1
|
Paccoud O, Warris A, Puel A, Lanternier F. Inborn errors of immunity and invasive fungal infections: presentation and management. Curr Opin Infect Dis 2024; 37:464-473. [PMID: 39259685 DOI: 10.1097/qco.0000000000001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW We review the clinical presentations of invasive fungal infections in a selection of inborn errors of immunity. In addition, we review the particularities of their management, including antifungal therapy, prophylaxis, and immunomodulatory treatments. RECENT FINDINGS Patients with chronic granulomatous disease and with signal transducer and activator of transcription 3 (STAT3) deficiency are particularly prone to aspergillosis. Mold-active antifungal prophylaxis should be prescribed to all patients with chronic granulomatous disease, and in patients with STAT3 deficiency and underlying parenchymal lung disease. Invasive fungal infections are rare in patients with STAT1 gain-of-function mutations, while the clinical phenotype of caspase-associated recruitment domain-containing protein 9 deficiency encompasses a wide range of superficial and invasive fungal infections. Most patients with inborn errors of immunity and invasive fungal infections require prolonged durations of antifungals. Hematopoietic stem cell transplantation should be considered early for patients with chronic granulomatous disease, but results have been more mixed for other inborn errors of immunity with active invasive fungal infections. SUMMARY Inborn errors of immunity can confer increased susceptibility to a variety of invasive fungal infections, which can present with specific clinical and radiological features. Management of fungal infections in these patients is often challenging, and relies on a combination of antimicrobial prophylaxis, antifungal treatments, and immunomodulation.
Collapse
Affiliation(s)
- Olivier Paccoud
- Université Paris Cité, Department of Infectious Diseases and Tropical Medicine, Necker - Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), IHU Imagine, Paris, France
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK; Department of Paediatric Infectious Diseases, Great Ormond Street Hospital London, London, UK
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker - Enfants Malades University Hospital, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Université Paris Cité, Imagine Institute, Paris
| | - Fanny Lanternier
- Université Paris Cité, Department of Infectious Diseases and Tropical Medicine, Necker - Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), IHU Imagine, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Mycology Translational Research Group, Mycology Department, France
| |
Collapse
|
2
|
de Hoog S, Tang C, Zhou X, Jacomel B, Lustosa B, Song Y, Kandemir H, A Ahmed S, Zhou S, Belmonte-Lopes R, Quan Y, Feng P, A Vicente V, Kang Y. Fungal primary and opportunistic pathogens: an ecological perspective. FEMS Microbiol Rev 2024; 48:fuae022. [PMID: 39118380 PMCID: PMC11409879 DOI: 10.1093/femsre/fuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/02/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Fungal primary pathogenicity on vertebrates is here described as a deliberate strategy where the host plays a role in increasing the species' fitness. Opportunism is defined as the coincidental survival of an individual strain in host tissue using properties that are designed for life in an entirely different habitat. In that case, the host's infection control is largely based on innate immunity, and the etiologic agent is not transmitted after infection, and thus fungal evolution is not possible. Primary pathogens encompass two types, depending on their mode of transmission. Environmental pathogens have a double life cycle, and tend to become enzootic, adapted to a preferred host in a particular habitat. In contrast, pathogens that have a host-to-host transmission pattern are prone to shift to a neighboring, immunologically naive host, potentially leading to epidemics. Beyond these prototypical life cycles, some environmental fungi are able to make large leaps between dissimilar hosts/habitats, probably due to the similarity of key factors enabling survival in an entirely different niche, and thus allowing a change from opportunistic to primary pathogenicity. Mostly, such factors seem to be associated with extremotolerance.
Collapse
Affiliation(s)
- Sybren de Hoog
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Department of Medical Microbiology, Radboud University of Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Chao Tang
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Xin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Bruna Jacomel
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Canisius Wilhelmina Hospital, 6532SZ Nijmegen, The Netherlands
| | - Bruno Lustosa
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital,100034 Beijing, China
| | - Hazal Kandemir
- Westerdijk Fungal Biodiversity Center, 3584CT Utrecht, The Netherlands
| | - Sarah A Ahmed
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Shaoqin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Ricardo Belmonte-Lopes
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yu Quan
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Peiying Feng
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Vania A Vicente
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| |
Collapse
|
3
|
Zhou LH, Qiu WJ, Que CX, Cheng JH, Zhu RS, Huang JT, Jiang YK, Zhao HZ, Wang X, Cheng XJ, Zhu LP. A novel inherited CARD9 deficiency in an otherwise healthy woman with CNS candidiasis. Clin Immunol 2024; 265:110293. [PMID: 38936523 DOI: 10.1016/j.clim.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Patients with caspase-associated recruitment domain-9 (CARD9) deficiency are more likely to develop invasive fungal disease that affect CNS. However, the understanding of how Candida invades and persists in CNS is still limited. We here reported a 24-year-old woman who were previously immunocompetent and diagnosed with CNS candidiasis. A novel autosomal recessive homozygous CARD9 mutation (c.184 + 5G > T) from this patient was identified using whole genomic sequencing. Furthermore, we extensively characterized the impact of this CARD9 mutation on the host immune response in monocytes, neutrophils and CD4 + T cells, using single cell sequencing and in vitro experiments. Decreased pro-inflammatory cytokine productions of CD14 + monocyte, impaired Th17 cell differentiation, and defective neutrophil accumulation in CNS were found in this patient. In conclusion, this study proposed a novel mechanism of CNS candidiasis development. Patients with CNS candidiasis in absence of known immunodeficiencies should be analyzed for CARD9 gene mutation as the cause of invasive fungal infection predisposition.
Collapse
Affiliation(s)
- Ling-Hong Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Jia Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Xing Que
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Hui Cheng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong-Sheng Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun-Tian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying-Kui Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Zhen Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xun-Jia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Li-Ping Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
5
|
Perez-Perez D, Santos-Argumedo L, Rodriguez-Alba JC, Lopez-Herrera G. Analysis of LRBA pathogenic variants and the association with functional protein domains and clinical presentation. Pediatr Allergy Immunol 2024; 35:e14179. [PMID: 38923448 DOI: 10.1111/pai.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
LRBA is a cytoplasmic protein that is ubiquitously distributed. Almost all LRBA domains have a scaffolding function. In 2012, it was reported that homozygous variants in LRBA are associated with early-onset hypogammaglobulinemia. Since its discovery, more than 100 pathogenic variants have been reported. This review focuses on the variants reported in LRBA and their possible associations with clinical phenotypes. In this work LRBA deficiency cases reported more than 11 years ago have been revised. A database was constructed to analyze the type of variants, age at onset, clinical diagnosis, infections, autoimmune diseases, and cellular and immunoglobulin levels. The review of cases from 2012 to 2023 showed that LRBA deficiency was commonly diagnosed in patients with a clinical diagnosis of Common Variable Immunodeficiency, followed by enteropathy, neonatal diabetes mellitus, ALPS, and X-linked-like syndrome. Most cases show early onset of presentation at <6 years of age. Most cases lack protein expression, whereas hypogammaglobulinemia is observed in half of the cases, and IgG and IgA levels are isotypes reported at low levels. Patients with elevated IgG levels exhibited more than one autoimmune manifestation. Patients carrying pathogenic variants leading to a premature stop codon show a severe phenotype as they have an earlier onset of disease presentation, severe autoimmune manifestations, premature death, and low B cells and regulatory T cell levels. Missense variants were more common in patients with low IgG levels and cytopenia. This work lead to the conclusion that the type of variant in LRBA has association with disease severity, which leads to a premature stop codon being the ones that correlates with severe disease.
Collapse
Affiliation(s)
- D Perez-Perez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| | - L Santos-Argumedo
- Biomedicine Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - J C Rodriguez-Alba
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
| | - G Lopez-Herrera
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| |
Collapse
|
6
|
Tomomasa D, Lee BH, Hirata Y, Inoue Y, Majima H, Imanaka Y, Asano T, Katakami T, Lee J, Hijikata A, Worakitchanon W, Yang X, Wang X, Watanabe A, Kamei K, Kageyama Y, Seo GH, Fujimoto A, Casanova JL, Puel A, Morio T, Okada S, Kanegane H. Inherited CARD9 Deficiency Due to a Founder Effect in East Asia. J Clin Immunol 2024; 44:121. [PMID: 38758287 DOI: 10.1007/s10875-024-01724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Autosomal recessive CARD9 deficiency can underly deep and superficial fungal diseases. We identified two Japanese patients, suffering from superficial and invasive Candida albicans diseases, carrying biallelic variants of CARD9. Both patients, in addition to another Japanese and two Korean patients who were previously reported, carried the c.820dup CARD9 variant, either in the homozygous (two patients) or heterozygous (three patients) state. The other CARD9 alleles were c.104G > A, c.1534C > T and c.1558del. The c.820dup CARD9 variant has thus been reported, in the homozygous or heterozygous state, in patients originating from China, Japan, or South Korea. The Japanese, Korean, and Chinese patients share a 10 Kb haplotype encompassing the c.820dup CARD9 variant. This variant thus originates from a common ancestor, estimated to have lived less than 4,000 years ago. While phaeohyphomycosis caused by Phialophora spp. was common in the Chinese patients, none of the five patients in our study displayed Phialophora spp.-induced disease. This difference between Chinese and our patients probably results from environmental factors. (161/250).
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Beom Hee Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Yuki Hirata
- Department of Opthalmology, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Yuzaburo Inoue
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidetaka Majima
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yusuke Imanaka
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Katakami
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Jina Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Wittawin Worakitchanon
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xi Yang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaowen Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | | | - Akihiro Fujimoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker Hospital for Sick Children, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- University Paris Cité, Imagine Institute, 75015, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker Hospital for Sick Children, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- University Paris Cité, Imagine Institute, 75015, Paris, France
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
7
|
Ma N, Zhao Y, Tang M, Xia H, Li D, Lu G. Concurrent infection of Exophiala dermatitidis and Angiostrongylus cantonensis in central nervous system of a child with inherited CARD9 deficiency: A case report and literature review. J Mycol Med 2024; 34:101455. [PMID: 38042015 DOI: 10.1016/j.mycmed.2023.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Exophiala dermatitidis is a relatively common environmental black yeast with a worldwide distribution that rarely causes fungal infection. Here, we report a case of a 6-year-old girl with central nervous system (CNS) encephalitis caused by E. dermatitidis and Angiostrongylus cantonensis. E. dermatitidis was identified by both cerebrospinal fluid culture and metagenomic next-generation sequencing (mNGS). Angiostrongylus cantonensis infection was confirmed by an enzyme linked immunosorbent assay (ELISA). Whole exome sequencing showed that this previously healthy girl carried a homozygous CARD9 mutation for c.820dupG (p.D274Gfs*61) that underlies invasive fungal and parasite infections. We chose glucocortieoid pulse therapy and anti-infective therapy based on the initial results of laboratory examination and cranial MRI images. With the aggravation of the disease and the evidence of the subsequent etiologic test, the combination of antifungal antiparasitic treatments (voriconazole, fluorocytosine and amphotericin B) were actively used. Unfortunately, the girl finally died due to severe systemic infection. mNGS performs a potential value for diagnosing rare CNS infections, and autosomal recessive CARD9 deficiency should be considered in patient with fatal invasive fungal infections.
Collapse
Affiliation(s)
- Na Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China
| | - Yufei Zhao
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Mingze Tang
- Department of Scientific Affairs, Hugobiotech Co., Ltd., No. 1 Disheng East Road, Beijing 100176, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., No. 1 Disheng East Road, Beijing 100176, China.
| | - Deyuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China.
| | - Guoyan Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China.
| |
Collapse
|
8
|
Vinh DC. From Mendel to mycoses: Immuno-genomic warfare at the human-fungus interface. Immunol Rev 2024; 322:28-52. [PMID: 38069482 DOI: 10.1111/imr.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.
Collapse
Affiliation(s)
- Donald C Vinh
- Infectious Diseases - Hematology/Oncology/Transplant Clinical Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Zhu X, Ma J, Zheng B, Cai W, Li J, Lin L, Xi L, Li X, Lu S. Combination therapy with itraconazole and terbinafine for phaeohyphomycosis caused by Exophiala spinifera: A case report and literature review. Mycoses 2023; 66:1012-1017. [PMID: 37553547 DOI: 10.1111/myc.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
Exophiala spinifera is a rare dematiaceous fungus causing cutaneous, subcutaneous and disseminated phaeohyphomycosis (PHM). Standard antifungal therapy for PHM is still uncertain. Here, we report a case of a Chinese male with PHM caused by E. spinifera, who received significant clinical improvement after the treatment with oral itraconazole and terbinafine. With the aim of evaluating the antifungal therapy for PHM caused by E. spinifera, a detailed review was performed.
Collapse
Affiliation(s)
- Xianzhong Zhu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Guangzhou Medical University
| | - Jianchi Ma
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bowen Zheng
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenying Cai
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahao Li
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Lin
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liyan Xi
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiqing Li
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Zhang Y, Vandestienne M, Lavillegrand JR, Joffre J, Santos-Zas I, Lavelle A, Zhong X, Le Goff W, Guérin M, Al-Rifai R, Laurans L, Bruneval P, Guérin C, Diedisheim M, Migaud M, Puel A, Lanternier F, Casanova JL, Cochain C, Zernecke A, Saliba AE, Mokry M, Silvestre JS, Tedgui A, Mallat Z, Taleb S, Lenoir O, Vindis C, Camus SM, Sokol H, Ait-Oufella H. Genetic inhibition of CARD9 accelerates the development of atherosclerosis in mice through CD36 dependent-defective autophagy. Nat Commun 2023; 14:4622. [PMID: 37528097 PMCID: PMC10394049 DOI: 10.1038/s41467-023-40216-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1β production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.
Collapse
Affiliation(s)
- Yujiao Zhang
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Marie Vandestienne
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | | | - Jeremie Joffre
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Sorbonne Université, Paris, France
| | - Icia Santos-Zas
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Aonghus Lavelle
- Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Paris, France
| | - Xiaodan Zhong
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Wilfried Le Goff
- Inserm UMRS1166, ICAN, Institute of CardioMetabolism and Nutrition, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Maryse Guérin
- Inserm UMRS1166, ICAN, Institute of CardioMetabolism and Nutrition, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Rida Al-Rifai
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Ludivine Laurans
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Patrick Bruneval
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Department of Anatomopathology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Coralie Guérin
- Institut Curie, Cytometry Platform, 75006, Paris, France
| | - Marc Diedisheim
- Clinique Saint Gatien Alliance (NCT+), 37540 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, 75015, Paris, France
| | - Melanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Fanny Lanternier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Clément Cochain
- Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Wuerzburg, Germany
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | | | - Alain Tedgui
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Ziad Mallat
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Soraya Taleb
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Olivia Lenoir
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | | | - Stéphane M Camus
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Harry Sokol
- Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Paris, France
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Hafid Ait-Oufella
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Sorbonne Université, Paris, France.
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France.
| |
Collapse
|
11
|
Song Y, Wang X, Li Q, Zhang R, de Hoog S, Li R. Fatal dermatophytic pseudomycetoma in a patient with non-HIV CD4 lymphocytopenia. Emerg Microbes Infect 2023; 12:2208685. [PMID: 37128909 DOI: 10.1080/22221751.2023.2208685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dermatophytic pseudomycetoma is a rare invasive infection, involving both immunocompetent and immunocompromised individuals. Since the discovery of inherited immune disorders such as the impairment of CARD9 gene, extended dermatophyte infections are mostly ascribed to any of these host factors. This study is to present and explore the potential causes in a fatal dermatophytic pseudomycetoma patient. We present a chronic and deep pseudomycetoma caused by the common dermatophyte Microsporum canis which ultimately led to the death of the patient. Mycological examination, genetic studies and host immune responses against fungi were performed to explore the potential factors. The patient had decreased lymphocyte counts with significantly reduced CD4+ T cells, although all currently known genetic parameters proved to be normal. Through functional studies, we demonstrated that peripheral blood mononuclear cells from the patient showed severe impairment of adaptive cytokine production upon fungus-specific stimulation, whereas innate immune responses were partially defective. This is, to our knowledge, the first report of fatal dermatophytic pseudomycetoma in a patient with non-HIV CD4 lymphocytopenia, which highlights the importance of screening for immune deficiencies in patients with deep dermatophytosis.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- Centre of Expertise for Mycology of Radboud University Medical Centre / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Qian Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Ruijun Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Sybren de Hoog
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Centre of Expertise for Mycology of Radboud University Medical Centre / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
12
|
Zhang L, Zhang Y, Ma Y, Wang Z, Wan Z, Song Y, Wang X, Li R. Challenges towards management of CARD9-deficient patients with phaeohyphomycosis: A case report and case series study. Mycoses 2023; 66:317-330. [PMID: 36527168 DOI: 10.1111/myc.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND A number of recalcitrant phaeohyphomycosis cases with a life-threatening prognosis have been observed in CARD9-deficient patients, but little is known about the long-term management strategies that are effective for such intractable individuals. OBJECTIVES To study the genetic and immunological mechanisms underlying recalcitrant phaeohyphomycosis and to share our clinical experiences regarding its treatment. PATIENTS/METHODS Ten CARD9-deficient patients with recalcitrant phaeohyphomycosis admitted to our centre in the past two decades were followed-up, and their clinical presentations, laboratory findings, treatment and prognoses were analysed; one of them was a novel case of recalcitrant phaeohyphomycosis harbouring CARD9 mutations. Innate and adaptive immunological responses of patient-derived peripheral blood mononuclear cells were evaluated using ELISA and flow cytometry. RESULTS We identified a total of seven CARD9 mutations in the ten analysed patients. Moreover, patient-derived cells exhibited a significant impairment of innate and adaptive immune responses upon fungus-specific stimulation. All the patients experienced recurrence and exacerbation; four of them died, two exhibited continued disease progress with unsatisfactory therapeutic efficacy, three showed obvious improvement under maintenance therapy, and only one achieved a clinical cure. CONCLUSIONS Our study highlighted that otherwise healthy patients diagnosed with early-onset, unexplained and recalcitrant phaeohyphomycosis should be analysed for CARD9 mutations and immune deficiency. Thereafter, the length and choice of management remain challengeable and must be adjusted based on the clinical presentations and responses of patients over their lifetimes. Although continued posaconazole treatment may be the promising first-line therapy at present, novel strategies are worth exploring.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, the Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yi Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, the Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, the Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zijuan Wang
- Department of Dermatology and Venerology, Peking University First Hospital, the Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, the Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, the Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, the Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, the Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
13
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
14
|
Pulmonary phaeohyphomycosis due to Exophiala dermatitidis in a patient with pulmonary non-tuberculous mycobacterial infection. J Infect Chemother 2023; 29:615-619. [PMID: 36921763 DOI: 10.1016/j.jiac.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
A 65-year-old Japanese woman repeatedly withdrew and resumed antibiotics against pulmonary non-tuberculous mycobacterial infection caused by Mycobacterium intracellulare for more than 10 years. Although she continued to take medications, her respiratory symptoms and chest computed tomography indicated an enlarged infiltrative shadow in the lingular segment of the left lung that gradually worsened over the course of a year or more. Bronchoscopy was performed and mycobacterial culture of the bronchial lavage fluid was negative, whereas Exophiala dermatitidis was detected. After administration of oral voriconazole was initiated, the productive cough and infiltrative shadow resolved. There are no characteristic physical or imaging findings of E. dermatitidis, and it often mimics other chronic respiratory infections. Thus, when confronting refractory non-tuberculous mycobacterial cases, it might be better to assume other pathogenic microorganisms, including E. dermatitidis, and actively perform bronchoscopy.
Collapse
|
15
|
Ruchti F, LeibundGut-Landmann S. New insights into immunity to skin fungi shape our understanding of health and disease. Parasite Immunol 2023; 45:e12948. [PMID: 36047038 PMCID: PMC10078452 DOI: 10.1111/pim.12948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 01/31/2023]
Abstract
Fungi represent an integral part of the skin microbiota. Their complex interaction network with the host shapes protective immunity during homeostasis. If host defences are breached, skin-resident fungi including Malassezia and Candida, and environmental fungi such as dermatophytes can cause cutaneous infections. In addition, fungi are associated with diverse non-infectious skin disorders. Despite their multiple roles in health and disease, fungi remain elusive and understudied, and the mechanisms underlying the emergence of pathological conditions linked to fungi are largely unclear. The identification of IL-17 as an important antifungal effector mechanism represents a milestone for understanding homeostatic antifungal immunity. At the same time, host-adverse, disease-promoting roles of IL-17 have been delineated, as in psoriasis. Fungal dysbiosis represents another feature of many pathological skin conditions with an unknown causal link of intra- and interkingdom interactions to disease pathogenesis. The emergence of new fungal pathogens such as Candida auris highlights the need for more research into fungal immunology to understand how antifungal responses shape health and diseases. Recent technological advances for genetically manipulating fungi to target immunomodulatory fungal determinants, multi-omics approaches for studying immune cells in the human skin, and novel experimental models open up a promising future for skin fungal immunity.
Collapse
Affiliation(s)
- Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Kondratjeva J, Pressanti C, Reynolds BS, Trumel C, Delverdier M, Normand AC, Soetart N, Guillot J, Cadiergues MC. Multifocal cutaneous phaeohyphomycosis caused by Exophiala spinifera with clinical resolution in an immunocompromised cat. JFMS Open Rep 2023; 9:20551169231164610. [PMID: 37123554 PMCID: PMC10141254 DOI: 10.1177/20551169231164610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 05/02/2023] Open
Abstract
Case summary A 3-year-old neutered domestic shorthair cat with a long history of idiopathic immune-mediated haemolytic anaemia and thrombocytopenia treated with ciclosporin and prednisolone was referred 2 months after the appearance of nodular dermatitis. A single pigmented nodule was present in the lateral carpal region of the right foreleg. The lesion was 7 mm in diameter, non-exudative and cutaneous to subcutaneous. Fine-needle aspiration of the mass revealed the presence of pigmented fungal elements. Excisional surgery was planned; in the meantime, a plaque-like lesion developed in the interorbital region. Histopathological examination confirmed the presumptive diagnosis of phaeohyphomycosis, and Exophiala spinifera was identified as the aetiological agent. Itraconazole, given orally at a dose of 10 mg/kg for 8 weeks following surgery, enabled clinical resolution despite continued use of immunosuppressants. The follow-up was carried out over 14 weeks. Relevance and novel information This case report provides the first evidence of multifocal cutaneous phaeohyphomycosis caused by E spinifera with clinical resolution after combined surgical and itraconazole treatment in an immunocompromised cat.
Collapse
Affiliation(s)
| | - Charline Pressanti
- Department of Clinical Sciences, University
of Toulouse, ENVT, Toulouse, France
| | | | - Catherine Trumel
- Department of Clinical Sciences, University
of Toulouse, ENVT, Toulouse, France
- CREFRE (The Regional Centre for Functional
and Experimental Exploration Resources), University of Toulouse, Inserm, UPS, Toulouse,
France
| | - Maxence Delverdier
- Department of Basic Sciences, University of
Toulouse, ENVT, Toulouse, France
- IHAP (Interactions Hôtes-Agents Pathogènes),
University of Toulouse, ENVT, INRAE, Toulouse, France
| | - Anne-Cécile Normand
- AP-HP (Assistance Publique-Hôpitaux de
Paris), Department of Parasitology and Mycology, Hôpital La Pitié-Salpêtrière, Paris,
France
| | | | - Jacques Guillot
- Department of Dermatology, Parasitology and
Mycology, Oniris, Nantes, France
- University of Angers, University of Brest,
IRF, SFR ICAT, Angers, France
| | - Marie Christine Cadiergues
- Department of Clinical Sciences, University
of Toulouse, ENVT, Toulouse, France
- INFINITy (Toulouse Institute for Infectious
and Inflammatory Diseases), University of Toulouse, Inserm, CNRS, UPS, Toulouse,
France
- Marie Christine Cadiergues DrMedVet, PhD, EBVS
Specialist in Veterinary Dermatology, Department of Clinical Sciences, University of
Toulouse, ENVT, 23, Chemin des Capelles, Toulouse 31076, France
| |
Collapse
|
17
|
Zhang Y, Li R. Mouse Models of Phaeohyphomycosis. Methods Mol Biol 2023; 2667:159-168. [PMID: 37145283 DOI: 10.1007/978-1-0716-3199-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Infections by dematiaceous fungi especially phaeohyphomycosis are an emerging group of infectious diseases worldwide with a variety of clinical presentations. The mouse model is a useful tool for studying phaeohyphomycosis, which can mimic dematiaceous fungal infections in humans. Our laboratory has successfully constructed a mouse model of subcutaneous phaeohyphomycosis and found significant phenotypic differences between Card9 knockout and wild-type mice, mirroring the increased susceptibility to this infection observed in CARD9-deficient humans. Here we describe construction of the mouse model of subcutaneous phaeohyphomycosis and related experiments. We hope that this chapter can be beneficial for the study of phaeohyphomycosis and facilitate the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
18
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
19
|
Drummond RA, Desai JV, Hsu AP, Oikonomou V, Vinh DC, Acklin JA, Abers MS, Walkiewicz MA, Anzick SL, Swamydas M, Vautier S, Natarajan M, Oler AJ, Yamanaka D, Mayer-Barber KD, Iwakura Y, Bianchi D, Driscoll B, Hauck K, Kline A, Viall NS, Zerbe CS, Ferré EM, Schmitt MM, DiMaggio T, Pittaluga S, Butman JA, Zelazny AM, Shea YR, Arias CA, Ashbaugh C, Mahmood M, Temesgen Z, Theofiles AG, Nigo M, Moudgal V, Bloch KC, Kelly SG, Whitworth MS, Rao G, Whitener CJ, Mafi N, Gea-Banacloche J, Kenyon LC, Miller WR, Boggian K, Gilbert A, Sincock M, Freeman AF, Bennett JE, Hasbun R, Mikelis CM, Kwon-Chung KJ, Belkaid Y, Brown GD, Lim JK, Kuhns DB, Holland SM, Lionakis MS. Human Dectin-1 deficiency impairs macrophage-mediated defense against phaeohyphomycosis. J Clin Invest 2022; 132:e159348. [PMID: 36377664 PMCID: PMC9663159 DOI: 10.1172/jci159348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, β-glucan-binding receptor, Dectin-1. The patient's PBMCs failed to produce TNF-α and IL-1β in response to β-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1β and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1β-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.
Collapse
Affiliation(s)
| | | | - Amy P. Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | - Donald C. Vinh
- Division of Infectious Diseases, McGill University Health Centre (MUHC), and Infectious Disease Susceptibility Program, Research Institute-MUHC, Montreal, Quebec, Canada
| | - Joshua A. Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Sarah L. Anzick
- Research Technologies Branches, NIAID, NIH, Hamilton, Montana, USA
| | | | | | | | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - David Bianchi
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Brian Driscoll
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Ken Hauck
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | | | | | - Christa S. Zerbe
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | | | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | | | - Adrian M. Zelazny
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Yvonne R. Shea
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Cesar A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Cameron Ashbaugh
- Division of Infectious Diseases, UCSF, San Francisco, California, USA
| | - Maryam Mahmood
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Zelalem Temesgen
- Division of Hospital Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Masayuki Nigo
- Division of Infectious Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Varsha Moudgal
- Department of Internal Medicine, St. Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Karen C. Bloch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean G. Kelly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cindy J. Whitener
- Division of Infectious Diseases, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Neema Mafi
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | | | - Lawrence C. Kenyon
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William R. Miller
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Andrea Gilbert
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | | | - Alexandra F. Freeman
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | - Rodrigo Hasbun
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
- Department of Pharmacy, University of Patras, Patras, Greece
| | | | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, Maryland, USA
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
20
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
21
|
Maraki S, Katzilakis N, Neonakis I, Stafylaki D, Meletiadis J, Hamilos G, Stiakaki E. Exophiala dermatitidis Central Line-Associated Bloodstream Infection in a Child with Ewing's Sarcoma: Case Report and Literature Review on Paediatric Infections. Mycopathologia 2022; 187:595-602. [PMID: 35994217 DOI: 10.1007/s11046-022-00658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Exophiala dermatitidis is a dematiaceous, ubiquitous, dimorphic fungus, which can cause a wide range of invasive diseases in both immunocompromised and immunocompetent hosts. Bloodstream infections due to E. dermatitidis are rarely encountered in clinical practice, especially in pediatric patients. We describe a case of central line-associated bloodstream infection due to E. dermatitidis in a 4.5-year-old boy with Ewing's sarcoma. The fungus was isolated from blood specimens taken from the Hickman line. The isolate was identified by its phenotypic characteristics, by MALDI-TOF and by using molecular methods. The infection was successfully treated with voriconazole and catheter removal. The literature was also reviewed on pediatric infections caused by E. dermatitidis, focusing on clinical manifestations and challenges associated with diagnosis and management.
Collapse
Affiliation(s)
- Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece.
| | - Nikolaos Katzilakis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion and Laboratory of Blood Diseases and Childhood Cancer Biology, Medical School, University of Crete, Heraklion, Greece
| | - Ioannis Neonakis
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Dimitra Stafylaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Hamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion and Laboratory of Blood Diseases and Childhood Cancer Biology, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
22
|
Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell 2022; 185:3086-3103. [PMID: 35985287 PMCID: PMC9386946 DOI: 10.1016/j.cell.2022.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022]
Abstract
The immense interindividual clinical variability during any infection is a long-standing enigma. Inborn errors of IFN-γ and IFN-α/β immunity underlying rare infections with weakly virulent mycobacteria and seasonal influenza virus have inspired studies of two common infections: tuberculosis and COVID-19. A TYK2 genotype impairing IFN-γ production accounts for about 1% of tuberculosis cases, and autoantibodies neutralizing IFN-α/β account for about 15% of critical COVID-19 cases. The discovery of inborn errors and mechanisms underlying rare infections drove the identification of common monogenic or autoimmune determinants of related common infections. This "rare-to-common" genetic and mechanistic approach to infectious diseases may be of heuristic value.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
23
|
A fatal neonatal case of fungemia due to Exophiala dermatitidis-case report and literature review. BMC Pediatr 2022; 22:482. [PMID: 35948953 PMCID: PMC9364490 DOI: 10.1186/s12887-022-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 07/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Systemic infections caused by the black yeast-like fungus Exophiala dermatitidis are rare, but are associated with high mortality especially in immunocompromised patients. We report the first case of E. dermatitidis fungemia in a premature extremely low birth weight (ELBW) neonate who succumbed despite antifungal therapy with liposomal amphotericin (AMB) and fluconazole. A systematic review of all fungemia cases due to E. dermatitidis was also conducted aiming for a better understanding of the risk factors, treatment strategies and outcomes. Case presentation A male, ELBW premature neonate, soon after his birth, developed bradycardia, apnoea and ultimately necrotizing enterocolitis with intestinal perforation requiring surgical intervention. Meanwhile, he had also multiple risk factors for developing bloodstream infection, such as intubation, mechanical ventilation, central venous catheter (CVC), parenteral nutrition, empirical and prolonged antibiotic use. His blood cultures were positive, firstly for Acinetobacter junii and then for Klebsiella pneumoniae together with E. dermatitidis while on fluconazole prophylaxis and antibiotic empiric therapy. Despite the treatment with broad spectrum antibiotics, liposomal AMB and fluconazole, the newborn succumbed. A literature review identified another 12 E. dermatitidis bloodstream infections, mainly in patients with hematologic malignancies and solid organ transplant recipients (61%), with overall mortality 38% despite CVC removal and antifungal therapy. Conclusions Due to the rarity of E. dermatitidis infections, little is known about the characteristics of this yeast, the identification methods and the optimal therapy. Identification by common biochemical tests was problematic requiring molecular identification. Resolution of neonatal fungemia is difficult despite proper antifungal therapy especially in cases with multiple and severe risk factors like the present one. Therapeutic intervention may include CVC removal and treatment for at least 3 weeks with an azole (itraconazole or fluconazole after susceptibility testing) or AMB monotherapy but not echinocandins or AMB plus azole combination therapy.
Collapse
|
24
|
Song Y, Liu X, Stielow JB, de Hoog S, Li R. Post-translational changes in Phialophora verrucosa via lysine lactylation during prolonged presence in a patient with a CARD9-related immune disorder. Front Immunol 2022; 13:966457. [PMID: 36003392 PMCID: PMC9395174 DOI: 10.3389/fimmu.2022.966457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
CARD9-related inherited immune disorders are a major risk factor for chronic disseminated fungal infection. In addition to pathogens of Candida and dermatophytes, the environmental opportunists of the black yeast-like fungi are relatively frequent in this patient cohort. Particularly the genus Phialophora is overrepresented. We investigated two isolates of a strain of P. verrucosa residing in a CARD9 patient, sampled with a period of ten years apart. Genomes, melanization and antifungal susceptibility of progenitor and derived strains were compared, and potential adaptation to the host habitat was investigated with proteomic techniques using post-translational modification as a proxy. Global lactylation analysis was performed using high accuracy nano-LC-MS/MS in combination with enrichment of lactylated peptides from digested cell lysates, and subsequent peptide identification. The genome of the derived isolate had accumulated 6945 SNPs, of which 31 were detected in CDS. A large number of identified proteins were significantly enriched, e.g. in melanin biosynthesis. A total of 636 lactylation sites on 420 lactylated proteins were identified, which contained in 26 types of modification motifs. Lysine lactylation (Kla) was found in 23 constituent proteins of the ribosome, indicating an impact of Kla in protein synthesis. Twelve lactylated proteins participated in pathogenicity. A protein-protein interaction (PPI) network analysis suggested that protein lactylations are widely distributed influencing various biological processes. Our findings reveal widespread roles for lysine lactylation in regulating metabolism and melanin biosynthesis in black fungi. Several large rearrangements and inversions were observed in the genome, but genomic changes could not be linked to adaptation or to known clinically relevant properties of progenitor to derived isolate; in vitro antifungal susceptibility had largely remained unaltered.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Radboud UMC: Radboud University Medical Center/CWZ Center of Expertise for Mycology, Nijmegen, Netherlands
| | - Xiao Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | | | - Sybren de Hoog
- Research Center for Medical Mycology, Peking University, Beijing, China
- Radboud UMC: Radboud University Medical Center/CWZ Center of Expertise for Mycology, Nijmegen, Netherlands
- Foundation Atlas of Clinical of Fungi, Hilversum, Netherlands
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
25
|
Invasive Rhinosinusitis Caused by Alternaria infectoria in a Patient with Autosomal Recessive CARD9 Deficiency and a Review of the Literature. J Fungi (Basel) 2022; 8:jof8050446. [PMID: 35628702 PMCID: PMC9144991 DOI: 10.3390/jof8050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022] Open
Abstract
Phaeohyphomycoses comprise a heterogeneous group of fungal infections caused by dematiaceous fungi and have primarily been reported in patients with underlying acquired immunodeficiencies, such as hematological malignancies or solid-organ transplants. Over the past decade, a growing number of patients with phaeohyphomycosis but otherwise healthy were reported with autosomal recessive (AR) CARD9 deficiency. We report a 28-year-old woman who presented with invasive rhinosinusitis caused by Alternaria infectoria. Following a candidate gene sequencing approach, we identified a biallelic loss-of-function mutation of CARD9, thereby further broadening the spectrum of invasive fungal diseases found in patients with inherited CARD9 deficiency. In addition, we reviewed 17 other cases of phaeohyphomycosis associated with AR CARD9 deficiency. Physicians should maintain a high degree of suspicion for inborn errors of immunity, namely CARD9 deficiency, when caring for previously healthy patients with phaeohyphomycosis, regardless of age at first presentation.
Collapse
|
26
|
Jabgratog P, Chamroensakchai T, Kanjanabuch T, Ampaipun J, Thongbor N, Hurdeal VG, Hyde KD. Peritoneal dialysis-associated peritonitis caused by Exophiala spinifera: A case report and review of literature. Med Mycol Case Rep 2022; 35:43-47. [PMID: 35256961 PMCID: PMC8897172 DOI: 10.1016/j.mmcr.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Exophiala spinifera is a black ascomycetous yeast and is responsible for phaeohyphomycosis. We provide the first case report of peritoneal dialysis (PD)-associated peritonitis in a female patient with progressive impairment of visual capacity. The infection was caused by a cutaneous infection of her hands. The patient responded well with PD catheter removal and 2-week antifungal medication. This case emphasizes the importance of hand hygiene and regular eye evaluation in preventing environment-bound infection in patients on PD. 2012 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
| | | | - Talerngsak Kanjanabuch
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- CAPD Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Corresponding author. Center of Excellence in Kidney Metabolic Disorders and Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, BKK, Thailand.
| | | | - Nisa Thongbor
- Sunpasitthiprasong Hospital, Ubon Ratchathanee, Thailand
| | - Vedprakash G. Hurdeal
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
27
|
Mohamed SH, Nyazika TK, Ssebambulidde K, Lionakis MS, Meya DB, Drummond RA. Fungal CNS Infections in Africa: The Neuroimmunology of Cryptococcal Meningitis. Front Immunol 2022; 13:804674. [PMID: 35432326 PMCID: PMC9010970 DOI: 10.3389/fimmu.2022.804674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/03/2022] [Indexed: 01/13/2023] Open
Abstract
Cryptococcal meningitis (CM) is the leading cause of central nervous system (CNS) fungal infections in humans, with the majority of cases reported from the African continent. This is partly due to the high burden of HIV infection in the region and reduced access to standard-of-care including optimal sterilising antifungal drug treatments. As such, CM is responsible for 10-15% of all HIV-related mortality, with a large proportion being preventable. Immunity to the causative agent of CM, Cryptococcus neoformans, is only partially understood. IFNγ producing CD4+ T-cells are required for the activation of myeloid cells, especially macrophages, to enable fungal killing and clearance. However, macrophages may also act as a reservoir of the fungal yeast cells, shielding them from host immune detection thus promoting latent infection or persistent chronic inflammation. In this chapter, we review the epidemiology and pathogenesis of CNS fungal infections in Africa, with a major focus on CM, and the antifungal immune pathways operating to protect against C. neoformans infection. We also highlight the areas of research and policy that require prioritisation to help reduce the burden of CNS fungal diseases in Africa.
Collapse
Affiliation(s)
- Sally H Mohamed
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Tinashe K Nyazika
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kenneth Ssebambulidde
- College of Health Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David B Meya
- College of Health Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Institute of Microbiology & Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
28
|
Garcia-Solis B, Van Den Rym A, Pérez-Caraballo JJ, Al-Ayoubi A, Alazami AM, Lorenzo L, Cubillos-Zapata C, López-Collazo E, Pérez-Martínez A, Allende LM, Markle J, Fernández-Arquero M, Sánchez-Ramón S, Recio MJ, Casanova JL, Mohammed R, Martinez-Barricarte R, Pérez de Diego R. Clinical and Immunological Features of Human BCL10 Deficiency. Front Immunol 2021; 12:786572. [PMID: 34868072 PMCID: PMC8633570 DOI: 10.3389/fimmu.2021.786572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
The CARD-BCL10-MALT1 (CBM) complex is critical for the proper assembly of human immune responses. The clinical and immunological consequences of deficiencies in some of its components such as CARD9, CARD11, and MALT1 have been elucidated in detail. However, the scarcity of BCL10 deficient patients has prevented gaining detailed knowledge about this genetic disease. Only two patients with BCL10 deficiency have been reported to date. Here we provide an in-depth description of an additional patient with autosomal recessive complete BCL10 deficiency caused by a nonsense mutation that leads to a loss of expression (K63X). Using mass cytometry coupled with unsupervised clustering and machine learning computational methods, we obtained a thorough characterization of the consequences of BCL10 deficiency in different populations of leukocytes. We showed that in addition to the near absence of memory B and T cells previously reported, this patient displays a reduction in NK, γδT, Tregs, and TFH cells. The patient had recurrent respiratory infections since early childhood, and showed a family history of lethal severe infectious diseases. Fortunately, hematopoietic stem-cell transplantation (HSCT) cured her. Overall, this report highlights the importance of early genetic diagnosis for the management of BCL10 deficient patients and HSCT as the recommended treatment to cure this disease.
Collapse
Affiliation(s)
- Blanca Garcia-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Jareb J Pérez-Caraballo
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Abdulwahab Al-Ayoubi
- Department of Pediatrics, King Saud Medical City Children's Hospital, Riyadh, Saudi Arabia
| | - Anas M Alazami
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Center for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, La Paz University Hospital, Madrid, Spain.,Department of Paediatric Haemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, 12 de Octubre Hospital, Research Insitute imas12, Complutense University, Madrid, Spain
| | - Janet Markle
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Miguel Fernández-Arquero
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Maria J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States.,Imagine Institute, University Paris Descartes, Paris, France.,Howard Hughes Medical Institute, New York, NY, United States
| | - Reem Mohammed
- Department of Pediatrics, Division of Allergy & Immunology King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Rubén Martinez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| |
Collapse
|
29
|
CARD9 Expression Pattern, Gene Dosage, and Immunodeficiency Phenotype Revisited. J Clin Immunol 2021; 42:336-349. [PMID: 34791587 PMCID: PMC10108093 DOI: 10.1007/s10875-021-01173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND CARD9 deficiency is an autosomal recessive primary immunodeficiency underlying increased susceptibility to fungal infection primarily presenting as invasive CNS Candida and/or cutaneous/invasive dermatophyte infections. More recently, a rare heterozygous dominant negative CARD9 variant c.1434 + 1G > C was reported to be protective from inflammatory bowel disease. OBJECTIVE We studied two siblings carrying homozygous CARD9 variants (c.1434 + 1G > C) and born to heterozygous asymptomatic parents. One sibling was asymptomatic and the other presented with candida esophagitis, upper respiratory infections, hypogammaglobulinemia, and low class-switched memory B cells. METHODS AND RESULTS The CARD9 c.1434 + 1G > C variant generated two mutant transcripts confirmed by mRNA and protein expression: an out-of-frame c.1358-1434 deletion/ ~ 55 kDa protein (CARD9Δex.11) and an in-frame c.1417-1434 deletion/ ~ 61 kDa protein (CARD9Δ18 nt.). Neither transcript was able to form a complete/functional CBM complex, which includes TRIM62. Based on the index patient's CVID-like phenotype, CARD9 expression was tested and detected in lymphocytes and monocytes from humans and mice. The functional impact of different CARD9 mutations and gene dosage conditions was evaluated in heterozygous and homozygous c.1434 + 1 G > C members of the index family, and in WT (two WT alleles), haploinsufficiency (one WT, one null allele), and null (two null alleles) individuals. CARD9 gene dosage impacted lymphocyte and monocyte functions including cytokine generation, MAPK activation, T-helper commitment, transcription, plasmablast differentiation, and immunoglobulin production in a differential manner. CONCLUSIONS CARD9 exon 11 integrity is critical to CBM complex function. CARD9 is expressed and affects particular T and B cell functions in a gene dosage-dependent manner, which in turn may contribute to the phenotype of CARD9 deficiency.
Collapse
|
30
|
Najafzadeh MJ, Dolatabadi S, Vicente VA, de Hoog GS, Meis JF. In vitro activities of 8 antifungal drugs against 126 clinical and environmental Exophiala isolates. Mycoses 2021; 64:1328-1333. [PMID: 34411353 DOI: 10.1111/myc.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Exophiala is the main genus of black fungi comprising numerous opportunistic species. Data on antifungal susceptibility of Exophiala isolates are limited, while infections are potentially fatal. MATERIALS AND METHODS In vitro activities of eight antifungal drugs (AMB, five azoles, two echinocandins) against 126 clinical (n = 76) and environmental (n = 47) isolates from around the world were investigated. E. oligosperma (n = 58), E. spinifera (n = 33), E. jeanselmei (n = 14) and E. xenobiotica (n = 21) were included in our dataset. RESULTS The resulting MIC90 s of all strains were as follows, in increasing order: posaconazole 0.063 μg/ml, itraconazole 0.125 μg/ml, voriconazole and amphotericin B 1 μg/ml, isavuconazole 2 μg/ml, micafungin and caspofungin 4 μg/ml, and fluconazole 64 μg/ml. Posaconazole, itraconazole and micafungin were the drugs with the best overall activity against Exophiala species. Fluconazole could not be considered as a treatment choice. No significant difference could be found among antifungal drug activities between these four species, neither in clinical nor in environmental isolates. CONCLUSION Antifungal susceptibility data for Exophiala spp. are crucial to improve the management of this occasionally fatal infection and the outcome of its treatment.
Collapse
Affiliation(s)
- Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vania Aparecida Vicente
- Bioprocess Engineering and Biotechnology Graduate Program, Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Gerrit Sybren de Hoog
- Center of Expertise in Mycology, Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Bioprocess Engineering and Biotechnology Graduate Program, Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology, Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Yu HY, Qu TT, Yang Q, Hu JH, Sheng JF. A fatal case of Exophiala dermatitidis meningoencephalitis in an immunocompetent host: A case report and literature review. J Infect Chemother 2021; 27:1520-1524. [PMID: 34215497 DOI: 10.1016/j.jiac.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Central nervous system (CNS) infection due to Exophiala dermatitidis is rare and fatal, and primarily reported in immunocompromised patients or those with caspase recruitment domain-containing protein 9 deficiency. Herein, we describe a case of an otherwise healthy person (without underlying disease or gene deficiency) diagnosed with Exophiala dermatitidis meningoencephalitis. The patient achieved clinical remission under high-dose antifungal therapy in the first 14 months but died after 2 years of the therapy. CASE PRESENTATION A 15-year-old student with headache and fever was admitted to our department. Lumbar puncture showed increased cerebrospinal fluid (CSF) pressure, moderately high CSF protein levels and cell counts, and a remarkable decrease in CSF glucose and chloride. Magnetic resonance imaging of the brain revealed multiple lesions and cerebral pia mater enhancement. CSF culture confirmed E. dermatitidis infection. We administered 4-week antifungal therapy of amphotericin B, but his CSF culture remained positive. After receiving the 12-week standard dose of voriconazole (200 mg q12h), the patient's CSF culture became negative, but his condition deteriorated with intracranial lesion enlargement. We administered a high-dose voriconazole therapy (600-800 mg per day) for 12 months, which led to clinical remission. The voriconazole dose was reduced due to adverse effects including hepatic dysfunction and hypokalemia, and the disease progressed with high intracranial pressure and epileptic seizures. CONCLUSIONS CNS infection caused by E. dermatitidis is fatal and the most serious form of fungal infection. Initially, high-dose and long-term antifungal therapy could be effective. Gene defect and related antifungal immunodeficiency may be the most important pathogenic and lethal factor.
Collapse
Affiliation(s)
- Hai-Ying Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| | - Ting-Ting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| | - Jian-Hua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| | - Ji-Fang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| |
Collapse
|
32
|
Ba H, Peng H, Cheng L, Lin Y, Li X, He X, Li S, Wang H, Qin Y. Case Report: Talaromyces marneffei Infection in a Chinese Child With a Complex Heterozygous CARD9 Mutation. Front Immunol 2021; 12:685546. [PMID: 34234782 PMCID: PMC8255793 DOI: 10.3389/fimmu.2021.685546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Talaromyces marneffei (TM) infection is rarely seen in clinical practice, and its pathogenesis may be related to deficiency in antifungal immune function. Human caspase recruitment domain-containing protein 9 (CARD9) is a key molecule in fungal immune surveillance. There have been no previous case reports of TM infection in individuals with CARD9 gene mutations. Herein, we report the case of a 7-month-old Chinese boy who was admitted to our hospital with recurring cough and fever with a papular rash. A blood culture produced TM growth, which was confirmed by metagenomic next-generation sequencing. One of the patient’s sisters had died of TM septicaemia at 9 months of age. Whole exome sequencing revealed that the patient had a complex heterozygous CARD9 gene mutation with a c.1118G>C p.R373P variation in exon 8 and a c.610C>T p.R204C variation in exon 4. Based on the culture results, voriconazole antifungal therapy was administered. On the third day of antifungal administration, his temperature dropped to within normal range, the rash gradually subsided, and the enlargement of his lymph nodes, liver, and spleen improved. Two months after discharge, he returned to the hospital for a follow-up examination. His general condition was good, and no specific abnormalities were detected. Oral voriconazole treatment was continued. Unexplained TM infection in HIV-negative individuals warrants investigation for immune deficiencies.
Collapse
Affiliation(s)
- Hongjun Ba
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Huimin Peng
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangping Cheng
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuese Lin
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuandi Li
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiufang He
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujuan Li
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huishen Wang
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Youzhen Qin
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| |
Collapse
|
33
|
Inherited CARD9 Deficiency in a Child with Invasive Disease Due to Exophiala dermatitidis and Two Older but Asymptomatic Siblings. J Clin Immunol 2021; 41:975-986. [PMID: 33558980 DOI: 10.1007/s10875-021-00988-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Autosomal recessive CARD9 deficiency predisposes patients to invasive fungal disease. Candida and Trichophyton species are major causes of fungal disease in these patients. Other CARD9-deficient patients display invasive diseases caused by other fungi, such as Exophiala spp. The clinical penetrance of CARD9 deficiency regarding fungal disease is surprisingly not complete until adulthood, though the age remains unclear. Moreover, the immunological features of genetically confirmed yet asymptomatic individuals with CARD9 deficiency have not been reported. METHODS Identification of CARD9 mutations by gene panel sequencing and characterization of the cellular phenotype by quantitative PCR, immunoblot, luciferase reporter, and cytometric bead array assays were performed. RESULTS Gene panel sequencing identified compound heterozygous CARD9 variants, c.1118G>C (p.R373P) and c.586A>G (p.K196E), in a 4-year-old patient with multiple cerebral lesions and systemic lymphadenopathy due to Exophiala dermatitidis. The p.R373P is a known disease-causing variant, whereas the p.K196E is a private variant. Although the patient's siblings, a 10-year-old brother and an 8-year-old sister, were also compound heterozygous, they have been asymptomatic to date. Normal CARD9 mRNA and protein expression were found in the patient's CD14+ monocytes. However, these cells exhibited markedly impaired pro-inflammatory cytokine production in response to fungal stimulation. Monocytes from both asymptomatic siblings displayed the same cellular phenotype. CONCLUSIONS CARD9 deficiency should be considered in previously healthy patients with invasive Exophiala dermatitidis disease. Asymptomatic relatives of all ages should be tested for CARD9 deficiency. Detecting cellular defects in asymptomatic individuals is useful for diagnosing CARD9 deficiency.
Collapse
|
34
|
Song Y, Menezes da Silva N, Vicente VA, Quan Y, Teixeira M, Gong J, de Hoog S, Li R. Comparative genomics of opportunistic Phialophora species involved in divergent disease types. Mycoses 2021; 64:555-568. [PMID: 33455056 DOI: 10.1111/myc.13244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Black opportunists Phialophora verrucosa complex species can cause different disease types in competent and in immunocompromised individuals, but are remarkably overrepresented in CARD9-related infections. OBJECTIVES To better understand the ecology and potential pathogenicity of opportunistic Phialophora species and reveal eventual genetic parameters associated with the behaviour in vivo and genetic profiles in patients with CARD9 immunodeficiency. METHODS Genomes of 26 strains belonging to six species of the Phialophora verrucosa complex were sequenced. Using multilocus analysis, all environmental and clinical strains were identified correctly. We compared the genomes of agents from different disease types among each other including CARD9 immunodeficiency. RESULTS We obtained genome sizes of the 26 Phialophora strains ranged between 32 and 37 MB. Some species showed considerable intraspecific genomic variation. P americana showed the highest degree of variability. P verrucosa was variable in CAZy enzymes, whereas P americana varied in PKS-related genes. Phialophora species, particularly P verrucosa, are relatively frequent in patients with CARD9-related immunodeficiency. Different mutations in the CARD9 gene seem to increase susceptibility for infection by different groups of species, that is either Candida, dermatophytes or black fungi. A number of patients with chromoblastomycosis revealed an as yet unknown CARD9 mutation. TNFα impairment was prevalent in patients with CARD9 infections, while CBM patients were invariably IFNγ. CONCLUSIONS From genomic investigations, the known virulence factors between clinical and environmental strains did not reveal any significant difference. Phialophora complex has an equal chance to cause infection in humans, either healthy or CARD9-impaired.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Nickolas Menezes da Silva
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Vania A Vicente
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Yu Quan
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Marcus Teixeira
- Núcleo de Medicina Tropical, University of Brasília, Brasília, Brazil.,Applied Research & Development Building, Northern Arizona University, Flagstaff, AZ, USA
| | - Jie Gong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sybren de Hoog
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
35
|
Hatta J, Anzawa K, Kubota K, Ohtani T, Mochizuki T. A Case of Recalcitrant Phaeohyphomycosis of the Face Caused by Exophiala lecanii-corni. Med Mycol J 2021; 62:35-39. [PMID: 34053978 DOI: 10.3314/mmj.20-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We describe a case of recalcitrant phaeohyphomycosis caused by Exophiala lecanii-corni, which was previously reported as Exophiala jeanselmei, infection. A 63-year-old Japanese woman presented with a 15-year history of multiple pruritic erythematous patches and plaques on the face. Histopathological examination and fungal culture revealed phaeohyphomycosis by E. jeanselmei. The attempted treatments included 6 g/day 5-flucytosine (5-FC), 100 mg/day itraconazole (ITCZ), and local hyperthermia. 5-FC was effective initially, but the patient deteriorated after discontinuation. Subsequently, she was referred to our hospital. Histopathological examination showed granuloma with multinucleated giant cells with infiltrating fungal hyphae in the dermis. The causative fungus was finally identified as E. lecanii-corni by ribosomal RNA gene analysis. The patient improved after receiving 200 mg/day ITCZ orally for 15 months with local hyperthermia. In the present case, we confirmed the identification of E. lecanii-corni as the causative agent by molecular methods. We also emphasize the importance of combination therapy with antimycotic agents and local hyperthermia in phaeohyphomycosis.
Collapse
Affiliation(s)
- Junko Hatta
- Department of Dermatology, Kanazawa Medical University
| | | | - Keiko Kubota
- Department of Dermatology, Kanazawa Medical University
| | - Toshio Ohtani
- Department of Dermatology, Kurashiki Central Hospital
| | | |
Collapse
|
36
|
Ji C, Yang Z, Zhong X, Xia J. The role and mechanism of CARD9 gene polymorphism in diseases. Biomed J 2020; 44:560-566. [PMID: 34690098 PMCID: PMC8640546 DOI: 10.1016/j.bj.2020.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/03/2023] Open
Abstract
CARD9 is a cytosolic adaptor in myeloid cells, has a critical role in inflammatory disorders, and provides a protective function against microbial pathogen, especially fungal infection. Recently, CARD9 polymorphisms are of interest, showing a positive correlation with the elevated risk of fungal infection, inflammatory bowel disease, and other autoimmune diseases. Mechanistically, CARD9 polymorphisms impair the activation of RelB, a subunit of non-canonical NF-κB, which lead to the reduced cytokine and chemokine production by innate immune cells. In addition, CARD9 polymorphisms show a defective neutrophil accumulation in infectious sites. Furthermore, CARD9 polymorphisms could alter the composition of the gut microbiome. In this review, we summarize the latest findings of CARD9 polymorphisms with respect to inflammatory diseases.
Collapse
Affiliation(s)
- Changxue Ji
- Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Zhiwen Yang
- Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China
| | | | - Jindong Xia
- Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Fungal infections have steadily increased in incidence, emerging as a significant cause of morbidity and mortality in patients with iatrogenic immunosuppression. Simultaneously, we have witnessed a growing population of newly described inherited immune disorders that have enhanced our understanding of the human immune response against fungi. In the present review, we provide an overview and diagnostic roadmap to inherited disorders which confer susceptibility to superficial and invasive fungal infections. RECENT FINDINGS Inborn errors of fungal immunity encompass a heterogeneous group of disorders, some of which confer fungal infection-specific susceptibility, whereas others also feature broader infection vulnerability and/or noninfectious manifestations. Infections by Candida, Aspergillus, endemic dimorphic fungi, Pneumocystis, and dermatophytes along with their organ-specific presentations provide clinicians with important clues in the assessment of patients with suspected immune defects. SUMMARY The absence of iatrogenic risk factors should raise suspicion for inborn errors of immunity in children and young adults with recurrent or severe fungal diseases. Expeditious diagnosis and prompt initiation of antifungal therapy and management of complications are paramount to achieve remission of fungal disease in the setting of primary immunodeficiency disorders.
Collapse
|
38
|
Zhang Y, Huang C, Song Y, Ma Y, Wan Z, Zhu X, Wang X, Li R. Primary Cutaneous Aspergillosis in a Patient with CARD9 Deficiency and Aspergillus Susceptibility of Card9 Knockout Mice. J Clin Immunol 2020; 41:427-440. [PMID: 33180249 DOI: 10.1007/s10875-020-00909-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE We describe a case of primary cutaneous aspergillosis caused by Aspergillus fumigatus, and elucidate the underlying genetic and immunological mechanisms. MATERIALS AND METHODS Routine clinical and laboratory investigations were performed. Whole-exome sequencing of the patient's DNA suggested the presence of a CARD9 mutation, which was confirmed by Sanger sequencing. Innate and adaptive immunological responses of patient-derived CARD9-deficient cells were evaluated with ELISA and flow cytometry. Cutaneous and pulmonary aspergillosis models were established in Card9 knockout (KO) mice, which were compared with wild-type and immunosuppressed mice, to explore the pathogenesis and Aspergillus susceptibility. RESULTS A 45-year-old man presented with a 37-year history of skin lesions on his face. A diagnosis of primary cutaneous aspergillosis was made through histopathology, immunohistochemistry, and tissue culture. Sanger sequencing of CARD9 showed a homozygous frame-shift mutation (c.819_820insG, p.D274fsX60), which led to the lack of CARD9 expression. Peripheral blood mononuclear cells from the patient showed selective impairment of proinflammatory cytokines, and Th1-, Th17-, and Th22-associated responses upon fungus-specific stimulation. The cutaneous aspergillosis model established in Card9 KO mice presented with persistent infection, with fungal germs and short hyphae in tissue, consistent with the patient's lesions. Skin lesions in immunosuppressed mice were more severe, and led to death. Unlike our patient, Card9 KO mice were relatively susceptible to pulmonary aspergillosis, with reasons to be investigated. CONCLUSIONS This is, to our knowledge, the first report that links cutaneous aspergillosis to CARD9 mutation. This work enriches both the phenotypic spectrum of CARD9 deficiencies and the genetic background of cutaneous aspergillosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Chen Huang
- Department of Dermatology and Venerology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xuejun Zhu
- Department of Dermatology and Venerology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China. .,Research Center for Medical Mycology, Peking University, Beijing, China. .,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China. .,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China. .,Research Center for Medical Mycology, Peking University, Beijing, China. .,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China. .,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
39
|
CARD9 Deficiency in a Chinese Man with Cutaneous Mucormycosis, Recurrent Deep Dermatophytosis and a Review of the Literature. Mycopathologia 2020; 185:1041-1050. [PMID: 32865705 DOI: 10.1007/s11046-020-00487-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022]
Abstract
Deficiency of caspase recruitment domain-containing protein 9 (CARD9) is an autosomal recessive primary immunodeficiency disorder, which typically predisposes immunocompetent individuals to single fungal infections and multiple fungal infections are very rare. We study an otherwise healthy 48-year-old man, who had been admitted to our hospital diagnosed with deep dermatophytosis caused by Trichophyton rubrum for three times at 29, 33 and 48 years old, respectively. At the age of 39 years, he suffered from cutaneous mucormycosis due to Mucor irregularis. Moreover, he had a long history of superficial fungal diseases and occasional oral candidiasis. Whole-exome sequencing revealed two compound heterozygous splicing variants in CARD9 gene, c. 184 + 5 G > T and c. 951G > A, confirmed by Sanger sequencing. Patients with recurrent fungal infections especially invasive fungal infections in the absence of known immunodeficiencies should be tested for CARD9 mutations.
Collapse
|
40
|
Song Y, Du M, Menezes da Silva N, Yang E, Vicente VA, Sybren de Hoog G, Li R. Comparative Analysis of Clinical and Environmental Strains of Exophiala spinifera by Long-Reads Sequencing and RNAseq Reveal Adaptive Strategies. Front Microbiol 2020; 11:1880. [PMID: 32849462 PMCID: PMC7412599 DOI: 10.3389/fmicb.2020.01880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Exophiala spinifera, a capsule-producing black yeast, is overrepresented as agent of disseminated infection in humans with inherited dysfunction of the CARD9 gene. In a review of published caspase recruitment domain-containing protein 9 (CARD9) deficiency cases, black fungi were linked to mutations other than those prevalent in yeast and dermatophyte cases, and were found to respond to a larger panel of cytokines. Here, we sequenced and annotated the genomes of BMU 08022 from a patient with CARD9 deficiency and two environmental strains, BMU 00051 and BMU 00047. We performed genomic and transcriptomic analysis for these isolates including published black yeasts genomes, using a combination of long-read (PACBIO) and short-read (Illumina) sequencing technologies with a hybrid assembly strategy. We identified the virulence factors, fitness, and the major genetic and gene expression differences between the strains with RNAseq technology. Genome assembly reached sub-chromosome level with between 12,043 and 12,130 predicted genes. The number of indels identified in the clinical strain was higher than observed in environmental strains. We identify a relatively large core genome of 9,887 genes. Moreover, substantial syntenic rearrangements of scaffolds I and III in the CARD9-related isolate were detected. Seventeen gene clusters were involved in the production of secondary metabolites. PKS-cluster 17 was consistently found to be absent in the clinical strain. Comparative transcriptome analysis demonstrated that 16 single-copy genes were significantly differentially expressed upon incubation in brain-heart infusion broth vs. Sabouraud glucose broth. Most of the single-copy genes upregulated with Brain Heart Infusion (BHI) were transporters. There were 48 unique genes differentially expressed exclusively to the clinical strain in two different media, including genes from various metabolic processes and transcriptional regulation. Up-regulated genes in the clinical strain with Gene Ontology (GO) enrichment are mainly involved in transmembrane transport, biosynthetic process and metabolic process. This study has provided novel insights into understanding of strain-differences in intrinsic virulence of the species and indicated that intraspecific variability may be related to habitat choice. This indicates that strains of E. spinifera are differentially prone to cause infection in susceptible patient populations, and provides clues for future studies exploring the mechanisms of pathogenic and adaptive strategies of black yeasts in immunodeficient patients.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Minghao Du
- Peking University Health Science Center, Beijing, China
| | - Nickolas Menezes da Silva
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Ence Yang
- Peking University Health Science Center, Beijing, China
| | - Vania A Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - G Sybren de Hoog
- Research Center for Medical Mycology, Peking University, Beijing, China.,Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
41
|
Kottom TJ, Nandakumar V, Hebrink DM, Carmona EM, Limper AH. A critical role for CARD9 in pneumocystis pneumonia host defence. Cell Microbiol 2020; 22:e13235. [PMID: 32548948 DOI: 10.1111/cmi.13235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022]
Abstract
Caspase recruitment domains-containing protein 9 (CARD9) is an adaptor molecule critical for key signalling pathways initiated through C-type lectin receptors (CLRs). Previous studies demonstrated that Pneumocystis organisms are recognised through a variety of CLRs. However, the role of the downstream CARD9 adaptor signalling protein in host defence against Pneumocystis infection remains to be elucidated. Herein, we analysed the role of CARD9 in host defence against Pneumocystis both in CD4-depleted CARD9-/- and immunocompetent hosts. Card9 gene-disrupted (CARD9-/- ) mice were more susceptible to Pneumocystis, as evidenced by reduced fungal clearance in infected lungs compared to wild-type (WT) infected mice. Our data suggests that this defect was due to impaired proinflammatory responses. Furthermore, CARD9-/- macrophages were severely compromised in their ability to differentiate and express M1 and M2 macrophage polarisation markers, to enhanced mRNA expression for Dectin-1 and Mincle, and most importantly, to kill Pneumocystis in vitro. Remarkably, compared to WT mice, and despite markedly increased organism burdens, CARD9-/- animals did not exhibit worsened survival during pneumocystis pneumonia (PCP), perhaps related to decreased lung injury due to altered influx of inflammatory cells and decreased levels of proinflammatory cytokines in response to the organism. Finally, although innate phase cytokines were impaired in the CARD9-/- animals during PCP, T-helper cell cytokines were normal in immunocompetent CARD9-/- animals infected with Pneumocystis. Taken together, our data demonstrate that CARD9 has a critical function in innate immune responses against Pneumocystis.
Collapse
Affiliation(s)
- Theodore J Kottom
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Vijayalakshmi Nandakumar
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Deanne M Hebrink
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M Carmona
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H Limper
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
42
|
Martinez O, Jarrah J, Revankar SG. Invasive Phaeohyphomycosis in Immunocompetent Hosts. CURRENT FUNGAL INFECTION REPORTS 2020. [DOI: 10.1007/s12281-020-00398-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Challa S. Invasive Fungal Infections of the Central Nervous System in Immune-Competent Hosts. CURRENT FUNGAL INFECTION REPORTS 2020. [DOI: 10.1007/s12281-020-00384-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Song Y, da Silva NM, Weiss VA, Vu D, Moreno LF, Vicente VA, Li R, de Hoog GS. Comparative Genomic Analysis of Capsule-Producing Black Yeasts Exophiala dermatitidis and Exophiala spinifera, Potential Agents of Disseminated Mycoses. Front Microbiol 2020; 11:586. [PMID: 32373085 PMCID: PMC7179667 DOI: 10.3389/fmicb.2020.00586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
The two black yeasts Exophiala dermatitidis and Exophiala spinifera that are clinically considered as the most virulent species potentially causing disseminated infections are both producing extracellular capsule-like material, are compared. In this study, 10 genomes of E. spinifera and E. dermatitidis strains, including both clinical and environmental isolates, were selected based on phylogenetic analysis, physiology tests and virulence tests, sequenced on the Illumina MiSeq sequencer and annotated. Comparison of genome data were performed between intraspecific and interspecific strains. We found capsule-associated genes were however not consistently present in both species by the comparative genomics. The prevalent clinical species, E. dermatitidis, has small genomes containing significantly less virulence-associated genes than E. spinifera, and also than saprobic relatives. Gene OG0012246 and Myb-like DNA-binding domain and SANT/Myb domain, restricted to two strains from human brain, was shared with the neurotropic species Rhinocladiella mackenziei. This study indicated that different virulence profiles existed in the two capsule-producing black yeasts, and the absence of consistent virulence-associated profiles supports the hypothesis that black yeasts are opportunists rather than primary pathogens. The results also provide the key virulence genes and drive the continuing research forward pathogen–host interactions to explore the pathogenesis.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Nickolas Menezes da Silva
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands.,Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Vinicius Almir Weiss
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Leandro F Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Amsterdam Medical Center, Amsterdam, Netherlands
| | - Vania Aparecida Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - G Sybren de Hoog
- Research Center for Medical Mycology, Peking University, Beijing, China.,Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.,Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Amsterdam Medical Center, Amsterdam, Netherlands
| |
Collapse
|
45
|
Van Den Rym A, Taur P, Martinez-Barricarte R, Lorenzo L, Puel A, Gonzalez-Navarro P, Pandrowala A, Gowri V, Safa A, Toledano V, Cubillos-Zapata C, López-Collazo E, Vela M, Pérez-Martínez A, Sánchez-Ramón S, Recio MJ, Casanova JL, Desai MM, Perez de Diego R. Human BCL10 Deficiency due to Homozygosity for a Rare Allele. J Clin Immunol 2020; 40:388-398. [PMID: 32008135 DOI: 10.1007/s10875-020-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022]
Abstract
In 2014, a child with broad combined immunodeficiency (CID) who was homozygous for a private BCL10 allele was reported to have complete inherited human BCL10 deficiency. In the present study, we report a new BCL10 mutation in another child with CID who was homozygous for a BCL10 variant (R88X), previously reported as a rare allele in heterozygosis (minor allele frequency, 0.000003986). The mutant allele was a loss-of-expression and loss-of-function allele. As with the previously reported patient, this patient had complete BCL10 deficiency. The clinical phenotype shared features, such as respiratory infections, but differed from that of the previous patient that he did not develop significant gastroenteritis episodes or chronic colitis. Cellular and immunological phenotypes were similar to those of the previous patient. TLR4, TLR2/6, and Dectin-1 responses were found to depend on BCL10 in fibroblasts, and final maturation of T cell and B cell maturation into memory cells was affected. Autosomal-recessive BCL10 deficiency should therefore be considered in children with CID.
Collapse
Affiliation(s)
- Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Prasad Taur
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
- Imagine Institute, University Paris Descartes, 75015, Paris, France
| | - Pablo Gonzalez-Navarro
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ambreen Pandrowala
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Vijaya Gowri
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Amin Safa
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Victor Toledano
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Center for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Maria Vela
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
- Department of Paediatric Haemato-oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Clinical Immunology Department, San Carlos Clinical Hospital, 28040, Madrid, Spain
| | - Maria J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
- Imagine Institute, University Paris Descartes, 75015, Paris, France
- Paediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Mukesh M Desai
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
46
|
Inherited CARD9 Deficiency in a Patient with Both Exophiala spinifera and Aspergillus nomius Severe Infections. J Clin Immunol 2020; 40:359-366. [PMID: 31940125 DOI: 10.1007/s10875-019-00740-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Caspase-associated recruitment domain-9 (CARD9) deficiency is an inborn error of immunity that typically predisposes otherwise healthy patients to single fungal infections and the occurrence of multiple invasive fungal infections is rare. It has been described as the first known condition that predisposes to extrapulmonary Aspergillus infection with preserved lungs. We present a patient that expands the clinical variability of CARD9 deficiency. MATERIALS AND METHODS Genetic analysis was performed by Sanger sequencing. Neutrophils and mononuclear phagocyte response to fungal stimulation were evaluated through luminol-enhanced chemiluminescence and whole blood production of the proinflammatory mediator interleukin (IL)-6, respectively. RESULTS We report a 56-year-old Argentinean woman, whose invasive Exophiala spinifera infection at the age of 32 years was unexplained and reported in year 2004. At the age of 49 years, she presented with chronic pulmonary disease due to Aspergillus nomius. After partial improvement following treatment with caspofungin and posaconazole, right pulmonary bilobectomy was performed. Despite administration of multiple courses of antifungals, sustained clinical remission could not be achieved. We recently found that the patient's blood showed an impaired production of IL-6 when stimulated with zymosan. We also found that she is homozygous for a previously reported CARD9 loss-of-function mutation (Q289*). CONCLUSIONS This is the first report of a patient with inherited CARD9 deficiency and chronic invasive pulmonary aspergillosis (IPA) due to A. nomius. Inherited CARD9 deficiency should be considered in otherwise healthy children and adults with one or more invasive fungal diseases.
Collapse
|
47
|
Complete clinical remission of invasive Candida infection with CARD9 deficiency after G-CSF treatment. Comp Immunol Microbiol Infect Dis 2020; 70:101417. [PMID: 32113042 DOI: 10.1016/j.cimid.2020.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 01/09/2023]
Abstract
Caspase-associated recruitment domain-containing protein 9 (CARD9) deficiency is an autosomal-recessive primary immunodeficiency characterized by susceptibility to recurrent Candida infections, and its diagnosis and treatment is challenging. The present study aims to investigate the genetic characteristic and treatment strategy of a Chinese pediatric patient with CARD9 deficiency. In the present study, whole-exome sequencing (WES) was performed to screen the causal variants in a Chinese pediatric patient who exhibited an invasive Candida infection in the abdominal cavity and central nervous system. After the disease-causing gene being confirmed, the patient was treated with a combination of G-CSF and antifungal agents. DNA sequencing revealed a homozygous insertion mutation (c.819-820insG) in exon 6 of the CARD9 gene, which led to downstream amino acids conversion on codon 274 (p.D274fsX60). Th17 cell populations and cytokine levels showed decreased levels. The treatment regimen successfully resolved the patient's symptoms, and he remained symptom-free after more than 1 year of follow-up. This study described an invasive Candida infection in a pediatric patient and WES identified an insertion variant of the CARD9 gene. A combination of G-CSF and antifungal agents was highly effective in treating the invasive fungal infection accompanied by CARD9-induced immunodeficiency.
Collapse
|
48
|
Physiological and Pathological Functions of CARD9 Signaling in the Innate Immune System. Curr Top Microbiol Immunol 2020; 429:177-203. [PMID: 32415389 DOI: 10.1007/82_2020_211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caspase recruitment domain protein 9 (CARD9) forms essential signaling complexes in the innate immune system that integrate cues from C-type lectin receptors and specific intracellular pattern recognition receptors. These CARD9-mediated signals are pivotal for host defense against fungi, and they mediate immunity against certain bacteria, viruses and parasites. Furthermore, CARD9-regulated pathways are involved in sterile inflammatory responses critical for immune homeostasis and can control pro- and antitumor immunity in cancer microenvironments. Consequently, multiple genetic alterations of human CARD9 are connected to primary immunodeficiencies or prevalent inflammatory disorders in patients. This review will summarize our current understanding of CARD9 signaling in the innate immune system, its physiological and pathological functions and their implications for human immune-mediated diseases.
Collapse
|
49
|
Abstract
Purpose of review Fungal infections cause significant mortality in patients with acquired immunodeficiencies including AIDS, hematological malignancies, transplantation, and receipt of corticosteroids, biologics or small-molecule kinase inhibitors that impair key immune pathways. The contribution of several such pathways in antifungal immunity has been uncovered by inherited immunodeficiencies featuring profound fungal susceptibility. Furthermore, the risk of fungal infection in patients with acquired immunodeficiencies may be modulated by single nucleotide polymorphisms (SNPs) in immune-related genes. This review outlines key features underlying human genetic fungal predisposition. Recent findings The discovery of monogenic disorders that cause fungal disease and the characterization of immune-related gene SNPs that may regulate fungal susceptibility have provided important insights into how genetic variation affects development and outcome of fungal infections in humans. Summary Recognition of individualized genetic fungal susceptibility traits in humans should help devise precision-medicine strategies for risk assessment, prognostication and treatment of patients with opportunistic fungal infections.
Collapse
|
50
|
Sari S, Dalgic B, Muehlenbachs A, DeLeon-Carnes M, Goldsmith CS, Ekinci O, Jain D, Keating MK, Vilarinho S. Prototheca zopfii Colitis in Inherited CARD9 Deficiency. J Infect Dis 2019; 218:485-489. [PMID: 29659908 DOI: 10.1093/infdis/jiy198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Human protothecosis is a rare microalgae infection, and its dissemination typically occurs in immunocompromised individuals, but no specific immune defect has been reported. Here, we describe an 8-year-old daughter of a consanguineous union with abdominal pain and bloody diarrhea for 3 months who was found to have pancolitis with numerous microalgae identified as Prototheca zopfii. In the absence of a known immunodeficiency, exome sequencing was performed, which uncovered a novel recessive frameshift mutation in CARD9 (p.V261fs). This report highlights that CARD9 deficiency should be investigated in patients with unexplained systemic/visceral protothecosis and suggests a new mechanistic insight into anti-Prototheca immunity.
Collapse
Affiliation(s)
- Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatrics, Division of Gastroenterology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Atis Muehlenbachs
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marlene DeLeon-Carnes
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cynthia S Goldsmith
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Department of of Internal Medicine, Section of Digestive Diseases, Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - M Kelly Keating
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Silvia Vilarinho
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Department of of Internal Medicine, Section of Digestive Diseases, Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|