional defects are observed in Nmnat1 E257K homozygous mice up to one year old, even after light-damage. Together with the previous clinical reports, we propose that the E257K allele is a weak hypomorphic allele that has significantly reduced penetrance in the homozygous state. In contrast, compound heterozygous Nmnat1E257K/- mice exhibit photoreceptor defects which are exacerbated upon exposure to light. Furthermore, retina tissue- specific Nmnat1 conditional knockout mice exhibit photoreceptor degeneration before the retina has terminally differentiated. These findings suggest that NMNAT1 plays an important role in photoreceptors and is likely involved in both retinal development and maintenance of photoreceptor integrity.
Collapse
|
26
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 551] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Phenotypic expansion and progression of SPATA7-associated retinitis pigmentosa. Doc Ophthalmol 2018; 136:125-133. [PMID: 29411205 DOI: 10.1007/s10633-018-9626-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE To report an unusual phenotype of retinitis pigmentosa (RP) caused by compound heterozygous mutations in SPATA7, and describe the progression over a two year follow-up period. METHODS Retrospective case study. RESULTS A 63-year-old man with a long history of nyctalopia, progressive visual field constriction, and a recent subacute decrease in visual acuity of the left eye presented for evaluation of a suspected retinal degeneration. Multimodal retinal imaging and functional assessment with full-field electroretinogram suggested a severe rod-cone dysfunction masquerading as a choroideremia-like phenotype. A vitreous opacity was found to explain recent changes in the left eye and a 25-guage vitrectomy and membrane peel was performed, yielding no change in visual acuity. Whole-exome sequencing revealed compound heterozygous variants in SPATA7 that were predicted to be pathogenic. CONCLUSIONS Compound heterozygous c.1100A > G, p.(Y367C) and c.1102_1103delCT, p.(L368Efs*4) variants in SPATA7 manifest as an unusual RP phenotype in this case, showing extensive choroidal sclerosis and retinal pigment epithelium (RPE) atrophy with evidence of progression over two years on multimodal imaging.
Collapse
|
28
|
Ojeda Naharros I, Cristian FB, Zang J, Gesemann M, Ingham PW, Neuhauss SCF, Bachmann-Gagescu R. The ciliopathy protein TALPID3/KIAA0586 acts upstream of Rab8 activation in zebrafish photoreceptor outer segment formation and maintenance. Sci Rep 2018; 8:2211. [PMID: 29396404 PMCID: PMC5797153 DOI: 10.1038/s41598-018-20489-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in signal transduction. Cilia are anchored inside the cell through basal bodies (BBs), modified centrioles also acting as microtubule-organization centers. Photoreceptors (PRs) are sensory neurons, whose primary cilium forms a highly specialized compartment called the outer segment (OS) responsible for sensing incoming light. Thus, ciliopathies often present with retinal degeneration. Mutations in KIAA0586/TALPID3 (TA3) cause Joubert syndrome, in which 30% of affected individuals develop retinal involvement. To elucidate the function of TALPID3 in PRs, we studied talpid3 zebrafish mutants and identified a progressive retinal degeneration phenotype. The majority of PRs lack OS development due to defects in BB positioning and docking at the apical cell surface. Intracellular accumulation of the photopigment opsin leads to PR cell death of moderate severity. Electroretinograms demonstrate severe visual impairement. A small subset of PRs display normally docked BBs and extended OSs through rescue by maternally-deposited Talpid3. While localization of the small GTPase Rab8a, which plays an important role in BB docking, appears unaffected in talpid3-/- PRs, overexpression of constitutively active Rab8a rescues OS formation, indicating that the role of Ta3 in early ciliogenesis lies upstream of Rab8a activation in PRs.
Collapse
Affiliation(s)
- Irene Ojeda Naharros
- Institute for Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Flavia B Cristian
- Institute for Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Jingjing Zang
- Institute for Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Matthias Gesemann
- Institute for Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore, Singapore
| | - Stephan C F Neuhauss
- Institute for Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute for Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.
- Institute for Medical Genetics, University of Zurich, 8952, Schlieren, Switzerland.
| |
Collapse
|
29
|
Eblimit A, Agrawal SA, Thomas K, Anastassov IA, Abulikemu T, Moayedi Y, Mardon G, Chen R. Conditional loss of Spata7 in photoreceptors causes progressive retinal degeneration in mice. Exp Eye Res 2018; 166:120-130. [PMID: 29100828 PMCID: PMC5756513 DOI: 10.1016/j.exer.2017.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022]
Abstract
The mammalian retina consists of multiple cell layers including photoreceptor cells, which are light sensing neurons that play essential functions in the visual process. Previously, we identified mutations in SPATA7, encoding spermatogenesis associated protein 7, in families with Leber Congenital Amaurosis (LCA) and juvenile Retinitis Pigmentosa (RP), and showed that Spata7 null mice recapitulate the human disease phenotype of retinal degeneration. SPATA7 is expressed in the connecting cilium of photoreceptor (PR) cells in the mouse retina, as well as in retinal pigment epithelium (RPE) cells, but the functional role of Spata7 in the RPE remains unknown. To investigate whether Spata7 is required in PRs, the RPE, or both, we conditionally knocked out Spata7 in photoreceptors and RPE cells using Crx-Cre and Best1-Cre transgenic mouse lines, respectively. In Spata7 photoreceptor-specific conditional (cKO) mice, both rod and cone photoreceptor dysfunction and degeneration is observed, characterized by progressive thinning of the outer nuclear layer and reduced response to light; however, RPE-specific deletion of Spata7 does not impair retinal function or cell survival. Furthermore, our findings show that both Rhodopsin and RPGRIP1 are mislocalized in the Spata7Flox/-; Crx-Cre cKO mice, suggesting that loss of Spata7 in photoreceptors alone can result in altered trafficking of these proteins in the connecting cilium. Together, our findings suggest that loss of Spata7 in photoreceptors alone is sufficient to cause photoreceptor degeneration, but its function in the RPE is not required for photoreceptor survival; therefore, loss of Spata7 in photoreceptors alters both rod and cone function and survival, consistent with the clinical phenotypes observed in LCA and RP patients with mutations in SPATA7.
Collapse
Affiliation(s)
- Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Smriti Akshay Agrawal
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Kandace Thomas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Ivan Assenov Anastassov
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Tajiguli Abulikemu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China
| | | | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030-3411, USA.
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA.
| |
Collapse
|
30
|
Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish. Sci Rep 2017; 7:16881. [PMID: 29203866 PMCID: PMC5715152 DOI: 10.1038/s41598-017-12838-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.
Collapse
|
31
|
Seo S, Datta P. Photoreceptor outer segment as a sink for membrane proteins: hypothesis and implications in retinal ciliopathies. Hum Mol Genet 2017; 26:R75-R82. [PMID: 28453661 DOI: 10.1093/hmg/ddx163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
The photoreceptor outer segment (OS) is a unique modification of the primary cilium, specialized for light perception. Being homologous organelles, the primary cilium and the OS share common building blocks and molecular machinery to construct and maintain them. The OS, however, has several unique structural features that are not seen in primary cilia. Although these unique features of the OS have been well documented, their implications in protein localization have been under-appreciated. In this review, we compare the structural properties of the primary cilium and the OS, and propose a hypothesis that the OS can act as a sink for membrane proteins. We further discuss the implications of this hypothesis in polarized protein localization in photoreceptors and mechanisms of photoreceptor degeneration in retinal ciliopathies.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Ophthalmology and Visual Sciences, Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
32
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
33
|
Agrawal SA, Burgoyne T, Eblimit A, Bellingham J, Parfitt DA, Lane A, Nichols R, Asomugha C, Hayes MJ, Munro PM, Xu M, Wang K, Futter CE, Li Y, Chen R, Cheetham ME. REEP6 deficiency leads to retinal degeneration through disruption of ER homeostasis and protein trafficking. Hum Mol Genet 2017; 26:2667-2677. [PMID: 28475715 PMCID: PMC5808736 DOI: 10.1093/hmg/ddx149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/09/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterize the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localized to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6-/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6-/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Smriti A. Agrawal
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Aiden Eblimit
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - David A. Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Matthew J. Hayes
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mingchu Xu
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Keqing Wang
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Yumei Li
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Rui Chen
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
34
|
Feldhaus B, Kohl S, Hörtnagel K, Weisschuh N, Zobor D. Novel homozygous mutation in the SPATA7 gene causes autosomal recessive retinal degeneration in a consanguineous German family. Ophthalmic Genet 2017; 39:131-134. [PMID: 28481129 DOI: 10.1080/13816810.2017.1318925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Britta Feldhaus
- a Institute for Ophthalmic Research, Centre for Ophthalmology , University of Tübingen , Tübingen , Germany
| | - Susanne Kohl
- b Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology , University of Tübingen , Tübingen , Germany
| | | | - Nicole Weisschuh
- b Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology , University of Tübingen , Tübingen , Germany
| | - Ditta Zobor
- a Institute for Ophthalmic Research, Centre for Ophthalmology , University of Tübingen , Tübingen , Germany
| |
Collapse
|
35
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
36
|
Coussa RG, Lopez Solache I, Koenekoop RK. Leber congenital amaurosis, from darkness to light: An ode to Irene Maumenee. Ophthalmic Genet 2017; 38:7-15. [PMID: 28095138 DOI: 10.1080/13816810.2016.1275021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is dedicated to Irene Hussels Maumenee, Professor of Human Genetics and Ophthalmology, Johns Hopkins' Wilmer Eye Institute, Ocular Genetics Fellowship director in 1994-1995. Leber congenital amaurosis (LCA) has almost come full circle, from a profound and molecularly uncharacterized form of congenital retinal blindness to one in which a large number of causative genes and disease pathways are known, and the world's first human retinal disease to be treated by gene therapy. Dr. Maumenee's insights, efforts, and leadership have contributed significantly to this remarkable scientific journey. In this manuscript, we present a short summary of the known LCA genes, LCA disease subtypes, and emerging treatment options. Our manuscript consolidates previous knowledge with current findings in an attempt to provide a more comprehensive understanding of LCA.
Collapse
Affiliation(s)
- Razek Georges Coussa
- a Department of Paediatric Surgery, Montreal Children's Hospital , McGill University Health Centre , Montreal , Quebec , Canada.,b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| | - Irma Lopez Solache
- b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| | - Robert K Koenekoop
- a Department of Paediatric Surgery, Montreal Children's Hospital , McGill University Health Centre , Montreal , Quebec , Canada.,b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| |
Collapse
|
37
|
Soens ZT, Li Y, Zhao L, Eblimit A, Dharmat R, Li Y, Chen Y, Naqeeb M, Fajardo N, Lopez I, Sun Z, Koenekoop RK, Chen R. Hypomorphic mutations identified in the candidate Leber congenital amaurosis gene CLUAP1. Genet Med 2016; 18:1044-51. [PMID: 26820066 PMCID: PMC4965339 DOI: 10.1038/gim.2015.205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/04/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is an early-onset form of retinal degeneration. Six of the 22 known LCA genes encode photoreceptor ciliary proteins. Despite the identification of 22 LCA genes, the genetic basis of ~30% of LCA patients remains unknown. We sought to investigate the cause of disease in the remaining 30% by examining cilia-associated genes. METHODS Whole-exome sequencing was performed on an LCA cohort of 212 unsolved probands previously screened for mutations in known retinal-disease genes. Immunohistochemistry using mouse retinas was used to confirm protein localization and zebrafish were used to perform rescue experiments. RESULTS A homozygous nonsynonymous mutation was found in a single proband in CLUAP1, a gene required for ciliogenesis and cilia maintenance. Cluap1 knockout zebrafish exhibit photoreceptor cell death as early as 5 days after fertilization, and rescue experiments revealed that our proband's mutation is significantly hypomorphic. CONCLUSION Consistent with the knowledge that CLUAP1 plays an important role in cilia function and that cilia are critical to photoreceptor function, our results indicate that hypomorphic mutations in CLUAP1 can result in dysfunctional photoreceptors without systemic abnormalities. This is the first report linking mutations in CLUAP1 to human disease and establishes CLUAP1 as a candidate LCA gene.Genet Med 18 10, 1044-1051.
Collapse
Affiliation(s)
- Zachry T. Soens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Li Zhao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Rachayata Dharmat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yiyun Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mohammed Naqeeb
- Department of Ophthalmology, Um Al Qura University Medical School, Makkah, Saudi Arabia
| | - Norma Fajardo
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Robert K. Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
- Program of Developmental Biology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
38
|
Raghupathy RK, Zhang X, Alhasani RH, Zhou X, Mullin M, Reilly J, Li W, Liu M, Shu X. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish. Cell Biochem Funct 2016; 34:429-40. [PMID: 27470972 DOI: 10.1002/cbf.3205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.
Collapse
Affiliation(s)
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Reem H Alhasani
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
39
|
Abstract
Retinitis pigmentosa is the most common form of hereditary retinal degeneration causing blindness. Great progress has been made in the identification of the causative genes. Gene diagnosis will soon become an affordable routine clinical test because of the wide application of next-generation sequencing. Gene-based therapy provides hope for curing the disease. Investigation into the molecular pathways from mutation to rod cell death may reveal targets for developing new treatment. Related progress with existing systematic review is briefly summarized so that readers may find the relevant references for in-depth reading. Future trends in the study of retinitis pigmentosa are also discussed.
Collapse
Affiliation(s)
- Qingjiong Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Wang J, Chen X, Wang F, Zhang J, Li P, Li Z, Xu J, Gao F, Jin C, Tian H, Zhang J, Li W, Lu L, Xu GT. OFD1, as a Ciliary Protein, Exhibits Neuroprotective Function in Photoreceptor Degeneration Models. PLoS One 2016; 11:e0155860. [PMID: 27196396 PMCID: PMC4873209 DOI: 10.1371/journal.pone.0155860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Ofd1 is a newly identified causative gene for Retinitis pigmentosa (RP), a photoreceptor degenerative disease. This study aimed to examine Ofd1 localization in retina and further to investigate its function in photoreceptor degeneration models. Ofd1 localization in rat retina was examined using immunofluorescence. N-methyl-N-nitrosourea (MNU)-induced rats and Royal College of Surgeons (RCS) rats were used as photoreceptor degeneration models. The expression pattern of Ofd1, other ciliary associated genes and Wnt signaling pathway genes were examined in rat models. Furthermore, pEGFP-Ofd1-CDS and pSUPER-Ofd1-shRNA were constructed to overexpress and knockdown the expression level in 661W and R28 cells. MNU was also used to induce cell death. Cilia formation was observed using immunocytochemistry (ICC). Reactive oxygen species (ROS) were detected using the 2', 7'-Dichlorofluorescin diacetate (DCFH-DA) assay. Apoptosis genes expression was examined using qRT-PCR, Western blotting and fluorescence-activated cell sorting (FACS). Ofd1 localized to outer segments of rat retina photoreceptors. Ofd1 and other ciliary proteins expression levels increased from the 1st and 4th postnatal weeks and decreased until the 6th week in the RCS rats, while their expression consistently decreased from the 1st and 7th day in the MNU rats. Moreover, Wnt signaling pathway proteins expression was significantly up-regulated in both rat models. Knockdown of Ofd1 expression resulted in a smaller population, shorter length of cell cilia, and lower cell viability. Ofd1 overexpression partially attenuated MNU toxic effects by reducing ROS levels and mitigating apoptosis. To the best of our knowledge, this is the first study demonstrating Ofd1 localization and its function in rat retina and in retinal degeneration rat models. Ofd1 plays a role in controlling photoreceptor cilium length and number. Importantly, it demonstrates a neuroprotective function by protecting the photoreceptor from oxidative stress and apoptosis. These data have expanded our understanding of Ofd1 function beyond cilia, and we concluded that ofd1 neuroprotection could be a potential treatment strategy in retina degeneration models.
Collapse
Affiliation(s)
- Juan Wang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Zongyi Li
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
- * E-mail: (G-TX); (LXL)
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
- Institute for Nutritional Sciences, Tongji University, Shanghai, China
- * E-mail: (G-TX); (LXL)
| |
Collapse
|
41
|
Matsui R, McGuigan Iii DB, Gruzensky ML, Aleman TS, Schwartz SB, Sumaroka A, Koenekoop RK, Cideciyan AV, Jacobson SG. SPATA7: Evolving phenotype from cone-rod dystrophy to retinitis pigmentosa. Ophthalmic Genet 2016; 37:333-8. [PMID: 26854980 DOI: 10.3109/13816810.2015.1130154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND SPATA7 mutations have been associated with different autosomal recessive retinal degeneration phenotypes. Long-term follow-up has not been described in detail. MATERIALS AND METHODS A Hispanic patient with SPATA7 mutations was evaluated serially over a 12-year period with kinetic and static chromatic perimetry, optical coherence tomography (OCT), and fundus autofluorescence (AF) imaging. Electroretinography (ERG) was performed at the initial visit. RESULTS The patient was homozygous for a mutation in SPATA7 (p.V458fs). At age 9, the ERG showed an abnormally reduced but preserved rod b-wave and no detectable cone signals. There were two islands of vision: a midperipheral island with greater cone than rod dysfunction and a central island with normal cone but no rod function. Serial measures of rod and cone vision and co-localized retinal structure showed that the midperipheral island slowly became undetectable. By age 21, only the central island and its cone function remained, but it had become more abnormal in structure and function. CONCLUSION The disease resulting from SPATA7 mutations in this patient initially presented as a cone-rod dystrophy (CRD), but changed over time into a phenotype more reminiscent of late-stage retinitis pigmentosa (RP). The differential diagnosis for both CRD and RP should include this rare molecular cause of autosomal retinal degeneration. An evolving phenotype complicates not only clinical diagnosis and patient counselling but also future strategies aimed at treating specific retinal regions.
Collapse
Affiliation(s)
- Rodrigo Matsui
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - David B McGuigan Iii
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Michaela L Gruzensky
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Tomas S Aleman
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Sharon B Schwartz
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Alexander Sumaroka
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Robert K Koenekoop
- b McGill Ocular Genetics Laboratory (MOGL), Departments of Paediatric Surgery, Human Genetics, and Ophthalmology , Montreal Children's Hospital, McGill University Health Center , Montreal , Quebec , Canada
| | - Artur V Cideciyan
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Samuel G Jacobson
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| |
Collapse
|
42
|
Xu M, Yamada T, Sun Z, Eblimit A, Lopez I, Wang F, Manya H, Xu S, Zhao L, Li Y, Kimchi A, Sharon D, Sui R, Endo T, Koenekoop RK, Chen R. Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum Mol Genet 2016; 25:1479-88. [PMID: 26908613 DOI: 10.1093/hmg/ddw022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/25/2016] [Indexed: 11/12/2022] Open
Abstract
A growing number of human diseases have been linked to defects in protein glycosylation that affects a wide range of organs. Among them, O-mannosylation is an unusual type of protein glycosylation that is largely restricted to the muscular and nerve system. Consistently, mutations in genes involved in the O-mannosylation pathway result in infantile-onset, severe developmental defects involving skeleton muscle, brain and eye, such as the muscle-eye-brain disease (MIM no. 253280). However, the functional importance of O-mannosylation in these tissues at later stages remains largely unknown. In our study, we have identified recessive mutations in POMGNT1, which encodes an essential component in O-mannosylation pathway, in three unrelated families with autosomal recessive retinitis pigmentosa (RP), but without extraocular involvement. Enzymatic assay of these mutant alleles demonstrate that they greatly reduce the POMGNT1 enzymatic activity and are likely to be hypomorphic. Immunohistochemistry shows that POMGNT1 is specifically expressed in photoreceptor basal body. Taken together, our work identifies a novel disease-causing gene for RP and indicates that proper protein O-mannosylation is not only essential for early organ development, but also important for maintaining survival and function of the highly specialized retinal cells at later stages.
Collapse
Affiliation(s)
- Mingchu Xu
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Takeyuki Yamada
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College, Beijing 100730, China
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Irma Lopez
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec H3H 1P3, Canada and
| | - Feng Wang
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shan Xu
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Li Zhao
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Structural and Computational Biology and Molecular Biophysics Graduate Program
| | - Yumei Li
- Department of Molecular and Human Genetics, Human Genome Sequencing Center
| | - Adva Kimchi
- Departments of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Dror Sharon
- Departments of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College, Beijing 100730, China
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec H3H 1P3, Canada and
| | - Rui Chen
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Structural and Computational Biology and Molecular Biophysics Graduate Program, The Verna and Marrs Mclean Department of Biochemistry and Molecular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA,
| |
Collapse
|
43
|
An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat Cell Biol 2015; 17:1074-1087. [PMID: 26167768 PMCID: PMC4536769 DOI: 10.1038/ncb3201] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 06/05/2015] [Indexed: 12/13/2022]
Abstract
Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and three pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localise to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1/CEP90 and C21orf2/LRRC76 as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2-variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.
Collapse
|
44
|
Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res 2015; 138:32-41. [PMID: 26093275 PMCID: PMC4553903 DOI: 10.1016/j.exer.2015.06.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
Abstract
Mammalian photoreceptors contain specialised connecting cilia that connect the inner (IS) to the outer segments (OS). Dysfunction of the connecting cilia due to mutations in ciliary proteins are a common cause of the inherited retinal dystrophy retinitis pigmentosa (RP). Mutations affecting the Retinitis Pigmentosa GTPase Regulator (RPGR) protein is one such cause, affecting 10-20% of all people with RP and the majority of those with X-linked RP. RPGR is located in photoreceptor connecting cilia. It interacts with a wide variety of ciliary proteins, but its exact function is unknown. Recently, there have been important advances both in our understanding of RPGR function and towards the development of a therapy. This review summarises the existing literature on human RPGR function and dysfunction, and suggests that RPGR plays a role in the function of the ciliary gate, which controls access of both membrane and soluble proteins to the photoreceptor outer segment. We discuss key models used to investigate and treat RPGR disease and suggest that gene augmentation therapy offers a realistic therapeutic approach, although important questions still remain to be answered, while cell replacement therapy based on retinal progenitor cells represents a more distant prospect.
Collapse
Affiliation(s)
- Roly D Megaw
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Dinesh C Soares
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Alan F Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| |
Collapse
|
45
|
The Role of RPGR and Its Interacting Proteins in Ciliopathies. J Ophthalmol 2015; 2015:414781. [PMID: 26124960 PMCID: PMC4466403 DOI: 10.1155/2015/414781] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022] Open
Abstract
Ciliopathies encompass a group of genetic disorders characterized by defects in the formation, maintenance, or function of cilia. Retinitis pigmentosa (RP) is frequently one of the clinical features presented in diverse ciliopathies. RP is a heterogeneous group of inherited retinal disorders, characterized by the death of photoreceptors and affecting more than one million individuals worldwide. The retinitis pigmentosa GTPase regulator (RPGR) gene is mutated in up to 20% of all RP patients. RPGR protein has different interacting partners to function in ciliary protein trafficking. In this review, we specifically focus on RPGR and its two interacting proteins: RPGRIP1 and RPGRIP1L. We summarize the function of the three proteins and highlight recent studies that provide insight into the cellular function of those proteins.
Collapse
|
46
|
Zhong H, Eblimit A, Moayedi Y, Boye SL, Chiodo VA, Chen Y, Li Y, Nichols RM, Hauswirth WW, Chen R, Mardon G. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa. Gene Ther 2015; 22:619-27. [PMID: 25965394 DOI: 10.1038/gt.2015.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/14/2015] [Accepted: 03/23/2015] [Indexed: 12/27/2022]
Abstract
Loss of SPATA7 function causes the pathogenesis of Leber congenital amaurosis and retinitis pigmentosa. Spata7 knockout mice mimic human SPATA7-related retinal disease with apparent photoreceptor degeneration observed as early as postnatal day 15 (P15). To test the efficacy of adeno-associated virus (AAV)-mediated gene therapy for rescue of photoreceptor survival and function in Spata7 mutant mice, we employed the AAV8(Y733F) vector carrying hGRK1-driven full-length FLAG-tagged Spata7 cDNA to target both rod and cone photoreceptors. Following subretinal injection of this vector, FLAG-tagged SPATA7 was found to colocalize with endogenous SPATA7 in wild-type mice. In Spata7 mutant mice initially treated at P15, we observed improvement of photoresponse, photoreceptor ultrastructure and significant alleviation of photoreceptor degeneration. Furthermore, we performed treatments at P28 and P56 and found that all treatments (P15-P56) can ameliorate rod and cone loss in the long term (1 year); however, none efficiently protect photoreceptors from degeneration by 86 weeks of age as only a small amount of treated photoreceptors can survive to this time. This study demonstrates long-term improvement of photoreceptor function by AAV8(Y733F)-introduced Spata7 expression in a mouse model as potential treatment of the human disease, but also suggests that treated mutant photoreceptors still undergo progressive degeneration.
Collapse
Affiliation(s)
- H Zhong
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - A Eblimit
- 1] HGSC, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Y Moayedi
- 1] Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [2] Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - S L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - V A Chiodo
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Y Chen
- 1] HGSC, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- 1] HGSC, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - R M Nichols
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - W W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - R Chen
- 1] HGSC, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [3] Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - G Mardon
- 1] Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [3] Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA [4] Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA [5] Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|