1
|
Xu HL, Wei YF, Bao Q, Wang YL, Li XY, Huang DH, Liu FH, Li YZ, Zhao YY, Zhao XX, Xiao Q, Gao S, Chen RJ, Ouyang L, Meng X, Qin X, Gong TT, Wu QJ. Dietary protein intake and PM 2.5 on ovarian cancer survival: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117798. [PMID: 39875252 DOI: 10.1016/j.ecoenv.2025.117798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/28/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Evolving evidence suggests both protein consumption and particulate matter less than 2.5 micrometers (PM2.5) might be related to ovarian cancer (OC) mortality. However, no epidemiological studies have explored their potential interaction. OBJECTIVE The objective of this study was to explore the association of dietary protein, PM2.5, and their interaction with the survival of OC patients. METHODS A prospective cohort study was carried out, which encompassed 658 newly diagnosed OC patients (18-79 years) residing in China. Dietary protein intakes were collected through a food frequency questionnaire examination, including total protein and protein from diverse sources. Average residential PM2.5 concentrations were evaluated using satellite-derived models. We calculated the hazard ratio (HR) and its 95 % confidence interval (CI) by adjusting for multiple variables using Cox proportional risk models. By assessing the relative excess risk due to interaction (RERI) arising from the interplay between PM2.5 exposure and dietary protein intake, we explored the additive interaction between the two. Multiplicative interaction was assessed through a cross-product interaction term. RESULTS During a median follow-up of 37.60 months, 123 deaths were documented. As for all-cause mortality, the multivariate-adjusted HRs (95 % CIs) in the highest vs. the lowest tertile were 0.57 (0.35-0.93), 0.60 (0.36-0.99), and 0.58 (0.37-0.90) for intakes of fish, egg, as well as fruit/vegetable protein, respectively (all P for trend < 0.05). A positive association between PM2.5 exposure and all-cause mortality was observed (HR=1.52; 95 % CI: 1.13-2.05, per interquartile range increment). Notably, dietary fish, egg, and fruit/vegetable protein modified these associations, as patients with lower intakes had significantly higher PM2.5-related mortality in the cohort (all P for interaction < 0.05). CONCLUSIONS This study provides evidence linking the potential interactions between dietary fish, egg, and fruit/vegetable protein intake and PM2.5 exposure on all-cause mortality of OC patients. Our study demonstrates the importance of adherence to a certain protein diet in reducing PM2.5-related mortality risk for OC patients.
Collapse
Affiliation(s)
- He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Bao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Li Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Information Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue-Yang Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Library, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Xin Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Hospice Care, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Xiao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ren-Jie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
2
|
Tang Z, Ku PW, Xia Y, Chen LJ, Zhang Y. Preexisting multimorbidity predicts greater mortality risks related to long-term PM 2.5 exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125762. [PMID: 39880353 DOI: 10.1016/j.envpol.2025.125762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Long-term health risk assessments related to ambient fine particulate matter (PM2.5) exposure have been more limited to general population but not towards individuals suffering from multimorbidity. While both multimorbidity and PM2.5 are independently linked to elevated mortality risk, their combined effects and interactions remain practically unexplored. A cross-cohort analysis was undertaken on data from 3 prospective cohorts, initially enrolling 869038 adults aged ≥18 years followed up during 2005-2022. Multimorbidity was identified at baseline surveys through a list of nine common chronic conditions. Cox proportional hazards models were utilized to quantify the associations of long-term PM2.5 exposure with all-cause, cardiovascular, and respiratory mortality among individuals with and without multimorbidity. Joint effects and interactions between baseline multimorbidity and PM2.5 level on the additive and multiplicative scales were examined. Risk differences of PM2.5-induced mortality were analyzed stratified by number of chronic conditions and multimorbidity patterns. Subgroup and sensitivity analyses were carried out to evaluate the consistency of the findings. Among 713119 eligible participants for primary analysis, 65490 prevalent cases of multimorbidity were identified at baseline over a median follow-up of 12.2 years. Compared to individuals without multimorbidity, associations of PM2.5 exposure with all-cause and cardiovascular mortality were more prominent among multimorbidity individuals (P <0.05 for heterogeneity). Our analysis unveiled a significant additive interaction between PM2.5 level and preexisting multimorbidity status, yielding estimated attributable proportions of 11.7%-17.8% and excess risks of 31.1%-72.6% for different mortality outcomes. Sex subgroup and sensitivity analyses consistently produced similar results. This large-scale multicohort analysis demonstrated markedly stronger associations between PM2.5 levels and risks of all-cause and cardiovascular mortality in multimorbidity populations compared to those without multimorbidity. PM2.5 exposure and preexisting multimorbidity showed synergistic effects in triggering mortality events, wherein the joint risks were intensified with elevated PM2.5 levels and an increased number of chronic conditions.
Collapse
Affiliation(s)
- Ziqing Tang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Po-Wen Ku
- Graduate institute of Sports and Health Management, National Chung Hsing University, 402 Taichung, Taiwan; Department of Behavioral Science and Health, University College London, London, UK
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li-Jung Chen
- Department of Exercise Health Science, National Taiwan University of Sport, No. 16, Sec. 1, Shuangshi Rd., North Dist., Taichung City 404, Taiwan; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Liu Y, Chang J, Zhao Y, Gao P, Tang Y. Frailty and social contact with dementia risk: A prospective cohort study. J Affect Disord 2025; 375:129-136. [PMID: 39862976 DOI: 10.1016/j.jad.2025.01.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Frailty and social contact are significant factors influencing dementia risk. While previous studies have separately examined these factors, their combined impact on dementia remains underexplored. METHODS This study included 338,567 UK biobank participants from 2006 to 2010, with follow-up until December 2022. Additionally, 30,408 participants with brain magnetic resonance imaging data were analyzed for hippocampal volume. Cox proportional hazards regression and linear regression models were used to assess associations. RESULTS The study followed 338,567 participants (mean [SD] age, 60.4 [5.2] years; 54.1 % men) for a median of 13.7 years, documenting 7362 cases of all-cause dementia. Both frailty and lower social contact independently increased the risk of all-cause dementia, Alzheimer's disease (AD), and vascular dementia (VaD). Compared to individuals with non-frailty and high social contact, those with lower social contact and higher frailty had a significantly increased risk of all-cause dementia, with the highest risk observed in individuals with frailty and low social contact (HR = 2.65, 95 % CI: 2.27-3.11). Similar patterns were found for AD and VaD. Furthermore, hippocampal volume was significantly reduced in individuals with frailty and low social contact (β = -0.24, 95 % CI: -0.43 to -0.06) compared to those with non-frailty and high social contact. LIMITATIONS The study predominantly included European descent individuals, with most frailty and social contact data based on baseline self-reports. CONCLUSIONS The combination of frailty and low social contact is associated with the highest risk of dementia. These findings suggest that both physiological and social factors should be simultaneously considered in dementia prevention strategies.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Chang
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yiwei Zhao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peiyang Gao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China.
| |
Collapse
|
4
|
Zhou J, Kou M, Tang R, Wang X, Li X, Heianza Y, Manson JE, Qi L. Joint Physical-Psychosocial Frailty and Risks of All-Cause and Cause-Specific Premature Mortality. J Gen Intern Med 2025:10.1007/s11606-024-09335-z. [PMID: 39843666 DOI: 10.1007/s11606-024-09335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND The importance of integrating physical and psychosocial factors in assessing frailty -health outcomes has been increasingly acknowledged, while the related evidence is lacking. We sought to investigate the associations of joint physical-psychosocial frailty with risk of premature mortality and evaluate the relative importance of individual physical and psychosocial factors. DESIGN A total of 381,295 participants with no history of cancer or cardiovascular disease (CVD) were recruited from the UK Biobank cohort. The physical-psychosocial frailty was evaluated based on seven indicators including weight loss, exhaustion, physical activity, walking pace, grip strength, social isolation, and loneliness. The outcomes were premature mortality from all causes, cancer, CVD, and other causes. Cox proportional hazards models were used to assess the associations between the physical-psychosocial frailty and premature mortality. KEY RESULTS During a median follow-up period of 12.7 years, we recorded 20,328 premature deaths. Each additional increment in the physical-psychosocial frailty index was associated with a 26% (HR 1.26, 95% CI 1.24-1.28), 10% (HR 1.10, 95% CI 1.08-1.12), 30% (HR 1.30, 95% CI 1.26-1.33), and 44% (HR 1.44, 95% CI 1.41-1.47) higher risk of all-cause, cancer, cardiovascular, and other-cause premature mortality, respectively. Compared with participants with the physical-psychosocial frailty index of 0, those with the index ≥ 4 had a 2.67 (95% CI 2.49-2.87)-fold higher risk of all-cause premature mortality. Slow walking pace and social isolation were the top two strongest predictors for all-cause premature mortality. In addition, we found that lower body mass index (BMI), age, smoking status, and dietary quality modified the associations of physical-psychosocial frailty with all-cause premature mortality (P-interaction < 0.05). CONCLUSIONS In this cohort study of UK Biobank participants, joint physical-psychosocial frailty is significantly associated with risks of all-cause and cause-specific premature mortality, highlighting the importance to jointly assess physical and psychosocial factors in determining aging-related health.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Minghao Kou
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Rui Tang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Xuan Wang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Xiang Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Yoriko Heianza
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
5
|
Fan C, Wang W, Xiong W, Li Z, Ling L. Beverage consumption modifies the risk of type 2 diabetes associated with ambient air pollution exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117739. [PMID: 39827613 DOI: 10.1016/j.ecoenv.2025.117739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Evidence on how beverage consumption modifies associations between air pollution (AP) exposure with the type 2 diabetes (T2D) risk remains scarce, which we aimed to investigate in this study. METHODS A total of 77,278 adults from the UK Biobank cohort were enrolled. Annual average concentrations of fine particulate matter (PM2.5 and PM10) and nitrogen oxides (NO2 and NOX) were estimated to represent the long-term AP exposure using the land use regression model. The consumption of beverages (alcoholic beverages, juice, sugar-sweetened beverages [SSB], coffee, and tea) was estimated with the 24-hour dietary assessment. The AP-T2D and beverage-T2D risks were assessed using Cox regression models. Modifying effects of beverage consumption on AP-T2D associations were evaluated through stratified analysis and heterogeneity test. RESULTS During a median follow-up of 12.19 years, 1486 T2D events were recorded. One interquartile range increase of PM2.5, NO2, and NOX raised the T2D risk with the hazard ratios (HR) and 95 % confidence intervals (95 % CI) being 1.09 (1.03, 1.16), 1.14 (1.06, 1.21), and 1.09 (1.04, 1.15), respectively. For beverages, compared with non-consumption, daily consumption (>0 cup) of red wine, > 0-3 cups of white wine, ground coffee, and herbal tea, and > 0-1 cup of spirits were associated with a 13 %-37 % reduced T2D risk, while > 0 cup of SSB were associated with a 21 %-122 % elevated T2D risk. Beverage consumption modified AP-T2D associations, as compared with non-consumption, > 0-3 cups of red wine, white wine, ground coffee, and herbal tea had a lower attenuated T2D risk associated with NO2 and/or NOX. Conversely, those with > 1 cup of SSB had a higher T2D risk associated with both NO2 and NOX (Pheter <0.05). CONCLUSIONS This study highlights the significant role of beverage consumption in mitigating or exacerbating the T2D risk associated with long-term NO2 and NOX exposure.
Collapse
Affiliation(s)
- Chaonan Fan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wenjuan Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wenxue Xiong
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhiyao Li
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Division of Clinical Research Design, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Wang W, Yang C, Wang F, Wang J, Zhang F, Li P, Zhang L. Does Nonsteroidal Anti-inflammatory Drug Use Modify All-Cause and Cause-Specific Mortality Associated with PM 2.5 and Its Components? A Nationally Representative Cohort Study (2007-2017). ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:14-25. [PMID: 39839242 PMCID: PMC11744395 DOI: 10.1021/envhealth.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
Several studies reported that nonsteroidal anti-inflammatory drug (NSAID) use could alleviate subclinical effects of short-term exposure to fine particulate matter (PM2.5). However, whether chronic NSAID use could mitigate the long-term effects of PM2.5 and its components on population mortality has been unknown. Based on a national representative survey of 47,086 adults (2007-2010) with follow-up information on the primary cause of death (until 2017), we investigated the long-term associations of PM2.5 and its major components, including black carbon (BC), ammonium (NH4 +), nitrate (NO3 -), organic matter (OM), and sulfate (SO4 2-), with all-cause and cause-specific mortality using the Cox proportional hazards model. We also evaluated the effect modification by NSAID use (including broad NSAIDs, aspirin, or ibuprofen) on the associations using interaction models. Long-term exposures to PM2.5 and its components were associated with increased risks of all-cause and cause-specific mortality, where BC, OM, and SO4 2- showed stronger associations. Ibuprofen use could mitigate the associations of PM2.5 and its components with mortality risks, while no significant modifying effects of aspirin were observed. For instance, along with per interquartile range increment in PM2.5 concentration (34.8 μg/m3), the hazard ratios (HRs) of all-cause mortality were 1.21 (95% CI: 1.19, 1.22) and 1.10 (95% CI: 1.01, 1.19) in nonibuprofen and ibuprofen use groups (P for interaction = 0.026), respectively. Cause-specific analyses indicated that ibuprofen use could mainly mitigate risks of cardiovascular disease (CVD) especially ischemic heart disease (IHD) mortality attributable to PM2.5 components. Stratified analyses found more apparent mitigating effects of ibuprofen use among participants without chronic diseases, participants ≤50 years, female participants, rural residents, and those with lower education levels. Our findings suggested potential implications in reducing population mortality caused by long-term exposures to PM2.5 and its components through personalized interventions.
Collapse
Affiliation(s)
- Wanzhou Wang
- Institute
of Medical Technology, Peking University
Health Science Center, Beijing 100191, China
- National
Institute of Health Data Science at Peking University, Beijing 100191, China
- Renal
Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
| | - Chao Yang
- Renal
Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
- Research
Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- Advanced
Institute of Information Technology, Peking
University, Hangzhou 311215, China
- Digital
Intelligence Medicine Center, Peking University
First Hospital, Beijing 100034, China
| | - Fulin Wang
- Institute
of Medical Technology, Peking University
Health Science Center, Beijing 100191, China
- National
Institute of Health Data Science at Peking University, Beijing 100191, China
| | - Jinwei Wang
- Renal
Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
- Key
Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education of the People’s
Republic of China, Beijing 100034, China
| | - Feifei Zhang
- Institute
of Medical Technology, Peking University
Health Science Center, Beijing 100191, China
- National
Institute of Health Data Science at Peking University, Beijing 100191, China
| | - Pengfei Li
- Advanced
Institute of Information Technology, Peking
University, Hangzhou 311215, China
| | - Luxia Zhang
- Institute
of Medical Technology, Peking University
Health Science Center, Beijing 100191, China
- National
Institute of Health Data Science at Peking University, Beijing 100191, China
- Renal
Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
- Research
Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- Advanced
Institute of Information Technology, Peking
University, Hangzhou 311215, China
- Digital
Intelligence Medicine Center, Peking University
First Hospital, Beijing 100034, China
| |
Collapse
|
7
|
Li G, Ma Z, Lu Y, Jiang Y, Zhao H, Sun M, Wang Y, He Q, Feng Z, Li T, Li J, Shi Y, Lou Z, Sun Z, Han Q, Sun N, Zhou Y, Shen Y. Associations of socioeconomic status and chronic stress with incident atrial fibrillation among older adults: A prospective cohort study from the UK biobank. Int J Cardiol 2025; 418:132633. [PMID: 39395721 DOI: 10.1016/j.ijcard.2024.132633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND This study aimed to assess the relationship between socioeconomic status (SES) and chronic stress on the incidence of atrial fibrillation (AF) in older adults, and the potential role of chronic stress in the association. METHODS This study included 122,494 UK Biobank participants aged ≥60 years without AF at baseline. Latent class analysis was used to define the SES of participants. Chronic stress was measured using allostatic load (AL), and participants were categorized into low, medium and high AL groups. The Cox proportional hazards model, mediation, and interaction analyses were conducted to investigate the associations between SES, AL, and AF risk. RESULTS Low SES (hazard ratio [HR]: 1.10; 95 % confidence interval [CI]: 1.04-1.15) and high AL (HR: 1.37; 95 % CI: 1.30-1.45) were associated with an increased risk of AF, respectively. Individuals in the low SES and high AL groups exhibited the highest risk of AF compared to those in the high SES and low AL groups (HR: 1.46; 95 % CI: 1.32-1.61). We identified additive and multiplicative interactions in the low SES and high AL groups (relative risk due to interaction: 0.12 (95 % CI: 0.02-0.22); P for interaction = 0.0385). AL also exerted a partial mediating effect on the association between SES and the incidence of AF (mediation proportion: 17.3 %; 95 % CI: 5.9-28.7 %). CONCLUSIONS Our study revealed significant associations between SES, chronic stress, and the incidence of AF in older adults. Chronic stress was also shown to partially mediate the association.
Collapse
Affiliation(s)
- Guoxian Li
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Ze Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yujie Lu
- The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Yufeng Jiang
- The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Hanqing Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Mengtong Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Qida He
- Department of Infectious Diseases and Public Health, City University of Hong Kong, 999077, Hong Kong, China
| | - Zhaolong Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Tongxing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jianing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yujie Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Zexin Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Ziqing Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Qiang Han
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Na Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yafeng Zhou
- The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China.
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China.
| |
Collapse
|
8
|
Vanoli J, de la Cruz Libardi A, Sera F, Stafoggia M, Masselot P, Mistry MN, Rajagopalan S, Quint JK, Ng CFS, Madaniyazi L, Gasparrini A. Long-term Associations Between Time-varying Exposure to Ambient PM 2.5 and Mortality: An Analysis of the UK Biobank. Epidemiology 2025; 36:1-10. [PMID: 39435892 DOI: 10.1097/ede.0000000000001796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
BACKGROUND Evidence for long-term mortality risks of PM 2.5 comes mostly from large administrative studies with incomplete individual information and limited exposure definitions. Here we assess PM 2.5 -mortality associations in the UK Biobank cohort using detailed information on confounders and exposure. METHODS We reconstructed detailed exposure histories for 498,090 subjects by linking residential data with high-resolution PM 2.5 concentrations from spatiotemporal machine-learning models. We split the time-to-event data and assigned yearly exposures over a lag window of 8 years. We fitted Cox proportional hazard models with time-varying exposure controlling for contextual- and individual-level factors, as well as trends. In secondary analyses, we inspected the lag structure using distributed lag models and compared results with alternative exposure sources and definitions. RESULTS In fully adjusted models, an increase of 10 μg/m³ in PM 2.5 was associated with hazard ratios of 1.27 (95% confidence interval: 1.06, 1.53) for all-cause, 1.24 (1.03, 1.50) for nonaccidental, 2.07 (1.04, 4.10) for respiratory, and 1.66 (0.86, 3.19) for lung cancer mortality. We found no evidence of association with cardiovascular deaths (hazard ratio = 0.88, 95% confidence interval: 0.59, 1.31). We identified strong confounding by both contextual- and individual-level lifestyle factors. The distributed lag analysis suggested differences in relevant exposure windows across mortality causes. Using more informative exposure summaries and sources resulted in higher risk estimates. CONCLUSIONS We found associations of long-term PM 2.5 exposure with all-cause, nonaccidental, respiratory, and lung cancer mortality, but not with cardiovascular mortality. This study benefits from finely reconstructed time-varying exposures and extensive control for confounding, further supporting a plausible causal link between long-term PM 2.5 and mortality.
Collapse
Affiliation(s)
- Jacopo Vanoli
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Arturo de la Cruz Libardi
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Francesco Sera
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Statistics, Computer Science and Applications "G. Parenti," University of Florence, Florence, Italy
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy
| | - Pierre Masselot
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Malcolm N Mistry
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jennifer K Quint
- School of Public Health, Imperial College London, London, United Kingdom
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Antonio Gasparrini
- From the Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Zhou J, Hu Y, Tang R, Kou M, Wang X, Ma H, Li X, Heianza Y, Qi L. Smoking timing, genetic susceptibility, and the risk of incident atrial fibrillation: a large prospective cohort study. Eur J Prev Cardiol 2024; 31:2086-2096. [PMID: 39178279 PMCID: PMC11663482 DOI: 10.1093/eurjpc/zwae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/25/2024]
Abstract
AIMS Although smoking is a well-known risk factor for atrial fibrillation (AF), the association of smoking timing with AF risk remains unclear. This study aimed to prospectively investigate the association of smoking timing with the risk of incident AF and test the modification effect of genetic susceptibility. METHODS AND RESULTS A total of 305 627 participants with detailed information for time from waking to the first cigarette were enrolled from UK Biobank database. The Cox proportional hazard model was employed to assess the relationship between smoking timing and AF risk. The weighted genetic risk score for AF was calculated. Over a median 12.2-year follow-up, 13 410 AF cases were documented. Compared with non-smokers, time from waking to the first cigarette showed gradient inverse associations with the risk of incident AF (P-trend <0.001). The adjusted hazard ratio related to smoking timing was 1.13 [95% confidence interval (CI): 0.96-1.34] for >120 min, 1.20 (95% CI: 1.01-1.42) for 61-120 min, 1.34 (95% CI: 1.19-1.51) for 30-60 min, 1.43 (95% CI: 1.26-1.63) for 5-15 min, and 1.49 (95% CI: 1.24-1.63) for <5 min, respectively. Additionally, we found that the increased risk of AF related to shorter time from waking to the first cigarette was strengthened by the genetic susceptibility to AF. CONCLUSION Our findings suggest gradient inverse association between time from waking to the first cigarette and risk of incident AF, and the association is strengthened by the genetic susceptibility to AF.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha 410011, China
| | - Ying Hu
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
- Department of Obstetrics, Women’s Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou 310006, China
| | - Rui Tang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Minghao Kou
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Xuan Wang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Hao Ma
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Xiang Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Yoriko Heianza
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhao CN, Jiang LQ, Musonye HA, Meng SY, He YS, Wang P, Ni J, Pan HF. Associations of accelerated biological aging and metabolic heterogeneity of obesity with rheumatoid arthritis: a prospective cohort study. Clin Rheumatol 2024; 43:3615-3623. [PMID: 39367918 DOI: 10.1007/s10067-024-07167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE To evaluate the associations between biological aging, metabolic heterogeneity of obesity, and rheumatoid arthritis (RA). METHODS This prospective cohort study analyzed 268,184 individuals from the UK Biobank. Biological age was estimated using phenotypic age (PhenoAge), Klemera-Doubal methods (KDM-BA), and telomere length. We calculated KDM-BA acceleration and PhenoAge acceleration after subtracting the effect of chronological age by regression residual. The metabolic heterogeneity of obesity can be evaluated by four BMI metabolic phenotypes, namely metabolically unhealthy normal weight (MUNW), metabolically healthy normal weight (MHNW), metabolically unhealthy overweight/obesity (MUOO), and metabolically healthy overweight/obesity (MHOO). Cox models were employed to estimate the associations between biological aging, metabolic heterogeneity of obesity, and RA risk. RESULTS A total of 2842 patients experienced RA during a mean follow-up time of 12.21 years. A standard deviation (SD) increase in KDM-BA acceleration and PhenoAge acceleration was associated with an increased risk of RA by 13% (hazard ratio = 1.13; 95% CI, 1.09-1.17) and 39% (HR = 1.39; 95% CI, 1.34-1.44), respectively. A SD increase in telomere length was associated with a reduced risk of RA by 5% (HR = 0.95; 95% CI, 0.91-0.98). Compared to the MHNW group, the MUOO group was associated with a 51% increase in the risk of incident RA. In the joint effect analysis, compared to the MHNW + KDM-BA younger subgroup, the HR (95% CI) for RA was 1.68 (1.48, 1.90) in the MUOO + KDM-BA older subgroup. CONCLUSION Accelerated biological aging may heighten the susceptibility to RA, particularly in individuals with obesity or metabolic dysfunction. Key Points •Accelerated biological aging increases the risk of developing RA. •Overweight/obese people with a healthy metabolism have a higher risk of RA than those with normal weight and healthy metabolism. •The BMI metabolic phenotype has a strong modifying effect on the association between KDM-BA/PhenoAge and RA risk.
Collapse
Affiliation(s)
- Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling-Qiong Jiang
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Harry Asena Musonye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shi-Yin Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Yang K, Lin F, Wang X, Wang H, Shi Y, Chen L, Weng Y, Chen X, Zeng Y, Wang Y, Cai G. Residential blue space, cognitive function, and the role of air pollution in middle-aged and older adults: A cross-sectional study based on UK biobank. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117355. [PMID: 39566261 DOI: 10.1016/j.ecoenv.2024.117355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
This study examines the relationship between residential exposure to blue spaces (e.g., rivers, lakes, and seas) and cognitive function in middle-aged and older adults in the United Kingdom, with a specific focus on the mediating effects of air pollution, particularly nitrogen dioxide (NO₂) and fine particulate matter (PM2.5). Cognitive function was assessed using touch screens at UK Biobank Assessment Centre, while residential blue space exposure within a 300-meter radius was estimated from land-use data. Annual average levels of air pollution, specifically NO₂ and PM2.5, were calculated through a land-use regression model. Logistic regression models analyzed the association between blue space exposure and cognitive function, and restricted cubic splines were employed to assess potential nonlinear relationships. Causal mediation analysis quantified the indirect effects of air pollution on this relationship. The study included 35,669 participants, revealing that high blue space exposure (≥75 %) was associated with a 13.2 % lower risk of cognitive impairment compared to those with low exposure (<25 %). Notably, NO₂ and PM2.5 significantly mediated this association, with indirect effects estimated at 9.5 % and 15.85 %, respectively. These findings indicate that increased residential exposure to blue spaces is linked to a reduced risk of cognitive impairment, highlighting the protective role of blue environments in the context of air pollution. This research underscores the importance of environmentally sensitive urban planning and policies to promote public health and cognitive well-being among vulnerable populations.
Collapse
Affiliation(s)
- Kaitai Yang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xuefei Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Huaicheng Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Yisen Shi
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Lina Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Yanhong Weng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Xuanjie Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China.
| | - Yinqing Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China.
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China.
| |
Collapse
|
12
|
Chen J, Zhang H, Fu T, Zhao J, Nowak JK, Kalla R, Wellens J, Yuan S, Noble A, Ventham NT, Dunlop MG, Halfvarson J, Mao R, Theodoratou E, Satsangi J, Li X. Exposure to air pollution increases susceptibility to ulcerative colitis through epigenetic alterations in CXCR2 and MHC class III region. EBioMedicine 2024; 110:105443. [PMID: 39536393 PMCID: PMC11605448 DOI: 10.1016/j.ebiom.2024.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aims to confirm the associations of air pollution with ulcerative colitis (UC) and Crohn's disease (CD); to explore interactions with genetics and lifestyle; and to characterize potential epigenetic mechanisms. METHODS We identified over 450,000 individuals from the UK Biobank and investigated the relationship between air pollution and incident inflammatory bowel disease (IBD). Cox regression was utilized to calculate hazard ratios (HRs), while also exploring potential interactions with genetics and lifestyle factors. Additionally, we conducted epigenetic Mendelian randomization (MR) analyses to examine the association between air pollution-related DNA methylation and UC. Finally, our findings were validated through genome-wide DNA methylation analysis of UC, as well as co-localization and gene expression analyses. FINDINGS Higher exposures to NOx (HR = 1.20, 95% CI 1.05-1.38), NO2 (HR = 1.19, 95% CI = 1.03-1.36), PM2.5 (HR = 1.19, 95% CI = 1.05-1.36) and combined air pollution score (HR = 1.26, 95% CI = 1.11-1.45) were associated with incident UC but not CD. Interactions with genetic risk score and lifestyle were observed. In MR analysis, we found five and 22 methylated CpG sites related to PM2.5 and NO2 exposure to be significantly associated with UC. DNA methylation alterations at CXCR2 and sites within the MHC class III region, were validated in genome-wide DNA methylation analysis, co-localization analysis and analysis of colonic tissue. INTERPRETATION We report a potential causal association between air pollution and UC, modified by lifestyle and genetic influences. Biological pathways implicated include epigenetic alterations in key genetic loci, including CXCR2 and susceptible loci within MHC class III region. FUNDING Xue Li was supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001) and the National Nature Science Foundation of China (No. 82204019). ET was supported by the CRUK Career Development Fellowship (C31250/A22804) and the Research Foundation Flanders (FWO). JW was supported by Belgium by a PhD Fellowship strategic basic research (SB) grant (1S06023N). JKN was supported by the National Science Center, Poland (No. 2020/39/D/NZ5/02720). The IBD Character was supported by the European Union's Seventh Framework Programme [FP7] grant IBD Character (No. 2858546).
Collapse
Affiliation(s)
- Jie Chen
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Han Zhang
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tian Fu
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University Medical College, Hangzhou, China
| | - Jianhui Zhao
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60572, Poznan, Poland
| | - Rahul Kalla
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith Wellens
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium; Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Noble
- Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Evropi Theodoratou
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Jack Satsangi
- Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK.
| | - Xue Li
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Chanda F, Lin KX, Chaurembo AI, Huang JY, Zhang HJ, Deng WH, Xu YJ, Li Y, Fu LD, Cui HD, Shu C, Chen Y, Xing N, Lin HB. PM 2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176255. [PMID: 39276993 DOI: 10.1016/j.scitotenv.2024.176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 μm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.
Collapse
Affiliation(s)
- Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Chen
- University of Chinese Academy of Sciences, Beijing, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China.
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Lovins HB, Mehta A, Leuenberger LA, Yaeger MJ, Schott E, Hutton G, Manke J, Armstrong M, Reisdorph N, Tighe RM, Cochran SJ, Shaikh SR, Gowdy KM. Dietary Eicosapentaenoic Acid Improves Ozone-Induced Pulmonary Inflammation in C57BL/6 Mice. J Nutr 2024:S0022-3166(24)01173-8. [PMID: 39536972 DOI: 10.1016/j.tjnut.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Ambient concentrations of the air pollutant, ozone, are rising with increasing global temperatures. Ozone is known to increase incidence and exacerbation of chronic lung diseases, which will increase as ambient ozone levels rise. Studies have identified diet as a variable that is able to modulate the pulmonary health effects associated with ozone exposure. Eicosapentaenoic acid (EPA) is an n-3 (ω-3) PUFA consumed through diet, which lowers inflammation through conversion to oxylipins including hydroxy-eicosapentaenoic acids (HEPEs). However, the role of dietary EPA in ozone-induced pulmonary inflammation is unknown. OBJECTIVE Therefore, we hypothesized increasing dietary EPA will decrease ozone-induced pulmonary inflammation and injury through the production of HEPEs. METHODS To test this, male C57BL/6J mice were fed a purified control diet or EPA-supplemented diet for 4 wk and then exposed to filtered air or 1 part per million ozone for 3 h. 24 or 48 h after exposure, bronchoalveolar lavage fluid was collected to assess airspace inflammation/injury and lung tissue was collected for targeted liquid chromatography-mass spectrometry lipidomics. RESULTS Following ozone exposure, EPA supplementation did not alter markers of lung injury but decreased ozone-induced airspace neutrophilia. Targeted liquid chromatography-mass spectrometry lipidomics revealed dietary EPA supplementation increased pulmonary EPA-derived metabolites including 5-HEPE and 12-HEPE. Additionally, EPA supplementation decreased pulmonary amounts of proinflammatory arachidonic acid-derived metabolites. To evaluate whether dietary EPA reduces ozone-induced pulmonary inflammation through increased pulmonary HEPEs, C57BL/6J mice were administered 5-HEPEs and 12-HEPEs systemically before filtered air or ozone exposure. Pretreatment with 5-HEPEs and 12-HEPEs reduced ozone-driven increases in airspace macrophages. CONCLUSIONS Together, these data indicate that an EPA-supplemented diet protects against ozone-induced airspace inflammation which is, in part, due to increasing pulmonary amounts of 5-HEPEs and 12-HEPEs. These findings suggest that dietary EPA and/or increasing EPA-derived metabolites in the lung can reduce ozone-driven incidences and exacerbations of chronic pulmonary diseases.
Collapse
Affiliation(s)
- Hannah B Lovins
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Anushka Mehta
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Laura A Leuenberger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael J Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Evangeline Schott
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Grace Hutton
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, United States
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, United States
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, United States
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Samuel J Cochran
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
15
|
Zhou M, Liang YY, Ai S, Feng H, Zhou Y, Liu Y, Zhang J, Jia F, Lei B. Associations of accelerometer-measured sleep duration with incident cardiovascular disease and cardiovascular mortality. Sleep 2024; 47:zsae157. [PMID: 38995667 DOI: 10.1093/sleep/zsae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
STUDY OBJECTIVES This study aimed to determine the associations between accelerometer-measured sleep durations and the risks of incident cardiovascular disease (CVD) and CVD-related mortality. METHODS A total of 92 261 participants (mean age: 62.4 ± 7.8 years, 56.4% female) were included in UK Biobank between 2013 and 2015. Average daily sleep durations were measured using wrist-worn accelerometers over a 7-day period. Sleep durations were categorized as <7 hours/day, 7-9 hours/day (reference), and >9 hours/day. The incidence of CVD and CVD-related mortality were ascertained by hospital records and death registries. RESULTS During a median follow-up period of 7.0 years, a total of 13 167 participants developed CVD, and 1079 participants died of CVD. Compared with a sleep duration 7-9 hours/day, an accelerometer-measured sleep duration <7 hours/day but not >9 hours/day was associated with higher risks of incident CVD (HR 1.06, 95% CI: 1.02 to 1.10), CVD-related mortality (HR 1.29, 95% CI: 1.14 to 1.47), coronary heart disease (HR 1.11, 95% CI: 1.03 to 1.19), myocardial infarction (HR 1.14, 95% CI: 1.03 to 1.27), heart failure (HR 1.20, 95% CI: 1.08 to 1.34), and atrial fibrillation (HR 1.15, 95% CI: 1.07 to 1.24). A curvilinear dose‒response pattern was observed between accelerometer-measured sleep durations and incident CVD (poverall < .001), with L-shaped associations found for incident CVD and CVD-related mortality. CONCLUSIONS An accelerometer-measured sleep duration of <7 hours/day but not >9 hours/day was associated with elevated risks of incident CVD and CVD-related mortality. Maintaining adequate sleep may help promote cardiovascular health.
Collapse
Affiliation(s)
- Mingqing Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yannis Yan Liang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Institute of Psycho-neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Hongliang Feng
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yujing Zhou
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yaping Liu
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Fujun Jia
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Binbin Lei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Huang X, Wang Z, Lei F, Liu W, Lin L, Sun T, Cao Y, Zhang X, Cai J, Li H. Association of urban environments with Atherosclerotic cardiovascular disease: A prospective cohort study in the UK Biobank. ENVIRONMENT INTERNATIONAL 2024; 193:109110. [PMID: 39520928 DOI: 10.1016/j.envint.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Urban environments and cardiovascular health are closely linked, yet only a few specific exposures have been explored in isolation and mostly adopting cross-sectional design. The influence of socioeconomic status and genetic predisposition also remains unclear. Hence, leveraging the UK Biobank data (n = 206,681), we conducted a prospective analysis of 213 urban environmental variables and their association with atherosclerotic cardiovascular disease (ASCVD). The ExWAS and regularized Cox models analyses highlighted air pollution, industrial sites, and complex street networks as primary environmental risk factors. Instead, land-use density of leisure, public services, infrastructure and residential, and drinking water hardness showed a negative association with ASCVD risk. By integrating sparse canonical correlation and mediation analyses, we found distinct urban environment patterns through diverse pathways influence ASCVD. The environment characterized by pollution and complex streets impact ASCVD through adverse mental health (mediation proportion:30.7 %, 95 % CI:22.4 %-44.0 %), while highly-developed community and high-water hardness environment via cardiometabolic status (22.6 %, 95 % CI:19.7 %-26.0 %). Further, we found low socioeconomic status amplifies disadvantaged urban environment effects on ASCVD, yet there were no similar findings for ASCVD genetic predisposition. This research deepened our understanding of city-cardiovascular health links and the role of socioeconomic status, with implications for urban planning and public health interventions.
Collapse
Affiliation(s)
- Xuewei Huang
- Clinical Research Center, Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhouyi Wang
- Department of Rehabilitation Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Fang Lei
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weifang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijin Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Cao
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyuan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Clinical Research Center, Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
17
|
Kasdagli MI, Orellano P, Pérez Velasco R, Samoli E. Long-Term Exposure to Nitrogen Dioxide and Ozone and Mortality: Update of the WHO Air Quality Guidelines Systematic Review and Meta-Analysis. Int J Public Health 2024; 69:1607676. [PMID: 39494092 PMCID: PMC11527649 DOI: 10.3389/ijph.2024.1607676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives We performed a systematic review and meta-analysis on long-term exposure to nitrogen dioxide (NO2) and ozone (O3) with mortality, to expand evidence that informed 2021 the WHO Air Quality Guidelines and guide the Health Risks of Air Pollution in Europe project. Methods We included cohorts investigating NO2 and O3 mortality from all-causes, respiratory diseases, chronic obstructive pulmonary disease (COPD), acute lower respiratory infections (ALRI); and NO2 mortality from circulatory, ischemic heart, cerebrovascular diseases and lung cancer. We pooled estimates by random-effects models and investigated heterogeneity. We assessed the certainty of the evidence using the Grading of Recommendations Assessment Development approach and Evaluation (GRADE). Results We selected 83 studies for NO2 and 26 for O3 for the meta-analysis. NO2 was associated with all outcomes, except for cerebrovascular mortality. O3 was associated with respiratory mortality following annual exposure. There was high heterogeneity, partly explained by region and pollutant levels. Certainty was high for NO2 with COPD and ALRI, and annual O3 with respiratory mortality. Conclusion An increasing body of evidence, with new results from countrywide areas and the Western Pacific, supports certainty, including new outcomes.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pablo Orellano
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Tecnologica Nacional, Facultad Regional San Nicolas, San Nicolas, Argentina
| | - Román Pérez Velasco
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Bonn, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Cao F, Wang R, Wang L, Li YZ, Wei YF, Zheng G, Nan YX, Sun MH, Liu FH, Xu HL, Zou BJ, Li XY, Qin X, Huang DH, Chen RJ, Gao S, Meng X, Gong TT, Wu QJ. Plant-based diet indices and their interaction with ambient air pollution on the ovarian cancer survival: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116894. [PMID: 39154500 DOI: 10.1016/j.ecoenv.2024.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Ambient air pollution might serve as a prognostic factor for ovarian cancer (OC) survival, yet the relationships between plant-based diet indices (PDIs) and OC survival remain unclear. We aimed to investigate the associations of comprehensive air pollution and PDIs with OC survival and explored the effects of air pollution-diet interactions. METHODS The present study encompassed 658 patients diagnosed with OC. The overall plant-based diet index (PDI), the healthful PDI (hPDI), and the unhealthful PDI (uPDI) were evaluated by a self-reported validated food frequency questionnaire. In addition, an air pollution score (APS) was formulated by summing the concentrations of particulate matter with a diameter of 2.5 microns or less, ozone, and nitrogen dioxide. Cox proportional hazard models were applied to calculate hazard ratios (HRs) and 95 % confidence intervals (CIs). The potential interactions of APS with PDIs in relation to overall survival (OS) were assessed on both multiplicative and additive scales. RESULTS Throughout a median follow-up of 37.60 (interquartile: 24.77-50.70) months, 123 deaths were confirmed. Comparing to the lowest tertiles, highest uPDI was associated with lower OS of OC (HR = 2.06, 95 % CI = 1.30, 3.28; P-trend < 0.01), whereas no significant associations were found between either overall PDI or hPDI and OC survival. Higher APS (HR for per interquartile range = 1.27, 95 % CI = 1.01, 1.60) was significantly associated with worse OC survival, and the association was exacerbated by adherence to uPDI. Notably, an additive interaction was identified between combined air pollution and uPDI (P < 0.005 for high APS and high uPDI). We also found that adherence to overall PDI aggravated associations of air pollution with OC survival (P-interaction = 0.006). CONCLUSIONS Joint exposure to various ambient air pollutants was significantly associated with lower survival among patients with OC, particularly for those who predominantly consumed unhealthy plant-based foods.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Xin Nan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing-Jie Zou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ren-Jie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
19
|
Cao Y, Hu Y, Lei F, Zhang X, Liu W, Huang X, Sun T, Lin L, Yi M, Li Y, Zhang J, Li Y, Wang G, Cheng Z. Associations between leisure-time physical activity and the prevalence and incidence of osteoporosis disease: Cross-sectional and prospective findings from the UK biobank. Bone 2024; 187:117208. [PMID: 39047901 DOI: 10.1016/j.bone.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/06/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Previous studies underscore the protective role of physical activity (PA) in bone health, yet the relationship between different PA categories and osteoporosis risk remains less explored. Understanding the relationships helps tailor health recommendations and policies to maximize the effects of preventing osteoporosis. METHODS The cross-sectional study involves 488,403 UK Biobank participants with heel quantitative ultrasound-estimated bone mineral density (eBMD) data. The longitudinal cohort involves 471,394 UK Biobank participants without initial osteoporosis and with follow-up records. PA exposure categories in our study included sedentary behavior (SB), total PA (TPA), and different category-specific PA including household, leisure, and work PA. The cases of osteoporosis were assessed using the International Classification of Diseases, 10th revision (ICD-10). The linear, logistic, and Cox proportional hazard regression models were used in our study. RESULTS In the cross-sectional study, 15,818 (3.28 %) participants had osteoporosis. TPA levels have a positive correlation with eBMD and a negative correlation with osteoporosis prevalence. Among different categories of PA, higher levels of leisure PA were correlated with increased eBMD and a lower osteoporosis risk (leisure PA: OR: 0.83, 95 % CI: 0.79 to 0.86;). In the longitudinal study, 16,058 (17.6 % male, 82.4 % female) (3.41 %) individuals developed osteoporosis during an average follow-up of 13 years. We observed consistent protective effects of high levels of PA on osteoporosis incidence risk, particularly within the category of leisure PA (TPA: HR: 0.78, 95 % CI: 0.74 to 0.82; leisure PA:HR: 0.83, 95 % CI: 0.80 to 0.87). Such associations are independent of genetic predisposition, with no evidence of gene-PA interactions, and keep steady among individuals using drugs affecting bone-density. Moreover, among different leisure PA items, strenuous sports, other exercises, and walking for pleasure conferred a substantial protective effect against osteoporosis. Additionally, non-elderly individuals and males exhibited lower osteoporosis risk from PA. CONCLUSION This study highlights activity categories differently associated with the risk of osteoporosis. Adherence to frequent leisure PA may have a protective effect against osteoporosis. Such associations are independent of genetic susceptibility to osteoporosis and keep steady among individuals using drugs affecting bone-density. This highlights that leisure PA could be suggested as a more effective intervention in the primary prevention of osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Orthopedics, Huanggang Central Hospital of Yangtze University, Huanggang Institute of Translational Medicine, Huanggang, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Yulian Hu
- Department of Neonatology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Fang Lei
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyuan Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Weifang Liu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuewei Huang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Tao Sun
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijin Lin
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maolin Yi
- Department of Thyroid and Breast, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Yuping Li
- Department of Ophthalmology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Jinpeng Zhang
- Department of Critical Care Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Yaping Li
- Department of Infectious Diseases, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Guoping Wang
- Department of Integrated Chinese and Western Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China.
| | - Zhonghua Cheng
- Department of Orthopedics, Huanggang Central Hospital of Yangtze University, Huanggang Institute of Translational Medicine, Huanggang, China.
| |
Collapse
|
20
|
Chen X, Wang C, Dong Z, Luo H, Ye C, Li L, Wang E. Unintentional fall mortality by place, sex, and age group among older Chinese adults, 2010-21. J Glob Health 2024; 14:04170. [PMID: 39325920 PMCID: PMC10715456 DOI: 10.7189/jogh.14.04170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Background Unintentional falls are known to be a leading cause of injury mortality among older Chinese adults, yet we lack data on the most recent trends in related mortality. To address this, we used the latest nationally representative data from China to examine trends in elderly unintentional fall mortality by place (urban/rural), sex (men/women), and age group (65-69, 70-74, 75-79, 80-84, and ≥85 years) from 2010 to 2021. Methods We retrieved mortality data from the Chinese Health Statistical Yearbook (2010-21) and population data from the Chinese Population Census (2010, 2020). Using line graphs, we examined mortality trends over time. We fitted a joinpoint regression model to detect periods experiencing significant changes and calculated the average and specific annual percentage change of mortality rates to quantify significant changes in the mortality of the elderly due to unintentional falls. Results Between 2010 and 2021, the age-standardised mortality rate from unintentional falls increased from 45.7 to 67.8 per 100 000 population among Chinese adults aged 65 years and older. Subgroup analyses by sex and place showed similar changing patterns to the overall mortality trends. The joinpoint regression identified certain recent periods that saw significant increases in mortality among adults aged 65-69, 70-74, 75-79, and 80-84 years. During the study period, men and individuals living in rural areas generally had higher unintentional fall mortality rates than women and people living in urban areas (mortality rate ratios: 1.09-1.21 for men vs. women and 1.01-1.27 for rural areas vs. urban areas). Notably, the differences between urban and rural areas, and those between men and women, were consistent across the three younger age groups (65-69, 70-74, and 75-79 years) studied, but reduced in the two oldest age groups (80-84 and ≥85 years). Conclusions The age-standardised mortality rate from unintentional falls increased between 2010 and 2021 among Chinese adults aged 65 years or older, with wide variations across years. Unintentional fall mortality has recently increased among adults aged 65 to 84 years. Differences between urban and rural areas, as well as between men and women, deserve the attention of injury researchers and policymakers.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Caiyi Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhitao Dong
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Luo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunyan Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Liu W, Song J, Yu L, Lai X, Shi D, Fan L, Wang H, Yang Y, Liang R, Wan S, Zhang Y, Wang B. Exposure to ambient air pollutants during circadian syndrome and subsequent cardiovascular disease and its subtypes and death: A trajectory analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173777. [PMID: 38844213 DOI: 10.1016/j.scitotenv.2024.173777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND The association between exposure to air pollutants and cardiovascular disease (CVD) trajectory in individuals with circadian syndrome remains inconclusive. METHODS The individual exposure levels of air pollutants, including particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm (PM2.5), PM with aerodynamic diameter ≤ 10 μm (PM10), PM2.5 absorbance, PM with aerodynamic diameter between 2.5 μm and 10 μm, nitrogen dioxide (NO2), nitrogen oxides (NOx), and air pollution score (overall air pollutants exposure), were estimated for 48,850 participants with circadian syndrome from the UK Biobank. Multistate regression models were employed to estimate associations between exposure to air pollutants and trajectories from circadian syndrome to CVD/CVD subtypes (including coronary heart disease [CHD], atrial fibrillation [AF], heart failure [HF], and stroke) and death. Mediation roles of CVD/CVD subtypes in the associations between air pollutants and death were evaluated. RESULTS After a mean follow-up time over 12 years, 12,570 cases of CVD occurred, including 8192 CHD, 1693 AF, 1085 HF, and 1600 stroke cases. In multistate model, per-interquartile range increment in PM2.5 (hazard ratio: 1.08; 95 % confidence interval: 1.06, 1.10), PM10 (1.04; 1.01, 1.06), PM2.5 absorbance (1.04; 1.02, 1.06), NO2 (1.07; 1.03, 1.11), NOx (1.08; 1.04, 1.12), or air pollution score (1.06; 1.03, 1.08) was associated with trajectory from circadian syndrome to CVD. Significant associations between the above-mentioned air pollutants and trajectories from circadian syndrome and CVD to death were observed. CVD, particularly CHD, significantly mediated the associations of PM2.5, NO2, NOx, and air pollution score with death. CONCLUSIONS Long-term exposure to air pollutants during circadian syndrome was associated with subsequent CVD and death. CHD emerged as the most prominent CVD subtype in CVD progression driven by exposure to air pollutants during circadian syndrome. Our study highlights the importance of controlling air pollutants exposure and preventing CHD in people with circadian syndrome.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueru Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuhui Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
22
|
Chang J, Liu Y, Zhao Y, Gao P, Tang Y. Association of sleep duration with excess risk of dementia among shift workers in the UK biobank: a population-based cohort study. J Neurol 2024; 271:6056-6067. [PMID: 39033263 DOI: 10.1007/s00415-024-12580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Shift work was associated with elevated dementia risk. Definitive guidelines for sleep duration among shift workers have not been proposed. We aimed to identify sleep durations associated with elimination of excess dementia risk in shift workers. METHODS 285,213 dementia-free UK Biobank participants at baseline, aged 38-71 years, were enrolled between 2006 and 2010 and followed up through 2022 in this cohort study. Cox proportional hazards models were used to examine the associations between shift work, sleep duration, and risk of dementia. RESULTS The 285,213 participants included 49,079 shift workers and 236,134 non-shift workers. Over a median follow-up of 13.8 years, 1887 dementia cases were documented. Current shift workers had significantly higher dementia risk than non-shift workers (hazard ratio [HR] 1.26; 95% CI 1.11-1.42). However, this excess risk was eliminated in shift workers with 8 h of sleep (HR 1.02; 95% CI 0.80-1.29). Analysis of shift work frequency indicated that "sometimes" and "usually/always" shift work were associated with increased dementia risk compared to that of non-shift workers, but excess dementia risk was eliminated in members of either frequency group receiving 8 h of sleep ("sometimes", HR 1.05; 95% CI 0.75-1.48; "usually/always", HR 0.98; 95% CI 0.70-1.35). Both "non-night shift" and "night shift" workers showed increased dementia risk compared to non-shift workers. Workers with 8 h of sleep mitigated the excess risk (HR 1.13; 95% CI 0.84-1.53 and HR 0.86; 95% CI 0.59-1.26, respectively). CONCLUSION 8-h sleep may eliminate excess dementia risk among shift workers, suggesting a potentially effective dementia prevention guideline for shift workers.
Collapse
Affiliation(s)
- Jie Chang
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yufei Liu
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Yiwei Zhao
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Peiyang Gao
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Yi Tang
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China.
- Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, 100053, China.
| |
Collapse
|
23
|
Zhang X, Wu S, Lu Y, Qi J, Li X, Gao S, Qi X, Tan J. Association of ambient PM 2.5 and its components with in vitro fertilization outcomes: The modifying role of maternal dietary patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116685. [PMID: 38971096 DOI: 10.1016/j.ecoenv.2024.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Despite the associations of dietary patterns and air pollution with human reproductive health have been demonstrated, the interaction of maternal preconception diet and PM2.5 and its components exposure on in vitro fertilization (IVF) treatment outcomes has not been investigated. A total of 2688 couples from an ongoing prospective cohort were included. Principle component analysis with varimax rotation was performed to determine dietary patterns. One-year and 85-day average PM2.5 and its components exposure levels before oocyte retrieval were estimated. Generalized linear regression models were conducted to assess the association of dietary patterns and PM2.5 and its components exposure with IVF outcomes. Interactive effects of dietary patterns on the association between PM2.5 and its components and IVF outcomes were evaluated by stratified analyses based on different dietary patterns. A positive association between the "Fruits-Vegetables-Dairy" pattern and normal fertilization (p-trend = 0.009), Day 3 available embryos (p-trend = 0.048), and top-quality embryos (p-trend = 0.041) was detected. Conversely, women with higher adherence to the "Puffed food-Bakery-Candy" pattern were less likely to achieve Day 3 available embryos (p-trend = 0.042) and top-quality embryos (p-trend = 0.030), clinical pregnancy (p-trend = 0.049), and live birth (p-trend = 0.020). Additionally, increased intake of animal organs and seafood improved the odds of live birth (p-trend = 0.048). Exposure to PM2.5, SO42-, organic matter (OM), and black carbon (BC) had adverse effects on embryo development and pregnancy outcomes. Furthermore, our findings indicated that the effects of PM2.5 components exposure on normal fertilization and embryo quality were modified by the "Grains-Tubers-Legumes". Moreover, moderate intake of animal organs and seafood appeared to attenuate the effect of NO3- and NH4+ on the risk of early abortion. Our findings provide human evidence of the interaction between dietary patterns and PM2.5 exposure on IVF outcomes during preconception, implicating the potential for dietary interventions in infertile women to improve reproductive outcomes under conditions of unavoidable ambient air-pollutant exposure.
Collapse
Affiliation(s)
- Xudong Zhang
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Shanshan Wu
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Yimeng Lu
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Jiarui Qi
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Xinyao Li
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Shan Gao
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Xiaohan Qi
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Jichun Tan
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China.
| |
Collapse
|
24
|
Xue T, Wang L, Zhang X, Zhao Z, Qi J, Li C, Yu M, Wang L, Jia P, Yin P, Wang L, Zhou M, Zhang M. Ambient fine particulate matter and Life's essential 8 and mortality in adults in China: A Nationwide retrospective cohort study. Prev Med 2024; 186:108094. [PMID: 39122017 DOI: 10.1016/j.ypmed.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Enhanced cardiovascular health (CVH) is linked to reduced mortality risks, whereas long-term exposure to fine particulate matter (PM2.5), elevates these risks. Whether long-term exposure to PM2.5 counteracts the health benefits of high CVH is unknown. The study aims to evaluate whether the association of CVH assessed by Life's Essential 8 (LE8) with death was consistent between participants with different PM2.5 exposures. METHODS We included 134,727 participants in the field survey of China Chronic Disease and Risk Factor Surveillance which was conducted from August 2013 to June 2014. The deaths of participants were obtained by linking to the National Mortality Surveillance System (2013-2018). The environmental data is obtained by satellite inversion. The participants' CVH scores were calculated using the LE8 method. Hazard ratio (HR) and 95% confidence intervals (95%CI) for mortality were calculated using Cox regression models. RESULTS A total of 2,936 all-cause deaths and 1,158 cardiovascular disease (CVD) deaths were recorded. Compared to those with low CVH, adults with high CVH demonstrated a reduced risk of all-cause mortality, irrespective of their PM2.5 exposure levels (P < 0.05, all P for interaction >0.05). Furthermore, in comparison to those with low CVH and highest PM2.5 exposure, adults with high CVH and lowest PM2.5 exposure exhibited HR of 0.18 (95%CI, 0.12-0.25) for all-cause mortality and 0.13 (95%CI, 0.08-0.22) for CVD mortality. CONCLUSIONS High CVH is associated with reduced all-cause mortality risk, regardless of PM2.5 exposure levels. For Chinese adults, sustaining high CVH is advisable, irrespective of their residential location.
Collapse
Affiliation(s)
- Taotao Xue
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Limin Wang
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Zhang
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenping Zhao
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinlei Qi
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chun Li
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengting Yu
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lan Wang
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Jia
- Hubei Luojia Laboratory, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Peng Yin
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lijun Wang
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maigeng Zhou
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mei Zhang
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
25
|
Tao C, Liu Z, Fan Y, Yuan Y, Wang X, Qiao Z, Li Z, Xu Q, Lou Z, Wang H, Li X, Li R, Lu C. Estimating neighborhood-based mortality risk associated with air pollution: A prospective study. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134861. [PMID: 38870855 DOI: 10.1016/j.jhazmat.2024.134861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Effect modification of integrated neighborhood environment on associations of air pollution with mortality remained unclear. We analyzed data from UK biobank prospective study (n = 421,650, median 12.5 years follow-up) to examine disparities of mortality risk associated with air pollution among varied neighborhood settings. Fine particulate matter (PM2.5), PM10 and nitrogen dioxide (NO2) were measured and assigned to each participants' address. Diverse ecological and societal settings of neighborhoods were integrated with principal component analysis and categorized into disadvantaged, intermediate and advantaged levels. We estimated mortality risk associated with air pollution across diverse neighborhoods using Cox regression. We calculated community-level proportions of mortality attributable to air pollutants. There was evidence of higher all-cause and respiratory disease mortality risk associated with PM2.5 and NO2 among those in disadvantaged neighborhoods. In disadvantaged communities, air pollutants explained larger proportions of deaths and such disparities persisted over past decades. Across 2010-2021, reducing PM2.5 and NO2 to 10 μg/m3 (World Health Organization limits) would save 87,000 (52,000-120,000) and 91,000 (37,000-145,000) deaths of populations aged ≥ 40 years, with 150 000 deaths occurred in disadvantaged neighborhood settings. These findings suggested that disadvantaged neighborhoods can exacerbate mortality risk associated with air pollution.
Collapse
Affiliation(s)
- Chengzhe Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaoyin Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziyan Qiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhe Lou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haowei Wang
- School of Public Health, Imperial College London, UK; MRC Centre for Global Infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
| | - Xiang Li
- School of Public Health, Imperial College London, UK; MRC Centre for Global Infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
| | - Ruiyun Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
26
|
Liu Y, Chang J, Zhao Y, Tang Y. Neuroticism personality, social contact, and dementia risk: A prospective cohort study. J Affect Disord 2024; 358:391-398. [PMID: 38735577 DOI: 10.1016/j.jad.2024.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Personality traits, especially neuroticism, can influence susceptibility to dementia. Social contact mitigates stress and risk of dementia, the extent to which social contact can mitigate excess risk associated with neuroticism remains unclear. We aim to investigate whether active social contact is associated with lower neuroticism-associated excess risk of dementia. METHODS This prospective cohort study examined 393,939 UK Biobank participants (mean [SD] age: 56.4 [8.1] years; 53.7 % female) assessed from 2006 to 2010 and followed up until December 2022. Neuroticism was measured using the Revised Eysenck Personality Questionnaire. Social contact levels were assessed based on household size, contact with family or friends, and group participation. Dementia was determined using linked electronic health records. RESULTS High neuroticism was associated with increased all-cause dementia risk and cause-specific dementia. Among high neuroticism participants, excess risk of all-cause dementia showed a stepwise decrease with increasing social contact (low: hazard ratios (HR) = 1.27, 95 % confidence interval (CI) = 1.15-1.40; intermediate: HR = 1.20, 95 % CI = 1.12-1.28; high: HR = 1.07, 95 % CI = 1.00-1.15). High social contact similarly decreased excess risk of cause-specific dementia, comparable to those with low neuroticism. LIMITATIONS Neuroticism and social contact information relied on self-report questionnaires at baseline, with a potential temporal relationship between these factors. CONCLUSION Active social contact is associated with a stepwise reduction in excess dementia risk and potentially eliminate excess risk of dementia with high neuroticism individuals, supporting social contact as a preventive strategy to attenuate excess risks of dementia from neuroticism personality trait.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Chang
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yiwei Zhao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China.
| |
Collapse
|
27
|
Cao Y, Liu Y, Ma M, Cai J, Liu M, Zhang R, Jiang Y, Yan L, Cao Y, Liu Z, Liao J. Moderating effect of a sodium-rich diet on the association between long-term exposure to fine particulate matter and blood lipids in children and adolescents. BMC Pediatr 2024; 24:466. [PMID: 39033297 PMCID: PMC11264876 DOI: 10.1186/s12887-024-04896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Several studies reported that exposure to higher levels of fine particulate matter (PM2.5) was associated with deteriorated lipid profiles in children and adolescents. However, whether a sodium-rich diet could modify the associations remains unknown. We aimed to examine the associations of long-term exposure to PM2.5 with blood lipids in children and adolescents, and further examine the effect modification by dietary and urinary sodium levels based on a multi-community population in China. METHODS The 3711 study participants were from a cross-sectional study, which interviewed children and adolescents aged 6 to 17 years across Sichuan Province, China between 2015 and 2017. Blood lipid outcomes including blood total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) were assessed. Information on daily dietary sodium consumption was estimated with a semi-quantitative food frequency questionnaire (FFQ), and urinary sodium was used as an internal exposure biomarker. A linear regression model was applied to estimate the associations of prior 2-years' average exposure to ambient PM2.5 with blood lipids. The effect modification by dietary and urinary sodium was examined by stratified analyses. RESULTS The participants from rural areas had higher levels of daily sodium consumptions. The results of multivariable regression analysis indicated that per 10 μg/m3 incremental change in PM2.5 was associated with a 1.56% (95% confidence interval 0.90%-2.23%) and a 2.26% (1.15%-3.38%) higher blood TC and LDL-C levels, respectively. Among the study participants with higher levels of dietary sodium or urinary sodium, exposure to higher levels of PM2.5 was significantly associated with deteriorated lipid profiles. For example, each 10 μg/m3 incremental change in exposure to PM2.5 was correlated with a 2.83 (-4.65 to -0.97) lower percentage decrease in blood HDL-C levels among the participants who were from the highest quartile of urinary sodium levels. While, these associations changed to be nonsignificant in the participants who were from the lowest quartile of dietary sodium levels. CONCLUSION Exposure to higher levels of PM2.5 was associated with deteriorated blood lipid levels in children and adolescents. It is noteworthy that these associations might be ameliorated through the adoption of a low-sodium dietary regimen.
Collapse
Affiliation(s)
- YuHeng Cao
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - YunJie Liu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - MengTing Ma
- Sichuan Center for Disease Control and Prevention, Nutrition and Food Hygiene Institute, Chengdu, 610041, Sichuan, China
| | - JiaRui Cai
- School of Public Health, Faculty of Medicine, Imperial College London, SW7 2BX, London, United Kingdom
| | - MengMeng Liu
- Sichuan Center for Disease Control and Prevention, Nutrition and Food Hygiene Institute, Chengdu, 610041, Sichuan, China
| | - Rui Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - YunDi Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ling Yan
- Sichuan Center for Disease Control and Prevention, Nutrition and Food Hygiene Institute, Chengdu, 610041, Sichuan, China
| | - YueRan Cao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - ZhenMi Liu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - JiaQiang Liao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
Sun F, Gong X, Wei L, Zhang Y, Ge M, Xiong L. Assessing the impact of short-term ozone exposure on excess deaths from cardiovascular disease: a multi-pollutant model in Nanjing, China's Yangtze River Delta. Front Public Health 2024; 12:1353384. [PMID: 38939565 PMCID: PMC11208627 DOI: 10.3389/fpubh.2024.1353384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Background Ozone pollution is associated with cardiovascular disease mortality, and there is a high correlation between different pollutants. This study aimed to assess the association between ozone and cardiovascular disease deaths and the resulting disease burden in Nanjing, China. Methods A total of 151,609 deaths from cardiovascular disease were included in Nanjing, China from 2013 to 2021. Daily data on meteorological and air pollution were collected to apply a generalized additional model with multiple pollutants to perform exposure-response analyses, stratification analysis, and evaluation of excess deaths using various standards. Results In the multi-pollutant model, an increase of 10 μg/m3 in O3 was significantly associated with a 0.81% (95%CI: 0.49, 1.12%) increase in cardiovascular disease deaths in lag05. The correlation weakened in both the single-pollutant model and two-pollutant models, but remained more pronounced in females, the older group, and during warm seasons. From 2013 to 2021, the number of excess deaths attributed to ozone exposure in cardiovascular disease continued to rise with an increase in ozone concentration in Nanjing. If the ozone concentration were to be reduced to the WHO standard and the minimum level, the number of deaths would decrease by 1,736 and 10,882, respectively. Conclusion The risk of death and excess deaths from cardiovascular disease due to ozone exposure increases with higher ozone concentration. Reducing ozone concentration to meet WHO standards or lower can provide greater cardiovascular disease health benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Liling Xiong
- Department of Environment Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
29
|
Pu F, Chen W, Li C, Fu J, Gao W, Ma C, Cao X, Zhang L, Hao M, Zhou J, Huang R, Ma Y, Hu K, Liu Z. Heterogeneous associations of multiplexed environmental factors and multidimensional aging metrics. Nat Commun 2024; 15:4921. [PMID: 38858361 PMCID: PMC11164970 DOI: 10.1038/s41467-024-49283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
Complicated associations between multiplexed environmental factors and aging are poorly understood. We manipulated aging using multidimensional metrics such as phenotypic age, brain age, and brain volumes in the UK Biobank. Weighted quantile sum regression was used to examine the relative individual contributions of multiplexed environmental factors to aging, and self-organizing maps (SOMs) were used to examine joint effects. Air pollution presented a relatively large contribution in most cases. We also found fair heterogeneities in which the same environmental factor contributed inconsistently to different aging metrics. Particulate matter contributed the most to variance in aging, while noise and green space showed considerable contribution to brain volumes. SOM identified five subpopulations with distinct environmental exposure patterns and the air pollution subpopulation had the worst aging status. This study reveals the heterogeneous associations of multiplexed environmental factors with multidimensional aging metrics and serves as a proof of concept when analyzing multifactors and multiple outcomes.
Collapse
Affiliation(s)
- Fan Pu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weiran Chen
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Chenxi Li
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jingqiao Fu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Weijing Gao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Chao Ma
- School of Economics and Management, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Xingqi Cao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Lingzhi Zhang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jin Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Rong Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yanan Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University; Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Kejia Hu
- Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
30
|
He Q, Sun M, Wang Y, Li G, Zhao H, Ma Z, Feng Z, Li T, Han Q, Sun N, Li L, Shen Y. Association between residential greenness and incident delirium: A prospective cohort study in the UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173341. [PMID: 38797415 DOI: 10.1016/j.scitotenv.2024.173341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Contemporary environmental health investigations have identified green space as an emerging factor with promising prospects for bolstering human well-being. The incidence of delirium increases significantly with age and is fatal. To date, there is no research elucidating the enduring implications of green spaces on the occurrence of delirium. Therefore, we explored the relationship between residential greenness and the incidence of delirium in a large community sample from the UK Biobank. METHODS Enrollment of participants spanned from 2006 to 2010. Assessment of residential greenness involved the land coverage percentage of green space within a buffer range of 300 m and 1000 m. The relationship between residential greenness and delirium was assessed using the Cox proportional hazards model. Further, we investigated the potential mediating effects of physical activity, particulate matter (PM) with diameters ≤2.5 (PM2.5), and nitrogen oxides (NOx). RESULTS Of 232,678 participants, 3722 participants were diagnosed with delirium during a 13.4-year follow-up period. Compared with participants with green space coverage at a 300 m buffer in the lowest quartile (Q1), those in the highest quartile (Q4) had 15 % (Hazard ratio [HR] = 0.85, 95 % confidence interval [CI]: 0.77, 0.94) lower risk of incident delirium. As for the 1000 m buffer, those in Q4 had a 16 % (HR = 0.84, 95 % CI: 0.76, 0.93) lower risk of incident delirium. The relationship between green space in the 300 m buffer and delirium was mediated partially by physical activity (2.07 %) and PM2.5(49.90 %). Comparable findings were noted for the green space percentage within the 1000 m buffer. CONCLUSIONS Our results revealed that long-term exposure to residential greenness was related to a lower risk of delirium. Air pollution and physical activity exerted a significant mediating influence in shaping this association.
Collapse
Affiliation(s)
- Qida He
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Mengtong Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Guoxian Li
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Hanqing Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Ze Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Zhaolong Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Tongxing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Qiang Han
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Na Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China
| | - Linyan Li
- School of Data Science, City University of Hong Kong, 999077, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, 999077, Hong Kong.
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province, PR China.
| |
Collapse
|
31
|
Lin F, Lin Y, Chen L, Huang T, Lin T, He J, Lu X, Chen X, Wang Y, Ye Q, Cai G. Association of physical activity pattern and risk of Parkinson's disease. NPJ Digit Med 2024; 7:137. [PMID: 38783073 PMCID: PMC11116521 DOI: 10.1038/s41746-024-01135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Increasing evidence suggests an association between exercise duration and Parkinson's disease. However, no high-quality prospective evidence exists confirming whether differences exist between the two modes of exercise, weekend warrior and equal distribution of exercise duration, and Parkinson's risk. Hence, this study aimed to explore the association between different exercise patterns and Parkinson's risk using exercise data from the UK Biobank. The study analyzed data from 89,400 UK Biobank participants without Parkinson's disease. Exercise data were collected using the Axivity AX3 wrist-worn triaxial accelerometer. Participants were categorized into three groups: inactive, regularly active, and engaged in the weekend warrior (WW) pattern. The relationship between these exercise patterns and Parkinson's risk was assessed using a multifactorial Cox model. During a mean follow-up of 12.32 years, 329 individuals developed Parkinson's disease. In a multifactorial Cox model, using the World Health Organization-recommended threshold of 150 min of moderate-to-vigorous physical activity per week, both the active WW group [hazard ratio (HR) = 0.58; 95% confidence interval (CI) = 0.43-0.78; P < 0.001] and the active regular group (HR = 0.44; 95% CI = 0.34-0.57; P < 0.001) exhibited a lower risk of developing Parkinson's disease compared with the inactive group. Further, no statistically significant difference was observed between the active WW and the active regular groups (HR = 0.77; 95% CI = 0.56-1.05; P = 0.099). In conclusion, in this cohort study, both the WW exercise pattern and an equal distribution of exercise hours were equally effective in reducing Parkinson's risk.
Collapse
Affiliation(s)
- Fabin Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yixiang Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Lina Chen
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Tingting Huang
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Tianxin Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Jiarui He
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Xiaoyang Lu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Xiaochun Chen
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Yingqing Wang
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China.
| | - Qinyong Ye
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China.
| | - Guoen Cai
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China.
| |
Collapse
|
32
|
Zeng M, Lin Z, Li G, Tang J, Wu Y, Zhang H, Liu T. Risk/benefit trade-off of habitual physical activity and air pollution on mortality: A large-scale prospective analysis in the UK Biobank. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116471. [PMID: 38772143 DOI: 10.1016/j.ecoenv.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Previous observational studies have indicated associations of physical activity (PA) and air pollution with mortality. A few studies have evaluated air pollution and PA interactions for health. Still, the trade-off between the harmful effects of air pollution exposure and the protective effects of PA remains controversial and unclear. OBJECTIVE This study aimed to investigate the joint association of air pollution and PA with mortality risks. METHODS This prospective cohort study included 322,092 participants from 2006 to 2010 and followed up to 2021 in the UK Biobank study. The concentrations of air pollutants (2006-2010), including particulate matter (PM) with diameters <=2.5 mm (PM2.5), <=10 mm (PM10), and between 2.5 and 10 mm (PM2.5-10), and nitrogen oxides (NO2 and NOx) were obtained. Information on PA measured by the International Physical Activity Questionnaire short form (2006-2010) and wrist-worn accelerometer (2013-2015) were collected. All-cause and cause-specific mortalities were recorded. Cox proportional hazard models were used to investigate the associations of air pollution exposure and PA with mortality risks. The additive and multiplicative interactions were also examined. RESULTS During a mean follow-up of 11.83 years, 16629 deaths were recorded. Compared with participants reporting low PA, higher PA was negatively associated with all-cause [hazard ratio (HR), 0.74; 95% CI, 0.71-0.78], cancer (HR, 0.85; 95% CI, 0.80-0.90), CVD (HR, 0.79; 95% CI, 0.71-0.87), and respiratory disease-specific mortality (HR, 0.51; 95% CI, 0.44-0.60). Exposure to PM2.5 (HR, 1.05; 95% CI, 1.00-1.09) and NOx (HR, 1.06; 95% CI, 1.02-1.10) was connected with increased all-cause mortality risk, and significant PM2.5-associated elevated risks for CVD mortality and NOx-associated elevated risks for respiratory disease mortality were observed. No obvious interaction between PA and PM2.5 or NOx exposure was detected. CONCLUSIONS Our study provides additional evidence that higher PA and lower air pollutant levels are independently connected with reduced mortality risk. The benefits of PA are not significantly affected by long-term air pollution exposure, indicating PA can be recommended to prevent mortality regardless of air pollution levels. Our findings highlight the importance of public health policies and interventions facilitating PA and reducing air pollution in reducing mortality risks and maximizing health benefits. Future investigation is urgently needed to identify these findings in areas with severe air pollution conditions.
Collapse
Affiliation(s)
- Min Zeng
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jinxin Tang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yanlin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Hong Zhang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People's Republic of China.
| |
Collapse
|
33
|
Han W, Zhang J, Xu Z, Yang T, Huang J, Beevers S, Kelly F, Li G. Could the association between ozone and arterial stiffness be modified by fish oil supplementation? ENVIRONMENTAL RESEARCH 2024; 249:118354. [PMID: 38325778 DOI: 10.1016/j.envres.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/10/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Arterial stiffness (AS) is an important predicting factor for cardiovascular disease. However, no epidemiological studies have ever explored the mediating role of biomarkers in the association between ozone and AS, nor weather fish oil modified such association. METHODS Study participants were drawn from the UK biobank, and a total of 95,699 middle-aged and older adults were included in this study. Ozone was obtained from Community Multiscale Air Quality (CMAQ) model matched to residential addresses, fish oil from self-reported intake, and arterial stiffness was based on device measurements. First, we applied a double robust approach to explore the association between ozone or fish oil intake and arterial stiffness, adjusting for potential confounders at the individual and regional levels. Then, how triglycerides, apolipoprotein B (Apo B)/apolipoprotein A (ApoA) and non-high-density lipoprotein cholesterol (Non-HDL-C) mediate the relationship between ozone and AS. Last, the modifying role of fish oil was further explored by stratified analysis. RESULTS The mean age of participants was 55 years; annual average ozone exposure was associated with ASI (beta:0.189 [95%CI: 0.146 to 0.233], P < 0.001), and compared to participants who did not consume fish oil, fish oil users had a lower ASI (beta: 0.061 [95%CI: -0.111 to -0.010], P = 0.016). The relationship between ozone exposure and AS was mediated by triglycerides, ApoB/ApoA, and Non-HDL-C with mediation proportions ranging from 10.90% to 18.30%. Stratified analysis showed lower estimates on the ozone-AS relationship in fish oil users (P = 0.011). CONCLUSION Ozone exposure was associated with higher levels of arterial stiffness, in contrast to fish oil consumption, which showed a protective association. The association between ozone exposure and arterial stiffness was partially mediated by some biomarkers. In the general population, fish oil consumption might provide protection against ozone-related AS.
Collapse
Affiliation(s)
- Wenxing Han
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jin Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing, China.
| | - Sean Beevers
- Environmental Research group, school of public health, Imperial college London, London, UK.
| | - Frank Kelly
- Environmental Research group, school of public health, Imperial college London, London, UK.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Environmental Research group, school of public health, Imperial college London, London, UK.
| |
Collapse
|
34
|
Feng C, Yang B, Wang Z, Zhang J, Fu Y, Yu B, Dong S, Ma H, Liu H, Zeng H, Reinhardt JD, Yang S. Relationship of long-term exposure to air pollutant mixture with metabolic-associated fatty liver disease and subtypes: A retrospective cohort study of the employed population of Southwest China. ENVIRONMENT INTERNATIONAL 2024; 188:108734. [PMID: 38744043 DOI: 10.1016/j.envint.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND While evidence suggests that PM2.5 is associated with overall prevalence of Metabolic (dysfunction)-Associated Fatty Liver Disease (MAFLD), effects of comprehensive air pollutant mixture on MAFLD and its subtypes remain unclear. OBJECTIVE To investigate individual and joint effects of long-term exposure to comprehensive air pollutant mixture on MAFLD and its subtypes. METHODS Data of 27,699 participants of the Chinese Cohort of Working Adults were analyzed. MAFLD and subtypes, including overweight/obesity, lean, and diabetes MAFLD, were diagnosed according to clinical guidelines. Concentrations of NO3-, SO42-, NH4+, organic matter (OM), black carbon (BC), PM2.5, SO2, NO2, O3 and CO were estimated as a weighted average over participants' residential and work addresses for the three years preceding outcome assessment. Logistic regression and weighted quantile sum regression were used to estimate individual and joint effects of air pollutant mixture on presence of MAFLD. RESULTS Overall prevalence of MAFLD was 26.6 % with overweight/obesity, lean, and diabetes MAFLD accounting for 92.0 %, 6.4 %, and 1.6 %, respectively. Exposure to SO42-, NO3-, NH4+, BC, PM2.5, NO2, O3and CO was significantly associated with overall MAFLD, overweight/obesity MAFLD, or lean MAFLD in single pollutant models. Joint effects of air pollutant mixture were observed for overall MAFLD (OR = 1.10 [95 % CI: 1.03, 1.17]), overweight/obesity (1.09 [1.02, 1.15]), and lean MAFLD (1.63 [1.28, 2.07]). Contributions of individual air pollutants to joint effects were dominated by CO in overall and overweight/obesity MAFLD (Weights were 42.31 % and 45.87 %, respectively), while SO42- (36.34 %), SO2 (21.00 %) and BC (12.38 %) were more important in lean MAFLD. Being male, aged above 45 years and smoking increased joint effects of air pollutant mixture on overall MAFLD. CONCLUSIONS Air pollutant mixture was associated with MAFLD, particularly the lean MAFLD subtype. CO played a pivotal role in both overall and overweight/obesity MAFLD, whereas SO42- were associated with lean MAFLD.
Collapse
Affiliation(s)
- Chuanteng Feng
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Zihang Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyun Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Honglian Zeng
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; Department of Rehabilitation Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing 210009, China; Department of Health Sciences and Medicine, University of Lucerne, Lucerne 6002, Switzerland.
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan 430079, China.
| |
Collapse
|
35
|
Wu Y, Gasevic D, Wen B, Yang Z, Yu P, Zhou G, Zhang Y, Song J, Liu H, Li S, Guo Y. Floods and cause-specific mortality in the UK: a nested case-control study. BMC Med 2024; 22:188. [PMID: 38715068 PMCID: PMC11077877 DOI: 10.1186/s12916-024-03412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Floods are the most frequent weather-related disaster, causing significant health impacts worldwide. Limited studies have examined the long-term consequences of flooding exposure. METHODS Flood data were retrieved from the Dartmouth Flood Observatory and linked with health data from 499,487 UK Biobank participants. To calculate the annual cumulative flooding exposure, we multiplied the duration and severity of each flood event and then summed these values for each year. We conducted a nested case-control analysis to evaluate the long-term effect of flooding exposure on all-cause and cause-specific mortality. Each case was matched with eight controls. Flooding exposure was modelled using a distributed lag non-linear model to capture its nonlinear and lagged effects. RESULTS The risk of all-cause mortality increased by 6.7% (odds ratio (OR): 1.067, 95% confidence interval (CI): 1.063-1.071) for every unit increase in flood index after confounders had been controlled for. The mortality risk from neurological and mental diseases was negligible in the current year, but strongest in the lag years 3 and 4. By contrast, the risk of mortality from suicide was the strongest in the current year (OR: 1.018, 95% CI: 1.008-1.028), and attenuated to lag year 5. Participants with higher levels of education and household income had a higher estimated risk of death from most causes whereas the risk of suicide-related mortality was higher among participants who were obese, had lower household income, engaged in less physical activity, were non-moderate alcohol consumers, and those living in more deprived areas. CONCLUSIONS Long-term exposure to floods is associated with an increased risk of mortality. The health consequences of flooding exposure would vary across different periods after the event, with different profiles of vulnerable populations identified for different causes of death. These findings contribute to a better understanding of the long-term impacts of flooding exposure.
Collapse
Affiliation(s)
- Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Bo Wen
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Zhengyu Yang
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Guowei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yan Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shanshan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuming Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
36
|
Zhang C, Wang Y, Xie W, Zhang J, Tian T, Zhu Q, Fang X, Sui J, Pan D, Xia H, Wang S, Sun G, Dai Y. Sex differences and dietary patterns in the association of air pollutants and hypertension. BMC Public Health 2024; 24:1134. [PMID: 38654317 PMCID: PMC11040935 DOI: 10.1186/s12889-024-18620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Hypertension is one of the major public health problems in China. Limited evidence exists regarding sex differences in the association between hypertension and air pollutants, as well as the impact of dietary factors on the relationship between air pollutants and hypertension. The aim of this study was to investigate the sex-specific effects of dietary patterns on the association between fine particulate matter (PM2.5), ozone(O3) and hypertension in adults residing in Jiangsu Province of China. METHODS A total of 3189 adults from the 2015 China Adult Chronic Disease and Nutrition Surveillance in Jiangsu Province were included in this study. PM2.5 and O3 concentrations were estimated using satellite space-time models and assigned to each participant. Dietary patterns were determined by reduced rank regression (RRR), and multivariate logistic regression was used to assess the associations of the obtained dietary patterns with air pollutants and hypertension risk. RESULTS After adjusting for confounding variables, we found that males were more sensitive to long-term exposure to PM2.5 (Odds ratio (OR) = 1.42 95%CI:1.08,1.87), and females were more sensitive to long-term exposure to O3 (OR = 1.61 95%CI:1.15,2.23). Traditional southern pattern identified through RRR exhibited a protective effect against hypertension in males (OR = 0.73 95%CI: 0.56,1.00). The results of the interaction between dietary pattern score and PM2.5 revealed that adherence to traditional southern pattern was significantly associated with a decreased risk of hypertension in males (P < 0.05), while no significant association was observed among females. CONCLUSIONS Our findings suggested that sex differences existed in the association between dietary patterns, air pollutants and hypertension. Furthermore, we found that adherence to traditional southern pattern may mitigate the risk of long-term PM2.5 exposure-induced hypertension in males.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, China
| | - Wei Xie
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, 210009, Nanjing, China
| | - Jingxian Zhang
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, 210009, Nanjing, China
| | - Ting Tian
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, 210009, Nanjing, China
| | - Qianrang Zhu
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, 210009, Nanjing, China
| | - Xinyu Fang
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, 210009, Nanjing, China
| | - Jing Sui
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, China
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, 211544, Nanjing, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, China.
| | - Yue Dai
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, China.
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, 210009, Nanjing, China.
| |
Collapse
|
37
|
Fan C, Wang W, Wang S, Zhou W, Ling L. Multiple dietary patterns and the association between long-term air pollution exposure with type 2 diabetes risk: Findings from UK Biobank cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116274. [PMID: 38564865 DOI: 10.1016/j.ecoenv.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Evidence of modifying effect of various dietary patterns (DPs) on risk of type 2 diabetes (T2D) induced by long-term exposure to air pollution (AP) is still rather lacking, which therefore we aimed to explore in this study. METHODS We included 78,230 UK Biobank participants aged 40-70 years with at least 2 typical 24-hour dietary assessments and without baseline diabetes. The annual average concentration of particulate matter with diameter micrometers ≤2.5 (PM2.5) and ≤10 (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOX) estimated by land use regression model was the alternative proxy of long-term AP exposure. Three well-known prior DPs such as Mediterranean diet (MED), dietary approaches to stop hypertension diet (DASH), and empirical dietary inflammatory pattern (EDIP), as well as three posterior DPs derived by the rank reduced regression model were used to capture participants' dietary habits. Cox regression models were used to estimate AP-T2D and DP-T2D associations. Modifying effect of DPs on AP-T2D association was assessed using stratified analysis and heterogeneity test. RESULTS During a median follow-up 12.19 years, 1,693 participants developed T2D. PM2.5, PM10, NO2, and NOX significantly increased the T2D risk (P <0.05), with hazard ratio (HR) and 95% confidence interval (95% CI) for per interquartile range increase being 1.09 (1.02,1.15), 1.04 (1.00, 1.09), 1.11 (1.04, 1.18), and 1.08 (1.03, 1.14), respectively. Comparing high with low adherence, healthy DPs were associated with a 14-41% lower T2D risk. Participants with high adherence to MED, DASH, and anti-EDIP, alongside the posterior anti-oxidative dietary pattern (AODP) had attenuated and statistically non-significant NO2-T2D and NOX-T2D associations (Pmodify <0.05). CONCLUSIONS Multiple forms of healthy DPs help reduce the T2D risk associated with long-term exposure to NO2 and NOX. Our findings indicate that adherence to healthy DPs is a feasible T2D prevention strategy for people long-term suffering from NO2 and NOX pollution.
Collapse
Affiliation(s)
- Chaonan Fan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wenjuan Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shanze Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wensu Zhou
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Division of Clinical Research Design, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Jia Y, He Z, Liu F, Li J, Liang F, Huang K, Chen J, Cao J, Li H, Shen C, Yu L, Liu X, Hu D, Huang J, Zhao Y, Liu Y, Lu X, Gu D, Chen S. Dietary intake changes the associations between long-term exposure to fine particulate matter and the surrogate indicators of insulin resistance. ENVIRONMENT INTERNATIONAL 2024; 186:108626. [PMID: 38626493 DOI: 10.1016/j.envint.2024.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
The relationship of fine particulate matter (PM2.5) exposure and insulin resistance remains inclusive. Our study aimed to investigate this association in the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR). Specifically, we examined the associations between long-term PM2.5 exposure and three surrogate indicators of insulin resistance: the triglyceride-glucose index (TyG), TyG with waist circumference (TyG-WC) and metabolic score for insulin resistance (METS-IR). Additionally, we explored potential effect modification of dietary intake and components. Generalized estimating equations were used to evaluate the associations between PM2.5 and the indicators with an unbalanced repeated measurement design. Our analysis incorporated a total of 162,060 observations from 99,329 participants. Each 10 μg/m3 increment of PM2.5 was associated with an increase of 0.22 % [95 % confidence interval (CI): 0.20 %, 0.25 %], 1.60 % (95 % CI: 1.53 %, 1.67 %), and 2.05 % (95 % CI: 1.96 %, 2.14 %) in TyG, TyG-WC, and METS-IR, respectively. These associations were attenuated among participants with a healthy diet, particularly those with sufficient intake of fruit and vegetable, fish or tea (pinteraction < 0.0028). For instance, among participants with a healthy diet, TyG increased by 0.11 % (95 % CI: 0.08 %, 0.15 %) per 10 μg/m3 PM2.5 increment, significantly lower than the association observed in those with an unhealthy diet. The findings of this study emphasize the potential of a healthy diet to mitigate these associations, highlighting the urgency for improving air quality and implementing dietary interventions among susceptible populations in China.
Collapse
Affiliation(s)
- Yanhui Jia
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China; Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Zhi He
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keyong Huang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Jichun Chen
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Jie Cao
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Hongfan Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Chong Shen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Yu
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350014, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou 510080, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University, Shenzhen 518060, China
| | - Jianfeng Huang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Yingxin Zhao
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong First Medical University (Shandong Academy of Medicine Sciences), Jinan 271099, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China; School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China.
| |
Collapse
|
39
|
Dong HJ, Ran P, Liao DQ, Chen XB, Chen G, Ou YQ, Li ZH. Long-term exposure to air pollutants and new-onset migraine: A large prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116163. [PMID: 38442473 DOI: 10.1016/j.ecoenv.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUNDS Short-term exposure to air pollutants increases the risk of migraine, but the long-term impacts of exposure to multiple pollutants on migraine have not been established. The aim of this large prospective cohort study was to explore these links. METHODS A total of 458,664 participants who were free of migraine at baseline from the UK Biobank were studied. Cox proportional hazards models were used to estimate the risk of new-onset migraine from combined long-term exposure to four pollutants, quantified as an air pollution score using principal component analysis. RESULTS During a median (IQR) follow-up of 12.5 (11.8, 13.2) years, a total of 5417 new-onset migraine cases were documented. Long-term exposure to multiple air pollutants was associated with an increased risk of new-onset migraine, as indicated by an increased in the SDs of PM2.5 (hazard ratio (HR): 1.04, 95% CI: 1.01-1.06, P = 0.009), PM10 (HR: 1.07, 95% CI: 1.04-1.10, P < 0.001), NO2 (HR: 1.10, 95% CI: 1.07-1.13, P < 0.001) and NOx (HR: 1.04, 95% CI: 1.01-1.07, P = 0.005) in the main model. The air pollution score showed a doseresponse association with an increased risk of new-onset migraine. Similarly, compared with those of the lowest tertile, the HRs (95% CI) of new-onset migraine were 1.11 (95% CI: 1.04-1.19, P = 0.002) and 1.17 (95% CI: 1.09-1.26, P < 0.001) in tertiles 2 and 3, respectively, according to the main model (P trend < 0.001). CONCLUSION Long-term individual and joint exposure to multiple air pollutants is associated with an increased risk of new-onset migraine.
Collapse
Affiliation(s)
- Hao-Jian Dong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Coronary Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Peng Ran
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Coronary Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dan-Qing Liao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Bo Chen
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guo Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Coronary Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan-Qiu Ou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Coronary Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Zhou J, Wang X, Tang R, Kou M, Ma H, Li X, Heianza Y, Fonseca V, Qi L. Degree of joint risk factor control and hazard of mortality in diabetes patients: a matched cohort study in UK Biobank. BMC Med 2024; 22:108. [PMID: 38454415 PMCID: PMC10921580 DOI: 10.1186/s12916-024-03288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Diabetes patients are at higher risk for mortality than the general population; however, little is known about whether the excess mortality risk associated with diabetes could be mitigated or nullified via controlling for risk factors. METHODS We included 18,535 diabetes patients and 91,745 matched individuals without diabetes without baseline cancer or cardiovascular disease (CVD), followed up from 2006 to 2021. The main exposure was the number of optimized risk factors including glycated hemoglobin < 53 mmol/mole, systolic blood pressure < 140 mmHg and diastolic blood pressure < 90 mmHg, no albuminuria, non-current smoking and low-density lipoprotein cholesterol (LDL-C) < 2.5 mmol/L. We used Cox proportional hazards models to explore the association of the degree of risk factor control with all-cause mortality, cancer mortality, CVD mortality and other mortality. RESULTS Each additional risk factor control was associated with a 16, 10, 21 and 15% lower risk of all-cause mortality, cancer mortality, CVD mortality and other mortality, respectively. Optimal risk factors control (controlling 5 risk factors) was associated with a 50% (HR 0.50, 95% CI 0.41-0.62), 74% (HR 0.26, 95% CI 0.16-0.43) and 38% (HR 0.62, 95% CI 0.44-0.87) lower risk of all-cause mortality, CVD mortality and other mortality, respectively. Diabetes patients with 4, 3 and 5 or more controlled risk factors, respectively, showed no excess risk of all-cause mortality, cancer mortality and CVD mortality compared to matched non-diabetes patients. CONCLUSIONS The results from this study indicate that optimal risk factor control may eliminate diabetes-related excess risk of all-cause mortality, CVD mortality and other mortality.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xuan Wang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Rui Tang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Minghao Kou
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Hao Ma
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Xiang Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Yoriko Heianza
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Vivian Fonseca
- Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
41
|
Chen Y, Chen S, Zhang L, Kang W, Lin G, Yang Q. Association between ambient air pollutants and short-term mortality risks during 2015-2019 in Guangzhou, China. Front Public Health 2024; 12:1359567. [PMID: 38500735 PMCID: PMC10944870 DOI: 10.3389/fpubh.2024.1359567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
With the development of technology and industry, the problem of global air pollution has become difficult to ignore. We investigated the association between air pollutant concentrations and daily all-cause mortality and stratified the analysis by sex, age, and season. Data for six air pollutants [fine particulate matter (PM2.5), inhalable particles (PM10), nitric dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO)] and daily mortality rates were collected from 2015 to 2019 in Guangzhou, China. A time-series study using a quasi-Poisson generalized additive model was used to examine the relationships between environmental pollutant concentrations and mortality. Mortality data for 296,939 individuals were included in the analysis. The results showed that an increase of 10 μg/m3 in the concentrations of PM2.5, PM10, SO2, O3, NO2, and CO corresponded to 0.84% [95% confidence interval (CI): 0.47, 1.21%], 0.70% (0.44, 0.96%), 3.59% (1.77, 5.43%), 0.21% (0.05, 0.36%), 1.06% (0.70, 1.41%), and 0.05% (0.02, 0.09%), respectively. The effects of the six air pollutants were more significant for male individuals than female individuals, the cool season than the warm season, and people 75 years or older than those younger than 75 years. PM2.5, PM10, SO2, and NO2 were all associated with neoplasms and circulatory and respiratory diseases. The two-pollutant models found that PM2.5, PM10, and NO2 may independently affect the risk of mortality. The results showed that exposure to PM2.5, PM10 and NO2 may increase the risk of daily all-cause excessive mortality in Guangzhou.
Collapse
Affiliation(s)
- Yuyang Chen
- School of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Sili Chen
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Lei Zhang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Weishan Kang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Guozhen Lin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Qiaoyuan Yang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Chen C, Chen H, Kaufman JS, Benmarhnia T. Differential Participation, a Potential Cause of Spurious Associations in Observational Cohorts in Environmental Epidemiology. Epidemiology 2024; 35:174-184. [PMID: 38290140 PMCID: PMC10826917 DOI: 10.1097/ede.0000000000001711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Differential participation in observational cohorts may lead to biased or even reversed estimates. In this article, we describe the potential for differential participation in cohorts studying the etiologic effects of long-term environmental exposures. Such cohorts are prone to differential participation because only those who survived until the start of follow-up and were healthy enough before enrollment will participate, and many environmental exposures are prevalent in the target population and connected to participation via factors such as geography or frailty. The relatively modest effect sizes of most environmental exposures also make any bias induced by differential participation particularly important to understand and account for. We discuss key points to consider for evaluating differential participation and use causal graphs to describe two example mechanisms through which differential participation can occur in health studies of long-term environmental exposures. We use a real-life example, the Canadian Community Health Survey cohort, to illustrate the non-negligible bias due to differential participation. We also demonstrate that implementing a simple washout period may reduce the bias and recover more valid results if the effect of interest is constant over time. Furthermore, we implement simulation scenarios to confirm the plausibility of the two mechanisms causing bias and the utility of the washout method. Since the existence of differential participation can be difficult to diagnose with traditional analytical approaches that calculate a summary effect estimate, we encourage researchers to systematically investigate the presence of time-varying effect estimates and potential spurious patterns (especially in initial periods in the setting of differential participation).
Collapse
Affiliation(s)
- Chen Chen
- From the Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA
| | - Hong Chen
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jay S. Kaufman
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Tarik Benmarhnia
- From the Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA
| |
Collapse
|
43
|
Li W, Wang W. Causal effects of exposure to ambient air pollution on cancer risk: Insights from genetic evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168843. [PMID: 38029998 DOI: 10.1016/j.scitotenv.2023.168843] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Air pollution has been increasingly linked to cancer risk. However, the genetic causality between air pollution and cancer risk remains poorly understood. To elucidate the potential roles of air pollution (NOx, NO2, PM2.5, PM course, and PM10) in the risk of 18 specific-site cancers, large-scale genome-wide association studies with a novel Mendelian randomization (MR) method were employed. Our MR analyses revealed significant associations between certain air pollutants and specific types of cancer. Specifically, a positive association was observed between NOx exposure and squamous cell lung cancer (OR: 1.96, 95%CI: 1.07-3.59, p = 0.03) as well as esophageal cancer (OR: 1.002, 95%CI: 1.001-1.003, p = 0.005). Genetically predicted NO2 exposure was found to be a risk factor for endometrial cancer (OR 1.41, 95%CI: 1.03-1.94, p = 0.03) and ovarian cancer (OR: 1.49, 95%CI: 1.14-1.95, p = 0.0037). Additionally, genetically predicted PM2.5 exposure was associated with an increased risk of ER+ breast cancer (OR: 1.24, 95%CI: 1.03-1.5, p = 0.02) and ER- breast cancer (OR: 2.57, 95%CI: 1.05-6.3, p = 0.04). PM course exposure was identified as a risk factor for glioma (OR: 487.28, 95%CI: 13.08-18,153, p = 0.0008), while PM10 exposure exerted a detrimental effect on mesothelioma (OR: 114.75, 95%CI: 1.14-11,500.11, p = 0.04) and esophageal cancer (OR: 1.01, 95%CI: 1.007-1.02, p = 0.03). These findings underscored the importance of mitigating air pollution to reduce the burden of cancer and highlight the need for further investigations to elucidate the underlying mechanisms involved in these associations.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
44
|
Wu XF, Yin F, Wang GJ, Lu Y, Jin RF, Jin DL. Healthy eating index-2015 and its association with the prevalence of stroke among US adults. Sci Rep 2024; 14:3516. [PMID: 38347074 PMCID: PMC10861484 DOI: 10.1038/s41598-024-54087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/08/2024] [Indexed: 02/15/2024] Open
Abstract
This study aims to investigate the relationship between the healthy eating index (HEI) and the prevalence of stroke within a diverse United States population. Employing a cross-sectional design, we utilized data sourced from the National Health and Nutrition Examination Survey (NHANES). Dietary information was collected from participants and HEI scores were computed. NHANES employed stratified multistage probability sampling, with subsequent weighted analysis following NHANES analytical guidelines. Thorough comparisons were made regarding the baseline characteristics of individuals with and without stroke. Weighted multivariable logistic regression analysis and restricted cubic spline (RCS) methods were employed to ascertain the association between stroke risk and HEI, with LASSO regression utilized to identify dietary factors most closely linked to stroke risk. Additionally, we constructed a nomogram model incorporating key dietary factors and assessed its discriminatory capability using the receiver operating characteristic (ROC) curve. Our study encompassed 43,978 participants, representing an estimated 201 million U.S. residents. Participants with a history of stroke exhibited lower HEI scores than their non-stroke counterparts. Logistic regression analysis demonstrated a robust association between lower HEI scores and stroke, even after adjusting for confounding variables. RCS analysis indicated a nonlinear negative correlation between HEI and stroke risk. Furthermore, detailed subgroup analysis revealed a significant gender-based disparity in the impact of dietary quality on stroke risk, with females potentially benefiting more from dietary quality improvements. Sensitivity analysis using unweighted logistic regression yielded results consistent with our primary analysis. The nomogram model, based on key dietary factors identified through LASSO regression, demonstrated favorable discriminatory power, with an area under the curve (AUC) of 79.3% (95% CI 78.4-81.2%). Our findings suggest that higher HEI scores are inversely related to the risk of stroke, with potential greater benefits for women through dietary quality enhancement. These results underscore the importance of improving dietary quality for enhanced stroke prevention and treatment.
Collapse
Affiliation(s)
- Xiao-Fei Wu
- Department of Emergency Care Medicine, Suzhou Ninth People's Hospital, Suzhou, 215299, Jiangsu, China
| | - Fei Yin
- Department of Emergency Care Medicine, Suzhou Ninth People's Hospital, Suzhou, 215299, Jiangsu, China
| | - Gui-Jie Wang
- Department of Emergency Care Medicine, Suzhou Ninth People's Hospital, Suzhou, 215299, Jiangsu, China
| | - Ye Lu
- Department of Emergency Care Medicine, Suzhou Ninth People's Hospital, Suzhou, 215299, Jiangsu, China
| | - Rong-Fei Jin
- Department of Emergency Care Medicine, Suzhou Ninth People's Hospital, Suzhou, 215299, Jiangsu, China
| | - Dong-Lin Jin
- Department of Emergency Care Medicine, Suzhou Ninth People's Hospital, Suzhou, 215299, Jiangsu, China.
| |
Collapse
|
45
|
Lin F, Shi Y, Zheng J, Li Y, Chen X, Zou X, Hong Y, Chen K, Zeng Y, Ye Q, Chen X, Chen X, Wang Y, Cai G. Fish oil supplementation, physical activity and risk of incident Parkinson's disease: results of longitudinal analysis from the UK Biobank. Front Aging Neurosci 2024; 15:1304629. [PMID: 38348197 PMCID: PMC10859434 DOI: 10.3389/fnagi.2023.1304629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/31/2023] [Indexed: 02/15/2024] Open
Abstract
Objective Evidence on the individual and combined relationship of physical activity (PA) and fish oil supplement use on the incidence of Parkinson's disease (PD) risk remains lacking. Materials and methods This UK population-based prospective cohort study, involving 385,275 UK Biobank participants, collected PA and fish oil supplement data via touchscreen questionnaires. Using Cox proportional hazards models and restricted cubic splines to examined the associations between use of fish oil supplements, PA and PD risk. Results During a median 12.52-year follow-up, 2,131 participants incident PD. Analysis showed that fish oil supplement users had a lower PD risk [hazard ratio (HR), 0.89; 95% confidence interval (CI), 0.82-0.98]. The adjusted HRs for the PD incidence were 0.96 (95% CI, 0.95-0.98) for total PA; 0.93 (95% CI, 0.90-0.96) for moderate PA; 0.95 (95% CI, 0.91-0.99) for vigorous PA and 0.93 (95% CI, 0.89-0.98) for walking activity. Significant interactions were found between fish oil supplement use and total PA (P for interaction = 0.011), moderate PA (P for interaction = 0.015), and walking activity (P for interaction = 0.029) in relation to PD incidence. Conclusion Both fish oil supplement use and PA were associated with a reduced risk of PD, and the effect of PA in reducing the risk of PD was more pronounced when fish oil supplement was used.
Collapse
Affiliation(s)
- Fabin Lin
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yisen Shi
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Jiayi Zheng
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Yueping Li
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xuanjie Chen
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Xinyang Zou
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Yi Hong
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Ke Chen
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Yuqi Zeng
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinyan Chen
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yingqing Wang
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Institute of Clinical Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
46
|
Zheng G, Xia H, Shi H, Zheng D, Wang X, Ai B, Tian F, Lin H. Effect modification of dietary diversity on the association of air pollution with incidence, complications, and mortality of type 2 diabetes: Results from a large prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168314. [PMID: 37926247 DOI: 10.1016/j.scitotenv.2023.168314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND It remains unknown whether the dietary diversity score (DDS) could modify the association of long-term exposure to individual air pollutants and the mixture of various pollutants with the incidence, complications, and mortality of type 2 diabetes (T2D). METHODS We included 162,579 participants from the UK Biobank who had ≥ one 24-h dietary assessment and were free of diabetes or diabetes complications before their last response date of the 24-h dietary assessment. Exposure to benzene, NOx, NO2, SO2, PM10, and PM2.5 was estimated at each participant's residential location using a bilinear interpolation algorithm based on air dispersion models on a 1 km × 1 km grid. The DDS was calculated based on repeated 24-h dietary assessments. The outcomes were the incidence, complications, and mortality of T2D. Associations of individual pollutants and multiple pollutants mixtures with outcomes were assessed using Cox proportional hazards regression models and the quantile g-computation approach, respectively. We further stratified these analyses by DDS. RESULTS During a median of 10.1 years of follow-up, 2978 participants developed incident T2D, 1181 developed T2D complications, and 242 died due to T2D. Long-term single-pollutant and multi-pollutant exposure were associated with elevated risk of incidence, complications, and mortality of T2D. For example, for incident T2D, the hazard ratio and 95 % confidence interval for each quantile increase were 1.155 (1.095, 1.215) for the air pollution mixture. We observed significant interactions between air pollution (benzene, NOx, NO2, PM10, PM2.5, and the air pollution mixture) and DDS (P-interaction <0.05), with the corresponding associations being significantly weaker in adults with high DDS than in those with low DDS. CONCLUSION Higher dietary diversity may attenuate the harmful impacts of air pollution on T2D-related outcomes. A higher diversity diet could be used to prevent the onset and progression of T2D induced by long-term exposure to various air pollutants.
Collapse
Affiliation(s)
- Guzhengyue Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Hui Xia
- Center for Health Care, Longhua District, Shenzhen 518109, PR China
| | - Hui Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Dashan Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
47
|
Zhou J, Tang R, Wang X, Li X, Heianza Y, Qi L. Improvement of Social Isolation and Loneliness and Excess Mortality Risk in People With Obesity. JAMA Netw Open 2024; 7:e2352824. [PMID: 38252435 PMCID: PMC10804268 DOI: 10.1001/jamanetworkopen.2023.52824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Importance Individuals with obesity experience markedly higher levels of social isolation and loneliness than those without obesity, but little is known about whether improvement of social isolation or loneliness might attenuate obesity-related excess risk of mortality. Objective To investigate whether improvement of social isolation or loneliness is associated with lower obesity-related excess risk of mortality. Design, Setting, and Participants This cohort study included individuals without cancer or cardiovascular disease (CVD) at baseline from the UK Biobank with follow-up beginning in March 2006 and ending in November 2021. Main Outcomes and Measures All-cause, cancer-related, and CVD-related mortality were estimated. Results A total of 398 972 participants were included in this study (mean [SD] age, 55.85 [8.08] years; 220 469 [55.26%] women; 13 734 [3.44%] Asian, 14 179 [3.55%] multiracial, and 363 685 [91.16%] White participants). Overall, 93 357 (23.40%) had obesity, and 305 615 (76.60%) did not. During a median (IQR) follow-up of 12.73 (12.01-13.43) years, a total of 22 872 incident deaths were recorded. Compared with participants with obesity with an index of 2 or greater for social isolation, the multivariable adjusted hazard ratios (HRs) for all-cause mortality were 0.85 (95% CI, 0.79-0.91) and 0.74 (95% CI, 0.69-0.80) for participants with obesity and a social isolation index of 1 and 0, respectively (P for trend < .001); compared with participants with obesity and an index of 2 for loneliness, the HRs and 0.97 (95% CI, 0.89-1.06) and 0.86 (95% CI, 0.79-0.94) for participants with obesity and a loneliness index of 1 and 0, respectively (P for trend < .001). As the index of social isolation and loneliness went from highest to lowest, the HR for all-cause mortality decreased by 36% and 9%, respectively, in people with obesity compared with people without obesity using the multivariable model. Social isolation was ranked higher than loneliness, depression, anxiety, and lifestyle-related risk factors including alcohol, physical activity, and healthy diet for estimating the risks of all-cause mortality, cancer-related mortality, and CVD-related mortality. Conclusions and Relevance In this cohort study of UK Biobank participants, a lower index of social isolation or loneliness was associated with a decreased risk of all-cause mortality among people with obesity, and improvement of social isolation and loneliness attenuated obesity-related excess risk of all-cause mortality.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rui Tang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Xuan Wang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Xiang Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Yoriko Heianza
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
48
|
Bi J, Liu Q, Fan G, Fang Q, Zhang X, Qin X, Wu M, Wan Z, Lv Y, Wang Y, Song L. Exposure to organochlorine pesticides and polychlorinated biphenyls, adherence to an ideal cardiovascular health, and arterial stiffness among Chinese adults. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:10. [PMID: 38142250 DOI: 10.1007/s10653-023-01791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/17/2023] [Indexed: 12/25/2023]
Abstract
This study aimed to assess the relationships between exposure to individual organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and their mixture and arterial stiffness and explore whether adherence to an ideal cardiovascular health (CVH) could mitigate these associations. The cross-sectional study enrolled 1437 Chinese adults between March and May 2019 in Wuhan, China. OCPs and PCBs concentrations were measured using solid phase extraction coupled with gas chromatography-tandem mass spectrometry. Arterial stiffness was evaluated by brachial-ankle pulse wave velocity (baPWV). CVH was determined by three behavioral and four biological metrics and categorized as ideal, intermediate, and poor CVH. We applied generalized linear model and weighted quantile sum (WQS) regression to evaluate the associations of exposure to individual OCPs or PCBs and their mixture with baPWV, respectively. We found that participants with detectable levels of heptachlor epoxide, PCB-153, and PCB-180 had higher baPWV (β: 34.25, 95% CI 14.28-54.22; β: 27.64, 95% CI 7.90-47.38; and β: 30.51, 95% CI 10.68-50.35) than those with undetectable levels. In WQS regression, the mixture of OCPs and PCBs was related to a higher baPWV (β: 24.93, 95% CI 2.70-47.15). Compared with participants with ideal CVH and undetectable OCPs or PCBs levels, those with poor CVH and detectable OCPs or PCBs levels had the highest increase in baPWV (heptachlor epoxide: β: 147.94, 95% CI 112.52-183.55; PCB-153: β: 150.22, 95% CI 115.40-185.04; PCB-180: β: 147.02, 95% CI 111.66-182.38). Our findings suggested that individual OCPs, PCBs, and their mixture exposure were positively associated with arterial stiffness, and adherence to an ideal CVH may mitigate the adverse effect.
Collapse
Affiliation(s)
- Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xukuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
49
|
Chen X, Wang C, Dong Z, Luo H, Ye C, Li L, Wang E. Interplay of sleep patterns and oxidative balance score on total cardiovascular disease risk: Insights from the National Health and Nutrition Examination Survey 2005-2018. J Glob Health 2023; 13:04170. [PMID: 38085249 PMCID: PMC10715456 DOI: 10.7189/jogh.13.04170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Background Unhealthy lifestyle and diet may contribute to the development of cardiovascular disease (CVD), but limited evidence exists regarding the association between sleep patterns, oxidative stress-related exposures to diet and lifestyle, and CVD risk. Methods We analysed data from 10 212 adults in the National Health and Nutrition Examination Survey (NHANES) database (2005-2018). Self-report questionnaires were used to collect data on sleep duration, sleepiness, and trouble sleeping, classified into three categories: healthy, intermediate, and poor sleep patterns. Healthy sleep was defined as sleeping seven to nine hours per night with no self-reported sleepiness or trouble sleeping, while intermediate and poor sleep patterns indicated one and two to three sleep problems, respectively. The oxidative balance score (OBS) was calculated based on twenty oxidative stress-related exposures to dietary and lifestyle factors, with a higher score indicating greater antioxidant exposure. Survey-based multivariable-adjusted regression analysis was conducted to examine the association of sleep patterns or OBS alone and combined with the total and specific CVD risk. Results Participants with poor sleep patterns had a higher likelihood of developing CVD (odds ratio (OR) = 1.76; 95% confidence interval (CI) = 1.26-2.45, P < 0.05), while an inverse association was found between OBS and CVD risk (quartile (Q) 4 vs Q1: OR = 0.67; 95% CI = 0.47-0.94, P = 0.02, P for trend <0.05). There was an interaction between sleep patterns and OBS (P for interaction = 0.03). Participants with unhealthy (intermediate and poor) sleep patterns and pro-oxidant OBS (Q1 and Q2) were significantly associated with increased risk of total CVD (OR = 2.31; 95% CI = 1.42-3.74, P < 0.05), as well as angina and congestive heart failure, but not coronary heart disease (CHD). Stratified analysis showed that among individuals without hyperlipidaemia, participants with both unhealthy sleep patterns and pro-oxidant OBS exhibited a higher risk of CHD compared to those with healthy sleep patterns and antioxidative OBS. Conclusions Unhealthy sleep patterns and reduced oxidative balance are positively associated with an increased risk of overall and specific CVD. Interventions that target healthy sleep habits and antioxidant-rich diets and lifestyles may be important for reducing the risk of CVD.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Caiyi Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhitao Dong
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Luo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunyan Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
50
|
Yu B, Li M, Fu Y, Dong S, Fan Y, Ma C, Jia P, Yang S. Associations of screen use with physical activity and social capital amid the COVID-19 pandemic: A network analysis of youths in China. Prev Med 2023; 177:107780. [PMID: 37967619 DOI: 10.1016/j.ypmed.2023.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Inconsistent correlations of screen use with physical activity (PA) and social capital (SC) in youths have been observed in existing cross-sectional studies. This study aimed to elucidate associations among variables in screen use, PA, and SC domains during COVID-19, to improve the prediction and prevention of suboptimal health status in youths. An online survey based on the nationwide COVID-19 Impact on Lifestyle Change Survey (COINLICS) was conducted in China, and 10,082 youths reported their screen use, PA, and SC in the months immediately before, during, and after the COVID-19 lockdown. Cross-sectional and longitudinal network models were used to identify associations of variables in domains of screen use with PA and SC. Effect modifications of bridges and predictors in the associations were examined. The network models suggested that individual SC was a bridge that strongly connected other types of SC, and domains of screen use and PA before lockdown, while phone use became such a bridge during and after lockdown. More PC/TV use before lockdown predicted less household-related PA during lockdown (β = -0.142); more phone use during lockdown was a predictor for higher levels of household-related PA (β = 0.106), active transport (β = 0.096), and individual SC (β = 0.072) after lockdown. Phone use was negatively associated with PA through PC/TV use in the more phone use subgroup. Relationships among screen use, PA, and SC dynamically changed during COVID-19, and phone use that was identified as a bridge and a predictor may be the potential action point for health intervention in youths during lockdown.
Collapse
Affiliation(s)
- Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Manyao Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China
| | - Yao Fu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunzhe Fan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunlan Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China; Hubei Luojia Laboratory, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China.
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; School of Public Health, Wuhan University, Wuhan, China; Department of Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China; Respiratory department, Chengdu Seventh People's Hospital, Chengdu, China.
| |
Collapse
|