1
|
Jeon G, Kim S, Kim YJ, Kim S, Han K, Oh K, Lee HJ, Choi J. Identification of fluoroquinolone-resistant Mycobacterium tuberculosis through high-level data fusion of Raman and laser-induced breakdown spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6349-6355. [PMID: 39221494 DOI: 10.1039/d4ay01331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Accurate and rapid diagnosis of drug susceptibility of Mycobacterium tuberculosis is crucial for the successful treatment of tuberculosis, a persistent global public health threat. To shorten diagnosis times and enhance accuracy, this study introduces a fusion model combining laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy. This model offers a rapid and accurate method for diagnosing drug-resistance. LIBS and Raman spectroscopy provide complementary information, enabling accurate identification of drug resistance in tuberculosis. Although individual use of LIBS or Raman spectroscopy achieved approximately 90% accuracy in identifying drug resistance, the fusion model significantly improved identification accuracy to 98.3%. Given the fast measurement capabilities of both techniques, this fusion approach is expected to markedly decrease the time required for diagnosis.
Collapse
Affiliation(s)
- Gookseon Jeon
- Industrial Transformation Technology Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology, 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-Si, Chungcheongnam-do 31056, Republic of Korea.
- Photonic Device Physics Laboratory, Institute of Physics and Applied Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Soogeun Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young Jin Kim
- Department of Laboratory Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Seungmo Kim
- Laboratory Medicine Center, Korean National Tuberculosis Association, The Korean Institute of Tuberculosis, Cheongju, Republic of Korea
| | - Kyungmin Han
- Clinical Laboratory Medicine Center, Korean National Tuberculosis Association, Seoul, Republic of Korea.
| | - Kyunghwan Oh
- Photonic Device Physics Laboratory, Institute of Physics and Applied Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hee Joo Lee
- Clinical Laboratory Medicine Center, Korean National Tuberculosis Association, Seoul, Republic of Korea.
| | - Janghee Choi
- Industrial Transformation Technology Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology, 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-Si, Chungcheongnam-do 31056, Republic of Korea.
| |
Collapse
|
2
|
Pakamwong B, Thongdee P, Kamsri B, Phusi N, Taveepanich S, Chayajarus K, Kamsri P, Punkvang A, Hannongbua S, Sangswan J, Suttisintong K, Sureram S, Kittakoop P, Hongmanee P, Santanirand P, Leanpolchareanchai J, Spencer J, Mulholland AJ, Pungpo P. Ligand-Based Virtual Screening for Discovery of Indole Derivatives as Potent DNA Gyrase ATPase Inhibitors Active against Mycobacterium tuberculosis and Hit Validation by Biological Assays. J Chem Inf Model 2024; 64:5991-6002. [PMID: 38993154 PMCID: PMC11323271 DOI: 10.1021/acs.jcim.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Mycobacterium tuberculosis is the single most important global infectious disease killer and a World Health Organization critical priority pathogen for development of new antimicrobials. M. tuberculosis DNA gyrase is a validated target for anti-TB agents, but those in current use target DNA breakage-reunion, rather than the ATPase activity of the GyrB subunit. Here, virtual screening, subsequently validated by whole-cell and enzyme inhibition assays, was applied to identify candidate compounds that inhibit M. tuberculosis GyrB ATPase activity from the Specs compound library. This approach yielded six compounds: four carbazole derivatives (1, 2, 3, and 8), the benzoindole derivative 11, and the indole derivative 14. Carbazole derivatives can be considered a new scaffold for M. tuberculosis DNA gyrase ATPase inhibitors. IC50 values of compounds 8, 11, and 14 (0.26, 0.56, and 0.08 μM, respectively) for inhibition of M. tuberculosis DNA gyrase ATPase activity are 5-fold, 2-fold, and 16-fold better than the known DNA gyrase ATPase inhibitor novobiocin. MIC values of these compounds against growth of M. tuberculosis H37Ra are 25.0, 3.1, and 6.2 μg/mL, respectively, superior to novobiocin (MIC > 100.0 μg/mL). Molecular dynamics simulations of models of docked GyrB:inhibitor complexes suggest that hydrogen bond interactions with GyrB Asp79 are crucial for high-affinity binding of compounds 8, 11, and 14 to M. tuberculosis GyrB for inhibition of ATPase activity. These data demonstrate that virtual screening can identify known and new scaffolds that inhibit both M. tuberculosis DNA gyrase ATPase activity in vitro and growth of M. tuberculosis bacteria.
Collapse
Affiliation(s)
- Bongkochawan Pakamwong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Paptawan Thongdee
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Bundit Kamsri
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Naruedon Phusi
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Somjintana Taveepanich
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kampanart Chayajarus
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pharit Kamsri
- Division
of Chemistry, Faculty of Science, Nakhon
Phanom University, Nakhon
Phanom 48000, Thailand
| | - Auradee Punkvang
- Division
of Chemistry, Faculty of Science, Nakhon
Phanom University, Nakhon
Phanom 48000, Thailand
| | - Supa Hannongbua
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Jidapa Sangswan
- Department
of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Khomson Suttisintong
- National
Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong
Luang, Pathum Thani 12120, Thailand
| | - Sanya Sureram
- Chulabhorn
Research Institute, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn
Research Institute, Laksi, Bangkok 10210, Thailand
- Program
in Chemical Sciences, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Center
of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and
Innovation, Bangkok 10210, Thailand
| | - Poonpilas Hongmanee
- Division
of Clinical Microbiology, Department of Pathology, Faculty of Medicine,
Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pitak Santanirand
- Division
of Clinical Microbiology, Department of Pathology, Faculty of Medicine,
Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | | | - James Spencer
- School
of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, U.K.
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Pornpan Pungpo
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
3
|
Sun Q, Cheng K, Liao X, Zhao W, Wang C, Wang C, Yan J, Dong L, Wang F, Jiang G, Huang H, Guo Z, Wang G. New generation fluoroquinolone sitafloxacin could potentially overcome the majority levofloxacin and moxifloxacin resistance in multidrug-resistant Mycobacterium tuberculosis. J Med Microbiol 2024; 73. [PMID: 39028256 DOI: 10.1099/jmm.0.001825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Introduction. Pre-existing fluoroquinolones (FQs) resistance is a major threat in treating multidrug-resistant (MDR) tuberculosis. Sitafloxacin (Sfx) is a new broad-spectrum FQ.Hypothesis. Sfx is more active against drug-resistant Mycobacterium tuberculosis (Mtb) isolates.Aim. To determine whether there is cross-resistance between Sfx and ofloxacin (Ofx), levofloxacin (Lfx) and moxifloxacin (Mfx) in MDR Mtb.Methods. A total of 106 clinical Mtb isolates, including 23 pan-susceptible and 83 MDR strains, were analysed for Sfx, Lfx and Mfx resistance using MIC assay. The isolates were also subjected to whole-genome sequencing to analyse drug-resistant genes.Results. Sfx exhibited the most robust inhibition activity against Mtb clinical isolates, with a MIC50 of 0.0313 µg ml-1 and MIC90 of 0.125 µg ml-1, which was lower than that of Mfx (MIC50 = 0.0625 µg ml-1, MIC90 = 1 µg ml-1) and Lfx (MIC50 = 0.125 µg ml-1, MIC90 = 2 µg ml-1). We determined the tentative epidemiological cut-off values as 0.5 µg ml-1 for Sfx. Also, 8.43% (7/83), 43.37% (36/83), 42.17% (35/83) and 51.81% (43/83) MDR strains were resistant to Sfx, Mfx, Lfx and Ofx, respectively. Cross-resistance between Ofx, Lfx and Mfx was 80.43% (37/46). Only 15.22% (7/46) of the pre-existing FQs resistance isolates were resistant to Sfx. Among the 30 isolates with mutations in gyrA or gyrB, 5 (16.67%) were Sfx resistant. The combination of Sfx and rifampicin could exert partial synergistic effects, and no antagonism between Sfx and six clinically important anti-Mtb antibiotics was evident.Conclusion. Sfx exhibited superior activity against MDR isolates comparing to Lfx and Mfx, and could potentially overcome the majority pre-existing FQs resistance in Mtb strains.
Collapse
Affiliation(s)
- Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Kai Cheng
- Pharmacy of Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Xinlei Liao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Weijie Zhao
- The Administration Office of Clinical Trial, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Chenqian Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Chaohong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Jun Yan
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Zhenyong Guo
- Pharmacy of Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| |
Collapse
|
4
|
Deshpande A, Likhar R, Khan T, Omri A. Decoding drug resistance in Mycobacterium tuberculosis complex: genetic insights and future challenges. Expert Rev Anti Infect Ther 2024; 22:511-527. [PMID: 39219506 DOI: 10.1080/14787210.2024.2400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/02/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Tuberculosis (TB), particularly its drug-resistant forms (MDR-TB and XDR-TB), continues to pose a significant global health challenge. Despite advances in treatment and diagnosis, the evolving nature of drug resistance in Mycobacterium tuberculosis (MTB) complicates TB eradication efforts. This review delves into the complexities of anti-TB drug resistance, its mechanisms, and implications on healthcare strategies globally. AREAS COVERED We explore the genetic underpinnings of resistance to both first-line and second-line anti-TB drugs, highlighting the role of mutations in key genes. The discussion extends to advanced diagnostic techniques, such as Whole-Genome Sequencing (WGS), CRISPR-based diagnostics and their impact on identifying and managing drug-resistant TB. Additionally, we discuss artificial intelligence applications, current treatment strategies, challenges in managing MDR-TB and XDR-TB, and the global disparities in TB treatment and control, translating to different therapeutic outcomes and have the potential to revolutionize our understanding and management of drug-resistant tuberculosis. EXPERT OPINION The current landscape of anti-TB drug resistance demands an integrated approach combining advanced diagnostics, novel therapeutic strategies, and global collaborative efforts. Future research should focus on understanding polygenic resistance and developing personalized medicine approaches. Policymakers must prioritize equitable access to diagnosis and treatment, enhancing TB control strategies, and support ongoing research and augmented government funding to address this critical public health issue effectively.
Collapse
Affiliation(s)
- Amey Deshpande
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Rupali Likhar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, LSHGCT's Gahlot Institute of Pharmacy, Navi Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
5
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Canales CSC, Pavan AR, Dos Santos JL, Pavan FR. In silico drug design strategies for discovering novel tuberculosis therapeutics. Expert Opin Drug Discov 2024; 19:471-491. [PMID: 38374606 DOI: 10.1080/17460441.2024.2319042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tuberculosis remains a significant concern in global public health due to its intricate biology and propensity for developing antibiotic resistance. Discovering new drugs is a protracted and expensive endeavor, often spanning over a decade and incurring costs in the billions. However, computer-aided drug design (CADD) has surfaced as a nimbler and more cost-effective alternative. CADD tools enable us to decipher the interactions between therapeutic targets and novel drugs, making them invaluable in the quest for new tuberculosis treatments. AREAS COVERED In this review, the authors explore recent advancements in tuberculosis drug discovery enabled by in silico tools. The main objectives of this review article are to highlight emerging drug candidates identified through in silico methods and to provide an update on the therapeutic targets associated with Mycobacterium tuberculosis. EXPERT OPINION These in silico methods have not only streamlined the drug discovery process but also opened up new horizons for finding novel drug candidates and repositioning existing ones. The continued advancements in these fields hold great promise for more efficient, ethical, and successful drug development in the future.
Collapse
Affiliation(s)
- Christian S Carnero Canales
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- School of Pharmacy, biochemistry and biotechnology, Santa Maria Catholic University, Arequipa, Perú
| | - Aline Renata Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
7
|
Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1251-1273. [PMID: 37665346 DOI: 10.1007/s00210-023-02679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium's genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
Collapse
Affiliation(s)
- Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Zoology, Feroze Gandhi College, Raebareli, 229001, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Botany, BMK Government. Girls College, Balod, Chhattisgarh, 491226, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India.
| |
Collapse
|
8
|
Barilar I, Battaglia S, Borroni E, Brandao AP, Brankin A, Cabibbe AM, Carter J, Chetty D, Cirillo DM, Claxton P, Clifton DA, Cohen T, Coronel J, Crook DW, Dreyer V, Earle SG, Escuyer V, Ferrazoli L, Fowler PW, Gao GF, Gardy J, Gharbia S, Ghisi KT, Ghodousi A, Gibertoni Cruz AL, Grandjean L, Grazian C, Groenheit R, Guthrie JL, He W, Hoffmann H, Hoosdally SJ, Hunt M, Iqbal Z, Ismail NA, Jarrett L, Joseph L, Jou R, Kambli P, Khot R, Knaggs J, Koch A, Kohlerschmidt D, Kouchaki S, Lachapelle AS, Lalvani A, Lapierre SG, Laurenson IF, Letcher B, Lin WH, Liu C, Liu D, Malone KM, Mandal A, Mansjö M, Calisto Matias DVL, Meintjes G, de Freitas Mendes F, Merker M, Mihalic M, Millard J, Miotto P, Mistry N, Moore D, Musser KA, Ngcamu D, Nhung HN, Niemann S, Nilgiriwala KS, Nimmo C, O’Donnell M, Okozi N, Oliveira RS, Omar SV, Paton N, Peto TEA, Pinhata JMW, Plesnik S, Puyen ZM, Rabodoarivelo MS, Rakotosamimanana N, Rancoita PMV, Rathod P, Robinson ER, Rodger G, Rodrigues C, Rodwell TC, Roohi A, Santos-Lazaro D, Shah S, Smith G, Kohl TA, Solano W, Spitaleri A, Steyn AJC, Supply P, Surve U, Tahseen S, Thuong NTT, Thwaites G, Todt K, Trovato A, Utpatel C, Van Rie A, Vijay S, Walker AS, Walker TM, Warren R, Werngren J, Wijkander M, Wilkinson RJ, Wilson DJ, Wintringer P, Xiao YX, Yang Y, Yanlin Z, Yao SY, Zhu B. Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach. Nat Commun 2024; 15:488. [PMID: 38216576 PMCID: PMC10786857 DOI: 10.1038/s41467-023-44325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024] Open
Abstract
The World Health Organization has a goal of universal drug susceptibility testing for patients with tuberculosis. However, molecular diagnostics to date have focused largely on first-line drugs and predicting susceptibilities in a binary manner (classifying strains as either susceptible or resistant). Here, we used a multivariable linear mixed model alongside whole genome sequencing and a quantitative microtiter plate assay to relate genomic mutations to minimum inhibitory concentration (MIC) in 15,211 Mycobacterium tuberculosis clinical isolates from 23 countries across five continents. We identified 492 unique MIC-elevating variants across 13 drugs, as well as 91 mutations likely linked to hypersensitivity. Our results advance genetics-based diagnostics for tuberculosis and serve as a curated training/testing dataset for development of drug resistance prediction algorithms.
Collapse
|
9
|
Kumar GS, Sobhia ME. Water network chemistry to exploit the nature of catalytic water molecules in Mtb DNA gyrase: a computational study to understand the binding mechanism of fluoroquinolones. J Biomol Struct Dyn 2024; 42:725-733. [PMID: 37121993 DOI: 10.1080/07391102.2023.2199869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023]
Abstract
The dynamics of DNA gyrase and mutants of DNA gyrA such as G88A, A90V, S91P, D94A, D94G, D94N, D94Y; and double-point mutant (S91P-D94G), are meticulously investigated using computational approaches. Molecular dynamics (MD) and hydration thermodynamics have shed light on the fundamental, mechanistic basis of mutations on the conformational stability of Quinolone Binding Pocket (QBP) of DNA gyrase. Analysis of MD results revealed the displacement of a single crystal water molecule (HOH201) from the catalytic site of wild-type (WT) and mutants of DNA gyrA. This prompted our research group to probe the five crystal water molecules present in the QBP of the enzyme using water thermodynamics. Hydration thermodynamics analysis revealed the displacement of HOH201 due to unstable thermodynamic signatures. Further, the analysis highlighted significant changes in thermodynamic signatures and locations of five crystal water hydration sites upon mutation. Integrated MD simulations and water thermodynamics provided promising insights into the conformational changes and inaccessibility of the catalytic water molecule that can influence the design of DNA gyrase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
10
|
Wang S, Zhang J, Hameed HMA, Ding J, Guan P, Fang X, Peng J, Su B, Ma S, Tan Y, M. Cook G, Zhang G, Lin Y, Zhong N, Hu J, Liu J, Zhang T. Amino acid 17 in QRDR of Gyrase A plays a key role in fluoroquinolones susceptibility in mycobacteria. Microbiol Spectr 2023; 11:e0280923. [PMID: 37831477 PMCID: PMC10715211 DOI: 10.1128/spectrum.02809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/27/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Fluoroquinolones (FQs) play a key role in the treatment regimens against tuberculosis and non-tuberculous mycobacterial infections. However, there are significant differences in the sensitivities of different mycobacteria to FQs. In this study, we proved that this is associated with the polymorphism at amino acid 17 of quinolone resistance-determining region of Gyrase A by gene editing. This is the first study using CRISPR-associated recombination for gene editing in Mycobacterium abscessus to underscore the contribution of the amino acid substitutions in GyrA to FQ susceptibilities in mycobacteria.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jie Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Xiange Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jiacong Peng
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Biyi Su
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Shangming Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yongping Lin
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
11
|
MacGowan AP, Attwood MLG, Noel AR, Barber R, Aron Z, Opperman TJ, Grimsey E, Stone J, Ricci V, Piddock LJV. Exposure of Escherichia coli to antibiotic-efflux pump inhibitor combinations in a pharmacokinetic model: impact on bacterial clearance and drug resistance. J Antimicrob Chemother 2023; 78:2869-2877. [PMID: 37837411 DOI: 10.1093/jac/dkad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Efflux pump inhibitors (EPIs) offer an attractive therapeutic option when combined with existing classes. However, their optimal dosing strategies are unknown. METHODS MICs of ciprofloxacin (CIP)+/-chlorpromazine, phenylalanine-arginine β naphthylamide (PAβN) and a developmental molecule MBX-4191 were determined and the pharmacodynamics (PD) was studied in an in vitro model employing Escherichia coli MG1655 and its isogenic MarR mutant (I1147). Exposure ranging experiments were performed initially then fractionation. Changes in bacterial load and population profiles were assessed. Strains recovered after EPI simulations were studied by WGS. RESULTS The CIPMICs for E. coli MG1655 and I1147 were 0.08 and 0.03 mg/L. Chlorpromazine at a concentration of 60 mg/L, PAβN concentrations of 30 mg/L and MBX-4191 concentrations of 0.5-1.0 mg/L reduced CIP MICs for I1147 and enhanced bacterial killing. Using CIP at an AUC of 1.2 mg·h/L, chlorpromazine AUC was best related to reduction in bacterial load at 24 h, however, when the time drug concentration was greater than 25 mg/L (T > 25 mg/L) chlorpromazine was also strongly related to the effect. For PaβN with CIP AUC, 0.6 mg·h/L PaβN AUC was best related to a reduction in bacterial load. MBX-4191T > 0.5-0.75 mg·h/L was best related to reduction in bacterial load. Changes in population profiles were not seen in experiments of ciprofloxacin + EPIs. WGS of recovered strains from simulations with all three EPIs showed mutations in gyrA, gyrB or marR. CONCLUSIONS AUC was the pharmacodynamic driver for chlorpromazine and PAβN while T > threshold was the driver for MBX-4191 and important in the activity of chlorpromazine and PAβN. Changes in population profiles did not occur with combinations of ciprofloxacin + EPIs, however, mutations in gyrA, gyrB and marR were detected.
Collapse
Affiliation(s)
- Alasdair P MacGowan
- Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - M L G Attwood
- Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - Alan R Noel
- Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - R Barber
- Microbiotix Inc, 1 Innovation Drive, Worcester, MA 01605, USA
| | - Zachary Aron
- Microbiotix Inc, 1 Innovation Drive, Worcester, MA 01605, USA
| | | | - Elizabeth Grimsey
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jack Stone
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vito Ricci
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - L J V Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Carter J. Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach. RESEARCH SQUARE 2023:rs.3.rs-3378915. [PMID: 37886522 PMCID: PMC10602118 DOI: 10.21203/rs.3.rs-3378915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The World Health Organization has a goal of universal drug susceptibility testing for patients with tuberculosis; however, molecular diagnostics to date have focused largely on first-line drugs and predicting binary susceptibilities. We used a multivariable linear mixed model alongside whole genome sequencing and a quantitative microtiter plate assay to relate genomic mutations to minimum inhibitory concentration in 15,211 Mycobacterium tuberculosis patient isolates from 23 countries across five continents. This identified 492 unique MIC-elevating variants across thirteen drugs, as well as 91 mutations likely linked to hypersensitivity. Our results advance genetics-based diagnostics for tuberculosis and serve as a curated training/testing dataset for development of drug resistance prediction algorithms.
Collapse
|
13
|
Szulczyk D, Woziński M, Koliński M, Kmiecik S, Głogowska A, Augustynowicz-Kopeć E, Dobrowolski MA, Roszkowski P, Struga M, Ciura K. Menthol- and thymol-based ciprofloxacin derivatives against Mycobacterium tuberculosis: in vitro activity, lipophilicity, and computational studies. Sci Rep 2023; 13:16328. [PMID: 37770610 PMCID: PMC10539350 DOI: 10.1038/s41598-023-43708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
In this work, we investigated the antitubercular properties of Ciprofloxacin derivatives conjugated with menthol and thymol moieties. For the sixteen derivatives, we established minimal inhibitory concentrations (MIC) using isolates of Mycobacterium tuberculosis that were resistant or susceptible to other antibiotics. For the most potent compound 1-cyclopropyl-6-fluoro-7-{4-[6-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)-6-oxohexyl]piperazin-1-yl}-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (6), we determined fractional inhibitory concentration index (FICI) values to confirm antibacterial susceptibility and synergistic effects with other reference drugs. In addition, chromatographic studies of all the derivatives demonstrated a significant three to four-fold increase in lipophilicity and affinity to phospholipids compared to Ciprofloxacin. Finally, we conducted structure-based studies of the investigated compounds using molecular docking and taking into account protein target mutations associated with fluoroquinolone resistance. In summary, our findings indicate that the investigated compounds possess tuberculostatic properties, with some showing similar or even better activity against resistant strains compared to reference drugs. Increased lipophilicity and affinity to phospholipids of the new derivatives can offer several advantages for new drug candidates, beyond just improved cell membrane penetration. However, further studies are needed to fully understand their safety, efficacy, and mechanism of action.
Collapse
Affiliation(s)
- Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Mateusz Woziński
- Department of Physical Chemistry, Medical University of Gdańsk, 80-416, Gdańsk, Poland
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106, Warsaw, Poland
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089, Warsaw, Poland
| | - Agnieszka Głogowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138, Warsaw, Poland
| | | | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Marta Struga
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Krzesimir Ciura
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097, Warsaw, Poland
- QSAR Lab Ltd., Trzy Lipy 3 St., 80-172, Gdańsk, Poland
| |
Collapse
|
14
|
Hershko Y, Levytskyi K, Rannon E, Assous MV, Ken-Dror S, Amit S, Ben-Zvi H, Sagi O, Schwartz O, Sorek N, Szwarcwort M, Barkan D, Burstein D, Adler A. Phenotypic and genotypic analysis of antimicrobial resistance in Nocardia species. J Antimicrob Chemother 2023; 78:2306-2314. [PMID: 37527397 DOI: 10.1093/jac/dkad236] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Antimicrobial resistance is common in Nocardia species but data regarding the molecular mechanisms beyond their resistance traits are limited. Our study aimed to determine the species distribution, the antimicrobial susceptibility profiles, and investigate the associations between the resistance traits and their genotypic determinants. METHODS The study included 138 clinical strains of Nocardia from nine Israeli microbiology laboratories. MIC values of 12 antimicrobial agents were determined using broth microdilution. WGS was performed on 129 isolates of the eight predominant species. Bioinformatic analysis included phylogeny and determination of antimicrobial resistance genes and mutations. RESULTS Among the isolates, Nocardia cyriacigeorgica was the most common species (36%), followed by Nocardia farcinica (16%), Nocardia wallacei (13%), Nocardia abscessus (9%) and Nocardia brasiliensis (8%). Linezolid was active against all isolates, followed by trimethoprim/sulfamethoxazole (93%) and amikacin (91%). Resistance to other antibiotics was species-specific, often associated with the presence of resistance genes or mutations: (1) aph(2″) in N. farcinica and N. wallacei (resistance to tobramycin); (ii) blaAST-1 in N. cyriacigeorgica and Nocardia neocaledoniensis (resistance to amoxicillin/clavulanate); (iii) blaFAR-1 in N. farcinica (resistance to ceftriaxone); (iv) Ser83Ala substitution in the gyrA gene in four species (resistance to ciprofloxacin); and (v) the 16S rRNA m1A1408 methyltransferase in N. wallacei isolates (correlating with amikacin resistance). CONCLUSIONS Our study provides a comprehensive understanding of Nocardia species diversity, antibiotic resistance patterns, and the molecular basis of antimicrobial resistance. Resistance appears to follow species-related patterns, suggesting a lesser role for de novo evolution or transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Yizhak Hershko
- Koret School of Veterinary Medicine, Robert H. Smith Faculty for Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Katia Levytskyi
- Koret School of Veterinary Medicine, Robert H. Smith Faculty for Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ella Rannon
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marc V Assous
- Clinical Microbiology Laboratory, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shifra Ken-Dror
- Clalit Health Services, Haifa and Western Galilee District, Israel
| | - Sharon Amit
- Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Haim Ben-Zvi
- Microbiology Laboratory, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Orli Sagi
- Clinical Microbiology Laboratory, Soroka University Medical Center, Beer-Sheva 84105, Israel
| | | | - Nadav Sorek
- Assuta Ashdod University Hospital, Ashdod, Israel
| | - Moran Szwarcwort
- Clinical Microbiology Laboratories, Laboratories Division, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Robert H. Smith Faculty for Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Burstein
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amos Adler
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Chizimu JY, Solo ES, Bwalya P, Kapalamula TF, Mwale KK, Squarre D, Shawa M, Lungu P, Barnes DA, Yamba K, Mufune T, Chambaro H, Kamboyi H, Munyeme M, Hang'ombe BM, Kapata N, Mukonka V, Chilengi R, Thapa J, Nakajima C, Suzuki Y. Genomic Analysis of Mycobacterium tuberculosis Strains Resistant to Second-Line Anti-Tuberculosis Drugs in Lusaka, Zambia. Antibiotics (Basel) 2023; 12:1126. [PMID: 37508222 PMCID: PMC10376136 DOI: 10.3390/antibiotics12071126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of pre-extensively drug-resistant tuberculosis (pre-XDR-TB) is a threat to TB control programs in developing countries such as Zambia. Studies in Zambia have applied molecular techniques to understand drug-resistance-associated mutations, circulating lineages and transmission patterns of multi-drug-resistant (MDR) Mycobacterium tuberculosis. However, none has reported genotypes and mutations associated with pre-XDR TB. This study characterized 63 drug-resistant M. tuberculosis strains from the University Teaching Hospital between 2018 and 2019 using targeted gene sequencing and conveniently selected 50 strains for whole genome sequencing. Sixty strains had resistance mutations associated to MDR, one polyresistant, and two rifampicin resistant. Among MDR strains, seven percent (4/60) had mutations associated with pre-XDR-TB. While four, one and nine strains had mutations associated with ethionamide, para-amino-salicylic acid and streptomycin resistances, respectively. All 50 strains belonged to lineage 4 with the predominant sub-lineage 4.3.4.2.1 (38%). Three of four pre-XDR strains belonged to sub-lineage 4.3.4.2.1. Sub-lineage 4.3.4.2.1 strains were less clustered when compared to sub-lineages L4.9.1 and L4.3.4.1 based on single nucleotide polymorphism differences. The finding that resistances to second-line drugs have emerged among MDR-TB is a threat to TB control. Hence, the study recommends a strengthened routine drug susceptibility testing for second-line TB drugs to stop the progression of pre-XDR to XDR-TB and improve patient treatment outcomes.
Collapse
Affiliation(s)
- Joseph Yamweka Chizimu
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | | | - Precious Bwalya
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
- University Teaching Hospital, Ministry of Health, Lusaka 10101, Zambia
| | - Thoko Flav Kapalamula
- Department of Pathobiology, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe 207203, Malawi
| | | | - David Squarre
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 10101, Zambia
| | - Misheck Shawa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
| | - Patrick Lungu
- National TB Control Program, Ministry of Health, Lusaka 10101, Zambia
| | - David Atomanyi Barnes
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
| | - Kaunda Yamba
- University Teaching Hospital, Ministry of Health, Lusaka 10101, Zambia
| | - Tiza Mufune
- Provincial Health Office, Central Province, Ministry of Health, Kabwe 10101, Zambia
| | - Herman Chambaro
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 10101, Zambia
| | - Harvey Kamboyi
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia
| | - Bernard Mudenda Hang'ombe
- Department of Para-Clinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia
| | - Nathan Kapata
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | - Victor Mukonka
- School of Public Health and Environmental Sciences, Levy Mwanawasa Medical University, Ministry of Health, Lusaka 10101, Zambia
| | - Roma Chilengi
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
| |
Collapse
|
16
|
Thapa J, Chizimu JY, Kitamura S, Akapelwa ML, Suwanthada P, Miura N, Toyting J, Nishimura T, Hasegawa N, Nishiuchi Y, Gordon SV, Nakajima C, Suzuki Y. Characterization of DNA Gyrase Activity and Elucidation of the Impact of Amino Acid Substitution in GyrA on Fluoroquinolone Resistance in Mycobacterium avium. Microbiol Spectr 2023; 11:e0508822. [PMID: 37067420 PMCID: PMC10269562 DOI: 10.1128/spectrum.05088-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
Mycobacterium avium, a member of the M. avium complex (MAC), is the major pathogen contributing to nontuberculous mycobacteria (NTM) infections worldwide. Fluoroquinolones (FQs) are recommended for the treatment of macrolide-resistant MACs. The association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA of M. avium is not yet clearly understood, as many FQ-resistant clinical M. avium isolates do not have such mutations. This study aimed to elucidate the role of amino acid substitution in the QRDR of M. avium GyrA in the development of FQ resistance. We found four clinical M. avium subsp. hominissuis isolates with Asp-to-Gly change at position 95 (Asp95Gly) and Asp95Tyr mutations in gyrA that were highly resistant to FQs and had 2- to 32-fold-higher MICs than the wild-type (WT) isolates. To clarify the contribution of amino acid substitutions to FQ resistance, we produced recombinant WT GyrA, GyrB, and four GyrA mutant proteins (Ala91Val, Asp95Ala, Asp95Gly, and Asp95Tyr) to elucidate their potential role in FQ resistance, using them to perform FQ-inhibited DNA supercoiling assays. While all the mutant GyrAs contributed to the higher (1.3- to 35.6-fold) FQ 50% inhibitory concentration (IC50) than the WT, Asp95Tyr was the most resistant mutant, with an IC50 15- to 35.6-higher than that of the WT, followed by the Asp95Gly mutant, with an IC50 12.5- to 17.6-fold higher than that of the WT, indicating that these amino acid substitutions significantly reduced the inhibitory activity of FQs. Our results showed that amino acid substitutions in the gyrA of M. avium contribute to FQ resistance. IMPORTANCE The emergence of fluoroquinolone (FQ) resistance has further compounded the control of emerging Mycobacterium avium-associated nontuberculous mycobacteria infections worldwide. For M. avium, the association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA is not yet clearly understood. Here, we report that four clinical M. avium isolates with a mutation in the QRDR of gyrA were highly resistant to FQs. We further clarified the impact of mutations in the QRDR of GyrA proteins by performing in vitro FQ-inhibited DNA supercoiling assays. These results confirmed that, like in Mycobacterium tuberculosis, mutations in the QRDR of gyrA also strongly contribute to FQ resistance in M. avium. Since many FQ-resistant M. avium isolates do have these mutations, the detailed molecular mechanism of FQ resistance in M. avium needs further exploration.
Collapse
Affiliation(s)
- Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Zambian National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Soyoka Kitamura
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Pondpan Suwanthada
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nami Miura
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Jirachaya Toyting
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
- Office of Academic Research and Industry-Government Collaboration, Section of Microbial Genomics and Ecology, Hiroshima University, Higashi-Hiroshima, Japan
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Hu Y, Chi Y, Feng X, Yu F, Li H, Shang Y, Pan J, Pang Y. Comparison of the Diagnostic Performance of MeltPro and Next-Generation Sequencing in Determining Fluoroquinolone Resistance in Multidrug-Resistant Tuberculosis Isolates. J Mol Diagn 2023; 25:342-351. [PMID: 37208048 DOI: 10.1016/j.jmoldx.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/20/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
This study systematically investigated the performance of MeltPro and next-generation sequencing in the diagnosis of fluoroquinolone (FQ) resistance among multidrug-resistant tuberculosis patients and explored the relationship between nucleotide alteration and the level of phenotypic susceptibility to FQs. From March 2019 to June 2020, a feasibility and validation study with both MeltPro and next-generation sequencing was performed in 126 patients with multidrug-resistant tuberculosis. Using phenotypic drug susceptibility testing as the gold standard, 95.3% (82 of 86) of ofloxacin-resistant isolates were identified correctly by MeltPro. In addition, whole-genome sequencing was able to detect 83 phenotypically ofloxacin-resistant isolates. The isolates with an individual gyrB mutation outside the quinolone resistance-determining region (QRDR) had minimum inhibitory concentrations (MICs) of ≤2 μg/mL. Despite showing low MICs close to the breakpoint for isolates carrying only gyrA_Ala90Val, the combined mutation gyrB_Asp461Asn caused the ofloxacin MIC to be eight higher than that obtained in Mycobacterium tuberculosis (MTB) isolates with the Ala90Val mutation alone (median, 32 μg/mL; P = 0.038). Heteroresistance was observed in 12 of 88 isolates harboring mutations in the QRDRs. In conclusion, our data show that MeltPro and the whole-genome sequencing assay correctly can identify FQ resistance caused by mutations in the gyrA QRDR. The combined gyrB_Asp461Asn mutation may significantly decrease in vitro FQ susceptibility of MTB isolates with low-level-resistance-associated gyrA mutations.
Collapse
Affiliation(s)
- Yan Hu
- Tuberculosis Reference Laboratory, Chongqing Municipal Institute of Tuberculosis, Chongqing, China
| | - Yuqing Chi
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xin Feng
- Tuberculosis Reference Laboratory, Chongqing Municipal Institute of Tuberculosis, Chongqing, China
| | - Fengping Yu
- Tuberculosis Reference Laboratory, Chongqing Municipal Institute of Tuberculosis, Chongqing, China
| | - Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Junhua Pan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
18
|
Kamsri B, Pakamwong B, Thongdee P, Phusi N, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Sangswan J, Suttisintong K, Sureram S, Kittakoop P, Hongmanee P, Santanirand P, Leanpolchareanchai J, Goudar KE, Spencer J, Mulholland AJ, Pungpo P. Bioisosteric Design Identifies Inhibitors of Mycobacterium tuberculosis DNA Gyrase ATPase Activity. J Chem Inf Model 2023; 63:2707-2718. [PMID: 37074047 DOI: 10.1021/acs.jcim.2c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Mutations in DNA gyrase confer resistance to fluoroquinolones, second-line antibiotics for Mycobacterium tuberculosis infections. Identification of new agents that inhibit M. tuberculosis DNA gyrase ATPase activity is one strategy to overcome this. Here, bioisosteric designs using known inhibitors as templates were employed to define novel inhibitors of M. tuberculosis DNA gyrase ATPase activity. This yielded the modified compound R3-13 with improved drug-likeness compared to the template inhibitor that acted as a promising ATPase inhibitor against M. tuberculosis DNA gyrase. Utilization of compound R3-13 as a virtual screening template, supported by subsequent biological assays, identified seven further M. tuberculosis DNA gyrase ATPase inhibitors with IC50 values in the range of 0.42-3.59 μM. The most active compound 1 showed an IC50 value of 0.42 μM, 3-fold better than the comparator ATPase inhibitor novobiocin (1.27 μM). Compound 1 showed noncytotoxicity to Caco-2 cells at concentrations up to 76-fold higher than its IC50 value. Molecular dynamics simulations followed by decomposition energy calculations identified that compound 1 occupies the binding pocket utilized by the adenosine group of the ATP analogue AMPPNP in the M. tuberculosis DNA gyrase GyrB subunit. The most prominent contribution to the binding of compound 1 to M. tuberculosis GyrB subunit is made by residue Asp79, which forms two hydrogen bonds with the OH group of this compound and also participates in the binding of AMPPNP. Compound 1 represents a potential new scaffold for further exploration and optimization as a M. tuberculosis DNA gyrase ATPase inhibitor and candidate anti-tuberculosis agent.
Collapse
Affiliation(s)
- Bundit Kamsri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Bongkochawan Pakamwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Naruedon Phusi
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Sombat Ketrat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jidapa Sangswan
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani 12120, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Poonpilas Hongmanee
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pitak Santanirand
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Jiraporn Leanpolchareanchai
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road,Rajathevi, Bangkok 10400, Thailand
| | - Kirsty E Goudar
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
19
|
Byl JAW, Mueller R, Bax B, Basarab GS, Chibale K, Osheroff N. A Series of Spiropyrimidinetriones that Enhances DNA Cleavage Mediated by Mycobacterium tuberculosis Gyrase. ACS Infect Dis 2023; 9:706-715. [PMID: 36802491 PMCID: PMC10006343 DOI: 10.1021/acsinfecdis.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The rise in drug-resistant tuberculosis has necessitated the search for alternative antibacterial treatments. Spiropyrimidinetriones (SPTs) represent an important new class of compounds that work through gyrase, the cytotoxic target of fluoroquinolone antibacterials. The present study analyzed the effects of a novel series of SPTs on the DNA cleavage activity of Mycobacterium tuberculosis gyrase. H3D-005722 and related SPTs displayed high activity against gyrase and increased levels of enzyme-mediated double-stranded DNA breaks. The activities of these compounds were similar to those of the fluoroquinolones, moxifloxacin, and ciprofloxacin and greater than that of zoliflodacin, the most clinically advanced SPT. All the SPTs overcame the most common mutations in gyrase associated with fluoroquinolone resistance and, in most cases, were more active against the mutant enzymes than wild-type gyrase. Finally, the compounds displayed low activity against human topoisomerase IIα. These findings support the potential of novel SPT analogues as antitubercular drugs.
Collapse
Affiliation(s)
- Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Rudolf Mueller
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ben Bax
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.,Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.,VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
20
|
Huang Y, Yan S, Li Y, Ai X, Yu X, Ge Y, Lv X, Fan L, Xie J. Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency. Microbiol Spectr 2022; 10:e0209822. [PMID: 36453945 PMCID: PMC9769811 DOI: 10.1128/spectrum.02098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis infection remains one of the most serious global health problems. Fluoroquinolones (FQs) are an important component of drug regimens against multidrug-resistant tuberculosis, but challenged by the emergence of FQ-resistant strains. Mycobacterium fluoroquinolone resistance protein A (MfpA) is a pentapeptide protein that confers resistance to FQs. MfpA is the fifth gene in the mfp operon among most Mycobacterium, implying other mfp genes might regulate the activity of MfpA. To elucidate the function of this operon, we constructed deletion mutants and rescued strains and found that MfpD is a GTPase-activating protein (GAP) involved in FQs activity. We showed that the recombinant strains overexpressing mfpD became more sensitive to FQs, whereas an mfpD deletion mutant was more resistant to FQs. By using site-directed mutagenesis and mycobacterial protein fragment complementation, we genetically demonstrated that mfpD participated in FQs susceptibility via directly acting on mfpB. We further biochemically demonstrated that MfpD was a GAP capable of stimulating the GTPase activity of MfpB. Our studies suggest that MfpD, a GAP of MfpB, is involved in MfpA-mediated FQs resistance. The function of MfpD adds new insights into the role of the mfp operon in Mycobacterium fluoroquinolone resistance. IMPORTANCE Tuberculosis is one of the leading causes of morbidity and mortality worldwide largely due to increasingly prevalent drug-resistant strains. Fluoroquinolones are important antibiotics used for treating multidrug-resistant tuberculosis (MDR-TB). The resistance mechanism mediated by the Mycobacterium fluoroquinolone resistance protein (MfpA) is unique in Mycobacterium. However, the regulatory mechanism of MfpA remains largely unclear. In this study, we first report that MfpD acts as a GAP for MfpB and characterize a novel pathway that controls Mycobacterium small G proteins. Our findings provide new insights into the regulation of MfpA and inspiration for new candidate targets for the discovery and development of anti-TB drugs.
Collapse
Affiliation(s)
- Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuzhu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xuefeng Ai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xi Yu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yan Ge
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xi Lv
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
22
|
Rapid Identification of Drug Resistance and Phylogeny in M. tuberculosis, Directly from Sputum Samples. Microbiol Spectr 2022; 10:e0125222. [PMID: 36102651 PMCID: PMC9602270 DOI: 10.1128/spectrum.01252-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) remains one of the most important infectious diseases globally. Establishing a resistance profile from the initial TB diagnosis is a priority. Rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, and Whole Genome Sequencing (WGS) needs culture prior to next-generation sequencing (NGS), limiting their clinical value. Targeted sequencing (TS) from clinical samples avoids these drawbacks, providing a signature of genetic markers that can be associated with drug resistance and phylogeny. In this study, a proof-of-concept protocol was developed for detecting genomic variants associated with drug resistance and for the phylogenetic classification of Mycobacterium Tuberculosis (Mtb) in sputum samples. Initially, a set of Mtb reference strains from the WHO were sequenced (WGS and TS). The results from the protocol agreed >95% with WHO reported data and phenotypic drug susceptibility testing (pDST). Lineage genetics results were 100% concordant with those derived from WGS. After that, the TS protocol was applied to sputum samples from TB patients to detect resistance to first- and second-line drugs and derive phylogeny. The accuracy was >90% for all evaluated drugs, except Eto/Pto (77.8%), and 100% were phylogenetically classified. The results indicate that the described protocol, which affords the complete drug resistance profile and phylogeny of Mtb from sputum, could be useful in the clinical area, advancing toward more personalized and more effective treatments in the near future. IMPORTANCE The COVID-19 pandemic negatively affected the progress in accessing essential Tuberculosis (TB) services and reducing the burden of TB disease, resulting in a decreased detection of new cases and increased deaths. Generating molecular diagnostic tests with faster results without losing reliability is considered a priority. Specifically, developing an antimicrobial resistance profile from the initial stages of TB diagnosis is essential to ensure appropriate treatment. Currently available rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, limiting their clinical value. In this work, targeted sequencing on sputum samples from TB patients was used to identify Mycobacterium tuberculosis mutations in genes associated with drug resistance and to derive a phylogeny of the infecting strain. This protocol constitutes a proof-of-concept toward the goal of helping clinicians select a timely and appropriate treatment by providing them with actionable information beyond current molecular approaches.
Collapse
|
23
|
Beirne C, McCann E, McDowell A, Miliotis G. Genetic determinants of antimicrobial resistance in three multi-drug resistant strains of Cutibacterium acnes isolated from patients with acne: a predictive in silico study. Access Microbiol 2022; 4:acmi000404. [PMID: 36133174 PMCID: PMC9484663 DOI: 10.1099/acmi.0.000404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives. Using available whole genome data, the objective of this in silico study was to identify genetic mechanisms that could explain the antimicrobial resistance profile of three multi-drug resistant (MDR) strains (CA17, CA51, CA39) of the skin bacterium
Cutibacterium acnes
previously recovered from patients with acne. In particular, we were interested in detecting novel genetic determinants associated with resistance to fluoroquinolone and macrolide antibiotics that could then be confirmed experimentally.
Methods. A range of open source bioinformatics tools were used to ‘mine’ genetic determinants of antimicrobial resistance and plasmid borne contigs, and to characterise the phylogenetic diversity of the MDR strains.
Results. As probable mechanisms of resistance to fluoroquinolones, we identified a previously described resistance associated allelic variant of the gyrA gene with a ‘deleterious' S101L mutation in type IA1 strains CA51 (ST1) and CA39 (ST1), as well as a novel E761R ‘deleterious’ mutation in the type II strain CA17 (ST153). A distinct genomic sequence of the efflux protein YfmO which is potentially associated with resistance to MLSB antibiotics was also present in CA17; homologues in CA51, CA39, and other strains of
Cutibacterium acnes
, were also found but differed in amino acid content. Strikingly, in CA17 we also identified a circular 2.7 kb non-conjugative plasmid (designated pCA17) that closely resembled a 4.8 kb plasmid (pYU39) from the MDR
Salmonella enterica
strain YU39.
Conclusions. This study has provided a detailed explanation of potential genetic determinants for MDR in the
Cutibacterium acnes
strains CA17, CA39 and CA51. Further laboratory investigations will be required to validate these in silico results, especially in relation to pCA17.
Collapse
Affiliation(s)
- Catriona Beirne
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Emily McCann
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Andrew McDowell
- Nutrition Innovation Centre for Food and Health, (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
24
|
Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur J Med Chem 2022; 239:114531. [PMID: 35759907 DOI: 10.1016/j.ejmech.2022.114531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Isoniazid is a cornerstone of modern tuberculosis (TB) therapy and targets the enoyl ACP reductase InhA, a key enzyme in mycolic acid biosynthesis. InhA is still a promising target for the development of new anti-TB drugs. Herein, we report the design, synthesis, and anti-tubercular activity of new isoniazid hybrids. Among these, 1H-1,2,3 triazole-tethered quinoline-isoniazid conjugates 16a to 16g exhibited high activity against Mycobacterium tuberculosis with minimal inhibitory concentrations in the 0.25-0.50 μg/mL range and were bactericidal in vitro. Importantly, these compounds were well tolerated at high doses on mammalian cells, leading to high selectivity indices. The hybrids were dependent on functional KatG production to inhibit mycolic acid biosynthesis. Moreover, overexpression of InhA in M. tuberculosis resulted in high resistance levels to 16a-16g and reduced mycolic acid biosynthesis inhibition, similar to isoniazid. Overall, these findings suggest that the synthesized quinoline-isoniazid hybrids are promising anti-tubercular molecules, which require further pre-clinical evaluation.
Collapse
|
25
|
Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212:474-494. [PMID: 35613677 DOI: 10.1016/j.ijbiomac.2022.05.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Energy metabolism is a universal process occurring in all life forms. In Mycobacterium tuberculosis (Mtb), energy production is carried out in two possible ways, oxidative phosphorylation (OxPhos) and substrate-level phosphorylation. Mtb is an obligate aerobic bacterium, making it dependent on OxPhos for ATP synthesis and growth. Mtb inhabits varied micro-niches during the infection cycle, outside and within the host cells, which alters its primary metabolic pathways during the pathogenesis. In this review, we discuss cellular respiration in the context of the mechanism and structural importance of the proteins and enzyme complexes involved. These protein-protein complexes have been proven to be essential for Mtb virulence as they aid the bacteria's survival during aerobic and hypoxic conditions. ATP synthase, a crucial component of the electron transport chain, has been in the limelight, as a prominent drug target against tuberculosis. Likewise, in this review, we have explored other protein-protein complexes of the OxPhos pathway, their functional essentiality, and their mechanism in Mtb's diverse lifecycle. The review summarises crucial target proteins and reported inhibitors of the electron transport chain pathway of Mtb.
Collapse
Affiliation(s)
- Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
26
|
Diriba G, Kebede A, Tola HH, Alemu A, Yenew B, Moga S, Addise D, Mohammed Z, Getahun M, Fantahun M, Tadesse M, Dagne B, Amare M, Assefa G, Abera D, Desta K. Utility of line probe assay in detecting drug resistance and the associated mutations in patients with extrapulmonary tuberculosis in Addis Ababa, Ethiopia. SAGE Open Med 2022; 10:20503121221098241. [PMID: 35646363 PMCID: PMC9130810 DOI: 10.1177/20503121221098241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Molecular tests allow rapid detection of Mycobacterium tuberculosis and drug resistance in a few days. Identifying the mutations in genes associated with drug resistance may contribute to the development of appropriate interventions to improve tuberculosis control. So far, there is little information in Ethiopia about the diagnostic performance of line probe assay (LPA) and the M. tuberculosis common gene mutations associated with drug resistance in extrapulmonary tuberculosis. Thus, this study aimed to assess the frequency of drug resistance-associated mutations in patients with extrapulmonary tuberculosis (EPTB) and to compare the agreement and determine the utility of the genotypic in the detection of drug resistance in Addis Ababa, Ethiopia. Methods A cross-sectional study was conducted on stored M. tuberculosis isolates. The genotypic and phenotypic drug susceptibility tests were performed using LPA and BACTEC-MGIT-960, respectively. The common mutations were noted, and the agreement and the utility of the LPA were determined using the BACTEC-MGIT-960 as a gold standard. Results Of the 151 isolates, the sensitivity and specificity of MTBDRplus in detecting isoniazid resistance were 90.9% and 100%, respectively. While for rifampicin, it was 100% and 99.3% for sensitivity and specificity, respectively. The katG S315Tl was the most common mutation observed in 85.7% of the isoniazid-resistant isolates. In the case of rifampicin, the most common mutation (61.9%) was observed at position rpoB S531L. Mutations in the gyrA promoter region were strongly associated with Levofloxacin and Moxifloxacin resistance. Conclusion Line probe assay has high test performance in detecting resistance to anti-TB drugs in EPTB isolates. The MTBDRplus test was slightly less sensitive for the detection of isoniazid resistance as compared to the detection of rifampicin. The most prevalent mutations associated with isoniazid and rifampicin resistance were observed at katG S315Tl and rpoB S531L respectively. Besides, all the fluoroquinolone-resistant cases were associated with gyrA gene. Finally, a validation study with DNA sequencing is recommended.
Collapse
Affiliation(s)
- Getu Diriba
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
- Department of Medical Laboratory
Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa,
Ethiopia
| | - Abebaw Kebede
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
- Department of Microbial, Cellular and
Molecular Biology, College of Natural and Computational Sciences, Addis Ababa
University, Addis Ababa, Ethiopia
| | | | - Ayinalem Alemu
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology,
Addis Ababa University, Addis Ababa, Ethiopia
| | - Bazezew Yenew
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
| | - Shewki Moga
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
| | | | | | | | - Mengistu Fantahun
- St. Paul’s Hospital Millennium Medical
College, Addis Ababa, Ethiopia
| | | | - Biniyam Dagne
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
| | - Misikir Amare
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
| | | | - Dessie Abera
- Department of Medical Laboratory
Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa,
Ethiopia
| | - Kassu Desta
- Department of Medical Laboratory
Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa,
Ethiopia
| |
Collapse
|
27
|
Pakamwong B, Thongdee P, Kamsri B, Phusi N, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Ariyachaokun K, Suttisintong K, Sureram S, Kittakoop P, Hongmanee P, Santanirand P, Spencer J, Mulholland AJ, Pungpo P. Identification of Potent DNA Gyrase Inhibitors Active against Mycobacterium tuberculosis. J Chem Inf Model 2022; 62:1680-1690. [PMID: 35347987 DOI: 10.1021/acs.jcim.1c01390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis DNA gyrase manipulates the DNA topology using controlled breakage and religation of DNA driven by ATP hydrolysis. DNA gyrase has been validated as the enzyme target of fluoroquinolones (FQs), second-line antibiotics used for the treatment of multidrug-resistant tuberculosis. Mutations around the DNA gyrase DNA-binding site result in the emergence of FQ resistance in M. tuberculosis; inhibition of DNA gyrase ATPase activity is one strategy to overcome this. Here, virtual screening, subsequently validated by biological assays, was applied to select candidate inhibitors of the M. tuberculosis DNA gyrase ATPase activity from the Specs compound library (www.specs.net). Thirty compounds were identified and selected as hits for in vitro biological assays, of which two compounds, G24 and G26, inhibited the growth of M. tuberculosis H37Rv with a minimal inhibitory concentration of 12.5 μg/mL. The two compounds inhibited DNA gyrase ATPase activity with IC50 values of 2.69 and 2.46 μM, respectively, suggesting this to be the likely basis of their antitubercular activity. Models of complexes of compounds G24 and G26 bound to the M. tuberculosis DNA gyrase ATP-binding site, generated by molecular dynamics simulations followed by pharmacophore mapping analysis, showed hydrophobic interactions of inhibitor hydrophobic headgroups and electrostatic and hydrogen bond interactions of the polar tails, which are likely to be important for their inhibition. Decreasing compound lipophilicity by increasing the polarity of these tails then presents a likely route to improving the solubility and activity. Thus, compounds G24 and G26 provide attractive starting templates for the optimization of antitubercular agents that act by targeting DNA gyrase.
Collapse
Affiliation(s)
- Bongkochawan Pakamwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Bundit Kamsri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Naruedon Phusi
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Sombat Ketrat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kanchiyaphat Ariyachaokun
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani 12120, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10300, Thailand
| | - Poonpilas Hongmanee
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pitak Santanirand
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
28
|
Spiropyrimidinetriones: a Class of DNA Gyrase Inhibitors with Activity against Mycobacterium tuberculosis and without Cross-Resistance to Fluoroquinolones. Antimicrob Agents Chemother 2022; 66:e0219221. [PMID: 35266826 PMCID: PMC9017349 DOI: 10.1128/aac.02192-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.
Collapse
|
29
|
Kumar GS, Sobhia ME, Ghosh K. Binding affinity analysis of quinolone and dione inhibitors with Mtb-DNA gyrase emphasising the crystal water molecular transfer energy to the protein–ligand association. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2042530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- G. Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - M. Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ketan Ghosh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
30
|
Virtual screening against Mycobacterium tuberculosis DNA gyrase: Applications and success stories. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Bonnet I, Enouf V, Morel F, Ok V, Jaffré J, Jarlier V, Aubry A, Robert J, Sougakoff W. A Comprehensive Evaluation of GeneLEAD VIII DNA Platform Combined to Deeplex Myc-TB ® Assay to Detect in 8 Days Drug Resistance to 13 Antituberculous Drugs and Transmission of Mycobacterium tuberculosis Complex Directly From Clinical Samples. Front Cell Infect Microbiol 2021; 11:707244. [PMID: 34778100 PMCID: PMC8586210 DOI: 10.3389/fcimb.2021.707244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
The GeneLEAD VIII (Diagenode, Belgium) is a new, fully automated, sample-to-result precision instrument for the extraction of DNA and PCR detection of Mycobacterium tuberculosis complex (MTBC) directly from clinical samples. The Deeplex Myc-TB® assay (Genoscreen, France) is a diagnostic kit based on the deep sequencing of a 24-plexed amplicon mix allowing simultaneously the detection of resistance to 13 antituberculous (antiTB) drugs and the determination of spoligotype. We evaluated the performance of a strategy combining the both mentioned tools to detect directly from clinical samples, in 8 days, MTBC and its resistance to 13 antiTB drugs, and identify potential transmission of strains from patient-to-patient. Using this approach, we screened 112 clinical samples (65 smear-negative) and 94 MTBC cultured strains. The sensitivity and the specificity of the GeneLEAD/Deeplex Myc-TB approach for MTBC detection were 79.3% and 100%, respectively. One hundred forty successful Deeplex Myc-TB results were obtained for 46 clinical samples and 94 strains, a total of 85.4% of which had a Deeplex Myc-TB susceptibility and resistance prediction consistent with phenotypic drug susceptibility testing (DST). Importantly, the Deeplex Myc-TB assay was able to detect 100% of the multidrug-resistant (MDR) MTBC tested. The lowest concordance rates were for pyrazinamide, ethambutol, streptomycin, and ethionamide (84.5%, 81.5%, 73%, and 55%, respectively) for which the determination of susceptibility or resistance is generally difficult with current tools. One of the main difficulties of Deeplex Myc-TB is to interpret the non-synonymous uncharacterized variants that can represent up to 30% of the detected single nucleotide variants. We observed a good level of concordance between Deeplex Myc-TB-spoligotyping and MIRU-VNTR despite a lower discriminatory power for spoligotyping. The median time to obtain complete results from clinical samples was 8 days (IQR 7–13) provided a high-throughput NGS sequencing platform was available. Our results highlight that the GeneLEAD/Deeplex Myc-TB approach could be a breakthrough in rapid diagnosis of MDR TB in routine practice.
Collapse
Affiliation(s)
- Isabelle Bonnet
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vincent Enouf
- Plateforme de Microbiologie Mutualisée (P2M), Pasteur International Bioresources network (PIBnet), Institut Pasteur, Paris, France
| | - Florence Morel
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vichita Ok
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Jérémy Jaffré
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vincent Jarlier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France
| | - Alexandra Aubry
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Jérôme Robert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Wladimir Sougakoff
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| |
Collapse
|
32
|
Uddin MKM, Ather MF, Nasrin R, Rahman T, Islam ASMI, Rahman SMM, Ahmed S, Banu S. Correlation of gyr Mutations with the Minimum Inhibitory Concentrations of Fluoroquinolones among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Pathogens 2021; 10:1422. [PMID: 34832578 PMCID: PMC8623510 DOI: 10.3390/pathogens10111422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Fluoroquinolone (FQ) compounds-moxifloxacin (MOX), levofloxacin (LEV), and ofloxacin (OFL)-are used to treat multidrug-resistant tuberculosis (MDR-TB) globally. In this study, we investigated the correlation of gyr mutations among Mtb isolates with the MICs of MOX, LEV, and OFL in Bangladesh. A total of 50 MDR-TB isolates with gyr mutations, detected by the GenoType MTBDRsl assay, were subjected to drug susceptibility testing to determine the MICs of the FQs. Spoligotyping was performed to correlate the genetic diversity of the gyr mutant isolates with different MIC distributions. Among the 50 isolates, 44 (88%) had mutations in the gyrA gene, one (2%) had a mutation in the gyrB gene, and five (10%) isolates had unidentified mutations. The substitutions in the gyrA region were at A90V (n = 19, 38%), D94G (n = 16, 32%), D94A (n = 4, 8%), D94N/D94Y (n = 4, 8%), and S91P (n = 1, 2%), compared to the gyrB gene at N538D (n = 1.2%). D94G mutations showed the highest MICs for MOX, LEV, and OFL, ranging between 4.0 and 8.0 μg/mL, 4.0 and 16.0 μg/mL, and 16.0 and 32.0 μg/mL, respectively; while the most common substitution of A90V showed the lowest ranges of MICs (1.0-4.0 μg/mL, 2.0-8.0 μg/mL, and 4.0-32.0 μg/mL, respectively). Spoligotyping lineages demonstrated no significant differences regarding the prevalence of different gyr mutations. In conclusion, the substitutions of codon A90V and D94G in the gyr genes were mostly responsible for the FQs' resistance among Mtb isolates in Bangladesh. Low levels of resistance were associated with the substitutions of A90V, while the D94G substitutions were associated with a high level of resistance to all FQs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (M.K.M.U.); (M.F.A.); (R.N.); (T.R.); (A.S.M.I.I.); (S.M.M.R.); (S.A.)
| |
Collapse
|
33
|
Boostrom I, Bala Y, Vasic JM, Gluvakov J, Chanard E, Barratt AH, Sands K, Portal E, Devigne L, Jones LC, Spiller OB. Evaluation of the MYCOPLASMA IST3 urogenital mycoplasma assay in an international multicentre trial. J Antimicrob Chemother 2021; 76:3175-3182. [PMID: 34477840 PMCID: PMC8678932 DOI: 10.1093/jac/dkab320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate the accuracy, susceptibility and specificity of MYCOPLASMA IST3, the next generation of the most popular culture-based in vitro diagnostic device designed to detect, identify and test the susceptibility of urogenital mycoplasma infections. METHODS MYCOPLASMA IST3 was evaluated against culture- and molecular-based gold standard methodologies to detect, identify, enumerate and determine antimicrobial resistance for Mycoplasma hominis and Ureaplasma species in 516 clinical samples collected across France, Serbia and the UK. Sample types included vulvovaginal/endocervical or urethral swabs (dry swab or eSwab®), semen and urine samples, which included blinded analysis following addition of a panel of 80 characterized control strains. RESULTS Overall species identification was excellent for both Ureaplasma spp. (98.4% sensitivity, 99.7% specificity) and M. hominis (95.7% sensitivity, 100% specificity) relative to combined colony morphology on agar and quantitative PCR standards. Non-dilution-based bacterial load estimation by the assay was accurate between 83.7% (M. hominis) and 86.3% (Ureaplasma spp.) of the time (increased to 94.2% and 100%, respectively, if ±10-fold variance was allowed) relative to colonies counted on agar. Resistance accuracy for Ureaplasma spp. varied from gold standards for only 11/605 of individual tests (major error rate = 1.8%) and for 14/917 individual tests for M. hominis (major error rate = 1.5%). CONCLUSIONS The redesigned MYCOPLASMA IST3 assay eliminated previous shortcomings by providing independent accurate resistance screening of M. hominis and Ureaplasma species, even in mixed infections, with CLSI-compliant thresholds. Specificity, sensitivity and enumeration estimates correlated closely with the confirmatory methods.
Collapse
Affiliation(s)
- Ian Boostrom
- Cardiff University, Division of Infection and Immunity, Department of Medical Microbiology, University Hospital of Wales, Cardiff, UK
| | - Yohan Bala
- bioMérieux Global Clinical Affairs, Marcy, L'Étoile, France
| | | | | | | | - Andrew H Barratt
- Cardiff University, Division of Infection and Immunity, Department of Medical Microbiology, University Hospital of Wales, Cardiff, UK
| | - Kirsty Sands
- Cardiff University, Division of Infection and Immunity, Department of Medical Microbiology, University Hospital of Wales, Cardiff, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Edward Portal
- Cardiff University, Division of Infection and Immunity, Department of Medical Microbiology, University Hospital of Wales, Cardiff, UK
| | | | - Lucy C Jones
- Cardiff University, Division of Infection and Immunity, Department of Medical Microbiology, University Hospital of Wales, Cardiff, UK.,Department of Integrated Sexual Health, Dewi Sant Hospital Cwm Taf Morgannwg University Health Board, Pontypridd, UK.,HealthFirst Consulting, Research Division, Blackwood, UK
| | - Owen B Spiller
- Cardiff University, Division of Infection and Immunity, Department of Medical Microbiology, University Hospital of Wales, Cardiff, UK.,Public Heath England, Bacterial Reference Department, London, UK
| |
Collapse
|
34
|
Borah P, Deb PK, Venugopala KN, Al-Shar'i NA, Singh V, Deka S, Srivastava A, Tiwari V, Mailavaram RP. Tuberculosis: An Update on Pathophysiology, Molecular Mechanisms of Drug Resistance, Newer Anti-TB Drugs, Treatment Regimens and Host- Directed Therapies. Curr Top Med Chem 2021; 21:547-570. [PMID: 33319660 DOI: 10.2174/1568026621999201211200447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Human tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles. Considerable multifaceted transformations in the current TB methodologies and molecular interventions underpinning hostpathogen interactions and drug resistance mechanisms may assist to overcome the emerging drug resistance. Evidently, recent scientific and clinical advances have revolutionised the diagnosis, prevention, and treatment of all forms of the disease. This review sheds light on the current understanding of the pathogenesis of TB disease, molecular mechanisms of drug-resistance, progress on the development of novel or repurposed anti-TB drugs and regimens, host-directed therapies, with particular emphasis on underlying knowledge gaps and prospective for futuristic TB control programs.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Pran K Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, PO Box 1, Amman 19392, Jordan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Amavya Srivastava
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Raghu P Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram - 534 202, West Godavari Dist., Andhra Pradesh, India
| |
Collapse
|
35
|
Shedko ED, Goloveshkina EN, Akimkin VG. Molecular epidemiology and antimicrobials resistance mechanism of Mycoplasma genitlaium. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Currently, infections caused by Mycoplasma genitalium are ones the most common sexually transmitted infections. Their prevalence is varied from 1.3% to 15.9%. Infections caused by M.genitalium may lead to urethritis in men and a wide spectrum of diseases in women. Antibiotic resistance now is one of the most emerging problems both in the scientific and in the healthcare fields. The usage of antimicrobials inhibiting cell wall synthesis for the treatment of M.genitalium is ineffective, and resistance to macrolides and fluoroquinolones is increasing rapidly. M.genitalium infections diagnostics is complicated due to specific conditions and duration of culture methods. The usage of nucleic acid amplification techniques is the most relevant for laboratory diagnostics, and is used in existing assays. This review compiles current data on the prevalence, molecular mechanisms of pathogenesis and antibiotic resistance, as well as diagnostics methods of M.genitalium.
Collapse
|
36
|
Chauffour A, Morel F, Reibel F, Petrella S, Mayer C, Cambau E, Aubry A. A systematic review of Mycobacterium leprae DNA gyrase mutations and their impact on fluoroquinolone resistance. Clin Microbiol Infect 2021; 27:1601-1612. [PMID: 34265461 DOI: 10.1016/j.cmi.2021.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The fact that Mycobacterium leprae does not grow in vitro remains a challenge in the survey of its antimicrobial resistance (AMR). Mainly molecular methods are used to diagnose AMR in M. leprae to provide reliable data concerning mutations and their impact. Fluoroquinolones (FQs) are efficient for the treatment of leprosy and the main second-line drugs in case of multidrug resistance. OBJECTIVES This study aimed at performing a systematic review (a) to characterize all DNA gyrase gene mutations described in clinical isolates of M. leprae, (b) to distinguish between those associated with FQ resistance or susceptibility and (c) to delineate a consensus numbering system for M. leprae GyrA and GyrB. DATA SOURCES Data source was PubMed. STUDY ELIGIBILITY CRITERIA Publications reporting genotypic susceptibility-testing methods and gyrase gene mutations in M. leprae clinical strains. RESULTS In 25 studies meeting our inclusion criteria, 2884 M. leprae isolates were analysed (2236 for gyrA only (77%) and 755 for both gyrA and gyrB (26%)): 3.8% of isolates had gyrA mutations (n = 110), mostly at position 91 (n = 75, 68%) and 0.8% gyrB mutations (n = 6). Since we found discrepancies regarding the location of substitutions associated with FQ resistance, we established a consensus numbering system to properly number the mutations. We also designed a 3D model of the M. leprae DNA gyrase to predict the impact of mutations whose role in FQ-susceptibility has not been demonstrated previously. CONCLUSIONS Mutations in DNA gyrase are observed in 4% of the M. leprae clinical isolates. To solve discrepancies among publications and to distinguish between mutations associated with FQ resistance or susceptibility, the consensus numbering system we proposed as well as the 3D model of the M. leprae gyrase for the evaluation of the impact of unknown mutations in FQ resistance, will provide help for resistance surveillance.
Collapse
Affiliation(s)
- Aurélie Chauffour
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Florence Reibel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France; Laboratoire de Biologie, Groupe Hospitalier Nord-Essonne, Site de Longjumeau, Longjumeau, France
| | - Stéphanie Petrella
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Claudine Mayer
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Emmanuelle Cambau
- AP-HP GHU Nord, Service de Mycobactériologie Spécialisée et de Référence, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France; Université de Paris, Paris Diderot, INSERM, IAME UMR1137, Paris, France
| | - Alexandra Aubry
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France.
| |
Collapse
|
37
|
Yoshida S, Iwamoto T, Arikawa K, Sekizuka T, Kuroda M, Inoue Y, Mitarai S, Tsuji T, Tsuyuguchi K, Suzuki K. Bacterial population kinetics in heteroresistant Mycobacterium tuberculosis harbouring rare resistance-conferring mutations in gyrA and rpoB imply an epistatic interaction of mutations in a pre-XDR-TB patient. J Antimicrob Chemother 2021; 75:1722-1725. [PMID: 32303065 DOI: 10.1093/jac/dkaa109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Bacterial population kinetics of strains harbouring drug resistance-conferring mutations within a patient often show cryptic resistance in clinical practice. We report a case that showed emergence and dominance of Mycobacterium tuberculosis with uncommon rpoB and gyrA mutations, followed by an rpoC compensatory mutation, during treatment. METHODS A pre-XDR-TB patient showed heteroresistance to rifampicin and levofloxacin during treatment as a result of intermittent self-cessation. WGS was applied to investigate intra-host strain composition using five pairs of isolates from sputum samples. RESULTS The subclone in this study possessed rare mutations conferring resistance to rifampicin (rpoB V170F) and levofloxacin (gyrA S91P) and it rapidly outcompeted other subclones during treatment that included levofloxacin but not rifampicin (<7 days). The high-probability compensatory mutation rpoC V483A also emerged and became dominant subsequent to the rpoB V170F mutation. CONCLUSIONS To the best of our knowledge, this is the first case showing the emergence of such a rare variant that dominated the population within a patient during treatment of TB.
Collapse
Affiliation(s)
- Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Taisuke Tsuji
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kazunari Tsuyuguchi
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
| | - Katsuhiro Suzuki
- Department of Internal Medicine, National Hospital Organization Kinki-chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
| |
Collapse
|
38
|
Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis (Edinb) 2021; 129:102106. [PMID: 34218194 DOI: 10.1016/j.tube.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Whole genome sequencing (WGS) analysis in tuberculosis allows the prediction of drug-resistant phenotypes, identification of lineages, and to better understanding of the epidemiology and transmission chains. Nevertheless the procedure has been scarcely assessed in Mexico, in this work we analyze by WGS isolates of Mycobacterium tuberculosis circulating in Jalisco, Mexico. Lineage and phylogenetic characterization, drug resistant prediction, "in silico" spoligotyping determination, were provided by WGS in 32 M. tuberculosis clinical isolates. Lineage 4 (L4), with 28 isolates (87%) and eleven sublineages was dominant. Forty SNPs and INDELs were found in genes related to first-, and second-line drugs. Eleven isolates were sensitive, seven (22%) were predicted to be resistant to isoniazid, two resistant to rifampicin (6%) and two (6%) were multidrug-resistant tuberuclosis. Spoligotyping shows that SIT 53 (19%) and SIT 119 (16%) were dominant. Four clonal transmission complexes were found. This is the first molecular epidemiological description of TB isolates circulating in western Mexico, achieved through WGS. L4 was dominant and included a high diversity of sublineages. It was possible to track the transmission route of two clonal complexes. The WGS demonstrated to be of great utility and with further implications for clinical and epidemiological study of TB in the region.
Collapse
|
39
|
Thampy A, Ninan MM, Michael JS, James P, Rupali P. Clinical implications of high-risk mutations in drug resistant tuberculosis (DR-TB): An observational cohort study. Indian J Med Microbiol 2021; 39:534-536. [PMID: 34127320 DOI: 10.1016/j.ijmmb.2021.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Genotype MTBDRsl [SL-LPA] was endorsed as a tool for early diagnosis of fluoroquinolones (FQ) and injectable second-line TB drugs (SLID) resistance in DR-TB. Correlation between specific genetic mutations using this tool and clinical outcome has not hitherto been studied in India. We conducted a observational cohort study to evaluate the predictive value of specific mutations for bad outcome. Our study identified 15 different types of gyrA mutations, commonest being A90V and D94G. Poor outcome was associated with mutations D94G and D94N/D94Y.Most XDR-TB patients harbored the high risk mutation of A1401G. Hence information of specific mutations using SL-LPA can help prognosticate and design appropriate treatment regimens.
Collapse
Affiliation(s)
- Anupa Thampy
- Department of Infectious Diseases and Research Training Centre, Christian Medical College, Vellore, Tamil Nadu, India.
| | - Marilyn M Ninan
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India.
| | - Joy S Michael
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India.
| | - Prince James
- Department of Respiratory Medicine, Christian Medical College, Vellore, Tamil Nadu, India.
| | - Priscilla Rupali
- Department of Infectious Diseases and Research Training Centre, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
40
|
Sheikh BA, Bhat BA, Mehraj U, Mir W, Hamadani S, Mir MA. Development of New Therapeutics to Meet the Current Challenge of Drug Resistant Tuberculosis. Curr Pharm Biotechnol 2021; 22:480-500. [PMID: 32600226 DOI: 10.2174/1389201021666200628021702] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is a prominent infective disease and a major reason of mortality/ morbidity globally. Mycobacterium tuberculosis causes a long-lasting latent infection in a significant proportion of human population. The increasing burden of tuberculosis is mainly caused due to multi drug-resistance. The failure of conventional treatment has been observed in large number of cases. Drugs that are used to treat extensively drug-resistant tuberculosis are expensive, have limited efficacy, and have more side effects for a longer duration of time and are often associated with poor prognosis. To regulate the emergence of multidrug resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug resistant tuberculosis, efforts are being made to understand the genetic/molecular basis of target drug delivery and mechanisms of drug resistance. Understanding the molecular approaches and pathology of Mycobacterium tuberculosis through whole genome sequencing may further help in the improvement of new therapeutics to meet the current challenge of global health. Understanding cellular mechanisms that trigger resistance to Mycobacterium tuberculosis infection may expose immune associates of protection, which could be an important way for vaccine development, diagnostics, and novel host-directed therapeutic strategies. The recent development of new drugs and combinational therapies for drug-resistant tuberculosis through major collaboration between industry, donors, and academia gives an improved hope to overcome the challenges in tuberculosis treatment. In this review article, an attempt was made to highlight the new developments of drug resistance to the conventional drugs and the recent progress in the development of new therapeutics for the treatment of drugresistant and non-resistant cases.
Collapse
Affiliation(s)
- Bashir A Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Basharat A Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Wajahat Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Suhail Hamadani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
41
|
Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Facile synthesis and antimycobacterial activity of isoniazid, pyrazinamide and ciprofloxacin derivatives. Chem Biol Drug Des 2021; 97:1137-1150. [PMID: 33638304 PMCID: PMC8113106 DOI: 10.1111/cbdd.13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Several rationally designed isoniazid (INH), pyrazinamide (PZA) and ciprofloxacin (CPF) derivatives were conveniently synthesized and evaluated in vitro against H37Rv Mycobacterium tuberculosis (M. tb) strain. CPF derivative 16 displayed a modest activity (MIC = 16 µg/ml) and was docked into the M. tb DNA gyrase. Isoniazid-pyrazinoic acid (INH-POA) hybrid 21a showed the highest potency in our study (MIC = 2 µg/ml). It also retained its high activity against the other tested M. tb drug-sensitive strain (DS) V4207 (MIC = 4 µg/ml) and demonstrated negligible cytotoxicity against Vero cells (IC50 ≥ 64 µg/ml). Four tested drug-resistant (DR) M. tb strains were refractory to 21a, similar to INH, whilst being sensitive to CPF. Compound 21a was also inactive against two non-tuberculous mycobacterial (NTM) strains, suggesting its selective activity against M. tb. The noteworthy activity of 21a against DS strains and its low cytotoxicity highlight its potential to treat DS M. tb.
Collapse
Affiliation(s)
- Shahinda S. R. Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland, 20815-6789, United States
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
42
|
Maruri F, Guo Y, Blackman A, van der Heijden YF, Rebeiro PF, Sterling TR. Resistance-Conferring Mutations on Whole-Genome Sequencing of Fluoroquinolone-resistant and -Susceptible Mycobacterium tuberculosis Isolates: A Proposed Threshold for Identifying Resistance. Clin Infect Dis 2021; 72:1910-1918. [PMID: 32348473 PMCID: PMC8315129 DOI: 10.1093/cid/ciaa496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fluoroquinolone resistance in Mycobacterium tuberculosis (Mtb) is conferred by DNA gyrase mutations, but not all fluoroquinolone-resistant Mtb isolates have mutations detected. The optimal allele frequency threshold to identify resistance-conferring mutations by whole-genome sequencing is unknown. METHODS Phenotypically ofloxacin-resistant and lineage-matched ofloxacin-susceptible Mtb isolates underwent whole-genome sequencing at an average coverage depth of 868 reads. Polymorphisms within the quinolone-resistance-determining region (QRDR) of gyrA and gyrB were identified. The allele frequency threshold using the Genome Analysis Toolkit pipeline was ~8%; allele-level data identified the predominant variant allele frequency and mutational burden (ie, sum of all variant allele frequencies in the QRDR) in gyrA, gyrB, and gyrA + gyrB for each isolate. Receiver operating characteristic (ROC) curves assessed the optimal measure of allele frequency and potential thresholds for identifying phenotypically resistant isolates. RESULTS Of 42 ofloxacin-resistant Mtb isolates, area under the ROC curve (AUC) was highest for predominant variant allele frequency, so that measure was used to evaluate optimal mutation detection thresholds. AUCs for 8%, 2.5%, and 0.8% thresholds were 0.8452, 0.9286, and 0.9069, respectively. Sensitivity and specificity were 69% and 100% for 8%, 86% and 100% for 2.5%, 91% and 91% for 0.8%. The sensitivity of the 2.5% and 0.8% thresholds were significantly higher than the 8% threshold (P = .016 and .004, respectively) but not significantly different between one another (P = .5). CONCLUSIONS A predominant mutation allele frequency threshold of 2.5% had the highest AUC for detecting DNA gyrase mutations that confer ofloxacin resistance, and was therefore the optimal threshold.
Collapse
Affiliation(s)
- Fernanda Maruri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yuri F van der Heijden
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- The Aurum Institute, Johannesburg, South Africa
| | - Peter F Rebeiro
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Park JH, Yamaguchi T, Ouchi Y, Koide K, Pachanon R, Chizimu JY, Mori S, Kim H, Mukai T, Nakajima C, Suzuki Y. Interaction of Quinolones Carrying New R1 Group with Mycobacterium leprae DNA Gyrase. Microb Drug Resist 2021; 27:1616-1623. [PMID: 34077282 DOI: 10.1089/mdr.2020.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Leprosy is a chronic infectious disease caused by Mycobacterium leprae and the treatment of choice is ofloxacin (OFX). Specific amino acid substitutions in DNA gyrase of M. leprae have been reported leading to resistance against the drug. In our previous study, WQ-3810, a fluoroquinolone with a new R1 group (6-amino-3,5-difluoropyridin-2-yl) was shown to have a strong inhibitory activity on OFX-resistant DNA gyrases of M. leprae, and the structural characteristics of its R1 group was predicted to enhance the inhibitory activity. Methodology/Principal Finding: To further understand the contribution of the R1 group, WQ-3334 with the same R1 group as WQ-3810, WQ-4064, and WQ-4065, but with slightly modified R1 group, were assessed on their activities against recombinant DNA gyrase of M. leprae. An in silico study was conducted to understand the molecular interactions between DNA gyrase and WQ compounds. WQ-3334 and WQ-3810 were shown to have greater inhibitory activity against M. leprae DNA gyrase than others. Furthermore, analysis using quinolone-resistant M. leprae DNA gyrases showed that WQ-3334 had greater inhibitory activity than WQ-3810. The R8 group was shown to be a factor for the linkage of the R1 groups with GyrB by an in silico study. Conclusions/Significance: The inhibitory effect of WQ compounds that have a new R1 group against M. leprae DNA gyrase can be enhanced by improving the binding affinity with different R8 group molecules. The information obtained by this work could be applied to design new fluoroquinolones effective for quinolone-resistant M. leprae and other bacterial pathogens.
Collapse
Affiliation(s)
- Jong-Hoon Park
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Tomoyuki Yamaguchi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Yuki Ouchi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Kentaro Koide
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Ruttana Pachanon
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| |
Collapse
|
44
|
Rodríguez JM, Diez MJ, Sierra M, Garcia JJ, Fernandez N, Diez R, Sahagun AM. Distribution of Flumequine in Intestinal Contents and Colon Tissue in Pigs after Its Therapeutic Use in the Drinking Water. Animals (Basel) 2021; 11:1514. [PMID: 34071041 PMCID: PMC8224771 DOI: 10.3390/ani11061514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
Flumequine concentrations in plasma, colon tissue and intestinal contents were evaluated in 12 healthy pigs after oral administration (12 mg/kg every 24 h for 5 consecutive days in drinking water). Plasma, colon tissue and intestinal content samples were collected from animals sacrificed on days 3, 6 and 7. Concentrations were measured by high performance liquid chromatography after having validated the method, following the European Medicines Agency (EMA) requirements. The drug was not detected in any plasma sample. In colon tissue, concentrations were higher on day 3 (0.230 ± 0.033 µg/g, descending colon; 0.156 ± 0.093 µg/g, ascending colon) than on day 6 (0.187 ± 0.123 µg/g, descending colon; 0.107 ± 0.007 µg/g, ascending colon). Concentrations were considerably higher in intestinal contents, again on day 3 (1.349 ± 1.401 µg/g, descending colon; 0.591 ± 0.209 µg/g, ascending colon) than on days 6 (0.979 ± 0.346 µg/g, descending colon; 0.595 ± 0.075 µg/g, ascending colon) and 7 (0.247 ± 0.172 µg/g, descending colon; 0.172 ± 0.086 µg/g, ascending colon). Measured concentrations were lower than those effective against the most common intestinal pathogenic microorganisms in swine and, more specifically, Brachyspira hyodysenteriae.
Collapse
Affiliation(s)
| | | | | | | | | | - Raquel Diez
- Pharmacology, Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (J.M.R.); (M.J.D.); (M.S.); (J.J.G.); (N.F.); (A.M.S.)
| | | |
Collapse
|
45
|
Singh P, Jamal S, Ahmed F, Saqib N, Mehra S, Ali W, Roy D, Ehtesham NZ, Hasnain SE. Computational modeling and bioinformatic analyses of functional mutations in drug target genes in Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:2423-2446. [PMID: 34025934 PMCID: PMC8113780 DOI: 10.1016/j.csbj.2021.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
MycoTRAP-DB, a database of mutations and their impact on normal functionality of protein in M.tb genes. Several secondary mutations were identified with significant impact on protein structure and function. Comprehensive information gives insight for screening of suspected hotspots in advance to combat drug resistant TB.
Tuberculosis (TB) continues to be the leading cause of deaths due to its persistent drug resistance and the consequent ineffectiveness of anti-TB treatment. Recent years witnessed huge amount of sequencing data, revealing mutations responsible for drug resistance. However, the lack of an up-to-date repository remains a barrier towards utilization of these data and identifying major mutations-associated with resistance. Amongst all mutations, non-synonymous mutations alter the amino acid sequence of a protein and have a much greater effect on pathogenicity. Hence, this type of gene mutation is of prime interest of the present study. The purpose of this study is to develop an updated database comprising almost all reported substitutions within the Mycobacterium tuberculosis (M.tb) drug target genes rpoB, inhA, katG, pncA, gyrA and gyrB. Various bioinformatics prediction tools were used to assess the structural and biophysical impacts of the resistance causing non-synonymous single nucleotide polymorphisms (nsSNPs) at the molecular level. This was followed by evaluating the impact of these mutations on binding affinity of the drugs to target proteins. We have developed a comprehensive online resource named MycoTRAP-DB (Mycobacterium tuberculosis Resistance Associated Polymorphisms Database) that connects mutations in genes with their structural, functional and pathogenic implications on protein. This database is accessible at http://139.59.12.92. This integrated platform would enable comprehensive analysis and prioritization of SNPs for the development of improved diagnostics and antimycobacterial medications. Moreover, our study puts forward secondary mutations that can be important for prognostic assessments of drug-resistance mechanism and actionable anti-TB drugs.
Collapse
Affiliation(s)
- Pooja Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Salma Jamal
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Faraz Ahmed
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Najumu Saqib
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Seema Mehra
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Waseem Ali
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Deodutta Roy
- Department of Environmental and Occupational Health, Florida International University, Miami 33029, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201301, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110016, India
| |
Collapse
|
46
|
Momen G, Aainouss A, Lamaammal A, Chettioui F, Blaghen M, Messoudi M, Belghmi K, Mouslim J, El Mzibri M, El Messaoudi MD, Khyatti M, Chaoui I. Molecular characterization of mutations associated with resistance to second line drugs in Mycobacterium tuberculosis patients from Casablanca, Morocco. Rev Inst Med Trop Sao Paulo 2021; 63:e19. [PMID: 33787739 PMCID: PMC7997671 DOI: 10.1590/s1678-9946202163019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
The emergence and spread of extensively drug-resistant tuberculosis (XDR-TB) is a
serious threat to global health. Therefore, its rapid diagnosis is crucial. The
present study aimed to characterize mutations conferring resistance to second
line drugs (SLDs) within multidrug Mycobacterium tuberculosis
(MDR-MTB) isolates and to estimate the occurrence of XDR-TB in Casablanca,
Morocco. A panel of 200 MDR-TB isolates was collected at the Pasteur Institute
between 2015-2018. Samples were subjected to drug susceptibility testing to
Ofloxacin (OFX), Kanamycin (KAN) and Amikacin (AMK). The mutational status of
gyrA, gyrB, rrs,
tlyA and eis was assessed by sequencing
these target genes. Drug susceptibility testing for SLDs showed that among the
200 MDR strains, 20% were resistant to OFX, 2.5% to KAN and 1.5% to AMK.
Overall, 14.5% of MDR strains harbored mutations in gyrA,
gyrB, rrs and tlyA genes.
From the 40 OFXR isolates, 67.5% had mutations in QRDR of
gyrA and gyrB genes, the most frequent one
being Ala90Val in gyrA gene. Of note, none of the isolates
harbored simultaneously mutations in gyrA and
gyrB genes. In eight out of the 200 MDR-TB isolates
resistant either to KAN or AMK, only 25% had A1401G or Lys89Glu change in
rrs and tlyA genes respectively. This
study is very informative and provides data on the alarming rate of
fluoroquinolone resistance which warrants the need to implement appropriate drug
regimens to prevent the emergence and spread of more severe forms of
Mycobacterium tuberculosis drug resistance.
Collapse
Affiliation(s)
- Ghizlane Momen
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco.,Faculté des Sciences, Laboratoire de Microbiologie, Pharmacologie, Biotechnologie et Environnement, Casablanca, Morocco
| | - Achraf Aainouss
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco.,Faculté des Sciences Ben M'Sik, Laboratoire d'Ecologie et Environment, Casablanca, Morocco
| | | | - Fouad Chettioui
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Mohamed Blaghen
- Faculté des Sciences, Laboratoire de Microbiologie, Pharmacologie, Biotechnologie et Environnement, Casablanca, Morocco
| | - Malika Messoudi
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Khalid Belghmi
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Jamal Mouslim
- Faculté des Sciences Ben M'Sik, Laboratoire d'Ecologie et Environment, Casablanca, Morocco
| | - Mohammed El Mzibri
- Centre National de l'Energie, des Sciences et Techniques Nucléaires, Département des Sciences du Vivant, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| | | | - Meriem Khyatti
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Imane Chaoui
- Centre National de l'Energie, des Sciences et Techniques Nucléaires, Département des Sciences du Vivant, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| |
Collapse
|
47
|
Naz S, Dabral S, Nagarajan SN, Arora D, Singh LV, Kumar P, Singh Y, Kumar D, Varshney U, Nandicoori VK. Compromised base excision repair pathway in Mycobacterium tuberculosis imparts superior adaptability in the host. PLoS Pathog 2021; 17:e1009452. [PMID: 33740020 PMCID: PMC8011731 DOI: 10.1371/journal.ppat.1009452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets. Mutation in the genome of bacteria contributes to the acquisition of drug resistance. Mutations in bacteria can arise due to exposures to antibiotics, oxidative, reductive, and many other stresses that bacteria encounter in the host. Mtb has multiple DNA repair mechanisms, including a base excision repair pathway to restore the damaged genome. Here we set out to determine the impact of deleting the Uracil DNA base excision pathway on pathogen adaptability to both antibiotic and host induced stresses. Combinatorial mutant of Mtb UDGs showed higher spontaneous rates of mutations when subjected to antibiotic stress and showed higher survival levels in the guinea pig model of infection. Whole-genome sequence analysis showed significant accumulation of SNPs, suggesting that mutations providing survival advantage may have been positively selected. We also showed that double mutant of Mtb UDGs would be an excellent means to identify antibiotic targets in the bacteria. Competition experiments wherein we pitted wild type and double mutant against each other demonstrated that double mutant has a decisive edge over the wild type. Together, data suggest that the absence of a base excision repair pathway leads to higher mutations and provides a survival advantage under stress. They could be an invaluable tool for identifying targets of new antibiotics.
Collapse
Affiliation(s)
- Saba Naz
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Department of Zoology, University of Delhi, Delhi, India
| | - Shruti Dabral
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Divya Arora
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Lakshya Veer Singh
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pradeep Kumar
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Varshney
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
- * E-mail: (UV); (VKN)
| | - Vinay Kumar Nandicoori
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (UV); (VKN)
| |
Collapse
|
48
|
Bouzouita I, Draoui H, Cabibbe AM, Essalah L, Bejaoui S, Trovato A, Messadi F, Cirillo DM, Slim-Saidi L. Performance of the GenoType MTBDRsl V 2.0 for detecting second-line drugs resistance of Mycobacterium tuberculosis isolates in Tunisia. Res Microbiol 2021; 172:103816. [PMID: 33737037 DOI: 10.1016/j.resmic.2021.103816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/06/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Rapid detection of the second-line drug (SLD) resistant tuberculosis (TB) strains is challenging to prescribe an immediate adequate treatment and limit the transmission of SLD resistant strains. The study aimed to evaluate the performance of GenoType MTBDRsl V2.0 compared to phenotypic drug susceptibility testing (pDST:MGIT960) to detect resistance to SLD of Mycobacterium tuberculosis (MTB) isolates in Tunisia, between May 2015 and December 2019. As a matter of fact, 103 rifampicin-resistant and multidrug-resistant MTB strains were included. Discrepancies between pDST and MTBDRsl were solved by whole genome sequencing. Compared to pDST, MTBDRsl V2.0 showed a sensitivity of 92.8% (68.5%-98.7%) in detecting resistance to fluoroquinolones. As for second-line injectable drugs, it presented a sensitivity of 80.0% (49.0%-94.3%). MTBDRsl had sensitivities of 100.0% (67.5%-100.0%), 75.0% (40.9%-92.8%) and 100.0% (60.9%-100.0%) respectively for kanamycin, capreomycin and amikacin. The specificity was 100.0% for all the drugs evaluated. As for diagnosing XDR-TB, it had a sensitivity of 57.1% (25.0%-84.1%) and a specificity of 100.0% (96.1%-100.0%). MTBDRsl V2.0 showed a high performance in detecting SLD resistance with a short turnaround time compared with pDST, which made it possible to start an early treatment and to maintain a low prevalence of SLD resistance and XDR-TB in Tunisia.
Collapse
Affiliation(s)
- Imen Bouzouita
- National Reference Laboratory for Mycobacteria, A. Mami Pneumology Hospital, Ariana, Tunisia; University of Tunis El Manar, Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis, Tunisia.
| | - Henda Draoui
- National Reference Laboratory for Mycobacteria, A. Mami Pneumology Hospital, Ariana, Tunisia.
| | - Andrea Maurizio Cabibbe
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| | - Leila Essalah
- National Reference Laboratory for Mycobacteria, A. Mami Pneumology Hospital, Ariana, Tunisia.
| | - Sana Bejaoui
- National Reference Laboratory for Mycobacteria, A. Mami Pneumology Hospital, Ariana, Tunisia.
| | - Alberto Trovato
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| | - Férièle Messadi
- Bacteriology Laboratory, Hedi Chaker Hospital, Sfax, Tunisia.
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| | - Leila Slim-Saidi
- National Reference Laboratory for Mycobacteria, A. Mami Pneumology Hospital, Ariana, Tunisia.
| |
Collapse
|
49
|
Araújo LG, Garcia MT, Zaccariotto TR, Moretti ML, Levy CE, Resende MR. Clinical outcomes and molecular characterization of drug-resistant tuberculosis in pre- and extensively drug-resistant disease based on line probe assays. Braz J Infect Dis 2021; 25:101544. [PMID: 33592172 PMCID: PMC9392081 DOI: 10.1016/j.bjid.2021.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 12/26/2020] [Indexed: 12/04/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) represents a significant impact in transmission, outcome, and health costs. The World Health Organization recommends implementation of rapid diagnostic methods for multidrug-resistance detection. This study was performed to evaluate the frequency of pre- and extensively drug resistant tuberculosis (pre-XDR-TB and XDR-TB) among MDR-TB patients, the pattern of resistance mutations for fluoroquinolones and the clinical outcome. Adult patients followed at a Brazilian regional reference center for TB, from January 2013 to June 2019 were included. Stored Mycobacterium tuberculosis (Mtb) cultures were recovered, the DNA was extracted, and the susceptibility test was performed using the line probe assay for second line antimycobacterial drugs, Genotype MTBDRsl version 2.0 (Hain Lifescience, CmbH, Germany). Among 33 MDR-TB included patients, we diagnosed XDR-TB or pre-XDR in five (15%) cases. Of these, mutations related to fluoroquinolones resistance were observed in four Mtb isolates, including one who had no phenotypic resistance profile. In two other patients with phenotypic resistance to ofloxacin, genotypic resistance was not found. Case fatality rate was 60% in pre/XDR-TB group, compared to 3.6% in the remaining of patients. This study observed few cases of pre-XDR and XDR-TB among a MDR-TB cohort. Phenotypic and genotypic assays presented good agreement. Clinical outcome was more favorable for patients with susceptibility to fluoroquinolones and injectable drugs.
Collapse
Affiliation(s)
- Lauane G Araújo
- Graduate University of Campinas, Faculty of Medical Sciences, Program of Internal Medicine, Campinas, SP, Brazil
| | - Márcia T Garcia
- Clinical Hospital of State University of Campinas, Epidemiological Surveillance Section, Campinas, SP, Brazil
| | - Tânia R Zaccariotto
- Clinical Hospital of State University of Campinas, Clinical Pathology Division, Clinical Microbiology Laboratory, Campinas, SP, Brazil
| | - Maria Luiza Moretti
- Graduate University of Campinas, Faculty of Medical Sciences, Program of Internal Medicine, Campinas, SP, Brazil; Clinical Hospital of State University of Campinas, Epidemiological Surveillance Section, Campinas, SP, Brazil; State University of Campinas, Faculty of Medical Sciences, Department of Internal Medicine, Campinas, SP, Brazil
| | - Carlos E Levy
- Clinical Hospital of State University of Campinas, Clinical Pathology Division, Clinical Microbiology Laboratory, Campinas, SP, Brazil; State University of Campinas, Faculty of Medical Sciences, Department of Clinical Pathology, Campinas, SP, Brazil
| | - Mariângela R Resende
- Graduate University of Campinas, Faculty of Medical Sciences, Program of Internal Medicine, Campinas, SP, Brazil; Clinical Hospital of State University of Campinas, Epidemiological Surveillance Section, Campinas, SP, Brazil; State University of Campinas, Faculty of Medical Sciences, Department of Internal Medicine, Campinas, SP, Brazil.
| |
Collapse
|
50
|
Acetyleugenol from Acacia nilotica (L.) Exhibits a Strong Antibacterial Activity and Its Phenyl and Indole Analogues Show a Promising Anti-TB Potential Targeting PknE/B Protein Kinases. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acetyleugenol is a phytochemical compound with broad effects against infectious diseases and tumors. Here, we extracted, characterized, and elucidated the structure of acetyeugenol, for the first time, from the leaves of Acacia nilotica (L.)—a well-known medicinal plant. The broad antibacterial potential of acetyleugenol was first confirmed against seven bacterial clinical isolates, which reveal a strong activity against Proteus sp., Salmonella typhi, Staphylococcus aureus, and Streptococcus pneumonia with similar or better zone of inhibition comparing to that of the control amoxicillin. To further investigate its effect against Mycobacterium tuberculosis, acetyleugenol and its indole and phenyl analogues were subjected to molecular docking experiments against two potential tuberculosis drug targets—MtPknE and MtPknB Ser/Thr protein kinases. The results reveal that all of the analogs have improved docking scores compared to the acetyleugenol. The indole analogues EUG-1 and EUG-3 were more effective with better docking scores for MtPknE with −11.08 and −10.05 kcal/mol, respectively. Similar results were obtained for the MtPknB. In contrast, only the EUG-2 phenyl analogue has given rise to similar docking scores for both targets. This opens the door for further comprehensive studies on these acetyleugenol analogues with in vitro and in vivo experiments to validate and get more insights into their mechanisms of action.
Collapse
|