1
|
Sievert EP, Franke MC, Thomas KB, Yoon Y, Shi Y, Sciammas R. Distinct plasmablast developmental intermediates produce graded expression of IgM secretory transcripts. Cell Rep 2025; 44:115283. [PMID: 39923238 PMCID: PMC12023845 DOI: 10.1016/j.celrep.2025.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Differentiation into plasma cells (PCs) enables secretion of ∼10,000 immunoglobulin molecules per second. This extraordinary capacity requires the upregulation of PC transcriptional determinants that specify PC fate, increase immunoglobulin mRNA synthesis, coordinate alternative 3' end processing of the heavy chain transcript from the distal to proximal polyadenylation site (PAS), and remodel the secretory pathway. We developed a dual-fluorescent protein reporter mouse to prospectively study the post-transcriptional-level transition from membrane anchored to secretory immunoglobulin M; μM-PAS and μS-PAS, respectively. We observed (1) graded μS-PAS usage during PC differentiation, (2) IRF4 and Blimp-1 functioned hierarchically to increase μ abundance as well as μS-PAS usage, and (3) graded μS populations did or did not express Blimp-1. Interestingly, the low and high μS and Blimp-1-expressing populations arose from distinct developmental intermediates that exhibited dissimilar endoplasmic reticulum features. The distinct cell and μS-PAS fate trajectories may have implications for derivatization of the secretory pathway.
Collapse
Affiliation(s)
- Evelyn P Sievert
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Marissa C Franke
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Kayla B Thomas
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Yoseop Yoon
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, CA, USA.
| | - Roger Sciammas
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Mathisen AF, Legøy TA, Larsen U, Unger L, Abadpour S, Paulo JA, Scholz H, Ghila L, Chera S. The age-dependent regulation of pancreatic islet landscape is fueled by a HNF1a-immune signaling loop. Mech Ageing Dev 2024; 220:111951. [PMID: 38825059 DOI: 10.1016/j.mad.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Wilson KR, Macri C, Villadangos JA, Mintern JD. Constitutive Flt3 signaling impacts conventional dendritic cell function. Immunol Cell Biol 2024; 102:500-512. [PMID: 38693626 DOI: 10.1111/imcb.12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
The development of dendritic cells (DCs) depends on signaling via the FMS-like tyrosine kinase 3 (Flt3) receptor. How Flt3 signaling impacts terminally differentiated DC function is unknown. This is important given the increasing interest in exploiting Flt3 for vaccination and tumor immunotherapy. Here, we examined DCs in mice harboring constitutively activated Flt3 (Flt3-ITD). Flt3ITD/ITD mice possessed expanded splenic DC subsets including plasmacytoid DC, conventional DC (cDC)1, cDC2, double positive (DP) cDC1 (CD11c+ CD8+ CD11b- CD103+ CD86+), noncanonical (NC) cDC1 (CD11c+ CD8+ CD11b- CD103- CD86-) and single positive (SP) cDC1 (CD11c+ CD8+ CD11b- CD103- CD86+). Outcomes of constitutive Flt3 signaling differed depending on the cDC subset examined. In comparison with wild type (WT) DCs, all Flt3ITD/ITD cDCs displayed an altered surface phenotype with changes in costimulatory molecules, major histocompatibility complex class I (MHC I) and II (MHC II). Cytokine secretion patterns, antigen uptake, antigen proteolysis and antigen presenting function differed between WT and Flt3ITD/ITD subsets, particularly cDC2. In summary, Flt3 signaling impacts the function of terminally differentiated cDCs with important consequences for antigen presentation.
Collapse
Affiliation(s)
- Kayla R Wilson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC, Australia
| |
Collapse
|
4
|
Kurlekar S, Lima JDCC, Li R, Lombardi O, Masson N, Barros AB, Pontecorvi V, Mole DR, Pugh CW, Adam J, Ratcliffe PJ. Oncogenic Cell Tagging and Single-Cell Transcriptomics Reveal Cell Type-Specific and Time-Resolved Responses to Vhl Inactivation in the Kidney. Cancer Res 2024; 84:1799-1816. [PMID: 38502859 PMCID: PMC11148546 DOI: 10.1158/0008-5472.can-23-3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Defining the initial events in oncogenesis and the cellular responses they entrain, even in advance of morphologic abnormality, is a fundamental challenge in understanding cancer initiation. As a paradigm to address this, we longitudinally studied the changes induced by loss of the tumor suppressor gene von Hippel Lindau (VHL), which ultimately drives clear cell renal cell carcinoma. Vhl inactivation was directly coupled to expression of a tdTomato reporter within a single allele, allowing accurate visualization of affected cells in their native context and retrieval from the kidney for single-cell RNA sequencing. This strategy uncovered cell type-specific responses to Vhl inactivation, defined a proximal tubular cell class with oncogenic potential, and revealed longer term adaptive changes in the renal epithelium and the interstitium. Oncogenic cell tagging also revealed markedly heterogeneous cellular effects including time-limited proliferation and elimination of specific cell types. Overall, this study reports an experimental strategy for understanding oncogenic processes in which cells bearing genetic alterations can be generated in their native context, marked, and analyzed over time. The observed effects of loss of Vhl in kidney cells provide insights into VHL tumor suppressor action and development of renal cell carcinoma. SIGNIFICANCE Single-cell analysis of heterogeneous and dynamic responses to Vhl inactivation in the kidney suggests that early events shape the cell type specificity of oncogenesis, providing a focus for mechanistic understanding and therapeutic targeting.
Collapse
Affiliation(s)
- Samvid Kurlekar
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joanna D C C Lima
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ran Li
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Olivia Lombardi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Norma Masson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ayslan B Barros
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Virginia Pontecorvi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David R Mole
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christopher W Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter J Ratcliffe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, United Kingdom
| |
Collapse
|
5
|
Guan Z, Worth B, Umstead TM, Amatya S, Booth J, Chroneos ZC. Disruption of the SP-A/SP-R210 L (MYO18Aα) pathway prolongs gestation and reduces fetal survival during lipopolysaccharide-induced parturition in late gestation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L508-L513. [PMID: 38349123 PMCID: PMC11281786 DOI: 10.1152/ajplung.00383.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 04/07/2024] Open
Abstract
Prolonged labor can lead to infection, fetal distress, asphyxia, and life-threatening harm to both the mother and the baby. Surfactant protein A (SP-A) was shown to contribute to the maintenance of pregnancy and timing of term labor. SP-A modulates the stoichiometric expression of the SP-R210L and SP-R210S isoforms of the SP-R210 receptor on alveolar macrophages (AMs). Lack of SP-R210L dysregulates macrophage inflammatory responses. We asked whether SP-A alters normal and inflammation-induced parturition through SP-R210 using SP-A- and SP-R210L-deficient mice. Labor and delivery of time-pregnant mice were monitored in real time using a time-lapse infrared camera. Intrauterine injection with either vehicle or Escherichia coli lipopolysaccharide (LPS) on embryonic (E) day 18.5 post coitus was used to assess the effect of gene disruption in chorioamnionitis-induced labor. We report that either lack of SP-A or disruption of SP-R210L delays parturition by 0.40 and 0.55 days compared with controls, respectively. LPS induced labor at 0.60, 1.01, 0.40, 1.00, and 1.31 days earlier than PBS controls in wild type (WT), SP-A-deficient, littermate controls, heterozygous, and homozygous SP-R210L-deficient mice, respectively. Lack of SP-A reduced litter size in PBS-treated mice, whereas the total number of pups delivered was similar in all LPS-treated mice. The number of live pups, however, was significantly reduced by 50%-70% in SP-A and SP-R210L-deficient mice compared with controls. Differences in gestational length were not associated with intrauterine growth restriction. The present findings support the novel concept that the SP-A/SP-R210 pathway modulates timely labor and delivery and supports fetal lung barrier integrity during fetal-to-neonatal transition in term pregnancy.NEW & NOTEWORTHY To our knowledge, this study is the first to report that SP-A prevents delay of labor and inflammation-induced stillbirth through the receptor SP-R210L.
Collapse
Affiliation(s)
- Zhiwei Guan
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Brandon Worth
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Todd M Umstead
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Shaili Amatya
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Jennifer Booth
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Zissis C Chroneos
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
6
|
Sahu S, Sahoo S, Sullivan T, O'Sullivan TN, Turan S, Albaugh ME, Burkett S, Tran B, Salomon DS, Kozlov SV, Koehler KR, Jolly MK, Sharan SK. Spatiotemporal modulation of growth factors directs the generation of multilineage mouse embryonic stem cell-derived mammary organoids. Dev Cell 2024; 59:175-186.e8. [PMID: 38159568 PMCID: PMC10872289 DOI: 10.1016/j.devcel.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG in vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Teresa Sullivan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - T Norene O'Sullivan
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA
| | - Sevilay Turan
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bao Tran
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - David S Salomon
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Serguei V Kozlov
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Karl R Koehler
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology, Department of Plastic & Oral Surgery, and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shyam K Sharan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
7
|
Subramanya S, Goswami MT, Miller N, Weh E, Chaudhury S, Zhang L, Andren A, Hager H, Weh KM, Lyssiotis CA, Besirli CG, Wubben TJ. Rod photoreceptor-specific deletion of cytosolic aspartate aminotransferase, GOT1, causes retinal degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1306019. [PMID: 38725581 PMCID: PMC11081273 DOI: 10.3389/fopht.2023.1306019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 05/12/2024]
Abstract
Photoreceptor cell death is the cause of vision loss in many forms of retinal disease. Metabolic dysfunction within the outer retina has been shown to be an underlying factor contributing to photoreceptor loss. Therefore, a comprehensive understanding of the metabolic pathways essential to photoreceptor health and function is key to identifying novel neuroprotective strategies. Glutamic-oxaloacetic transaminase 1 (Got1) encodes for a cytosolic aspartate aminotransferase that reversibly catalyzes the transfer of an amino group between glutamate and aspartate and is an important aspect of the malate-aspartate shuttle (MAS), which transfers reducing equivalents from the cytosol to the mitochondrial matrix. Previous work has demonstrated that the activity of this enzyme is highest in photoreceptor inner segments. Furthermore, ex vivo studies have demonstrated that the retina relies on aspartate aminotransferase for amino acid metabolism. Importantly, aspartate aminotransferase has been suggested to be an early biomarker of retinal degeneration in retinitis pigmentosa and a possible target for neuroprotection. In the present study, we characterized the effect of Got1 deletion on photoreceptor metabolism, function, and survival in vivo by using a rod photoreceptor-specific, Got1 knockout mouse model. Loss of the GOT1 enzyme from rod photoreceptors resulted in age-related photoreceptor degeneration with an accumulation of retinal aspartate and NADH and alterations in the expression of genes involved in the MAS, the tricarboxylic acid (TCA) cycle, and redox balance. Hence, GOT1 is critical to in vivo photoreceptor metabolism, function, and survival.
Collapse
Affiliation(s)
- Shubha Subramanya
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Moloy T. Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Katherine M. Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Thomas J. Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Keniry A, Jansz N, Hickey PF, Breslin KA, Iminitoff M, Beck T, Gouil Q, Ritchie ME, Blewitt ME. A method for stabilising the XX karyotype in female mESC cultures. Development 2022; 149:285125. [PMID: 36355065 PMCID: PMC10112917 DOI: 10.1242/dev.200845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.
Collapse
Affiliation(s)
- Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelsey A Breslin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Yu F, Courjaret R, Elmi A, Adap EA, Orie NN, Zghyer F, Hubrack S, Hayat S, Asaad N, Worgall S, Suthanthiran M, Ali VM, Machaca K. Chronic reduction of store operated Ca 2+ entry is viable therapeutically but is associated with cardiovascular complications. J Physiol 2022; 600:4827-4848. [PMID: 36181482 DOI: 10.1113/jp283811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Loss of function mutations in store-operated Ca2+ entry (SOCE) are associated with severe paediatric disorders in humans, including combined immunodeficiency, anaemia, thrombocytopenia, anhidrosis and muscle hypotonia. Given its central role in immune cell activation, SOCE has been a therapeutic target for autoimmune and inflammatory diseases. Treatment for such chronic diseases would require prolonged SOCE inhibition. It is, however, unclear whether chronic SOCE inhibition is viable therapeutically. Here we address this issue using a novel genetic mouse model (SOCE hypomorph) with deficient SOCE, nuclear factor of activated T cells activation, and T cell cytokine production. SOCE hypomorph mice develop and reproduce normally and do not display muscle weakness or overt anhidrosis. They do, however, develop cardiovascular complications, including hypertension and tachycardia, which we show are due to increased sympathetic autonomic nervous system activity and not cardiac or vascular smooth muscle autonomous defects. These results assert that chronic SOCE inhibition is viable therapeutically if the cardiovascular complications can be managed effectively clinically. They further establish the SOCE hypomorph line as a genetic model to define the therapeutic window of SOCE inhibition and dissect toxicities associated with chronic SOCE inhibition in a tissue-specific fashion. KEY POINTS: A floxed stromal interaction molecule 1 (STIM1) hypomorph mouse model was generated with significant reduction in Ca2+ influx through store-operated Ca2+ entry (SOCE), resulting in defective nuclear translocation of nuclear factor of activated T cells, cytokine production and inflammatory response. The hypomorph mice are viable and fertile, with no overt defects. Decreased SOCE in the hypomorph mice is due to poor translocation of the mutant STIM1 to endoplasmic reticulum-plasma membrane contact sites resulting in fewer STIM1 puncta. Hypomorph mice have similar susceptibility to controls to develop diabetes but exhibit tachycardia and hypertension. The hypertension is not due to increased vascular smooth muscle contractility or vascular remodelling. The tachycardia is not due to heart-specific defects but rather seems to be due to increased circulating catecholamines in the hypomorph. Therefore, long term SOCE inhibition is viable if the cardiovascular defects can be managed clinically.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Asha Elmi
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ethel Alcantara Adap
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | | | - Fawzi Zghyer
- Medical Program, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Satanay Hubrack
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Sajad Hayat
- Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Nidal Asaad
- Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Departments of Medicine and Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical College, New York, NY, USA
| | | | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Covalent TCR-peptide-MHC interactions induce T cell activation and redirect T cell fate in the thymus. Nat Commun 2022; 13:4951. [PMID: 35999236 PMCID: PMC9399087 DOI: 10.1038/s41467-022-32692-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Interactions between a T cell receptor (TCR) and a peptide-major histocompatibility complex (pMHC) ligand are typically mediated by noncovalent bonds. By studying T cells expressing natural or engineered TCRs, here we describe covalent TCR-pMHC interactions that involve a cysteine-cysteine disulfide bond between the TCR and the peptide. By introducing cysteines into a known TCR-pMHC combination, we demonstrate that disulfide bond formation does not require structural rearrangement of the TCR or the peptide. We further show these disulfide bonds still form even when the initial affinity of the TCR-pMHC interaction is low. Accordingly, TCR-peptide disulfide bonds facilitate T cell activation by pMHC ligands with a wide spectrum of affinities for the TCR. Physiologically, this mechanism induces strong Zap70-dependent TCR signaling, which triggers T cell deletion or agonist selection in the thymus cortex. Covalent TCR-pMHC interactions may thus underlie a physiological T cell activation mechanism that has applications in basic immunology and potentially in immunotherapy. Differentiation and activation of T cells are normally modulated by non-covalent interactions between T cell receptor (TCR) and antigenic peptides. Here the authors use step-wise mutations, biochemical characterization and structural insights to describe the contributions of natural covalent bonds between TCR and antigenic peptides during these processes.
Collapse
|
11
|
James J, Chen Y, Hernandez CM, Forster F, Dagnell M, Cheng Q, Saei AA, Gharibi H, Lahore GF, Åstrand A, Malhotra R, Malissen B, Zubarev RA, Arnér ESJ, Holmdahl R. Redox regulation of PTPN22 affects the severity of T-cell-dependent autoimmune inflammation. eLife 2022; 11:74549. [PMID: 35587260 PMCID: PMC9119677 DOI: 10.7554/elife.74549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic autoimmune diseases are associated with mutations in PTPN22, a modifier of T cell receptor (TCR) signaling. As with all protein tyrosine phosphatases, the activity of PTPN22 is redox regulated, but if or how such regulation can modulate inflammatory pathways in vivo is not known. To determine this, we created a mouse with a cysteine-to-serine mutation at position 129 in PTPN22 (C129S), a residue proposed to alter the redox regulatory properties of PTPN22 by forming a disulfide with the catalytic C227 residue. The C129S mutant mouse showed a stronger T-cell-dependent inflammatory response and development of T-cell-dependent autoimmune arthritis due to enhanced TCR signaling and activation of T cells, an effect neutralized by a mutation in Ncf1, a component of the NOX2 complex. Activity assays with purified proteins suggest that the functional results can be explained by an increased sensitivity to oxidation of the C129S mutated PTPN22 protein. We also observed that the disulfide of native PTPN22 can be directly reduced by the thioredoxin system, while the C129S mutant lacking this disulfide was less amenable to reductive reactivation. In conclusion, we show that PTPN22 functionally interacts with Ncf1 and is regulated by oxidation via the noncatalytic C129 residue and oxidation-prone PTPN22 leads to increased severity in the development of T-cell-dependent autoimmunity.
Collapse
Affiliation(s)
- Jaime James
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yifei Chen
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Clara M Hernandez
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Florian Forster
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Dagnell
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Amir A Saei
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden
| | - Gonzalo Fernandez Lahore
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Åstrand
- Project Leader Department, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- Translational Science and Experimental Medicine, Research and Early Development Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bernard Malissen
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, Marseille, France
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elias S J Arnér
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
McNamara HA, Lahoud MH, Cai Y, Durrant-Whyte J, O'Connor JH, Caminschi I, Cockburn IA. Splenic Dendritic Cells and Macrophages Drive B Cells to Adopt a Plasmablast Cell Fate. Front Immunol 2022; 13:825207. [PMID: 35493521 PMCID: PMC9039241 DOI: 10.3389/fimmu.2022.825207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Upon encountering cognate antigen, B cells can differentiate into short-lived plasmablasts, early memory B cells or germinal center B cells. The factors that determine this fate decision are unclear. Past studies have addressed the role of B cell receptor affinity in this process, but the interplay with other cellular compartments for fate determination is less well understood. Moreover, B cell fate decisions have primarily been studied using model antigens rather than complex pathogen systems, which potentially ignore multifaceted interactions from other cells subsets during infection. Here we address this question using a Plasmodium infection model, examining the response of B cells specific for the immunodominant circumsporozoite protein (CSP). We show that B cell fate is determined in part by the organ environment in which priming occurs, with the majority of the CSP-specific B cell response being derived from splenic plasmablasts. This plasmablast response could occur independent of T cell help, though gamma-delta T cells were required to help with the early isotype switching from IgM to IgG. Interestingly, selective ablation of CD11c+ dendritic cells and macrophages significantly reduced the splenic plasmablast response in a manner independent of the presence of CD4 T cell help. Conversely, immunization approaches that targeted CSP-antigen to dendritic cells enhanced the magnitude of the plasmablast response. Altogether, these data indicate that the early CSP-specific response is predominately primed within the spleen and the plasmablast fate of CSP-specific B cells is driven by macrophages and CD11c+ dendritic cells.
Collapse
Affiliation(s)
- Hayley A McNamara
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yeping Cai
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Jessica Durrant-Whyte
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - James H O'Connor
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Irina Caminschi
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Schriek P, Ching AC, Moily NS, Moffat J, Beattie L, Steiner TM, Hosking LM, Thurman JM, Holers VM, Ishido S, Lahoud MH, Caminschi I, Heath WR, Mintern JD, Villadangos JA. Marginal zone B cells acquire dendritic cell functions by trogocytosis. Science 2022; 375:eabf7470. [PMID: 35143312 DOI: 10.1126/science.abf7470] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.
Collapse
Affiliation(s)
- Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alan C Ching
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nagaraj S Moily
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jessica Moffat
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thiago M Steiner
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laine M Hosking
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joshua M Thurman
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Rawle DJ, Le TT, Dumenil T, Bishop C, Yan K, Nakayama E, Bird PI, Suhrbier A. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife 2022; 11:e70207. [PMID: 35119362 PMCID: PMC8816380 DOI: 10.7554/elife.70207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Thuy T Le
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Troy Dumenil
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Cameron Bishop
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kexin Yan
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eri Nakayama
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Department of Virology I, National Institute of Infectious DiseasesTokyoJapan
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Australian Infectious Disease Research Centre, GVN Center of ExcellenceBrisbaneAustralia
| |
Collapse
|
15
|
Zhou Y, Luo Z, Liao C, Cao R, Hussain Z, Wang J, Zhou Y, Chen T, Sun J, Huang Z, Liu B, Zhang X, Guan Y, Deng T. MHC class II in renal tubules plays an essential role in renal fibrosis. Cell Mol Immunol 2021; 18:2530-2540. [PMID: 34556823 PMCID: PMC8545940 DOI: 10.1038/s41423-021-00763-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Immunomodulation is considered a potential therapeutic approach for chronic kidney disease (CKD). Although it has been previously reported that CD4+ T cells contribute to the development of renal fibrosis, the role of MHC class II (MHCII) in the development of renal fibrosis remains largely unknown. The present study reports that the expression of MHCII molecules in renal cortical tubules is upregulated in mouse renal fibrosis models generated by unilateral ureter obstruction (UUO) and folic acid (FA). Proximal tubule epithelial cells (PTECs) are functional antigen-presenting cells that promote the proliferation of CD4+ T cells in an MHCII-dependent manner. PTECs from mice with renal fibrosis had a stronger ability to induce T cell proliferation and cytokine production than control cells. Global or renal tubule-specific ablation of H2-Ab1 significantly alleviated renal fibrosis following UUO or FA treatment. Renal expression of profibrotic genes showed a consistent reduction in H2-Ab1 gene-deficient mouse lines. Moreover, there was a marked increase in renal tissue CD4+ T cells after UUO or FA treatment and a significant decrease following renal tubule-specific ablation of H2-Ab1. Furthermore, renal tubule-specific H2-Ab1 gene knockout mice exhibited higher proportions of regulatory T cells (Tregs) and lower proportions of Th2 cells in the UUO- or FA-treated kidneys. Finally, Immunohistochemistry (IHC) studies showed increased renal expression of MHCII and the profibrotic gene α smooth muscle actin (α-SMA) in CKD patients. Together, our human and mouse data demonstrate that renal tubular MHCII plays an important role in the pathogenesis of renal fibrosis.
Collapse
Affiliation(s)
- Yunfeng Zhou
- grid.263488.30000 0001 0472 9649Department of Physiology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Zhaokang Luo
- grid.263488.30000 0001 0472 9649Department of Physiology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Chenghui Liao
- grid.263488.30000 0001 0472 9649Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University, Shenzhen, China
| | - Rong Cao
- grid.263488.30000 0001 0472 9649Department of Nephrology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zain Hussain
- grid.416992.10000 0001 2179 3554Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Jie Wang
- Department of Internal Medicine, Shenzhen Guangming Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yeting Zhou
- grid.263488.30000 0001 0472 9649School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Tie Chen
- grid.263488.30000 0001 0472 9649School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Jie Sun
- grid.263488.30000 0001 0472 9649Department of Biochemistry and Molecular Biology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Zhong Huang
- grid.263488.30000 0001 0472 9649Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University, Shenzhen, China
| | - Baohua Liu
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University, Shenzhen, China
| | - Xiaoyan Zhang
- grid.411971.b0000 0000 9558 1426Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- grid.411971.b0000 0000 9558 1426Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China
| | - Tuo Deng
- grid.452708.c0000 0004 1803 0208National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China ,Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China ,grid.216417.70000 0001 0379 7164Metabolic Syndrome Research Center, Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
16
|
Wilson KR, Jenika D, Blum AB, Macri C, Xu B, Liu H, Schriek P, Schienstock D, Francis L, Makota FV, Ishido S, Mueller SN, Lahoud MH, Caminschi I, Edgington-Mitchell LE, Villadangos JA, Mintern JD. MHC Class II Ubiquitination Regulates Dendritic Cell Function and Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:2255-2264. [PMID: 34599081 DOI: 10.4049/jimmunol.2001426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC II) Ag presentation by dendritic cells (DCs) is critical for CD4+ T cell immunity. Cell surface levels of MHC II loaded with peptide is controlled by ubiquitination. In this study, we have examined how MHC II ubiquitination impacts immunity using MHC IIKRKI/KI mice expressing mutant MHC II molecules that are unable to be ubiquitinated. Numbers of conventional DC (cDC) 1, cDC2 and plasmacytoid DCs were significantly reduced in MHC IIKRKI/KI spleen, with the remaining MHC IIKRKI/KI DCs expressing an altered surface phenotype. Whereas Ag uptake, endosomal pH, and cathepsin protease activity were unaltered, MHC IIKRKI/KI cDC1 produced increased inflammatory cytokines and possessed defects in Ag proteolysis. Immunization of MHC IIKRKI/KI mice identified impairments in MHC II and MHC class I presentation of soluble, cell-associated and/or DC-targeted OVA via mAb specific for DC surface receptor Clec9A (anti-Clec9A-OVA mAb). Reduced T cell responses and impaired CTL killing was observed in MHC IIKRKI/KI mice following immunization with cell-associated and anti-Clec9A-OVA. Immunization of MHC IIKRKI/KI mice failed to elicit follicular Th cell responses and generated barely detectable Ab to anti-Clec9A mAb-targeted Ag. In summary, MHC II ubiquitination in DCs impacts the homeostasis, phenotype, cytokine production, and Ag proteolysis by DCs with consequences for Ag presentation and T cell and Ab-mediated immunity.
Collapse
Affiliation(s)
- Kayla R Wilson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Haiyin Liu
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Lauren Francis
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - F Victor Makota
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY; and.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia; .,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
17
|
Thelen F, Wissmann S, Ruef N, Stein JV. The Tec Kinase Itk Integrates Naïve T Cell Migration and In Vivo Homeostasis. Front Immunol 2021; 12:716405. [PMID: 34566971 PMCID: PMC8458560 DOI: 10.3389/fimmu.2021.716405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Naïve T cells (TN) constitutively recirculate through secondary lymphatic organs (SLOs), where they scan dendritic cells (DCs) for cognate peptide-loaded major histocompatibility complexes (pMHC). Continuous trafficking between SLOs not only enables rapid clonal selection but also ensures TN homeostasis by providing access to prosurvival signals from TCR, IL-7R, and the chemokine receptor CCR7. Inside the lymphoid tissue, CCR7-mediated TN motility is mainly driven by the Rac activator DOCK2, with a separate contribution by a phosphoinositide-3-kinase γ (PI3Kγ)-dependent pathway. Tec tyrosine kinases and the Rac activator Tiam1 constitute prominent downstream effectors of PI3K signaling. Yet, the precise role of Tec kinase versus Tiam1 signaling during CCR7-mediated TN migration and homeostasis remains incompletely understood. Here, we examined the function of the Tec family member interleukin-2-inducible T-cell kinase (Itk) and Tiam1 during TN migration in vitro and in vivo using intravital microscopy. Itk deficiency caused a mild decrease in CCR7-triggered TN migration, mirroring observations made with PI3Kγ;-/- T cells, while lack of Tiam1 did not affect TN motility. In silico modeling suggested that reduced migration in the absence of Itk does not result in a substantial decrease in the frequency of TN encounters with DCs within the lymphoid tissue. In contrast, Itk was important to maintain in vivo homeostasis of CD4+ TN, also in MHCII-deficient hosts. Taken together, our data suggest that Itk contributes to TN migration and survival by integrating chemokine receptor and TCR signaling pathways.
Collapse
Affiliation(s)
- Flavian Thelen
- Department of Medical Oncology and Hematology, University of Zürich and University Hospital Zürich, Zürich, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
18
|
Synthesis of human amyloid restricted to liver results in an Alzheimer disease-like neurodegenerative phenotype. PLoS Biol 2021; 19:e3001358. [PMID: 34520451 PMCID: PMC8439475 DOI: 10.1371/journal.pbio.3001358] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Several lines of study suggest that peripheral metabolism of amyloid beta (Aß) is associated with risk for Alzheimer disease (AD). In blood, greater than 90% of Aß is complexed as an apolipoprotein, raising the possibility of a lipoprotein-mediated axis for AD risk. In this study, we report that genetic modification of C57BL/6J mice engineered to synthesise human Aß only in liver (hepatocyte-specific human amyloid (HSHA) strain) has marked neurodegeneration concomitant with capillary dysfunction, parenchymal extravasation of lipoprotein-Aß, and neurovascular inflammation. Moreover, the HSHA mice showed impaired performance in the passive avoidance test, suggesting impairment in hippocampal-dependent learning. Transmission electron microscopy shows marked neurovascular disruption in HSHA mice. This study provides causal evidence of a lipoprotein-Aß /capillary axis for onset and progression of a neurodegenerative process. It has been suggested that peripheral metabolism of amyloid-beta is associated with risk for Alzheimer’s disease. This study reveals that the expression of human amyloid exclusively in the liver induces Alzheimer’s disease-like pathologies in mice, potentially indicating a completely novel pathway of Alzheimer’s disease aetiology and therapies.
Collapse
|
19
|
McGrath MJ, Eramo MJ, Gurung R, Sriratana A, Gehrig SM, Lynch GS, Lourdes SR, Koentgen F, Feeney SJ, Lazarou M, McLean CA, Mitchell CA. Defective lysosome reformation during autophagy causes skeletal muscle disease. J Clin Invest 2021; 131:135124. [PMID: 33119550 PMCID: PMC7773396 DOI: 10.1172/jci135124] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The regulation of autophagy-dependent lysosome homeostasis in vivo is unclear. We showed that the inositol polyphosphate 5-phosphatase INPP5K regulates autophagic lysosome reformation (ALR), a lysosome recycling pathway, in muscle. INPP5K hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to phosphatidylinositol 4-phosphate [PI(4)P], and INPP5K mutations cause muscular dystrophy by unknown mechanisms. We report that loss of INPP5K in muscle caused severe disease, autophagy inhibition, and lysosome depletion. Reduced PI(4,5)P2 turnover on autolysosomes in Inpp5k–/– muscle suppressed autophagy and lysosome repopulation via ALR inhibition. Defective ALR in Inpp5k–/– myoblasts was characterized by enlarged autolysosomes and the persistence of hyperextended reformation tubules, structures that participate in membrane recycling to form lysosomes. Reduced disengagement of the PI(4,5)P2 effector clathrin was observed on reformation tubules, which we propose interfered with ALR completion. Inhibition of PI(4,5)P2 synthesis or expression of WT INPP5K but not INPP5K disease mutants in INPP5K-depleted myoblasts restored lysosomal homeostasis. Therefore, bidirectional interconversion of PI(4)P/PI(4,5)P2 on autolysosomes was integral to lysosome replenishment and autophagy function in muscle. Activation of TFEB-dependent de novo lysosome biogenesis did not compensate for loss of ALR in Inpp5k–/– muscle, revealing a dependence on this lysosome recycling pathway. Therefore, in muscle, ALR is indispensable for lysosome homeostasis during autophagy and when defective is associated with muscular dystrophy.
Collapse
Affiliation(s)
- Meagan J McGrath
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Matthew J Eramo
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Rajendra Gurung
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Absorn Sriratana
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Stefan M Gehrig
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sonia Raveena Lourdes
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Frank Koentgen
- Ozgene Pty Ltd, Bentley, Perth, Western Australia, Australia
| | - Sandra J Feeney
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Neuroscience Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Melbourne, Victoria, Australia
| | - Christina A Mitchell
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Pellefigues C, Naidoo K, Mehta P, Schmidt AJ, Jagot F, Roussel E, Cait A, Yumnam B, Chappell S, Meijlink K, Camberis M, Jiang JX, Painter G, Filbey K, Uluçkan Ö, Gasser O, Le Gros G. Basophils promote barrier dysfunction and resolution in the atopic skin. J Allergy Clin Immunol 2021; 148:799-812.e10. [PMID: 33662369 PMCID: PMC8410897 DOI: 10.1016/j.jaci.2021.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.
Collapse
Affiliation(s)
- Christophe Pellefigues
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand; INSERM UMR1149, CNRS ERL8252, Centre de recherche sur l'inflammation, Inflamex, Université de Paris, Paris, France.
| | - Karmella Naidoo
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Palak Mehta
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Alfonso J Schmidt
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Ferdinand Jagot
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Elsa Roussel
- Novartis Institutes for Biomedical Research (NIBR), Novartis, Basel, Switzerland
| | - Alissa Cait
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Sally Chappell
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Kimberley Meijlink
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Tex
| | - Gavin Painter
- Ferrier Research Institute, Victoria University, Wellington, New Zealand
| | - Kara Filbey
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Özge Uluçkan
- Novartis Institutes for Biomedical Research (NIBR), Novartis, Basel, Switzerland
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| |
Collapse
|
21
|
Preti M, Schlott L, Lübbering D, Krzikalla D, Müller AL, Schuran FA, Poch T, Schakat M, Weidemann S, Lohse AW, Weiler-Normann C, Sebode M, Schwinge D, Schramm C, Carambia A, Herkel J. Failure of thymic deletion and instability of autoreactive Tregs drive autoimmunity in immune-privileged liver. JCI Insight 2021; 6:141462. [PMID: 33600378 PMCID: PMC8026180 DOI: 10.1172/jci.insight.141462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
The liver is an immune-privileged organ that can deactivate autoreactive T cells. Yet in autoimmune hepatitis (AIH), autoreactive T cells can defy hepatic control and attack the liver. To elucidate how tolerance to self-antigens is lost during AIH pathogenesis, we generated a spontaneous mouse model of AIH, based on recognition of an MHC class II–restricted model peptide in hepatocytes by autoreactive CD4+ T cells. We found that the hepatic peptide was not expressed in the thymus, leading to deficient thymic deletion and resulting in peripheral abundance of autoreactive CD4+ T cells. In the liver, autoreactive CD4+ effector T cells accumulated within portal ectopic lymphoid structures and maturated toward pathogenic IFN-γ and TNF coproducing cells. Expansion and pathogenic maturation of autoreactive effector T cells was enabled by a selective increase of plasticity and instability of autoantigen-specific Tregs but not of nonspecific Tregs. Indeed, antigen-specific Tregs were reduced in frequency and manifested increased IL-17 production, reduced epigenetic demethylation, and reduced expression of Foxp3. As a consequence, autoantigen-specific Tregs had a reduced suppressive capacity, as compared with that of nonspecific Tregs. In conclusion, loss of tolerance and the pathogenesis of AIH were enabled by combined failure of thymic deletion and peripheral regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Christoph Schramm
- Department of Medicine I.,Martin Zeitz Center for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
22
|
Physiological substrates and ontogeny-specific expression of the ubiquitin ligases MARCH1 and MARCH8. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:218-228. [PMID: 35492398 PMCID: PMC9040089 DOI: 10.1016/j.crimmu.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
MARCH1 and MARCH8 are ubiquitin ligases that control the expression and trafficking of critical immunoreceptors. Understanding of their function is hampered by three major knowledge gaps: (i) it is unclear which cell types utilize these ligases; (ii) their level of redundancy is unknown; and (iii) most of their putative substrates have been described in cell lines, often overexpressing MARCH1 or MARCH8, and it is unclear which substrates are regulated by either ligase in vivo. Here we address these questions by systematically analyzing the immune cell repertoire of MARCH1- or MARCH8-deficient mice, and applying unbiased proteomic profiling of the plasma membrane of primary cells to identify MARCH1 and MARCH8 substrates. Only CD86 and MHC II were unequivocally identified as immunoreceptors regulated by MARCH1 and MARCH8, but each ligase carried out its function in different tissues. MARCH1 regulated MHC II and CD86 in professional and “atypical” antigen presenting cells of hematopoietic origin, including neutrophils, eosinophils and monocytes. MARCH8 only operated in non-hematopoietic cells, such as thymic and alveolar epithelial cells. Our results establish the tissue-specific functions of MARCH1 and MARCH8 in regulation of immune receptor expression and reveal that the range of cells constitutively endowed with antigen-presentation capacity is wider than generally appreciated.
Collapse
|
23
|
A new lymphoid-primed progenitor marked by Dach1 downregulation identified with single cell multi-omics. Nat Immunol 2020; 21:1574-1584. [PMID: 33077975 DOI: 10.1038/s41590-020-0799-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
A classical view of blood cell development is that multipotent hematopoietic stem and progenitor cells (HSPCs) become lineage-restricted at defined stages. Lin-c-Kit+Sca-1+Flt3+ cells, termed lymphoid-primed multipotent progenitors (LMPPs), have lost megakaryocyte and erythroid potential but are heterogeneous in their fate. Here, through single-cell RNA sequencing, we identify the expression of Dach1 and associated genes in this fraction as being coexpressed with myeloid/stem genes but inversely correlated with lymphoid genes. Through generation of Dach1-GFP reporter mice, we identify a transcriptionally and functionally unique Dach1-GFP- subpopulation within LMPPs with lymphoid potential with low to negligible classic myeloid potential. We term these 'lymphoid-primed progenitors' (LPPs). These findings define an early definitive branch point of lymphoid development in hematopoiesis and a means for prospective isolation of LPPs.
Collapse
|
24
|
Sugimoto-Ishige A, Harada M, Tanaka M, Terooatea T, Adachi Y, Takahashi Y, Tanaka T, Burrows PD, Hikida M, Takemori T. Bim establishes the B cell repertoire from early to late in the immune response. Int Immunol 2020; 33:79-90. [PMID: 32889526 DOI: 10.1093/intimm/dxaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
In T cell-dependent antibody responses, some of the activated B cells differentiate along extrafollicular pathways into low-affinity memory and plasma cells, whereas others are involved in subsequent GC formation in follicular pathways, in which somatic hypermutation and affinity maturation occur. The present study demonstrated that Bim, a proapoptotic BH3-only member of the Bcl-2 family, contributes to the establishment of the B cell repertoire from early to late stages of immune responses to T-cell dependent antigens. Extrafollicular plasma cells grew in the spleen during the early immune response, but their numbers rapidly declined with the appearance of GC-derived progeny in wild type mice. By contrast, conditional Bim deficiency in B cells resulted in expansion of extrafollicular IgG1 + antibody-forming cells (AFCs) and this expansion was sustained during the late response, which hampered the formation of GC-derived high-affinity plasma cells in the spleen. Approximately 10% of AFCs in mutant mice contained mutated VH genes, thus Bim deficiency appears not to impede the selection of high-affinity AFC precursor cells. These results suggest that Bim contributes to the replacement of low affinity antibody by high affinity antibody as the immune response progresses.
Collapse
Affiliation(s)
- Akiko Sugimoto-Ishige
- Deparment of Life Science, Graduate School of Engineering Science, Akita University, Tegatagauencho, Akita City, Akita, Japan.,Drug Discovery Antibody Platform Unit, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan.,Laboratory for Inflammatory Regulation, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Michishige Harada
- Drug Discovery Antibody Platform Unit, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Miho Tanaka
- Drug Discovery Antibody Platform Unit, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Tommy Terooatea
- Laboratory for Cellular Epigenomics, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku Tokyo, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku Tokyo, Japan
| | - Takashi Tanaka
- Laboratory for Inflammatory Regulation, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Masaki Hikida
- Deparment of Life Science, Graduate School of Engineering Science, Akita University, Tegatagauencho, Akita City, Akita, Japan
| | - Toshitada Takemori
- Drug Discovery Antibody Platform Unit, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan.,Laboratory for Inflammatory Regulation, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| |
Collapse
|
25
|
van de Moosdijk AAA, van de Grift YBC, de Man SMA, Zeeman AL, van Amerongen R. A novel Axin2 knock-in mouse model for visualization and lineage tracing of WNT/CTNNB1 responsive cells. Genesis 2020; 58:e23387. [PMID: 32643876 PMCID: PMC7539917 DOI: 10.1002/dvg.23387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022]
Abstract
Wnt signal transduction controls tissue morphogenesis, maintenance and regeneration in all multicellular animals. In mammals, the WNT/CTNNB1 (Wnt/β-catenin) pathway controls cell proliferation and cell fate decisions before and after birth. It plays a critical role at multiple stages of embryonic development, but also governs stem cell maintenance and homeostasis in adult tissues. However, it remains challenging to monitor endogenous WNT/CTNNB1 signaling dynamics in vivo. Here, we report the generation and characterization of a new knock-in mouse strain that doubles as a fluorescent reporter and lineage tracing driver for WNT/CTNNB1 responsive cells. We introduced a multi-cistronic targeting cassette at the 3' end of the universal WNT/CTNNB1 target gene Axin2. The resulting knock-in allele expresses a bright fluorescent reporter (3xNLS-SGFP2) and a doxycycline-inducible driver for lineage tracing (rtTA3). We show that the Axin2P2A-rtTA3-T2A-3xNLS-SGFP2 strain labels WNT/CTNNB1 responsive cells at multiple anatomical sites during different stages of embryonic and postnatal development. It faithfully reports the subtle and dynamic changes in physiological WNT/CTNNB1 signaling activity that occur in vivo. We expect this mouse strain to be a useful resource for biologists who want to track and trace the location and developmental fate of WNT/CTNNB1 responsive stem cells in different contexts.
Collapse
Affiliation(s)
| | | | | | - Amber Lisanne Zeeman
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamthe Netherlands
| | - Renée van Amerongen
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
26
|
Stifter K, Dekhtiarenko I, Krieger J, Tissot AC, Seufferlein T, Wagner M, Schirmbeck R. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8 + T-cell responses by DNA vaccination. Vaccine 2020; 38:3711-3719. [PMID: 32278524 DOI: 10.1016/j.vaccine.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Somatic mutations in tumors often generate neoproteins that contain MHC-I-binding neoepitopes. Little is known if and how efficient tumor-specific neoantigens activate CD8+ T cells. Here, we asked whether a de novo generated neoepitope, encoded either within an otherwise conserved and ubiquitously expressed self-antigen or in a chimeric HBV core antigen expression platform, providing heterologous helper functions, induces CD8+ T cells in C57Bl/6J mice by DNA immunization. For it, we chose an established Db/Sp244-252/R251H neoepitope generated in the murine Endophilin-B2/SH3GLB2 (EndoB2-Sp) protein by a single amino acid exchange. We showed that a single injection of EndoB2-Sp expression vectors efficiently primed dimer/pentamer+, IFN-γ+ and cytolytic Db/Sp244-252/R251H-specific effector CD8+ T cells in C57Bl/6J mice. Priming of Db/Sp244-252/R251H-specific CD8+ T cells proceeded independent from CD4+ T-cell help in MHC-II-deficient Aα-/- mice. As compared to the homologous EndoB2-Sp vaccine, the selective expression of the Db/Sp244-252/R251H neoepitope in chimeric particle-forming and assembly-deficient HBV core antigens induced comparable frequencies Db/Sp244-252/R251H-specific CD8+ T cells with the same cytolytic effector phenotype. The homologous EndoB2 carrier, but not the nine-residue neoepitope presented on chimeric HBV core particles, induced EndoB2-specific IgG antibody responses. The HBV core expression platform is thus an attractive option to selectively induce neoepitope-specific effector CD8+ T cells by DNA vaccination. These novel findings have practical implications for the design of heterologous/self and heterologous/viral cancer vaccines that prime and/or activate neoepitope-specific CD8+ T cells.
Collapse
Affiliation(s)
- Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Iryna Dekhtiarenko
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany; Roche Pharma Research and Early Development, Roche Innovation Center Zürich, Schlieren, Switzerland
| | - Jana Krieger
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Alain Charles Tissot
- Roche Pharma Research and Early Development, Therapeutic Modalities, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH; Nonnenwald 2, 82377 Penzberg, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
27
|
Tamai M, Uchisawa H, Saito Y, Matsue H, Kawase M, Naraoka T, Tagawa YI. Acorbine, a Corbicula japonica-derived tripeptide containing non-proteinogenic amino acids, suppresses ethanol-induced liver injury. Biochem Biophys Res Commun 2020; 522:580-584. [PMID: 31784088 DOI: 10.1016/j.bbrc.2019.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Since ancient times, Corbicula extract has been believed in Japan to have hepatoprotective effects, but it remains unclear whether these claims are true, and if so, which component is responsible for hepatoprotection. In this study, we showed that Corbicula extract exerted a protective effect against liver damage. Recent work identified acorbine (β-alanyl-ornithyl-ornithine), a novel tripeptide containing non-proteinogenic amino acids, in the extract of Corbicula japonica. Synthesized acorbine cured alcohol-induced liver damage in mice. In addition, acorbine purified from Corbicula extract exerted a protective effect against alcohol-induced hepatotoxicity in a culture liver model derived from mouse ES/iPS cells. Thus, acorbine is one of the components of Corbicula extract that protects hepatocytes against ethanol-induced death.
Collapse
Affiliation(s)
- Miho Tamai
- Faculty of Dental Medicine, Hokkaido University, Kita 13-jo, Nishi 7-chome, Kita-ku, Sapporo, 060-8586, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan; Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan
| | - Hidemitsu Uchisawa
- Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center, 221-10 Yamaguchi, Nogi, Aomori, 030-0142, Japan
| | - Yukari Saito
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan
| | - Hajime Matsue
- Aomori University of Health and Welfare, 58-1 Mase, Hamadate, Aomori, 030-8505, Japan
| | - Masaya Kawase
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga, 526-0829, Japan
| | - Tetsushi Naraoka
- Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center, 221-10 Yamaguchi, Nogi, Aomori, 030-0142, Japan
| | - Yoh-Ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan; Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan.
| |
Collapse
|
28
|
Inhibitory interneurons mediate autism-associated behaviors via 4E-BP2. Proc Natl Acad Sci U S A 2019; 116:18060-18067. [PMID: 31427534 DOI: 10.1073/pnas.1908126116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translational control plays a key role in regulation of neuronal activity and behavior. Deletion of the translational repressor 4E-BP2 in mice alters excitatory and inhibitory synaptic functions, engendering autistic-like behaviors. The contribution of 4E-BP2-dependent translational control in excitatory and inhibitory neurons and astrocytic cells to these behaviors remains unknown. To investigate this, we generated cell-type-specific conditional 4E-BP2 knockout mice and tested them for the salient features of autism, including repetitive stereotyped behaviors (self-grooming and marble burying), sociability (3-chamber social and direct social interaction tests), and communication (ultrasonic vocalizations in pups). We found that deletion of 4E-BP2 in GABAergic inhibitory neurons, defined by Gad2, resulted in impairments in social interaction and vocal communication. In contrast, deletion of 4E-BP2 in forebrain glutamatergic excitatory neurons, defined by Camk2a, or in astrocytes, defined by Gfap, failed to cause autistic-like behavioral abnormalities. Taken together, we provide evidence for an inhibitory-cell-specific role of 4E-BP2 in engendering autism-related behaviors.
Collapse
|
29
|
Hyde EJ, Wakelin KA, Daniels NJ, Ghosh S, Ronchese F. Similar immune mechanisms control experimental airway eosinophilia elicited by different allergens and treatment protocols. BMC Immunol 2019; 20:18. [PMID: 31164097 PMCID: PMC6549380 DOI: 10.1186/s12865-019-0295-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background Mouse models have been extremely valuable in identifying the fundamental mechanisms of airway inflammation that underlie human allergic asthma. Several models are commonly used, employing different methods and routes of sensitisation, and allergens of varying clinical relevance. Although all models elicit similar hallmarks of allergic airway inflammation, including airway eosinophilia, goblet cell hyperplasia and cellular infiltration in lung, it is not established whether they do so by involving the same mechanisms. Results We compared the impact of inactivation of various innate or adaptive immune genes, as well as sex, in different models of allergic airway inflammation in mice of C57BL/6 background. Chicken ovalbumin (OVA) and house dust mite (HDM) were used as allergens in settings of single or multiple intranasal (i.n.) challenges, after sensitisation in adjuvant or in adjuvant-free conditions. Eosinophil numbers in the broncho-alveolar lavage and lung histopathology were assessed in each model. We found that Major Histocompatibility Complex Class II (MHCII) deficiency and lack of conventional CD4+ T cells had the most profound effect, essentially ablating airway eosinophilia and goblet cell hyperplasia in all models. In contrast, Thymic stromal lymphopoietin receptor (TSLPR) deficiency greatly reduced eosinophilia but had a variable effect on goblet cells. CD1d deficiency and lack of Natural Killer T (NKT) cells moderately impaired inflammation in OVA models but not HDM, whereas sex affected the response to HDM but not OVA. Lastly, defective Toll-like receptor (TLR)4 expression had only a relatively modest overall impact on inflammation. Conclusion All the models studied were comparably dependent on adaptive CD4+ T cell responses and TSLP. In contrast, sex, NKT cells and TLR4 appeared to play subtler and more variable roles that were dependent on the type of allergen and mode of immunization and challenge. These results are consistent with clinical data suggesting a key role of CD4+ T cells and TSLP in patients with allergic asthma. Electronic supplementary material The online version of this article (10.1186/s12865-019-0295-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn J Hyde
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand
| | - Kirsty A Wakelin
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand
| | - Naomi J Daniels
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand
| | - Sayani Ghosh
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand.
| |
Collapse
|
30
|
Hunter MC, Teijeira A, Montecchi R, Russo E, Runge P, Kiefer F, Halin C. Dendritic Cells and T Cells Interact Within Murine Afferent Lymphatic Capillaries. Front Immunol 2019; 10:520. [PMID: 30967863 PMCID: PMC6440485 DOI: 10.3389/fimmu.2019.00520] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Afferent lymphatic vessels contribute to immunity by transporting antigen and leukocytes to draining lymph nodes (LNs) and are emerging as new players in the regulation of peripheral tolerance. Performing intravital microscopy in inflamed murine ear skin we found that migrating dendritic cells (DCs) and antigen-experienced effector T cells spend considerable time arresting or clustering within afferent lymphatic capillaries. We also observed that intralymphatic T cells frequently interacted with DCs. When imaging polyclonal T cells during an ongoing contact-hypersensitivity response, most intralymphatic DC-T cell interactions were short-lived. Conversely, during a delayed-type-hypersensitivity response, cognate antigen-bearing DCs engaged in long-lived MHCII-(I-A/I-E)-dependent interactions with antigen-specific T cells. Long-lived intralymphatic DC-T cell interactions reduced the speed of DC crawling but did not delay overall DC migration to draining LNs. While further consequences of these intralymphatic interactions still need to be explored, our findings suggest that lymphatic capillaries represent a unique compartment in which adaptive immune interaction and modulation occur.
Collapse
Affiliation(s)
| | - Alvaro Teijeira
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | | | - Erica Russo
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging - EIMI, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
31
|
Currey N, Jahan Z, Caldon CE, Tran PN, Benthani F, De Lacavalerie P, Roden DL, Gloss BS, Campos C, Bean EG, Bullman A, Reibe-Pal S, Dinger ME, Febbraio MA, Clarke SJ, Dahlstrom JE, Kohonen-Corish MRJ. Mouse Model of Mutated in Colorectal Cancer Gene Deletion Reveals Novel Pathways in Inflammation and Cancer. Cell Mol Gastroenterol Hepatol 2019; 7:819-839. [PMID: 30831321 PMCID: PMC6476813 DOI: 10.1016/j.jcmgh.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS The early events by which inflammation promotes cancer are still not fully defined. The MCC gene is silenced by promoter methylation in colitis-associated and sporadic colon tumors, but its functional significance in precancerous lesions or polyps is not known. Here, we aimed to determine the impact of Mcc deletion on the cellular pathways and carcinogenesis associated with inflammation in the mouse proximal colon. METHODS We generated knockout mice with deletion of Mcc in the colonic/intestinal epithelial cells (MccΔIEC) or in the whole body (MccΔ/Δ). Drug-induced lesions were analyzed by transcriptome profiling (at 10 weeks) and histopathology (at 20 weeks). Cell-cycle phases and DNA damage proteins were analyzed by flow cytometry and Western blot of hydrogen peroxide-treated mouse embryo fibroblasts. RESULTS Transcriptome profiling of the lesions showed a strong response to colon barrier destruction, such as up-regulation of key inflammation and cancer-associated genes as well as 28 interferon γ-induced guanosine triphosphatase genes, including the homologs of Crohn's disease susceptibility gene IRGM. These features were shared by both Mcc-expressing and Mcc-deficient mice and many of the altered gene expression pathways were similar to the mesenchymal colorectal cancer subtype known as consensus molecular subtype 4 (CMS4). However, Mcc deletion was required for increased carcinogenesis in the lesions, with adenocarcinoma in 59% of MccΔIEC compared with 19% of Mcc-expressing mice (P = .002). This was not accompanied by hyperactivation of β-catenin, but Mcc deletion caused down-regulation of DNA repair genes and a disruption of DNA damage signaling. CONCLUSIONS Loss of Mcc may promote cancer through a failure to repair inflammation-induced DNA damage. We provide a comprehensive transcriptome data set of early colorectal lesions and evidence for the in vivo significance of MCC silencing in colorectal cancer.
Collapse
Affiliation(s)
- Nicola Currey
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Zeenat Jahan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Phuong N Tran
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Fahad Benthani
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Penelope De Lacavalerie
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel L Roden
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Brian S Gloss
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Elaine G Bean
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Amanda Bullman
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Saskia Reibe-Pal
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark A Febbraio
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen J Clarke
- Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Jane E Dahlstrom
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Maija R J Kohonen-Corish
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; School of Medicine, Western Sydney University, Sydney, New South Wales, Australia; Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
32
|
Tanahashi H, Suzuki T. Deletion of Lrp4 increases the incidence of microphthalmia. Biochem Biophys Res Commun 2018; 506:478-484. [PMID: 30352686 DOI: 10.1016/j.bbrc.2018.10.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
Microphthalmia is a malformation that reduces the size of the ocular globe. The etiologies of this anomaly are various, but the genetic background appears to have a predominant influence on its development through mutations of genes controlling ocular developmental processes. LRP4 is a type I single transmembrane protein that is essential for the formation of neuromuscular junctions. We created and experimented on homozygous Lrp4-deficient mice and found the microphthalmia phenotype in their eyes. The loss of Lrp4 resulted in an elevated incidence of microphthalmia and affected the mRNA expression of the members of bone morphogenetic protein, fibroblast growth factor, Sonic hedgehog, and WNT signaling pathways and of several pathogenic genes for microphthalmia. Moreover, the loss of Lrp4 enhanced the incidence of aberrant retinal folds, which appeared pleated and corrugated in the eyeball.
Collapse
Affiliation(s)
- Hiroshi Tanahashi
- Department of Neuroplasticity, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Tatsuo Suzuki
- Department of Molecular & Cellular Physiology, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
33
|
Avenarius MR, Jung JY, Askew C, Jones SM, Hunker KL, Azaiez H, Rehman AU, Schraders M, Najmabadi H, Kremer H, Smith RJH, Géléoc GSG, Dolan DF, Raphael Y, Kohrman DC. Grxcr2 is required for stereocilia morphogenesis in the cochlea. PLoS One 2018; 13:e0201713. [PMID: 30157177 PMCID: PMC6114524 DOI: 10.1371/journal.pone.0201713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/22/2018] [Indexed: 11/18/2022] Open
Abstract
Hearing and balance depend upon the precise morphogenesis and mechanosensory function of stereocilia, the specialized structures on the apical surface of sensory hair cells in the inner ear. Previous studies of Grxcr1 mutant mice indicated a critical role for this gene in control of stereocilia dimensions during development. In this study, we analyzed expression of the paralog Grxcr2 in the mouse and evaluated auditory and vestibular function of strains carrying targeted mutations of the gene. Peak expression of Grxcr2 occurs during early postnatal development of the inner ear and GRXCR2 is localized to stereocilia in both the cochlea and in vestibular organs. Homozygous Grxcr2 deletion mutants exhibit significant hearing loss by 3 weeks of age that is associated with developmental defects in stereocilia bundle orientation and organization. Despite these bundle defects, the mechanotransduction apparatus assembles in relatively normal fashion as determined by whole cell electrophysiological evaluation and FM1-43 uptake. Although Grxcr2 mutants do not exhibit overt vestibular dysfunction, evaluation of vestibular evoked potentials revealed subtle defects of the mutants in response to linear accelerations. In addition, reduced Grxcr2 expression in a hypomorphic mutant strain is associated with progressive hearing loss and bundle defects. The stereocilia localization of GRXCR2, together with the bundle pathologies observed in the mutants, indicate that GRXCR2 plays an intrinsic role in bundle orientation, organization, and sensory function in the inner ear during development and at maturity.
Collapse
Affiliation(s)
- Matthew R. Avenarius
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jae-Yun Jung
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Charles Askew
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sherri M. Jones
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States of America
| | - Kristina L. Hunker
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Atteeq U. Rehman
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Margit Schraders
- Hearing & Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hannie Kremer
- Hearing & Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Gwenaëlle S. G. Géléoc
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David F. Dolan
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yehoash Raphael
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David C. Kohrman
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
34
|
Wilson KR, Liu H, Healey G, Vuong V, Ishido S, Herold MJ, Villadangos JA, Mintern JD. MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS One 2018; 13:e0200540. [PMID: 30001419 PMCID: PMC6042767 DOI: 10.1371/journal.pone.0200540] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
Major histocompatibility complex class II (MHC II) expression and turn-over are regulated via its ubiquitination by the membrane associated RING-CH 1 (MARCH1) E3 ligase. Unexpectedly, we show that MHC II ubiquitination also impacts MHC I. Lack of MARCH1 in B cells and dendritic cells (DCs) resulted in a significant reduction in surface MHC I expression. This decrease was not directly caused by changes in MARCH1 ubiquitination of MHC I but indirectly by altered MHC II trafficking in the absence of its ubiquitination. Deletion of MHC II in March1-/- cells restored normal MHC I surface expression and replacement of wild type MHC II by a variant that could not be ubiquitinated caused a reduction in MHC I expression. Furthermore, these cells displayed inefficient presentation of peptide and protein antigen via MHC I to CD8+ T cells. In summary, we describe an unexpected intersection between MHC I and MHC II such that the surface expression of both molecules are indirectly and directly regulated by MARCH1 ubiquitination, respectively.
Collapse
Affiliation(s)
- Kayla R Wilson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Haiyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Geraldine Healey
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Vivian Vuong
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Japan
| | - Marco J Herold
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Matsuzaki T, Wang H, Imamura Y, Kondo S, Ogawa S, Noda M. Generation and characterization of a mouse line carrying Reck-CreERT2 knock-in allele. Genesis 2018; 56:e23099. [PMID: 29508517 DOI: 10.1002/dvg.23099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/06/2018] [Accepted: 03/01/2018] [Indexed: 11/07/2022]
Abstract
Reck encodes a membrane-anchored glycoprotein implicated in the regulation of extracellular metalloproteinases, Notch-signaling, and Wnt7-signaling and shown to play critical roles in embryogenesis and tumor suppression. Precise mechanisms of its actions in vivo, however, remain largely unknown. By homologous recombination, we generated a new Reck allele, ReckCreERT2 (MGI symbol: Reck<tm3.1(cre/ERT2)Noda>). This allele is defective in terms of Reck function but expected to induce loxP-mediated recombination in the cells committed to express Reck. Similarity in the expression patterns of the ReckCreERT2 transgene and the endogenous Reck gene was confirmed in five tissues. In the adult hippocampus, induction of Reck expression after transient cerebral ischemia could be demonstrated using this allele. These results indicate the utility of this Cre-driver allele in further studies.
Collapse
Affiliation(s)
- Tomoko Matsuzaki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Huan Wang
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yukio Imamura
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shunya Kondo
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuichiro Ogawa
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
36
|
Yap JY, Wirasinha RC, Chan A, Howard DR, Goodnow CC, Daley SR. Indirect presentation in the thymus limits naive and regulatory T-cell differentiation by promoting deletion of self-reactive thymocytes. Immunology 2018; 154:522-532. [PMID: 29411880 DOI: 10.1111/imm.12904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
Acquisition of T-cell central tolerance involves distinct pathways of self-antigen presentation to thymocytes. One pathway termed indirect presentation requires a self-antigen transfer step from thymic epithelial cells (TECs) to bone marrow-derived cells before the self-antigen is presented to thymocytes. The role of indirect presentation in central tolerance is context-dependent, potentially due to variation in self-antigen expression, processing and presentation in the thymus. Here, we report experiments in mice in which TECs expressed a membrane-bound transgenic self-antigen, hen egg lysozyme (HEL), from either the insulin (insHEL) or thyroglobulin (thyroHEL) promoter. Intrathymic HEL expression was less abundant and more confined to the medulla in insHEL mice compared with thyroHEL mice. When indirect presentation was impaired by generating mice lacking MHC class II expression in bone marrow-derived antigen-presenting cells, insHEL-mediated thymocyte deletion was abolished, whereas thyroHEL-mediated deletion occurred at a later stage of thymocyte development and Foxp3+ regulatory T-cell differentiation increased. Indirect presentation increased the strength of T-cell receptor signalling that both self-antigens induced in thymocytes, as assessed by Helios expression. Hence, indirect presentation limits the differentiation of naive and regulatory T cells by promoting deletion of self-reactive thymocytes.
Collapse
Affiliation(s)
- Jin Yan Yap
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Rushika C Wirasinha
- Infection and Immunity Programme, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Anna Chan
- Infection and Immunity Programme, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Debbie R Howard
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christopher C Goodnow
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Stephen R Daley
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Infection and Immunity Programme, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Kharkwal H, Batool F, Koentgen F, Bell DR, Kendall DA, Ebling FJP, Duce IR. Generation and phenotypic characterisation of a cytochrome P450 4x1 knockout mouse. PLoS One 2017; 12:e0187959. [PMID: 29227996 PMCID: PMC5724839 DOI: 10.1371/journal.pone.0187959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 4x1 (Cyp4x1) is expressed at very high levels in the brain but the function of this protein is unknown. It has been hypothesised to regulate metabolism of fatty acids and to affect the activity of endocannabinoid signalling systems, which are known to influence appetite and energy metabolism. The objective of the present investigation was to determine the impact of Cyp4x1 on body weight and energy metabolism by developing a line of transgenic Cyp4x1-knock out mice. Mice were developed with a global knock-out of the gene; the full-length RNA was undetectable, and mice were viable and fertile. Both male and female Cyp4x1-knock out mice gained significantly more body weight on normal lab chow diet compared to control flox mice on the same genetic background. At necropsy, Cyp4x1-knock out male mice had significantly greater intra-abdominal fat deposits (P<0.01), and enlarged adipocytes. Metabolic rate and locomotor activity as inferred from VO2 measures and crossing of infrared beams in metabolic cages were not significantly affected by the mutation in either gender. The respiratory exchange ratio was significantly decreased in male knock out mice (P<0.05), suggesting a greater degree of fat oxidation, consistent with their higher adiposity. When mice were maintained on a high fat diet, VO2 was significantly decreased in both male and female Cyp4x1-knock out mice. We conclude that the Cyp4x1-knock out mouse strain demonstrates a mildly obese phenotype, consistent with the view that cytochrome P450 4x1 plays a role in regulating fat metabolism.
Collapse
Affiliation(s)
- Himanshu Kharkwal
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Farhat Batool
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Frank Koentgen
- Ozgene Pty Ltd., Bentley DC, Western Australia, Australia
| | - David R. Bell
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- European Chemicals Agency, Helsinki, Finland
| | - David A. Kendall
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Ian R. Duce
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Degn SE, Alicot E, Carroll MC. B cell tolerance to epidermal ribonuclear-associated neo-autoantigen in vivo. Clin Exp Immunol 2017; 191:151-165. [PMID: 28984923 DOI: 10.1111/cei.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Defining how self-antigens are perceived by the immune system is pivotal to understand how tolerance is maintained under homeostatic conditions. Clinically relevant, natural autoantigens targeted by autoantibodies, in e.g. systemic lupus erythematosus (SLE), commonly have an intrinsic ability to engage not only the B cell receptor (BCR), but also a co-stimulatory pathway in B cells, such as the Toll-like receptor (TLR)-7 pathway. Here we developed a novel mouse model displaying inducible expression of a fluorescent epidermal neo-autoantigen carrying an OT-II T cell epitope, B cell antigen and associated ribonucleic acids capable of stimulating TLR-7. The neo-autoantigen was expressed in skin, but did not drain in intact form into draining lymph nodes, even after ultraviolet B (UVB)-stimulated induction of apoptosis in the basal layer. Adoptively transferred autoreactive B cells were excluded follicularly and perished at the T-B border in the spleen, preventing their recirculation and encounter with antigen peripherally. This transitional check-point was bypassed by crossing the reporter to a BCR knock-in line on a C4-deficient background. Adoptively transferred OT-II T cells homed rapidly into cutaneous lymph nodes and up-regulated CD69. Surprisingly, however, tolerance was not broken, as the T cells subsequently down-regulated activation markers and contracted. Our results highlight how sequestration of intracellular and peripheral antigen, the transitional B cell tolerance check-point and T cell regulation co-operate to maintain immunological tolerance in vivo.
Collapse
Affiliation(s)
- S E Degn
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - E Alicot
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - M C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Field CS, Hunn MK, Ferguson PM, Ruedl C, Ancelet LR, Hermans IF. Blocking CTLA-4 while priming with a whole cell vaccine reshapes the oligoclonal T cell infiltrate and eradicates tumors in an orthotopic glioma model. Oncoimmunology 2017; 7:e1376154. [PMID: 29296535 DOI: 10.1080/2162402x.2017.1376154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Vaccine-mediated cancer treatment is unlikely to induce long-term survival unless suppressive mechanisms are overcome. Given the success of antibody-mediated immune checkpoint blockade in relieving regulation of endogenous anti-tumor T cell responses in tumor-burdened hosts, we investigated whether checkpoint blockade could improve the efficacy of responses induced with a whole tumor-cell vaccine. We show that administration of a single dose of blocking antibody was sufficient to significantly enhance antitumor activity of the vaccine, inducing complete radiological regression of established intracranial tumors. The antibody or vaccine alone were ineffective in this setting. The antibody had to be administered before, or close to, vaccine administration, suggesting CTLA-4 blockade had an impact on early priming events. The combined treatment resulted in enhanced trapping of leukocytes in the lymphoid tissues, including T cells that had undergone significant proliferation. There were no obvious changes in the stimulatory function of antigen-presenting cells or the number and function of regulatory T cells, suggesting T cells were the targets of the checkpoint blockade. While tumors regressing under combined treatment were highly infiltrated with a variety of leukocytes, tumor eradication was dependent on CD4+ T cells. Analysis of the TCR repertoire showed that the addition of anti-CTLA-4 at priming reshaped the repertoire of tumor infiltrating T cells. In particular, the oligoclonal populations became greater in magnitude and more diverse in specificity. Using anti-CTLA-4 in a restricted way to promote the priming phase of an anti-cancer vaccine may offer a useful way of harnessing clinical benefit from this powerful agent.
Collapse
Affiliation(s)
- Cameron S Field
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Martin K Hunn
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia.,Capital and Coast District Health Board, Wellington, New Zealand
| | - Peter M Ferguson
- Capital and Coast District Health Board, Wellington, New Zealand
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lindsay R Ancelet
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| |
Collapse
|
40
|
Roquilly A, McWilliam HEG, Jacqueline C, Tian Z, Cinotti R, Rimbert M, Wakim L, Caminschi I, Lahoud MH, Belz GT, Kallies A, Mintern JD, Asehnoune K, Villadangos JA. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity 2017; 47:135-147.e5. [PMID: 28723546 DOI: 10.1016/j.immuni.2017.06.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/15/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
Lung infections cause prolonged immune alterations and elevated susceptibility to secondary pneumonia. We found that, after resolution of primary viral or bacterial pneumonia, dendritic cells (DC), and macrophages exhibited poor antigen-presentation capacity and secretion of immunogenic cytokines. Development of these "paralyzed" DCs and macrophages depended on the immunosuppressive microenvironment established upon resolution of primary infection, which involved regulatory T (Treg) cells and the cytokine TGF-β. Paralyzed DCs secreted TGF-β and induced local Treg cell accumulation. They also expressed lower amounts of IRF4, a transcription factor associated with increased antigen-presentation capacity, and higher amounts of Blimp1, a transcription factor associated with tolerogenic functions, than DCs present during primary infection. Blimp1 expression in DC of humans suffering sepsis or trauma correlated with severity and complicated outcomes. Our findings describe mechanisms underlying sepsis- and trauma-induced immunosuppression, reveal prognostic markers of susceptibility to secondary infections and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antoine Roquilly
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, 44000 Nantes, France; Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, 44093 Nantes, France
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cedric Jacqueline
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, 44000 Nantes, France
| | - Zehua Tian
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Raphael Cinotti
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, 44000 Nantes, France; Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, 44093 Nantes, France
| | - Marie Rimbert
- CHU Nantes, Laboratoire d'immunologie, Center for Immuno-Monitoring Nantes Atlantic (CIMNA), Laboratoire d'Immunologie, CHU de Nantes, Nantes, France
| | - Linda Wakim
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Irina Caminschi
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Mireille H Lahoud
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karim Asehnoune
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, 44000 Nantes, France; Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, 44093 Nantes, France
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
41
|
Vest KE, Phillips BL, Banerjee A, Apponi LH, Dammer EB, Xu W, Zheng D, Yu J, Tian B, Pavlath GK, Corbett AH. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology. Hum Mol Genet 2017; 26:3235-3252. [PMID: 28575395 PMCID: PMC5886286 DOI: 10.1093/hmg/ddx206] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/14/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Brittany L. Phillips
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Luciano H. Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiting Xu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Julia Yu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Grace K. Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
42
|
Deng T, Liu J, Deng Y, Minze L, Xiao X, Wright V, Yu R, Li XC, Blaszczak A, Bergin S, DiSilvestro D, Judd R, Bradley D, Caligiuri M, Lyon CJ, Hsueh WA. Adipocyte adaptive immunity mediates diet-induced adipose inflammation and insulin resistance by decreasing adipose Treg cells. Nat Commun 2017. [PMCID: PMC5510177 DOI: 10.1038/ncomms15725] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Knies K, Inano S, Ramírez MJ, Ishiai M, Surrallés J, Takata M, Schindler D. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J Clin Invest 2017; 127:3013-3027. [PMID: 28691929 DOI: 10.1172/jci92069] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The WD40-containing E3 ubiquitin ligase RFWD3 has been recently linked to the repair of DNA damage by homologous recombination (HR). Here we have shown that an RFWD3 mutation within the WD40 domain is connected to the genetic disease Fanconi anemia (FA). An individual presented with congenital abnormalities characteristic of FA. Cells from the patient carrying the compound heterozygous mutations c.205_206dupCC and c.1916T>A in RFWD3 showed increased sensitivity to DNA interstrand cross-linking agents in terms of increased chromosomal breakage, reduced survival, and cell cycle arrest in G2 phase. The cellular phenotype was mirrored in genetically engineered human and avian cells by inactivation of RFWD3 or introduction of the patient-derived missense mutation, and the phenotype was rescued by expression of wild-type RFWD3 protein. HR was disrupted in RFWD3-mutant cells as a result of impaired relocation of mutant RFWD3 to chromatin and defective physical interaction with replication protein A. Rfwd3 knockout mice appear to have increased embryonic lethality, are subfertile, show ovarian and testicular atrophy, and have a reduced lifespan resembling that of other FA mouse models. Although RFWD3 mutations have thus far been detected in a single child with FA, we propose RFWD3 as an FA gene, FANCW, supported by cellular paradigm systems and an animal model.
Collapse
Affiliation(s)
- Kerstin Knies
- Department of Human Genetics, Biozentrum, University of Wurzburg, Wurzburg, Germany
| | - Shojiro Inano
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - María J Ramírez
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Jordi Surrallés
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Genetics Department, Hospital de Sant Pau, Barcelona, Spain
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Wurzburg, Wurzburg, Germany
| |
Collapse
|
44
|
Liu S, Huang L, Lin Z, Hu Y, Chen R, Wang L, Shan Y. RhoB induces the production of proinflammatory cytokines in TLR-triggered macrophages. Mol Immunol 2017; 87:200-206. [PMID: 28505515 DOI: 10.1016/j.molimm.2017.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are the primary sensors detecting conserved molecular patterns on microorganisms, thus acting as important components of innate immunity against invading pathogens. Many positive and negative regulators of TLR-triggered signaling have been identified. The Rho GTPase RhoB plays a key role in cell migration, division and polarity; however, the function and regulatory mechanisms of RhoB in TLR ligand-triggered innate immune responses remain to be investigated. Here, we report that the expression of RhoB is induced by TLR agonists (lipopolysaccharide (LPS), CpG, poly(I:C)) in macrophages. Knockdown of RhoB expression markedly decreased TLR ligand-induced activation of mitogen activated protein kinases and nuclear factor-κB (NF-κB), and the production of tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-1β in macrophages stimulated with TLR ligands. Furthermore, we demonstrated that RhoB interacts with major histocompatibility complex class II (MHCII) α chain, but not β chain, in endosomes of macrophages. Knockdown of MHCII expression greatly reduced the interaction of RhoB with Btk, and attenuated the induction of NF-κB and interferon β activity by RhoB upon LPS stimulation. These findings suggest that RhoB is a positive physiological regulator of TLRs signaling via binding to MHCII in macrophages, and therefore RhoB may be a potential therapeutic target in inflammatory diseases.
Collapse
Affiliation(s)
- Shuyuan Liu
- Emergency Department of Navy General Hospital, Beijing, 100037, China
| | - Lisong Huang
- Emergency Department of Navy General Hospital, Beijing, 100037, China
| | - Zhusen Lin
- Emergency Department of Navy General Hospital, Beijing, 100037, China
| | - Yuanqin Hu
- Emergency Department of Navy General Hospital, Beijing, 100037, China
| | - Ruifeng Chen
- Emergency Department of Navy General Hospital, Beijing, 100037, China
| | - Liqiu Wang
- Emergency Department of Navy General Hospital, Beijing, 100037, China
| | - Yi Shan
- Emergency Department of Navy General Hospital, Beijing, 100037, China.
| |
Collapse
|
45
|
Kannan M, Li J, Fritz SE, Husarek KE, Sanford JC, Sullivan TL, Tiwary PK, An W, Boeke JD, Symer DE. Dynamic silencing of somatic L1 retrotransposon insertions reflects the developmental and cellular contexts of their genomic integration. Mob DNA 2017; 8:8. [PMID: 28491150 PMCID: PMC5424313 DOI: 10.1186/s13100-017-0091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/03/2017] [Indexed: 02/15/2023] Open
Abstract
Background The ongoing mobilization of mammalian transposable elements (TEs) contributes to natural genetic variation. To survey the epigenetic control and expression of reporter genes inserted by L1 retrotransposition in diverse cellular and genomic contexts, we engineered highly sensitive, real-time L1 retrotransposon reporter constructs. Results Here we describe different patterns of expression and epigenetic controls of newly inserted sequences retrotransposed by L1 in various somatic cells and tissues including cultured human cancer cells, mouse embryonic stem cells, and tissues of pseudofounder transgenic mice and their progeny. In cancer cell lines, the newly inserted sequences typically underwent rapid transcriptional gene silencing, but they lacked cytosine methylation even after many cell divisions. L1 reporter expression was reversible and oscillated frequently. Silenced or variegated reporter expression was strongly and uniformly reactivated by treatment with inhibitors of histone deacetylation, revealing the mechanism for their silencing. By contrast, de novo integrants retrotransposed by L1 in pluripotent mouse embryonic stem (ES) cells underwent rapid silencing by dense cytosine methylation. Similarly, de novo cytosine methylation also was identified at new integrants when studied in several distinct somatic tissues of adult founder mice. Pre-existing L1 elements in cultured human cancer cells were stably silenced by dense cytosine methylation, whereas their transcription modestly increased when cytosine methylation was experimentally reduced in cells lacking DNA methyltransferases DNMT1 and DNMT3b. As a control, reporter genes mobilized by piggyBac (PB), a DNA transposon, revealed relatively stable and robust expression without apparent silencing in both cultured cancer cells and ES cells. Conclusions We hypothesize that the de novo methylation marks at newly inserted sequences retrotransposed by L1 in early pre-implantation development are maintained or re-established in adult somatic tissues. By contrast, histone deacetylation reversibly silences L1 reporter insertions that had mobilized at later timepoints in somatic development and differentiation, e.g., in cancer cell lines. We conclude that the cellular contexts of L1 retrotransposition can determine expression or silencing of newly integrated sequences. We propose a model whereby reporter expression from somatic TE insertions reflects the timing, molecular mechanism, epigenetic controls and the genomic, cellular and developmental contexts of their integration. Electronic supplementary material The online version of this article (doi:10.1186/s13100-017-0091-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manoj Kannan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, 333031 Rajasthan India.,Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Present Address: Birla Institute of Technology and Science, Pilani, Dubai campus, Dubai, United Arab Emirates
| | - Jingfeng Li
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA.,Department of Internal Medicine, The Ohio State University, Columbus, OH USA
| | - Sarah E Fritz
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kathryn E Husarek
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: Aventiv Research, Inc., Columbus, OH USA
| | - Jonathan C Sanford
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: Drug Safety Research and Development, Pfizer, Inc., Groton, CT USA
| | - Teresa L Sullivan
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Pawan Kumar Tiwary
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Present Address: Biocon, Bangalore, India
| | - Wenfeng An
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA.,Present Address: Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD USA
| | - Jef D Boeke
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA.,Present Address: Institute for Systems Genetics, New York University Langone Medical Center, New York, NY USA
| | - David E Symer
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA.,Human Cancer Genetics Program, and Department of Biomedical Informatics, The Ohio State University, Columbus, OH USA.,Human Cancer Genetics Program, Department of Cancer Biology and Genetics, and Department of Biomedical Informatics, The Ohio State University, Tzagournis Research Facility, Room 440, 420 West 12th Ave, Columbus, OH 43210 USA
| |
Collapse
|
46
|
Partial dysfunction of STAT1 profoundly reduces host resistance to flaviviral infection. Virology 2017; 506:1-6. [PMID: 28282567 DOI: 10.1016/j.virol.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/22/2022]
Abstract
The genetic basis for a dramatically increased virus susceptibility phenotype of MHC-II knockout mice acquired during routine maintenance of the mouse strain was determined. Segregation of the susceptibility allele from the defective MHC-II locus combined with sequence capture and sequencing showed that a Y37L substitution in STAT1 accounted for high flavivirus susceptibility of a newly derived mouse strain, designated Tuara. Interestingly, the mutation in STAT1 gene gave only partial inactivation of the type I interferon antiviral pathway. Accordingly, merely a relatively small impairment of interferon α/β signalling is sufficient to overcome the ability of the host to control the infection.
Collapse
|
47
|
Schatton D, Pla-Martin D, Marx MC, Hansen H, Mourier A, Nemazanyy I, Pessia A, Zentis P, Corona T, Kondylis V, Barth E, Schauss AC, Velagapudi V, Rugarli EI. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J Cell Biol 2017; 216:675-693. [PMID: 28188211 PMCID: PMC5350512 DOI: 10.1083/jcb.201607019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal-neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.
Collapse
Affiliation(s)
- Désirée Schatton
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - David Pla-Martin
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Marie-Charlotte Marx
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Henriette Hansen
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ivan Nemazanyy
- Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France
| | - Alberto Pessia
- Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Teresa Corona
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Vangelis Kondylis
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Esther Barth
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Astrid C Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
48
|
Barman-Aksözen J, C Wiek P, Bansode VB, Koentgen F, Trüb J, Pelczar P, Cinelli P, Schneider-Yin X, Schümperli D, Minder EI. Modeling the ferrochelatase c.315-48C modifier mutation for erythropoietic protoporphyria (EPP) in mice. Dis Model Mech 2017; 10:225-233. [PMID: 28093505 PMCID: PMC5374324 DOI: 10.1242/dmm.027755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/29/2016] [Indexed: 01/11/2023] Open
Abstract
Erythropoietic protoporphyria (EPP) is caused by deficiency of ferrochelatase (FECH), which incorporates iron into protoporphyrin IX (PPIX) to form heme. Excitation of accumulated PPIX by light generates oxygen radicals that evoke excessive pain and, after longer light exposure, cause ulcerations in exposed skin areas of individuals with EPP. Moreover, ∼5% of the patients develop a liver dysfunction as a result of PPIX accumulation. Most patients (∼97%) have a severe FECH mutation (Mut) in trans to an intronic polymorphism (c.315-48C), which reduces ferrochelatase synthesis by stimulating the use of an aberrant 3′ splice site 63 nt upstream of the normal site for exon 4. In contrast, with the predominant c.315-48T allele, the correct splice site is mostly used, and individuals with a T/Mut genotype do not develop EPP symptoms. Thus, the C allele is a potential target for therapeutic approaches that modify this splicing decision. To provide a model for pre-clinical studies of such approaches, we engineered a mouse containing a partly humanized Fech gene with the c.315-48C polymorphism. F1 hybrids obtained by crossing these mice with another inbred line carrying a severe Fech mutation (named m1Pas) show a very strong EPP phenotype that includes elevated PPIX in the blood, enlargement of liver and spleen, anemia, as well as strong pain reactions and skin lesions after a short period of light exposure. In addition to the expected use of the aberrant splice site, the mice also show a strong skipping of the partly humanized exon 3. This will limit the use of this model for certain applications and illustrates that engineering of a hybrid gene may have unforeseeable consequences on its splicing. Summary: A new mouse model reproduces the predominant genetic disposition of patients affected by erythropoietic protoporphyria, a rare disease associated with extreme pain after light exposure.
Collapse
Affiliation(s)
- Jasmin Barman-Aksözen
- Institute of Laboratory Medicine, Municipal Hospital Triemli, Zürich 8063, Switzerland
| | - Paulina C Wiek
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Vijay B Bansode
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | | - Judith Trüb
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel 4002, Switzerland
| | - Paolo Cinelli
- Division of Trauma Surgery, University Hospital Zürich, Zürich 8091, Switzerland
| | - Xiaoye Schneider-Yin
- Institute of Laboratory Medicine, Municipal Hospital Triemli, Zürich 8063, Switzerland
| | - Daniel Schümperli
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Elisabeth I Minder
- Institute of Laboratory Medicine, Municipal Hospital Triemli, Zürich 8063, Switzerland .,Porphyria Outpatient Clinics, Municipal Hospital Triemli, Zürich 8063, Switzerland
| |
Collapse
|
49
|
Barsanti M, Lim JMC, Hun ML, Lister N, Wong K, Hammett MV, Lepletier A, Boyd RL, Giudice A, Chidgey AP. A novel Foxn1
eGFP/+
mouse model identifies Bmp4‐induced maintenance of
Foxn1
expression and thymic epithelial progenitor populations. Eur J Immunol 2016; 47:291-304. [DOI: 10.1002/eji.201646553] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Marco Barsanti
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Joanna M. C. Lim
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Michael L. Hun
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Natalie Lister
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Maree V. Hammett
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Ailin Lepletier
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Richard L. Boyd
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Antonietta Giudice
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Ann P. Chidgey
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| |
Collapse
|
50
|
Dzinic SH, Bernardo MM, Li X, Fernandez-Valdivia R, Ho YS, Mi QS, Bandyopadhyay S, Lonardo F, Vranic S, Oliveira DSM, Bonfil RD, Dyson G, Chen K, Omerovic A, Sheng X, Han X, Wu D, Bi X, Cabaravdic D, Jakupovic U, Wahba M, Pang A, Harajli D, Sakr WA, Sheng S. An Essential Role of Maspin in Embryogenesis and Tumor Suppression. Cancer Res 2016; 77:886-896. [PMID: 27923833 DOI: 10.1158/0008-5472.can-16-2219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/12/2023]
Abstract
Maspin (SerpinB5) is an epithelial-specific tumor suppressor gene product that displays context-dependent cellular functions. Maspin-deficient mouse models created to date have not definitively established maspin functions critical for cancer suppression. In this study, we generated a mouse strain in which exon 4 of the Maspin gene was deleted, confirming its essential role in development but also enabling a breeding scheme to bypass embryonic lethality. Phenotypic characterization of this viable strain established that maspin deficiency was associated with a reduction in maximum body weight and a variety of context-dependent epithelial abnormalities. Specifically, maspin-deficient mice exhibited pulmonary adenocarcinoma, myoepithelial hyperplasia of the mammary gland, hyperplasia of luminal cells of dorsolateral and anterior prostate, and atrophy of luminal cells of ventral prostate and stratum spinosum of epidermis. These cancer phenotypes were accompanied by increased inflammatory stroma. These mice also displayed the autoimmune disorder alopecia aerate. Overall, our findings defined context-specific tumor suppressor roles for maspin in a clinically relevant model to study maspin functions in cancer and other pathologies. Cancer Res; 77(4); 886-96. ©2017 AACR.
Collapse
Affiliation(s)
- Sijana H Dzinic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Xiaohua Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Rodrigo Fernandez-Valdivia
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Qing-Sheng Mi
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Dermatology, Henry Ford Health Systems, Detroit, Michigan
| | - Sudeshna Bandyopadhyay
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Fulvio Lonardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Semir Vranic
- Division of Experimental Pathology, Department of Pathology, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Daniel S M Oliveira
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Urology, Wayne State University School of Medicine, Detroit, Michigan
| | - R Daniel Bonfil
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Urology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Gregory Dyson
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Kang Chen
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Urology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Detroit, Michigan.,Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Almasa Omerovic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Xiujie Sheng
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiang Han
- Peking University Health Science Center, The Third Affiliated Hospital, Beijing, P.R. China
| | - Dinghong Wu
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Dermatology, Henry Ford Health Systems, Detroit, Michigan
| | - Xinling Bi
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Dermatology, Henry Ford Health Systems, Detroit, Michigan
| | - Dzenana Cabaravdic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Una Jakupovic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Marian Wahba
- Department of Internal Medicine, Sinai Grace Hospital, Detroit Medical Center, Detroit, Michigan
| | - Aaron Pang
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Deanna Harajli
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Wael A Sakr
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. .,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|