1
|
Zou R, Zhang M, Lv W, Ren J, Fan X. Role of epicardial adipose tissue in cardiac remodeling. Diabetes Res Clin Pract 2024; 217:111878. [PMID: 39366641 DOI: 10.1016/j.diabres.2024.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Epicardial adipose tissue, or epicardial fat, is a type of visceral fat located between the heart and the pericardium. Due to its anatomical proximity to the heart, EAT plays a significant role in both cardiac physiology and pathologies, including cardiac remodeling and cardiovascular diseases (CVD). However, our understanding of how EAT pathology is influenced by risk factors such as obesity and type 2 diabetes mellitus and how altered EAT can drive cardiac remodeling and CVD, remains limited. Herein, we aimed to summarize and discuss the latest findings on EAT and its role in cardiac remodeling, highlighting the outcomes of clinical and observational studies, provide mechanistic insights, and finally introduce emerging therapeutic agents and nutritional guidelines aimed at preventing these conditions.
Collapse
Affiliation(s)
- Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Miao Zhang
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Weihui Lv
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
2
|
Qiang E, Xu H. PGE 2 synthesis and signaling in the liver physiology and pathophysiology: An update. Prostaglandins Other Lipid Mediat 2024; 174:106875. [PMID: 39019102 DOI: 10.1016/j.prostaglandins.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The liver plays a central role in systemic metabolism and drug degradation. However, it is highly susceptible to damage due to various factors, including metabolic imbalances, excessive alcohol consumption, viral infections, and drug influences. These factors often result in conditions such as fatty liver, hepatitis, and acute or chronic liver injury. Failure to address these injuries could promptly lead to the development of liver cirrhosis and potentially hepatocellular carcinoma (HCC). Prostaglandin E2 (PGE2) is a metabolite of arachidonic acid that belongs to the class of polyunsaturated fatty acids (PUFA) and is synthesized via the cyclooxygenase (COX) pathway. By binding to its G protein coupled receptors (i.e., EP1, EP2, EP3 and EP4), PGE2 has a wide range of physiological and pathophysiology effects, including pain, inflammation, fever, cardiovascular homeostasis, etc. Recently, emerging studies showed that PGE2 plays an indispensable role in liver health and disease. This review focus on the research progress of the role of PGE2 synthase and its receptors in liver physiological and pathophysiological processes and discuss the possibility of developing liver protective drugs targeting the COXs/PGESs/PGE2/EPs axis.
Collapse
Affiliation(s)
- Erjiao Qiang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Vamvini M, Nigro P, Caputo T, Stanford KI, Hirshman MF, Middelbeek RJW, Goodyear LJ. Exercise training and cold exposure trigger distinct molecular adaptations to inguinal white adipose tissue. Cell Rep 2024; 43:114481. [PMID: 39003734 PMCID: PMC11309084 DOI: 10.1016/j.celrep.2024.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Exercise training and cold exposure both improve systemic metabolism, but the mechanisms are not well established. Here, we tested the hypothesis that inguinal white adipose tissue (iWAT) adaptations are critical for these beneficial effects and determined the impact of exercise-trained and cold-exposed iWAT on systemic glucose metabolism and the iWAT proteome and secretome. Transplanting trained iWAT into sedentary mice improves glucose tolerance, while cold-exposed iWAT transplantation shows no such benefit. Compared to training, cold leads to more pronounced alterations in the iWAT proteome and secretome, downregulating >2,000 proteins but also boosting the thermogenic capacity of iWAT. In contrast, only training increases extracellular space and vesicle transport proteins, and only training upregulates proteins that correlate with favorable fasting glucose, suggesting fundamental changes in trained iWAT that mediate tissue-to-tissue communication. This study defines the unique exercise training- and cold exposure-induced iWAT proteomes, revealing distinct mechanisms for the beneficial effects of these interventions on metabolic health.
Collapse
Affiliation(s)
- Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Kristin I Stanford
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Department of Physiology and Cell Biology, Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
5
|
Ye L, Wang B, Xu H, Zhang X. The Emerging Therapeutic Role of Prostaglandin E2 Signaling in Pulmonary Hypertension. Metabolites 2023; 13:1152. [PMID: 37999248 PMCID: PMC10672796 DOI: 10.3390/metabo13111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Mild-to-moderate pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD). It is characterized by narrowing and thickening of the pulmonary arteries, resulting in increased pulmonary vascular resistance (PVR) and ultimately leading to right ventricular dysfunction. Pulmonary vascular remodeling in COPD is the main reason for the increase of pulmonary artery pressure (PAP). The pathogenesis of PH in COPD is complex and multifactorial, involving chronic inflammation, hypoxia, and oxidative stress. To date, prostacyclin and its analogues are widely used to prevent PH progression in clinical. These drugs have potent anti-proliferative, anti-inflammatory, and stimulating endothelial regeneration properties, bringing therapeutic benefits to the slowing, stabilization, and even some reversal of vascular remodeling. As another well-known and extensively researched prostaglandins, prostaglandin E2 (PGE2) and its downstream signaling have been found to play an important role in various biological processes. Emerging evidence has revealed that PGE2 and its receptors (i.e., EP1-4) are involved in the regulation of pulmonary vascular homeostasis and remodeling. This review focuses on the research progress of the PGE2 signaling pathway in PH and discusses the possibility of treating PH based on the PGE2 signaling pathway.
Collapse
Affiliation(s)
- Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China;
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central Hospital of Dalian University of Technology, Dalian 116000, China;
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Kaczmarek I, Wower I, Ettig K, Kuhn CK, Kraft R, Landgraf K, Körner A, Schöneberg T, Horn S, Thor D. Identifying G protein-coupled receptors involved in adipose tissue function using the innovative RNA-seq database FATTLAS. iScience 2023; 26:107841. [PMID: 37766984 PMCID: PMC10520334 DOI: 10.1016/j.isci.2023.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Isabel Wower
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Katja Ettig
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Della Corte V, Pacinella G, Todaro F, Pecoraro R, Tuttolomondo A. The Natriuretic Peptide System: A Single Entity, Pleiotropic Effects. Int J Mol Sci 2023; 24:ijms24119642. [PMID: 37298592 DOI: 10.3390/ijms24119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In the modern scientific landscape, natriuretic peptides are a complex and interesting network of molecules playing pleiotropic effects on many organs and tissues, ensuring the maintenance of homeostasis mainly in the cardiovascular system and regulating the water-salt balance. The characterization of their receptors, the understanding of the molecular mechanisms through which they exert their action, and the discovery of new peptides in the last period have made it possible to increasingly feature the physiological and pathophysiological role of the members of this family, also allowing to hypothesize the possible settings for using these molecules for therapeutic purposes. This literature review traces the history of the discovery and characterization of the key players among the natriuretic peptides, the scientific trials performed to ascertain their physiological role, and the applications of this knowledge in the clinical field, leaving a glimpse of new and exciting possibilities for their use in the treatment of diseases.
Collapse
Affiliation(s)
- Vittoriano Della Corte
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Rosaria Pecoraro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
9
|
Na H, Song Y, Lee HW. Emphasis on Adipocyte Transformation: Anti-Inflammatory Agents to Prevent the Development of Cancer-Associated Adipocytes. Cancers (Basel) 2023; 15:cancers15020502. [PMID: 36672449 PMCID: PMC9856688 DOI: 10.3390/cancers15020502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Of the various cell types in the tumor microenvironment (TME), adipocytes undergo a dynamic transformation when activated by neighboring cancer cells. Although these adipocytes, known as cancer-associated adipocytes (CAAs), have been reported to play a crucial role in tumor progression, the factors that mediate their transformation remain elusive. In this review, we discuss the hypothesis that inflammatory signals involving NF-ĸB activation can induce lipolysis and adipocyte dedifferentiation. This provides a mechanistic understanding of CAA formation and introduces the concept of preventing adipocyte transformation via anti-inflammatory agents. Indeed, epidemiological studies indicate a higher efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) in obese patients with cancer, suggesting that NSAIDs can modulate the TME. Inhibition of cyclooxygenase-2 (COX-2) and prostaglandin production leads to the suppression of inflammatory signals such as NF-ĸB. Thus, we suggest the use of NSAIDs in cancer patients with metabolic disorders to prevent the transformation of TME components. Moreover, throughout this review, we attempt to expand our knowledge of CAA transformation to improve the clinical feasibility of targeting CAAs.
Collapse
Affiliation(s)
- Heeju Na
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yaechan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Corporation, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2123-7642
| |
Collapse
|
10
|
Alizadeh F, Mirzaie Bavil F, Keyhanmanesh R, Lotfi H, Ghiasi F. Association of pro-inflammatory cytokines, inflammatory proteins with atherosclerosis index in obese male subjects. Horm Mol Biol Clin Investig 2023:hmbci-2022-0022. [PMID: 36592952 DOI: 10.1515/hmbci-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Investigation the association of pro-inflammatory markers interleukin (IL)-1β and IL- 10 expression, serum levels of C-reactive protein (CRP), cyclooxygenase-2 (COX2), High-density lipoprotein (HDL), Apolipoprotein A1 (ApoA1), and ATP Binding Cassette Subfamily A Member 1 (ABCA1) inflammatory proteins with atherosclerosis index (homocysteine) in normal-weight and obese male subjects. METHODS 59 males including 30 obese (Body mass index (BMI) of ≥30 kg/m2) and 29 normal-weight (BMI of 18.5-24.9 kg/m2) were joined to this study. Plasma levels of IL-1β and IL-10 (pg/mL), CRP (pg/mL), COX-2 (ng/mL), APOA1 (mg/dL), ABCA1 (ng/mL), HDL, Cholesterol, and Triglyceride (TG) (mg/dL), and homocysteine (µmol/L) was measured. Association of these biomarkers with homocysteine was determined. RESULTS Obese subjects had higher serum levels of IL10, IL1β, CRP, COX-2, TG, and cholesterol concentrations (all p<0.05 except IL-10 and cholesterol) and low levels of HDL, APOA1, and ABCA1 (non-significant differences) in comparison to normal-weight group. Homocysteine levels were high in obese men with no significant differences between the two groups. In obese subjects, homocysteine had a significant inverse correlation with APOA1, ABCA1, and HDL, and a strong and moderate positive correlation was found with CRP and TG levels, respectively. CONCLUSIONS High level of homocysteine and its correlation with inflammation proteins and markers in obese subjects appear to be contributed with atherosclerosis development.
Collapse
Affiliation(s)
- Farhad Alizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaie Bavil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.,Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fariba Ghiasi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Dalle C, Tournayre J, Mainka M, Basiak-Rasała A, Pétéra M, Lefèvre-Arbogast S, Dalloux-Chioccioli J, Deschasaux-Tanguy M, Lécuyer L, Kesse-Guyot E, Fezeu LK, Hercberg S, Galan P, Samieri C, Zatońska K, Calder PC, Fiil Hjorth M, Astrup A, Mazur A, Bertrand-Michel J, Schebb NH, Szuba A, Touvier M, Newman JW, Gladine C. The Plasma Oxylipin Signature Provides a Deep Phenotyping of Metabolic Syndrome Complementary to the Clinical Criteria. Int J Mol Sci 2022; 23:ijms231911688. [PMID: 36232991 PMCID: PMC9570185 DOI: 10.3390/ijms231911688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex condition encompassing a constellation of cardiometabolic abnormalities. Oxylipins are a superfamily of lipid mediators regulating many cardiometabolic functions. Plasma oxylipin signature could provide a new clinical tool to enhance the phenotyping of MetS pathophysiology. A high-throughput validated mass spectrometry method, allowing for the quantitative profiling of over 130 oxylipins, was applied to identify and validate the oxylipin signature of MetS in two independent nested case/control studies involving 476 participants. We identified an oxylipin signature of MetS (coined OxyScore), including 23 oxylipins and having high performances in classification and replicability (cross-validated AUCROC of 89%, 95% CI: 85–93% and 78%, 95% CI: 72–85% in the Discovery and Replication studies, respectively). Correlation analysis and comparison with a classification model incorporating the MetS criteria showed that the oxylipin signature brings consistent and complementary information to the clinical criteria. Being linked with the regulation of various biological processes, the candidate oxylipins provide an integrative phenotyping of MetS regarding the activation and/or negative feedback regulation of crucial molecular pathways. This may help identify patients at higher risk of cardiometabolic diseases. The oxylipin signature of patients with metabolic syndrome enhances MetS phenotyping and may ultimately help to better stratify the risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Céline Dalle
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Jérémy Tournayre
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Malwina Mainka
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Alicja Basiak-Rasała
- Department of Social Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Mélanie Pétéra
- Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Sophie Lefèvre-Arbogast
- Bordeaux Population Health Research Center, Université de Bordeaux, INSERMUMR 1219, 33076 Bordeaux, France
| | - Jessica Dalloux-Chioccioli
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Mélanie Deschasaux-Tanguy
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Lucie Lécuyer
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Léopold K. Fezeu
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Serge Hercberg
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Pilar Galan
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Cécilia Samieri
- Bordeaux Population Health Research Center, Université de Bordeaux, INSERMUMR 1219, 33076 Bordeaux, France
| | - Katarzyna Zatońska
- Department of Social Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Philip C. Calder
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Mads Fiil Hjorth
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, 2900 Hellerup, Denmark
| | - Arne Astrup
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, 2900 Hellerup, Denmark
| | - André Mazur
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Nils Helge Schebb
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Andrzej Szuba
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mathilde Touvier
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - John W. Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
- University of California Davis Genome Center, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Cécile Gladine
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-624-230
| |
Collapse
|
12
|
Bothrops moojeni snake venom induces an inflammatory response in preadipocytes: Insights into a new aspect of envenomation. PLoS Negl Trop Dis 2022; 16:e0010658. [PMID: 35939519 PMCID: PMC9359566 DOI: 10.1371/journal.pntd.0010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Bothrops envenomation is a public health problem in Brazil. Despite the advances in the knowledge of the pathogenesis of systemic and local effects induced by Bothrops venom, the target tissues to this venom are not completely characterised. As preadipocytes are important cells of the adipose tissue and synthesize inflammatory mediators, we investigated the ability of B. moojeni snake venom (Bmv) to stimulate an inflammatory response in 3T3-L1 preadipocytes in vitro, focusing on (1) the release of PGE2, IL-6, TNF-α, MCP-1, KC, leptin and adiponectin; (2) the mechanisms involved in PGE2 release and (3) differentiation of these cells. Cytotoxicity of Bmv was determined by MTT assay. The concentrations of PGE2, cytokines and adipokines were quantified by EIA. Participation of the COX-1 and COX-2 enzymes, NF-κB and PGE2 receptors (EP1-4) was assessed using a pharmacological approach, and protein expression of the COX enzymes and P-NF-κB was analysed by western blotting. Preadipocyte differentiation was quantified by Oil Red O staining. Bmv (1 μg/mL) induced release of PGE2, IL-6 and KC and increased expression of COX-2 in preadipocytes. Basal levels of TNF-α, MCP-1, leptin and adiponectin were not modified. Treatment of cells with SC560 (COX-1 inhibitor) and NS398 (COX-2 inhibitor) inhibited Bmv-induced PGE2 release. Bmv induced phosphorylation of NF-κB, and treatment of the cells with TPCK and SN50, which inhibit distinct NF-κB domains, significantly reduced Bmv-induced PGE2 release, as did the treatment with an antagonist of PGE2 receptor EP1, unlike treatment with antagonists of EP2, EP3 or EP4. Bmv also induced lipid accumulation in differentiating cells. These results demonstrate that Bmv can activate an inflammatory response in preadipocytes by inducing the release of inflammatory mediators; that PGE2 production is mediated by the COX-1, COX-2 and NF-κB pathways; and that engagement of EP1 potentiates PGE2 synthesis via a positive feedback mechanism. Our findings highlight the role of the adipose tissue as another target for Bmv and suggest that it contributes to Bothrops envenomation by producing inflammatory mediators.
Collapse
|
13
|
Inazumi T, Sugimoto Y. Metabolic Regulation in Adipocytes by Prostanoid Receptors. Biol Pharm Bull 2022; 45:992-997. [DOI: 10.1248/bpb.b22-00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
14
|
Crobeddu B, Jutras-Carignan A, Kolasa É, Mounier C, Robaire B, Plante I. Gestational and lactational exposure to the emergent alternative plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) impairs lipid metabolism to a greater extent than the commonly used Di(2-ethylhexyl) phthalate (DEHP) in the adult rat mammary gland. Toxicol Sci 2022; 189:268-286. [PMID: 35861430 DOI: 10.1093/toxsci/kfac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their endocrine disruption properties, phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) can affect the hormone-dependent development of the mammary gland. Over the past few years, DEHP has been partially replaced by 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) which also have potential endocrine disrupting properties. The goal of the present study is to understand the impact of a gestational and lactational exposure to DEHP and DINCH on mammary gland development using Sprague-Dawley rats. Both plasticizers altered the adipocytes of the mammary gland fat pad of adult progeny, as demonstrated by a decrease in their size, folding of their membrane and modulations of the lipid profiles. DEHP treatments decreased the expression of Rxrα and Scd1 at the low and high dose, respectively, but did not affect any of the other genes studied. DINCH modulation of lipid metabolism could be observed at puberty by a decreased expression of genes implicated in triglyceride synthesis, lipid transport and lipolysis, but by an increased expression of genes of the β-oxidation pathway and of genes involved in lipid storage and fatty acid synthesis at adulthood, compared to control and DEHP-treated rats. A strong upregulation of different inflammatory markers was observed following DINCH exposure only. Together, our results indicate that a gestational and lactational exposure to DINCH has earlier and more significant effects on lipid homeostasis, adipogenesis and the inflammatory state of the adult mammary gland than DEHP exposure. The long-term consequence of these effects on mammary gland health remained to be determined.
Collapse
Affiliation(s)
- Bélinda Crobeddu
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Antoine Jutras-Carignan
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Élise Kolasa
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Catherine Mounier
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
15
|
Tao X, Du R, Guo S, Feng X, Yu T, OuYang Q, Chen Q, Fan X, Wang X, Guo C, Li X, Xue F, Chen S, Tong M, Lazarus M, Zuo S, Yu Y, Shen Y. PGE 2 -EP3 axis promotes brown adipose tissue formation through stabilization of WTAP RNA methyltransferase. EMBO J 2022; 41:e110439. [PMID: 35781818 DOI: 10.15252/embj.2021110439] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Brown adipose tissue (BAT) functions as a thermogenic organ and is negatively associated with cardiometabolic diseases. N6 -methyladenosine (m6 A) modulation regulates the fate of stem cells. Here, we show that the prostaglandin E2 (PGE2 )-E-prostanoid receptor 3 (EP3) axis was activated during mouse interscapular BAT development. Disruption of EP3 impaired the browning process during adipocyte differentiation from pre-adipocytes. Brown adipocyte-specific depletion of EP3 compromised interscapular BAT formation and aggravated high-fat diet-induced obesity and insulin resistance in vivo. Mechanistically, activation of EP3 stabilized the Zfp410 mRNA via WTAP-mediated m6 A modification, while knockdown of Zfp410 abolished the EP3-induced enhancement of brown adipogenesis. EP3 prevented ubiquitin-mediated degradation of WTAP by eliminating PKA-mediated ERK1/2 inhibition during brown adipocyte differentiation. Ablation of WTAP in brown adipocytes abrogated the protective effect of EP3 overexpression in high-fat diet-fed mice. Inhibition of EP3 also retarded human embryonic stem cell differentiation into mature brown adipocytes by reducing the WTAP levels. Thus, a conserved PGE2 -EP3 axis promotes BAT development by stabilizing WTAP/Zfp410 signaling in a PKA/ERK1/2-dependent manner.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shumin Guo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangling Feng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian OuYang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Xutong Fan
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xueqi Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chen Guo
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaozhou Li
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Minghan Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City, Japan
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Luk C, Haywood NJ, Bridge KI, Kearney MT. Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Front Cardiovasc Med 2022; 9:882923. [PMID: 35557517 PMCID: PMC9086712 DOI: 10.3389/fcvm.2022.882923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 02/02/2023] Open
Abstract
The vascular endothelium traditionally viewed as a simple physical barrier between the circulation and tissue is now well-established as a key organ mediating whole organism homeostasis by release of a portfolio of anti-inflammatory and pro-inflammatory vasoactive molecules. Healthy endothelium releases anti-inflammatory signaling molecules such as nitric oxide and prostacyclin; in contrast, diseased endothelium secretes pro-inflammatory signals such as reactive oxygen species, endothelin-1 and tumor necrosis factor-alpha (TNFα). Endothelial dysfunction, which has now been identified as a hallmark of different components of the cardiometabolic syndrome including obesity, type 2 diabetes and hypertension, initiates and drives the progression of tissue damage in these disorders. Recently it has become apparent that, in addition to vasoactive molecules, the vascular endothelium has the potential to secrete a diverse range of small molecules and proteins mediating metabolic processes in adipose tissue (AT), liver, skeletal muscle and the pancreas. AT plays a pivotal role in orchestrating whole-body energy homeostasis and AT dysfunction, characterized by local and systemic inflammation, is central to the metabolic complications of obesity. Thus, understanding and targeting the crosstalk between the endothelium and AT may generate novel therapeutic opportunities for the cardiometabolic syndrome. Here, we provide an overview of the role of the endothelial secretome in controlling the function of AT. The endothelial-derived metabolic regulatory factors are grouped and discussed based on their physical properties and their downstream signaling effects. In addition, we focus on the therapeutic potential of these regulatory factors in treating cardiometabolic syndrome, and discuss areas of future study of potential translatable and clinical significance. The vascular endothelium is emerging as an important paracrine/endocrine organ that secretes regulatory factors in response to nutritional and environmental cues. Endothelial dysfunction may result in imbalanced secretion of these regulatory factors and contribute to the progression of AT and whole body metabolic dysfunction. As the vascular endothelium is the first responder to local nutritional changes and adipocyte-derived signals, future work elucidating the changes in the endothelial secretome is crucial to improve our understanding of the pathophysiology of cardiometabolic disease, and in aiding our development of new therapeutic strategies to treat and prevent cardiometabolic syndrome.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
17
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Wisinski JA, Reuter A, Peter DC, Schaid MD, Fenske RJ, Kimple ME. Prostaglandin EP3 receptor signaling is required to prevent insulin hypersecretion and metabolic dysfunction in a non-obese mouse model of insulin resistance. Am J Physiol Endocrinol Metab 2021; 321:E479-E489. [PMID: 34229444 PMCID: PMC8560379 DOI: 10.1152/ajpendo.00051.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 wk of age, frankly diabetic. Previous work has shown prostaglandin EP3 receptor (EP3) expression and activity is upregulated in islets from BTBR-Ob mice as compared with lean controls, actively contributing to their β-cell dysfunction. In this work, we aimed to test the impact of β-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse-an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain-generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in β-cell fractional area or markers of β-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective upregulation of constitutively active EP3 splice variants in islets from young, lean BTBR mice as compared with C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females versus Balb/c males was fully consistent with their sexually dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.NEW & NOTEWORTHY Islet prostaglandin EP3 receptor (EP3) signaling is well known as upregulated in the pathophysiological conditions of type 2 diabetes, contributing to β-cell dysfunction. Unexpected findings in mouse models of non-obese insulin sensitivity and resistance provide a new dimension to our understanding of EP3 as a key modulator of insulin secretion. A previously unknown relationship between mouse insulin resistance and the penetrance of rat insulin promoter-driven germline floxed allele recombination is critical to consider when creating β-cell-specific knockouts.
Collapse
Affiliation(s)
- Jaclyn A Wisinski
- Department of Biology, University of Wisconsin-LaCrosse, La Crosse, Wisconsin
| | - Austin Reuter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
19
|
Assinder SJ, Boumelhem BB. Oxytocin stimulates lipolysis, prostaglandin E 2 synthesis, and leptin secretion in 3T3-L1 adipocytes. Mol Cell Endocrinol 2021; 534:111381. [PMID: 34216640 DOI: 10.1016/j.mce.2021.111381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022]
Abstract
A model of oxytocin in the regulation of metabolic status has described one of oxytocin synthesis and release from the neurohypophysis in response to leptin, to suppress further leptin release. In addition, a lipogenic role for oxytocin has been suggested, consistent with an insulinergic action. This model, however, may be incorrect. Oxytocin reduces fat mass in the absence of either leptin or leptin receptor signalling, thereby challenging the interdependence between leptin and oxytocin. An oxytocin induced production of the anti-lipolytic prostaglandin E2 (PGE2) might account for this. Media from 3T3-L1 differentiated adipocytes treated with oxytocin (0-50 nmol.L-1) for 24 hrs were assayed for PGE2, leptin, adiponectin, and glycerol. Harvested cells were analysed for lipid droplet triglyceride and cytosolic free fatty acid (FFA) by flow cytometry, and for altered expression of lipolytic and lipogenic associated gene ontology transcripts by cDNA array. Both PGE2 and leptin secretion were significantly increased by oxytocin treatment whilst adiponectin secretion was not. A significant increase in cytosolic FFA was detected following oxytocin treatment, similar to that determined following treatment with isoproterenol (positive control). A significant increase in glycerol release to the culture media confirmed a lipolytic effect. No enrichment of lipolytic and lipogenic associated gene ontology transcripts was determined, but significant overrepresentation of chemosensory olfactory transcripts was. In conclusion, oxytocin stimulates lipolysis in 3T3-L1 adipocytes, mediated by autocrine/paracrine actions of PGE2 and leptin. To confirm that this response is mediated solely by the oxytocin receptor, further experiments would require those effects being blocked by a specific oxytocin antagonist.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Science and Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia.
| | - Badwi B Boumelhem
- Discipline of Physiology, School of Medical Science and Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| |
Collapse
|
20
|
Donepudi AC, Lee Y, Lee JY, Schuetz JD, Manautou JE. Multidrug resistance-associated protein 4 (Mrp4) is a novel genetic factor in the pathogenesis of obesity and diabetes. FASEB J 2021; 35:e21304. [PMID: 33417247 DOI: 10.1096/fj.202001299rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022]
Abstract
Multidrug resistance protein 4 (Mrp4) is an efflux transporter known to transport several xenobiotics and endogenous molecules. We recently identified that the lack of Mrp4 increases adipose tissue and body weights in mice. However, the role of Mrp4 in adipose tissue physiology are unknown. The current study aimed at characterizing these specific roles of Mrp4 using wild-type (WT) and knockout (Mrp4-/- ) mice. Our studies determined that Mrp4 is expressed in mouse adipose tissue and that the lack of Mrp4 expression is associated with adipocyte hypertrophy. Furthermore, the lack of Mrp4 increased blood glucose and leptin levels, and impaired glucose tolerance. Additionally, in 3T3-L1 cells and human pre-adipocytes, pharmacological inhibition of Mrp4 increased adipogenesis and altered expression of adipogenic genes. Lack of Mrp4 activity in both of our in vivo and in vitro models leads to increased activation of adipose tissue cAMP response element-binding protein (Creb) and decreased plasma prostaglandin E (PGE) metabolite levels. These changes in Creb activation, coupled with decreased PGE levels, together promoted the observed metabolic phenotype in Mrp4-/- mice. In conclusion, our results indicate that Mrp4 as a novel genetic factor involved in the pathogenesis of metabolic diseases, such as obesity and diabetes.
Collapse
Affiliation(s)
- Ajay C Donepudi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
21
|
da Silva GJJ, Altara R, Booz GW, Cataliotti A. Atrial Natriuretic Peptide 31-67: A Novel Therapeutic Factor for Cardiovascular Diseases. Front Physiol 2021; 12:691407. [PMID: 34305645 PMCID: PMC8297502 DOI: 10.3389/fphys.2021.691407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The characterization of the cardiac hormone atrial natriuretic peptide (ANP99–126), synthesized and secreted predominantly by atrial myocytes under stimulation by mechanical stretch, has established the heart as an endocrine organ with potent natriuretic, diuretic, and vasodilating actions. Three additional distinct polypeptides resulting from proteolytic cleavage of proANP have been identified in the circulation in humans. The mid-sequence proANP fragment 31–67 (also known as proANP31–67) has unique potent and prolonged diuretic and natriuretic properties. In this review, we report the main effects of this circulating hormone in different tissues and organs, and its mechanisms of actions. We further highlight recent evidence on the cardiorenal protective actions of chronic supplementation of synthetic proANP31–67 in preclinical models of cardiorenal disease. Finally, we evaluate the use of proANP31–67 as a new therapeutic strategy to repair end-organ damage secondary to hypertension, diabetes mellitus, renal diseases, obesity, heart failure, and other morbidities that can lead to impaired cardiac function and structure.
Collapse
Affiliation(s)
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center Jackson, Jackson, MS, United States
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Janovits PM, Leiguez E, Portas V, Teixeira C. A Metalloproteinase Induces an Inflammatory Response in Preadipocytes with the Activation of COX Signalling Pathways and Participation of Endogenous Phospholipases A 2. Biomolecules 2021; 11:921. [PMID: 34206390 PMCID: PMC8301905 DOI: 10.3390/biom11070921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that have been associated with the pathogenesis of inflammatory diseases and obesity. Adipose tissue in turn is an active endocrine organ capable of secreting a range of proinflammatory mediators with autocrine and paracrine properties, which contribute to the inflammation of adipose tissue and adjacent tissues. However, the potential inflammatory effects of MMPs in adipose tissue cells are still unknown. This study investigates the effects of BmooMPα-I, a single-domain snake venom metalloproteinase (SVMP), in activating an inflammatory response by 3T3-L1 preadipocytes in culture, focusing on prostaglandins (PGs), cytokines, and adipocytokines biosynthesis and mechanisms involved in prostaglandin E2 (PGE2) release. The results show that BmooMPα-I induced the release of PGE2, prostaglandin I2 (PGI2), monocyte chemoattractant protein-1 (MCP-1), and adiponectin by preadipocytes. BmooMPα-I-induced PGE2 biosynthesis was dependent on group-IIA-secreted phospholipase A2 (sPLA2-IIA), cytosolic phospholipase A2-α (cPLA2-α), and cyclooxygenase (COX)-1 and -2 pathways. Moreover, BmooMPα-I upregulated COX-2 protein expression but not microsomal prostaglandin E synthase-1 (mPGES-1) expression. In addition, we demonstrate that the enzymatic activity of BmooMPα-I is essential for the activation of prostanoid synthesis pathways in preadipocytes. These data highlight preadipocytes as important targets for metalloproteinases and provide new insights into the contribution of these enzymes to the inflammation of adipose tissue and tissues adjacent to it.
Collapse
Affiliation(s)
- Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Viviane Portas
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
- Laboratório de Desenvolvimento e Inovação, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| |
Collapse
|
23
|
Sasaki Y, Kuwata H, Akatsu M, Yamakawa Y, Ochiai T, Yoda E, Nakatani Y, Yokoyama C, Hara S. Involvement of prostacyclin synthase in high-fat-diet-induced obesity. Prostaglandins Other Lipid Mediat 2021; 153:106523. [PMID: 33383181 DOI: 10.1016/j.prostaglandins.2020.106523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Prostacyclin (PGI2) synthase (PGIS) functions downstream of inducible cyclooxygenase COX-2 in the PGI2 biosynthetic pathway. Although COX-2 and PGI2 receptor (IP) are known to be involved in adipogenesis and obesity, the involvement of PGIS has not been fully elucidated. In this study, we examined the role of PGIS in adiposity by using PGIS-deficient mice. Although PGIS deficiency did not affect in vitro adipocyte differentiation, when fed a high-fat diet (HFD), PGIS knockout (KO) mice showed reductions in both body weight gain and epididymal fat mass relative to wild-type (WT) mice. PGIS deficiency might reduce HFD-induced obesity by suppressing PGI2 production. We further found that additional gene deletion of microsomal prostaglandin (PG) E synthase-1 (mPGES-1), one of the other PG terminal synthases that also functions downstream of COX-2, emphasized the metabolic phenotypes of PGIS-deficient mice. More marked reduction in obesity and improved insulin resistance were observed in PGIS/mPGES-1 double KO (DKO) mice. Since an additive increase in PGF2α level in epididymal fat was observed in DKO mice, mPGES-1 deficiency might affect adiposity by enhancing the production of PGF2α. Our immunohistochemical analysis further revealed that in adipose tissues, PGIS was expressed in vascular and stromal cells but not in adipocytes. These results suggested that PGI2 produced from PGIS-expressed stromal tissues might enhance HFD-induced obesity by acting on IP expressed in adipocytes. The balance of expressions of PG terminal synthases and the subsequent production of prostanoids might be critical for adiposity.
Collapse
Affiliation(s)
- Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Moe Akatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Yuri Yamakawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Chieko Yokoyama
- Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
24
|
Schaid MD, Green CL, Peter DC, Gallagher SJ, Guthery E, Carbajal KA, Harrington JM, Kelly GM, Reuter A, Wehner ML, Brill AL, Neuman JC, Lamming DW, Kimple ME. Agonist-independent Gα z activity negatively regulates beta-cell compensation in a diet-induced obesity model of type 2 diabetes. J Biol Chem 2020; 296:100056. [PMID: 33172888 PMCID: PMC7948463 DOI: 10.1074/jbc.ra120.015585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
The inhibitory G protein alpha-subunit (Gαz) is an important modulator of beta-cell function. Full-body Gαz-null mice are protected from hyperglycemia and glucose intolerance after long-term high-fat diet (HFD) feeding. In this study, at a time point in the feeding regimen where WT mice are only mildly glucose intolerant, transcriptomics analyses reveal islets from HFD-fed Gαz KO mice have a dramatically altered gene expression pattern as compared with WT HFD-fed mice, with entire gene pathways not only being more strongly upregulated or downregulated versus control-diet fed groups but actually reversed in direction. Genes involved in the “pancreatic secretion” pathway are the most strongly differentially regulated: a finding that correlates with enhanced islet insulin secretion and decreased glucagon secretion at the study end. The protection of Gαz-null mice from HFD-induced diabetes is beta-cell autonomous, as beta cell–specific Gαz-null mice phenocopy the full-body KOs. The glucose-stimulated and incretin-potentiated insulin secretion response of islets from HFD-fed beta cell–specific Gαz-null mice is significantly improved as compared with islets from HFD-fed WT controls, which, along with no impact of Gαz loss or HFD feeding on beta-cell proliferation or surrogates of beta-cell mass, supports a secretion-specific mechanism. Gαz is coupled to the prostaglandin EP3 receptor in pancreatic beta cells. We confirm the EP3γ splice variant has both constitutive and agonist-sensitive activity to inhibit cAMP production and downstream beta-cell function, with both activities being dependent on the presence of beta-cell Gαz.
Collapse
Affiliation(s)
- Michael D Schaid
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Interdepartmental Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cara L Green
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Darby C Peter
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shannon J Gallagher
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Erin Guthery
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathryn A Carbajal
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jeffrey M Harrington
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Grant M Kelly
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Austin Reuter
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Molly L Wehner
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Allison L Brill
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joshua C Neuman
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Interdepartmental Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dudley W Lamming
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Interdepartmental Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Interdepartmental Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Cell and Regenerative Biology, University of Wisconsin- Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
25
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
26
|
Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020; 115:62-84. [PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, PJ 47500, Selangor, Malaysia.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
27
|
Wu T, Zhang Q, Wu S, Hu W, Zhou T, Li K, Liu D, Gu HF, Zheng H, Zhu Z, Li L, Yang G. CILP-2 is a novel secreted protein and associated with insulin resistance. J Mol Cell Biol 2020; 11:1083-1094. [PMID: 30896018 PMCID: PMC6934158 DOI: 10.1093/jmcb/mjz016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Genetic association studies have implicated that cartilage intermediate layer protein 2 (CILP-2) confers the risk susceptibility for type 2 diabetes (T2DM). However, it is still unknown whether CILP-2 is involved in the regulation of glucose homeostasis and insulin resistance (IR). In the current study, we initially observed that CILP-2 as a secreted protein was detected in both conditioned medium and lysates of cells transfected with an overexpressed vector. We then found that circulating CILP-2 levels had a progressive increase from normal to impaired glucose tolerance (a pre-diabetic status) and then to diabetes, which was correlated positively with waist-to-hip ratio, triglyceride, fasting blood glucose, 2-h blood glucose after glucose overload, HbA1c, fasting insulin, 2-h plasma insulin after glucose overload, and homeostasis model assessment of insulin resistance but negatively with HDL-C. CILP-2 expression was increased in the liver and muscle but decreased in adipose tissues of obese mice or T2DM patients. Furthermore, we demonstrated that CILP-2 circulating levels were affected by OGTT and Exenatide. CILP-2 overexpression resulted in impaired glucose tolerance and hepatic IR in vivo and increased PEPCK expression whereas suppressed phosphorylation of insulin receptor and Akt kinase in vitro. Based on these findings, we have identified a direct interaction between CILP-2 and PEPCK and suggested that CILP-2 plays an important role in the regulation of hepatic glucose production.
Collapse
Affiliation(s)
- Tong Wu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Qin Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Shaobo Wu
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenjing Hu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Tingting Zhou
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Ke Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Ling Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| |
Collapse
|
28
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
29
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
30
|
Vianello E, Dozio E, Bandera F, Froldi M, Micaglio E, Lamont J, Tacchini L, Schmitz G, Corsi Romanelli MM. Correlative Study on Impaired Prostaglandin E2 Regulation in Epicardial Adipose Tissue and its Role in Maladaptive Cardiac Remodeling via EPAC2 and ST2 Signaling in Overweight Cardiovascular Disease Subjects. Int J Mol Sci 2020; 21:ijms21020520. [PMID: 31947646 PMCID: PMC7014202 DOI: 10.3390/ijms21020520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/12/2022] Open
Abstract
There is recent evidence that the dysfunctional responses of a peculiar visceral fat deposit known as epicardial adipose tissue (EAT) can directly promote cardiac enlargement in the case of obesity. Here, we observed a newer molecular pattern associated with LV dysfunction mediated by prostaglandin E2 (PGE2) deregulation in EAT in a cardiovascular disease (CVD) population. A series of 33 overweight CVD males were enrolled and their EAT thickness, LV mass, and volumes were measured by echocardiography. Blood, plasma, EAT, and SAT biopsies were collected for molecular and proteomic assays. Our data show that PGE2 biosynthetic enzyme (PTGES-2) correlates with echocardiographic parameters of LV enlargement: LV diameters, LV end diastolic volume, and LV masses. Moreover, PTGES-2 is directly associated with EPAC2 gene (r = 0.70, p < 0.0001), known as a molecular inducer of ST2/IL-33 mediators involved in maladaptive heart remodelling. Furthermore, PGE2 receptor 3 (PTEGER3) results are downregulated and its expression is inversely associated with ST2/IL-33 expression. Contrarily, PGE2 receptor 4 (PTGER4) is upregulated in EAT and directly correlates with ST2 molecular expression. Our data suggest that excessive body fatness can shift the EAT transcriptome to a pro-tissue remodelling profile, may be driven by PGE2 deregulation, with consequent promotion of EPAC2 and ST2 signalling.
Collapse
Affiliation(s)
- Elena Vianello
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-02-50315342
| | - Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
| | - Francesco Bandera
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
- Cardiology University Department, Heart Failure Unit, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Marco Froldi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Internal Medicine Unit IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Emanuele Micaglio
- U.O.C. SMEL-1 of Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy;
| | - John Lamont
- Randox Laboratories LTD, R&D, Crumlin-Antrim, Belfast, BT29, Northen Ireland, UK
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
- U.O.C. SMEL-1 of Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy;
| |
Collapse
|
31
|
Chan PC, Liao MT, Hsieh PS. The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance. Int J Mol Sci 2019; 20:ijms20133115. [PMID: 31247902 PMCID: PMC6651192 DOI: 10.3390/ijms20133115] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity and insulin resistance are two major risk factors for the development of metabolic syndrome, type 2 diabetes and associated cardiovascular diseases (CVDs). Cyclooxygenase (COX), a rate-limiting enzyme responsible for the biosynthesis of prostaglandins (PGs), exists in two isoforms: COX-1, the constitutive form, and COX-2, mainly the inducible form. COX-2 is the key enzyme in eicosanoid metabolism that converts eicosanoids into a number of PGs, including PGD2, PGE2, PGF2α, and prostacyclin (PGI2), all of which exert diverse hormone-like effects via autocrine or paracrine mechanisms. The COX-2 gene and immunoreactive proteins have been documented to be highly expressed and elevated in adipose tissue (AT) under morbid obesity conditions. On the other hand, the environmental stress-induced expression and constitutive over-expression of COX-2 have been reported to play distinctive roles under different pathological and physiological conditions; i.e., over-expression of the COX-2 gene in white AT (WAT) has been shown to induce de novo brown AT (BAT) recruitment in WAT and then facilitate systemic energy expenditure to protect mice against high-fat diet-induced obesity. Hepatic COX-2 expression was found to protect against diet-induced steatosis, obesity, and insulin resistance. However, COX-2 activation in the epidydimal AT is strongly correlated with the development of AT inflammation, insulin resistance, and fatty liver in high-fat-diet-induced obese rats. This review will provide updated information regarding the role of COX-2-derived signals in the regulation of energy metabolism and the pathogenesis of obesity and MS.
Collapse
Affiliation(s)
- Pei-Chi Chan
- Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Po-Shiuan Hsieh
- Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan.
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan.
| |
Collapse
|
32
|
Pierre C, Guillebaud F, Airault C, Baril N, Barbouche R, Save E, Gaigé S, Bariohay B, Dallaporta M, Troadec JD. Invalidation of Microsomal Prostaglandin E Synthase-1 (mPGES-1) Reduces Diet-Induced Low-Grade Inflammation and Adiposity. Front Physiol 2018; 9:1358. [PMID: 30333759 PMCID: PMC6176076 DOI: 10.3389/fphys.2018.01358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
Chronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity. Because of its properties, prostaglandin E2 (PGE2), an emblematic inflammatory mediator, has been proposed as an actor linking inflammation and obesity. Indeed, PGE2 is involved in mechanisms that are dysregulated in obesity such as lipolysis and adipogenesis. Microsomal prostaglandin E synthase-1 (mPGES-1) is an enzyme, which specifically catalyzes the final step of PGE2 biosynthesis. Interestingly, mPGES-1 invalidation dramatically alters the production of PGE2 during inflammation. In the present work, we sought to determine whether mPGES-1 could contribute to inflammation associated with obesity. To this end, we analyzed the energy metabolism of mPGES-1 deficient mice (mPGES-1-/-) and littermate controls, fed with a high-fat diet. Our data showed that mPGES-1-/- mice exhibited resistance to diet-induced obesity when compared to wild-type littermates. mPGES-1-/- mice fed with a high-fat diet, showed a lower body weight gain and a reduced adiposity, which were accompanied by a decrease in adipose tissues inflammation. We also observed an increase in energy expenditures in mPGES-1-/- mice fed with a high-fat diet without any changes in activity and browning process. Altogether, these data suggest that mPGES-1 inhibition may prevent diet-induced obesity.
Collapse
Affiliation(s)
- Clément Pierre
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France.,Biomeostasis CRO, La Penne-sur-Huveaune, France
| | - Florent Guillebaud
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Coraline Airault
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Nathalie Baril
- CNRS, Fédération de Recherche 3C FR 3512, Aix-Marseille Université, Marseille, France
| | - Rym Barbouche
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Etienne Save
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Stéphanie Gaigé
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | | | - Michel Dallaporta
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Jean-Denis Troadec
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| |
Collapse
|
33
|
Application of a dye-based mitochondrion-thermometry to determine the receptor downstream of prostaglandin E 2 involved in the regulation of hepatocyte metabolism. Sci Rep 2018; 8:13065. [PMID: 30166566 PMCID: PMC6117307 DOI: 10.1038/s41598-018-31356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
Temperature distributions inside a living cell reflect the thermodynamics and functions of cellular components. We used a newly-developed method of mitochondrial thermometry based on Rhodamine B methyl ester, which equilibrates as a thermosensitive mixture of nonfluorescent and fluorescent resonance forms. Prostaglandin E2 (PGE2) is released from hepatic non-parenchymal Kupffer cells and acts as an inflammatory factor to impact various functions of hepatocytes. The activity of PGE2 on energy mechanism of hepatocytes has not been fully elucidated and in particular, which PGE2 receptor mediates the functions has been elusive. We identified EP4 as the major receptor of PGE2 via our mitochondrion-thermometry approach and then substantiated this receptor's role in hepatic metabolism. We discovered that PGE2 is able to decrease intracellular temperature of hepatocytes, via increasing some lipogenic genes' expressions, hampering lipolysis and mitochondrial β-oxidation, reducing intracellular ATP level and elevating cAMP level through EP4 receptor. The redox status of hepatocytes represented by FAD vs FAD + NADH ratio is influenced by PGE2 in an EP4 receptor-dependent manner. Collectively, these data demonstrate that PGE2 regulates metabolism of hepatocytes mainly through EP4 receptor.
Collapse
|
34
|
Involvement of microsomal prostaglandin E synthase-1 (mPGES-1) in diet-induced adiposity. Proc Nutr Soc 2018. [DOI: 10.1017/s0029665118002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Schaid MD, Wisinski JA, Kimple ME. The EP3 Receptor/G z Signaling Axis as a Therapeutic Target for Diabetes and Cardiovascular Disease. AAPS J 2017; 19:1276-1283. [PMID: 28584908 PMCID: PMC7934137 DOI: 10.1208/s12248-017-0097-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease is a common co-morbidity found with obesity-linked type 2 diabetes. Current pharmaceuticals for these two diseases treat each of them separately. Yet, diabetes and cardiovascular disease share molecular signaling pathways that are increasingly being understood to contribute to disease pathophysiology, particularly in pre-clinical models. This review will focus on one such signaling pathway: that mediated by the G protein-coupled receptor, Prostaglandin E2 Receptor 3 (EP3), and its associated G protein in the insulin-secreting beta-cell and potentially the platelet, Gz. The EP3/Gz signaling axis may hold promise as a dual target for type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Michael D Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, 4148 UW Medical Foundation Centennial Building, 1685 Highland Ave, Madison, Wisconsin, 53705, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jaclyn A Wisinski
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michelle E Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, 4148 UW Medical Foundation Centennial Building, 1685 Highland Ave, Madison, Wisconsin, 53705, USA.
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA.
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
36
|
Mo D, Yu K, Chen H, Chen L, Liu X, He Z, Cong P, Chen Y. Transcriptome Landscape of Porcine Intramuscular Adipocytes during Differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6317-6328. [PMID: 28673084 DOI: 10.1021/acs.jafc.7b02039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The adipocyte differentiation process, controlled by a tightly regulated transcriptional cascade, contributes partly to determine intramuscular adipose tissue (IMAT) mass, which is associated with meat quality in food animals, as well as obesity and related metabolic complications in human. Thus, this study aimed to characterize genes critical for intramuscular preadipocyte differentiation. Primary intramuscular preadipocytes were isolated from pigs, and mRNA profiles were performed at several key points (0 h, 4 h, 8 h, 1 day, 2 days, and 6 days) during adipogenesis using microarrays. By gene functional analysis, we identified numerous differentially expressed genes among distinct stages of intramuscular preadipocyte differentiation, which included numbers of transcription factors in the early stages. We obtained 4 clusters of differential gene expression pattern, including crucial candidate genes associated with adipogenesis of intramuscular adipocytes. Further, we demonstrated that POSTN and FGFR4 suppressed, whereas AKR1CL1 promoted, the expression of adipogenic marker PPARγ and C/EBPα. Taken together, our data delineated the transcriptome landscape during porcine intramuscular preadipocyte differentiation, which provided a valuable resource for finding the genes responsible for IMAT formation.
Collapse
Affiliation(s)
- Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Kaifan Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| |
Collapse
|
37
|
Liu G, Li M, Xu Y, Wu S, Saeed M, Sun C. ColXV promotes adipocyte differentiation via inhibiting DNA methylation and cAMP/PKA pathway in mice. Oncotarget 2017; 8:60135-60148. [PMID: 28947959 PMCID: PMC5601127 DOI: 10.18632/oncotarget.18550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/04/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular matrix (ECM), as an essential component of adipose tissue, not only provides mechanical support for adipocyte growth, but also participates in ECM-adipocyte communication via various secreted proteins, including highly enriched collagens. Collagen XV (ColXV) is a secreted non-fibrillar collagen within ECM Basement Membrane (BM) zones and well recognized as a tumor suppressor. However, the role of ColXV in adipose tissue is still unknown. In this study, high fat diet (HFD) fed mice were used as obese model, in which we deeply investigated the interaction between ColXV and adipocyte differentiation or adipose metabolism. We found great elevated ColXV expression and positive effect of ColXV on lipid deposition during adipocyte differentiation or obesity both in vitro and in vivo. cAMP response element binding protein (CREB) is a cellular transcription factor that can inhibit adipogenesis and promote lipolysis. Here we proposed ColXV as a newly discovered downstream gene of CREB. We further proved that CREB can repress adipocyte differentiation and enhance lipolysis by negatively regulating ColXV transcription. Mechanistic studies showed ColXV enhanced adipocyte differentiation and lipid deposition through reducing its DNA methylation and repressing the cAMP/PKA signaling pathway. Collectively, our study identified ColXV as a novel downstream gene for CREB and could promote adipocyte differentiation, inhibit lipolysis through repressing cAMP/PKA signaling pathway and positively regulating adipogenic markers expressions by repressing the activity of maintenance methyltransferase Dnmt1. Our data discovered a novel role of ColXV in adipocyte differentiation and provide insight into obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Guannv Liu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Song Wu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|