1
|
Semancik CS, Zhao N, Koestler DC, Boerwinkle E, Bressler J, Buchsbaum RJ, Kelsey KT, Platz EA, Michaud DS. DNA Methylation-Derived Immune Cell Proportions and Cancer Risk in Black Participants. CANCER RESEARCH COMMUNICATIONS 2024; 4:2714-2723. [PMID: 39324671 PMCID: PMC11484294 DOI: 10.1158/2767-9764.crc-24-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
SIGNIFICANCE This study describes associations between immune cell types and cancer risk in a Black population; elevated regulatory T-cell proportions that were associated with increased overall cancer and lung cancer risk, and elevated memory B-cell proportions that were associated with increased prostate and all cancer risk.
Collapse
Affiliation(s)
- Christopher S. Semancik
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
| | - Naisi Zhao
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
| | - Devin C. Koestler
- The University of Kansas Cancer Center, Kansas City, Kansas.
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas.
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Rachel J. Buchsbaum
- Division of Hematology and Oncology, Tufts Medical Center, Boston, Massachusetts.
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island.
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
- Department of Epidemiology, Brown University, Providence, Rhode Island.
| |
Collapse
|
2
|
Tomusiak A, Floro A, Tiwari R, Riley R, Matsui H, Andrews N, Kasler HG, Verdin E. Development of an epigenetic clock resistant to changes in immune cell composition. Commun Biol 2024; 7:934. [PMID: 39095531 PMCID: PMC11297166 DOI: 10.1038/s42003-024-06609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG methylation values to predict chronological or biological age. Increases in predicted epigenetic age relative to chronological age (epigenetic age acceleration) are connected to aging-associated pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with age. Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an epigenetic age 15-20 years younger than effector memory CD8+ T cells from the same individual. Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive increase in epigenetic age, indicating that current epigenetic clocks measure two independent variables, aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence in vitro and age reversal during OSKM-mediated reprogramming.
Collapse
Affiliation(s)
- Alan Tomusiak
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ariel Floro
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Hiroyuki Matsui
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Nicolas Andrews
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Herbert G Kasler
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA.
| |
Collapse
|
3
|
Liu J, Qu Y, Zhao Y, Liang F, Ji L, Wang Z, Li J, Zang Z, Huang H, Zhang J, Gu W, Dai L, Yang R. CCDC12 gene methylation in peripheral blood as a potential biomarker for breast cancer detection. Biomarkers 2024; 29:265-275. [PMID: 38776382 DOI: 10.1080/1354750x.2024.2358302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Aberrant DNA methylation has been identified as biomarkers for breast cancer detection. Coiled-coil domain containing 12 gene (CCDC12) implicated in tumorigenesis. This study aims to investigate the potential of blood-based CCDC12 methylation for breast cancer detection. METHODS DNA methylation level of CpG sites (Cytosine-phosphate Guanine dinucleotides) in CCDC12 gene was measured by mass spectrometry in 255 breast cancer patients, 155 patients with benign breast nodules and 302 healthy controls. The association between CCDC12 methylation and breast cancer risk was evaluated by logistic regression and receiver operating characteristic curve analysis. RESULTS A total of eleven CpG sites were analyzed. The CCDC12 methylation levels were higher in breast cancer patients. Compared to the lowest tertile of methylation level in CpG_6,7, CpG_10 and CpG_11, the highest quartile was associated with 82, 91 and 95% increased breast cancer risk, respectively. The CCDC12 methylation levels were associated with estrogen receptor (ER) and human epidermal growth factor 2 (HER2) status. In ER-negative and HER2-positive (ER-/HER2+) breast cancer subtype, the combination of four sites CpG_2, CpG_5, CpG_6,7 and CpG_11 methylation levels could distinguish ER-/HER2+ breast cancer from the controls (AUC = 0.727). CONCLUSION The hypermethylation levels of CCDC12 in peripheral blood could be used for breast cancer detection.
Collapse
Affiliation(s)
- Jingjing Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yunhui Qu
- Department of Clinical Laboratory in the First Affiliated Hospital & Key Clinical Laboratory of Henan Province, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutong Zhao
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Feifei Liang
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Longtao Ji
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Zhi Wang
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Jinyu Li
- Department of Otology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zishan Zang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Ruiz-De La Cruz M, Martínez-Gregorio H, Estela Díaz-Velásquez C, Ambriz-Barrera F, Resendiz-Flores NG, Gitler-Weingarten R, Rojo-Castillo MP, Pradda D, Oliver J, Perdomo S, Gómez-García EM, De La Cruz-Montoya AH, Terrazas LI, Torres-Mejía G, Hernández-Hernández FDLC, Vaca-Paniagua F. Methylation marks in blood DNA reveal breast cancer risk in patients fulfilling hereditary disease criteria. NPJ Precis Oncol 2024; 8:136. [PMID: 38898118 PMCID: PMC11187128 DOI: 10.1038/s41698-024-00611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Less than 15-20% of patients who meet the criteria for hereditary breast and ovarian cancer (HBOC) carry pathogenic coding genetic mutations, implying that other molecular mechanisms may contribute to the increased risk of this condition. DNA methylation in peripheral blood has been suggested as a potential epigenetic marker for the risk of breast cancer (BC). We aimed to discover methylation marks in peripheral blood associated with BC in 231 pre-treatment BC patients meeting HBOC criteria, testing negative for coding pathogenic variants, and 156 healthy controls, through methylation analysis by targeted bisulfite sequencing on 18 tumor suppressor gene promoters (330 CpG sites). We found i) hypermethylation in EPCAM (17 CpG sites; p = 0.017) and RAD51C (27 CpG sites; p = 0.048); ii) hypermethylation in 36 CpG-specific sites (FDR q < 0.05) in the BC patients; iii) four specific CpG sites were associated with a higher risk of BC (FDR q < 0.01, Bonferroni p < 0.001): cg89786999-FANCI (OR = 1.65; 95% CI:1.2-2.2), cg23652916-PALB2 (OR = 2.83; 95% CI:1.7-4.7), cg47630224-MSH2 (OR = 4.17; 95% CI:2.1-8.5), and cg47596828-EPCAM (OR = 1.84; 95% CI:1.5-2.3). Validation of cg47630224-MSH2 methylation in one Australian cohort showed an association with 3-fold increased BC risk (AUC: 0.929; 95% CI: 0.904-0.955). Our findings suggest that four DNA methylation CpG sites may be associated with a higher risk of BC, potentially serving as biomarkers in patients without detectable coding mutations.
Collapse
Affiliation(s)
- Miguel Ruiz-De La Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, 54090, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54090, Mexico
- Centro de Investigación y de Estudios Avanzados IPN (CINVESTAV). Avenida Instituto Politécnico Nacional #2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Departamento de Infectómica y Patogénesis Molecular, Ciudad de México, Mexico
| | - Héctor Martínez-Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, 54090, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54090, Mexico
| | - Clara Estela Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, 54090, Mexico
| | - Fernando Ambriz-Barrera
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, 54090, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54090, Mexico
| | - Norma Gabriela Resendiz-Flores
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, 54090, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54090, Mexico
| | | | | | - Didier Pradda
- Institute for Health Equity Research, Department of Health Science and Policy and Department of Environmental Medicine and Public Health at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Javier Oliver
- Medical Oncology Service, Hospitales Universitarios Regional y Virgen de la Victoria, Institute of Biomedical Research in Malaga, CIMES, University of Málaga, 29010, Málaga, Spain
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 150 Cours Albert Thomas, 69372, Lyon, France
| | | | | | - Luis Ignacio Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, 54090, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54090, Mexico
| | | | - Fidel de la Cruz Hernández-Hernández
- Centro de Investigación y de Estudios Avanzados IPN (CINVESTAV). Avenida Instituto Politécnico Nacional #2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Departamento de Infectómica y Patogénesis Molecular, Ciudad de México, Mexico.
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, 54090, Mexico.
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54090, Mexico.
| |
Collapse
|
5
|
Hu Q, Mao Y, Lan H, Wei Y, Chen Y, Ye Q, Che H. Value of altered methylation patterns of genes RANBP3, LCP2 and GRAP2 in cfDNA in breast cancer diagnosis. J Med Biochem 2024; 43:387-396. [PMID: 39139156 PMCID: PMC11318043 DOI: 10.5937/jomb0-47507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 08/15/2024] Open
Abstract
Background The purpose of this study was to investigate the potential of plasma cfDNA methylation patterns in reflecting tumour methylation changes, focusing on three candidate sites, cg02469161, cg11528914, and cg20131654. These sites were selected for verification, with a particular emphasis on their association with breast cancer. Methods We conducted a comprehensive analysis of 850k whole-methylation sequencing data to identify potential markers for breast cancer detection. Subsequently, we investigated the methylation status of the genes Ran-binding protein 3 (RANBP3), Lymphocyte cytoplasmic protein 2 (LCP2), and GRB2 related adaptor protein 2 (GRAP2), situated at the specified sites, using cancer and canceradjacent tissues from 17 breast cancer patients. We also examined the methylation patterns in different molecular subtypes and pathological grades of breast cancer. Additionally, we compared the methylation levels of these genes in plasma cfDNA to their performance in tissues. Results Our analysis revealed that RANBP3, LCP2, and GRAP2 genes exhibited significant methylation differences between cancer and cancer-adjacent tissues. In breast cancer, these genes displayed diagnostic efficiencies of 91.0%, 90.6%, and 92.2%, respectively. Notably, RANBP3 showed a tendency towards lower methylation in HR+ breast cancer, and LCP2 methylation was correlated with tumour malignancy. Importantly, the methylation levels of these three genes in plasma cfDNA closely mirrored their tissue counterparts, with diagnostic efficiencies of 83.3%, 83.9%, and 77.6% for RANBP3, LCP2, and GRAP2, respectively. Conclusions Our findings propose that the genes RANBP3, LCP2, and GRAP2, located at the identified methylation sites, hold significant potential as molecular markers in blood for the supplementary diagnosis of breast cancer. This study lays the groundwork for a more in-depth investigation into the changes in gene methylation patterns in circulating free DNA (cfDNA) for the early detection not only of breast cancer but also for various other types of cancer.
Collapse
Affiliation(s)
- Qin Hu
- Zigong Maternal and Child Health Hospital, Department of Clinical Laboratory, Zigong, China
| | - Yu Mao
- Zigong First People's Hospital, Department of Thyroid and Breast Surgery, Zigong, China
| | - Haomiao Lan
- Zigong First People's Hospital, Department of Thyroid and Breast Surgery, Zigong, China
| | - Yi Wei
- Zigong Maternal and Child Health Hospital, Department of Clinical Laboratory, Zigong, China
| | - Yuehua Chen
- Zigong Maternal and Child Health Hospital, Department of Clinical Laboratory, Zigong, China
| | - Qiang Ye
- Zigong Maternal and Child Health Hospital, Department of Clinical Laboratory, Zigong, China
| | - Hongying Che
- Zigong First People's Hospital, Department of Thyroid and Breast Surgery, Zigong, China
| |
Collapse
|
6
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
7
|
Lee NY, Hum M, Tan GP, Seah AC, Ong PY, Kin PT, Lim CW, Samol J, Tan NC, Law HY, Tan MH, Lee SC, Ang P, Lee ASG. Machine learning unveils an immune-related DNA methylation profile in germline DNA from breast cancer patients. Clin Epigenetics 2024; 16:66. [PMID: 38750495 PMCID: PMC11094860 DOI: 10.1186/s13148-024-01674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND There is an unmet need for precise biomarkers for early non-invasive breast cancer detection. Here, we aimed to identify blood-based DNA methylation biomarkers that are associated with breast cancer. METHODS DNA methylation profiling was performed for 524 Asian Chinese individuals, comprising 256 breast cancer patients and 268 age-matched healthy controls, using the Infinium MethylationEPIC array. Feature selection was applied to 649,688 CpG sites in the training set. Predictive models were built by training three machine learning models, with performance evaluated on an independent test set. Enrichment analysis to identify transcription factors binding to regions associated with the selected CpG sites and pathway analysis for genes located nearby were conducted. RESULTS A methylation profile comprising 51 CpGs was identified that effectively distinguishes breast cancer patients from healthy controls achieving an AUC of 0.823 on an independent test set. Notably, it outperformed all four previously reported breast cancer-associated methylation profiles. Enrichment analysis revealed enrichment of genomic loci associated with the binding of immune modulating AP-1 transcription factors, while pathway analysis of nearby genes showed an overrepresentation of immune-related pathways. CONCLUSION This study has identified a breast cancer-associated methylation profile that is immune-related to potential for early cancer detection.
Collapse
Affiliation(s)
- Ning Yuan Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Guek Peng Tan
- DNA Diagnostic and Research Laboratory, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Ai Choo Seah
- SingHealth Polyclinics, 167 Jalan Bukit Merah Connection One (Tower 5), Singapore, 150167, Singapore
| | - Pei-Yi Ong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Patricia T Kin
- SingHealth Polyclinics, 167 Jalan Bukit Merah Connection One (Tower 5), Singapore, 150167, Singapore
| | - Chia Wei Lim
- Department of Personalised Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Jens Samol
- Medical Oncology Department, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ngiap Chuan Tan
- SingHealth Polyclinics, 167 Jalan Bukit Merah Connection One (Tower 5), Singapore, 150167, Singapore
- SingHealth Duke-NUS Family Medicine Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hai-Yang Law
- DNA Diagnostic and Research Laboratory, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Min-Han Tan
- Lucence Diagnostics Pte Ltd, 211 Henderson Road, Singapore, 159552, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
- Cancer Science Institute, Singapore (CSI), National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Peter Ang
- Oncocare Cancer Centre, Gleneagles Medical Centre, 6 Napier Road, Singapore, 258499, Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
8
|
Semancik CS, Zhao N, Koestler DC, Boerwinkle E, Bressler J, Buchsbaum RJ, Kelsey KT, Platz EA, Michaud DS. DNA Methylation-Derived Immune Cell Proportions and Cancer Risk, Including Lung Cancer, in Black Participants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307118. [PMID: 38766207 PMCID: PMC11100922 DOI: 10.1101/2024.05.09.24307118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Prior cohort studies assessing cancer risk based on immune cell subtype profiles have predominantly focused on White populations. This limitation obscures vital insights into how cancer risk varies across race. Immune cell subtype proportions were estimated using deconvolution based on leukocyte DNA methylation markers from blood samples collected at baseline on participants without cancer in the Atherosclerosis Risk in Communities (ARIC) Study. Over a mean of 17.5 years of follow-up, 668 incident cancers were diagnosed in 2,467 Black participants. Cox proportional hazards regression was used to examine immune cell subtype proportions and overall cancer incidence and site-specific incidence (lung, breast, and prostate cancers). Higher T regulatory cell proportions were associated with statistically significantly higher lung cancer risk (hazard ratio = 1.22, 95% confidence interval = 1.06-1.41 per percent increase). Increased memory B cell proportions were associated with significantly higher risk of prostate cancer (1.17, 1.04-1.33) and all cancers (1.13, 1.05-1.22). Increased CD8+ naïve cell proportions were associated with significantly lower risk of all cancers in participants ≥55 years (0.91, 0.83-0.98). Other immune cell subtypes did not display statistically significant associations with cancer risk. These results in Black participants align closely with prior findings in largely White populations. Findings from this study could help identify those at high cancer risk and outline risk stratifying to target patients for cancer screening, prevention, and other interventions. Further studies should assess these relationships in other cancer types, better elucidate the interplay of B cells in cancer risk, and identify biomarkers for personalized risk stratification.
Collapse
Affiliation(s)
- Christopher S. Semancik
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Naisi Zhao
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Devin C. Koestler
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
9
|
Xu J, Gao H, Guan X, Meng J, Ding S, Long Q, Yi W. Circulating tumor DNA: from discovery to clinical application in breast cancer. Front Immunol 2024; 15:1355887. [PMID: 38745646 PMCID: PMC11091288 DOI: 10.3389/fimmu.2024.1355887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Breast cancer (BC) stands out as the cancer with the highest incidence of morbidity and mortality among women worldwide, and its incidence rate is currently trending upwards. Improving the efficiency of breast cancer diagnosis and treatment is crucial, as it can effectively reduce the disease burden. Circulating tumor DNA (ctDNA) originates from the release of tumor cells and plays a pivotal role in the occurrence, development, and metastasis of breast cancer. In recent years, the widespread application of high-throughput analytical technology has made ctDNA a promising biomarker for early cancer detection, monitoring minimal residual disease, early recurrence monitoring, and predicting treatment outcomes. ctDNA-based approaches can effectively compensate for the shortcomings of traditional screening and monitoring methods, which fail to provide real-time information and prospective guidance for breast cancer diagnosis and treatment. This review summarizes the applications of ctDNA in various aspects of breast cancer, including screening, diagnosis, prognosis, treatment, and follow-up. It highlights the current research status in this field and emphasizes the potential for future large-scale clinical applications of ctDNA-based approaches.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Jiahao Meng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Shirong Ding
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| |
Collapse
|
10
|
Lagarde CB, Kavalakatt J, Benz MC, Hawes ML, Arbogast CA, Cullen NM, McConnell EC, Rinderle C, Hebert KL, Khosla M, Belgodere JA, Hoang VT, Collins-Burow BM, Bunnell BA, Burow ME, Alahari SK. Obesity-associated epigenetic alterations and the obesity-breast cancer axis. Oncogene 2024; 43:763-775. [PMID: 38310162 DOI: 10.1038/s41388-024-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically. In this review, the epigenetic alterations that occur in obesity, including DNA methylation, histone, and chromatin modification, accelerated epigenetic age, carcinogenesis, metastasis, and tumor microenvironment modulation, are discussed. Delineating the relationship between obesity and epigenetic regulation is vital to furthering our understanding of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Courtney B Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joachim Kavalakatt
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Megan C Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mackenzie L Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Carter A Arbogast
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicole M Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emily C McConnell
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Caroline Rinderle
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Katherine L Hebert
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Maninder Khosla
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA
| | - Jorge A Belgodere
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Van T Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Kresovich JK, O’Brien KM, Xu Z, Weinberg CR, Sandler DP, Taylor JA. Circulating Leukocyte Subsets Before and After a Breast Cancer Diagnosis and Therapy. JAMA Netw Open 2024; 7:e2356113. [PMID: 38358741 PMCID: PMC10870180 DOI: 10.1001/jamanetworkopen.2023.56113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Importance Changes in leukocyte composition often precede chronic disease onset. Patients with a history of breast cancer (hereinafter referred to as breast cancer survivors) are at increased risk for subsequent chronic diseases, but the long-term changes in peripheral leukocyte composition following a breast cancer diagnosis and treatment remain unknown. Objective To examine longitudinal changes in peripheral leukocyte composition in women who did and did not develop breast cancer and identify whether differences in breast cancer survivors were associated with specific treatments. Design, Setting, and Participants In this prospective cohort study, paired blood samples were collected from 2315 women enrolled in The Sister Study, a US-nationwide prospective cohort study of 50 884 women, at baseline (July 2003 to March 2009) and follow-up (October 2013 to March 2015) home visits, with a mean (SD) follow-up interval of 7.6 (1.4) years. By design, approximately half of the included women had been diagnosed and treated for breast cancer after enrollment and before the second blood draw. A total of 410 women were included in the present study, including 185 breast cancer survivors and 225 who remained free of breast cancer over a comparable follow-up period. Data were analyzed from April 21 to September 9, 2022. Exposures Breast cancer status and, among breast cancer survivors, cancer treatment type (chemotherapy, radiotherapy, endocrine therapy, or surgery). Main Outcomes and Measures Blood DNA methylation data were generated in 2019 using a genome-wide methylation screening tool and deconvolved to estimate percentages of 12 circulating leukocyte subsets. Results Of the 410 women included in the analysis, the mean (SD) age at enrollment was 56 (9) years. Compared with breast cancer-free women, breast cancer survivors had decreased percentages of circulating eosinophils (-0.45% [95% CI, -0.87% to -0.03%]; P = .03), total CD4+ helper T cells (-1.50% [95% CI, -2.56% to -0.44%]; P = .01), and memory B cells (-0.22% [95% CI, -0.34% to -0.09%]; P = .001) and increased percentages of circulating naive B cells (0.46% [95% CI, 0.17%-0.75%]; P = .002). In breast cancer survivor-only analyses, radiotherapy was associated with decreases in total CD4+ T cell levels, whereas chemotherapy was associated with increases in naive B cell levels. Surgery and endocrine therapy were not meaningfully associated with leukocyte changes. Conclusions and Relevance In this cohort study of 410 women, breast cancer survivors experienced lasting changes in peripheral leukocyte composition compared with women who remained free of breast cancer. These changes may be related to treatment with chemotherapy or radiotherapy and could influence future chronic disease risk.
Collapse
Affiliation(s)
- Jacob K. Kresovich
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Breast Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Clarice R. Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| |
Collapse
|
12
|
Zhang C, Liang S, Zhang H, Wang R, Qiao H. Epigenetic regulation of mRNA mediates the phenotypic plasticity of cancer cells during metastasis and therapeutic resistance (Review). Oncol Rep 2024; 51:28. [PMID: 38131215 PMCID: PMC10777459 DOI: 10.3892/or.2023.8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Plasticity, the ability of cancer cells to transition between differentiation states without genomic alterations, has been recognized as a major source of intratumoral heterogeneity. It has a crucial role in cancer metastasis and treatment resistance. Thus, targeting plasticity holds tremendous promise. However, the molecular mechanisms of plasticity in cancer cells remain poorly understood. Several studies found that mRNA, which acts as a bridge linking the genetic information of DNA and protein, has an important role in translating genotypes into phenotypes. The present review provided an overview of the regulation of cancer cell plasticity occurring via changes in the transcription and editing of mRNAs. The role of the transcriptional regulation of mRNA in cancer cell plasticity was discussed, including DNA‑binding transcriptional factors, DNA methylation, histone modifications and enhancers. Furthermore, the role of mRNA editing in cancer cell plasticity was debated, including mRNA splicing and mRNA modification. In addition, the role of non‑coding (nc)RNAs in cancer plasticity was expounded, including microRNAs, long intergenic ncRNAs and circular RNAs. Finally, different strategies for targeting cancer cell plasticity to overcome metastasis and therapeutic resistance in cancer were discussed.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Siyuan Liang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| | - Hanning Zhang
- Clinical Medical College of Tianjin Medical University, Tianjin 300270, P.R. China
| | - Ruoxi Wang
- Sophomore, Farragut School #3 of Yangtai Road, Tianjin 300042, P.R. China
| | - Huanhuan Qiao
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| |
Collapse
|
13
|
Chatterjee K, Mal S, Ghosh M, Chattopadhyay NR, Roy SD, Chakraborty K, Mukherjee S, Aier M, Choudhuri T. Blood-based DNA methylation in advanced Nasopharyngeal Carcinoma exhibited distinct CpG methylation signature. Sci Rep 2023; 13:22086. [PMID: 38086861 PMCID: PMC10716134 DOI: 10.1038/s41598-023-45001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
The TNM staging system is currently used to detect cancer stages. Regardless, a small proportion of cancer patients recur even after therapy, suggesting more specific molecular tools are required to justify the stage-specific detection and prompt cancer diagnosis. Thus, we aimed to explore the blood-based DNA methylation signature of metastatic nasopharyngeal carcinoma (NPC) to establish a holistic methylation biomarker panel. For the identification of methylation signature, the EPIC BeadChip-based array was performed. Comparative analysis for identifying unique probes, validation, and functional studies was investigated by analyzing GEO and TCGA datasets. We observed 4093 differentially methylated probes (DMPs), 1232 hydroxymethylated probes, and 25 CpG islands. Gene expression study revealed both upregulated and downregulated genes. Correlation analysis suggested a positive (with a positive r, p ≤ 0.05) and negative (with a negative r, p ≤ 0.05) association with different cancers. TFBS analysis exhibited the binding site for many TFs. Furthermore, gene enrichment analysis indicated the involvement of those identified genes in biological pathways. However, blood-based DNA methylation data uncovered a distinct DNA methylation pattern, which might have an additive role in NPC progression by altering the TFs binding. Moreover, based on tissue-specificity, a variation of correlation between methylation and gene expression was noted in different cancers.
Collapse
Affiliation(s)
- Koustav Chatterjee
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | - Sudipa Mal
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | - Monalisha Ghosh
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | | | - Sankar Deb Roy
- Department of Radiation Oncology, Eden Medical Center, Dimapur, Nagaland, India
| | - Koushik Chakraborty
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | - Syamantak Mukherjee
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | - Moatoshi Aier
- Department of Pathology, Eden Medical Center, Dimapur, Nagaland, India
| | - Tathagata Choudhuri
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235.
| |
Collapse
|
14
|
Kresovich JK, O’Brien KM, Xu Z, Weinberg CR, Sandler DP, Taylor JA. Changes in methylation-based aging in women who do and do not develop breast cancer. J Natl Cancer Inst 2023; 115:1329-1336. [PMID: 37467056 PMCID: PMC10637033 DOI: 10.1093/jnci/djad117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Breast cancer survivors have increased incidence of age-related diseases, suggesting that some survivors may experience faster biological aging. METHODS Among 417 women enrolled in the prospective Sister Study cohort, DNA methylation data were generated on paired blood samples collected an average of 7.7 years apart and used to calculate 3 epigenetic metrics of biological aging (PhenoAgeAccel, GrimAgeAccel, and Dunedin Pace of Aging Calculated from the Epigenome [DunedinPACE]). Approximately half (n = 190) the women sampled were diagnosed and treated for breast cancer between blood draws, whereas the other half (n = 227) remained breast cancer-free. Breast tumor characteristics and treatment information were abstracted from medical records. RESULTS Among women who developed breast cancer, diagnoses occurred an average of 3.5 years after the initial blood draw and 4 years before the second draw. After accounting for covariates and biological aging metrics measured at baseline, women diagnosed and treated for breast cancer had higher biological aging at the second blood draw than women who remained cancer-free as measured by PhenoAgeAccel (standardized mean difference [β] = 0.13, 95% confidence interval [CI) = 0.00 to 0.26), GrimAgeAccel (β = 0.14, 95% CI = 0.03 to 0.25), and DunedinPACE (β = 0.37, 95% CI = 0.24 to 0.50). In case-only analyses assessing associations with different breast cancer therapies, radiation had strong positive associations with biological aging (PhenoAgeAccel: β = 0.39, 95% CI = 0.19 to 0.59; GrimAgeAccel: β = 0.29, 95% CI = 0.10 to 0.47; DunedinPACE: β = 0.25, 95% CI = 0.02 to 0.48). CONCLUSIONS Biological aging is accelerated following a breast cancer diagnosis and treatment. Breast cancer treatment modalities appear to differentially contribute to biological aging.
Collapse
Affiliation(s)
- Jacob K Kresovich
- Departments of Cancer Epidemiology & Breast Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katie M O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Moar K, Pant A, Saini V, Pandey M, Maurya PK. Potential diagnostic and prognostic biomarkers for breast cancer: A compiled review. Pathol Res Pract 2023; 251:154893. [PMID: 37918101 DOI: 10.1016/j.prp.2023.154893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer is one of the major reason for death of women worldwide. As per the International Agency for Research on Cancer (IARC) statistics, the number of cases of breast cancer is increasing year by year in many parts of the world. As per the recent global cancer burden figures, in 2020, there were 2.26 million incidences of breast cancer cases and it is one of the main causes of mortality due to cancer in women in the world. Biomarkers of breast cancer would prove to be very beneficial to screen women who are at higher risk and for detection of disease recurrence. Here, studies carried out on biomarkers of breast cancer and susceptibility to the disease have been reviewed. Various databases like Google Scholar, ScienceDirect and PubMed have been used for searching and majorly literature from the last 10 years have been considered. Potential biomarkers of breast cancer including blood based angiogenic factors, glycoprotein-based biomarkers, hormone receptor biomarkers and other biomarkers that were identified from various studies have been summarized.
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Vikas Saini
- Department of Vocational Studies & Skill Development, Central University of Haryana, Mahendergarh 123031, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
16
|
Koenigsberg SH, Chang CJ, Ish J, Xu Z, Kresovich JK, Lawrence KG, Kaufman JD, Sandler DP, Taylor JA, White AJ. Air pollution and epigenetic aging among Black and White women in the US. ENVIRONMENT INTERNATIONAL 2023; 181:108270. [PMID: 37890265 PMCID: PMC10872847 DOI: 10.1016/j.envint.2023.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND DNA methylation-based measures of biological aging have been associated with air pollution and may link pollutant exposures to aging-related health outcomes. However, evidence is inconsistent and there is little information for Black women. OBJECTIVE We examined associations of ambient particulate matter <2.5 μm and <10 μm in diameter (PM2.5 and PM10) and nitrogen dioxide (NO2) with DNA methylation, including epigenetic aging and individual CpG sites, and evaluated whether associations differ between Black and non-Hispanic White (NHW) women. METHODS Validated models were used to estimate annual average outdoor residential exposure to PM2.5, PM10, and NO2 in a sample of self-identified Black (n=633) and NHW (n=3493) women residing in the contiguous US. We used sampling-weighted generalized linear regression to examine the effects of pollutants on six epigenetic aging measures (primary: DunedinPACE, GrimAgeAccel, and PhenoAgeAccel; secondary: Horvath intrinsic epigenetic age acceleration [EAA], Hannum extrinsic EAA, and skin & blood EAA) and epigenome-wide associations for individual CpG sites. Wald tests of nested models with and without interaction terms were used to examine effect measure modification by race/ethnicity. RESULTS Black participants had higher median air pollution exposure than NHW participants. GrimAgeAccel was associated with both PM10 and NO2 among Black participants, (Q4 versus Q1, PM10: β=1.09, 95% CI: 0.16-2.03; NO2: β=1.01, 95% CI 0.08-1.94) but not NHW participants (p-for-heterogeneity: PM10=0.10, NO2=0.20). In Black participants, we also observed a monotonic exposure-response relationship between NO2 and DunedinPACE (Q4 versus Q1, NO2: β=0.029, 95% CI: 0.004-0.055; p-for-trend=0.03), which was not observed in NHW participants (p-for-heterogeneity=0.09). In the EWAS, pollutants were significantly associated with differential methylation at 19 CpG sites in Black women and one in NHW women. CONCLUSIONS In a US-wide cohort study, our findings suggest that air pollution is associated with DNA methylation alterations consistent with higher epigenetic aging among Black, but not NHW, women.
Collapse
Affiliation(s)
- Sarah H Koenigsberg
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 123 W. Franklin St., Chapel Hill, NC 27517, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jennifer Ish
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jacob K Kresovich
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA; Departments of Cancer Epidemiology and Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
17
|
Qiu J, Qian D, Jiang Y, Meng L, Huang L. Circulating tumor biomarkers in early-stage breast cancer: characteristics, detection, and clinical developments. Front Oncol 2023; 13:1288077. [PMID: 37941557 PMCID: PMC10628786 DOI: 10.3389/fonc.2023.1288077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Breast cancer is the most common form of cancer in women, contributing to high rates of morbidity and mortality owing to the ability of these tumors to metastasize via the vascular system even in the early stages of progression. While ultrasonography and mammography have enabled the more reliable detection of early-stage breast cancer, these approaches entail high rates of false positive and false negative results Mammograms also expose patients to radiation, raising clinical concerns. As such, there is substantial interest in the development of more accurate and efficacious approaches to diagnosing breast cancer in its early stages when patients are more likely to benefit from curative treatment efforts. Blood-based biomarkers derived from the tumor microenvironment (TME) have frequently been studied as candidate targets that can enable tumor detection when used for patient screening. Through these efforts, many promising biomarkers including tumor antigens, circulating tumor cell clusters, microRNAs, extracellular vesicles, circulating tumor DNA, metabolites, and lipids have emerged as targets that may enable the detection of breast tumors at various stages of progression. This review provides a systematic overview of the TME characteristics of early breast cancer, together with details on current approaches to detecting blood-based biomarkers in affected patients. The limitations, challenges, and prospects associated with different experimental and clinical platforms employed in this context are also discussed at length.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, Jiangsu, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Liming Huang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
18
|
Zhou Y, Zhou X, Sun J, Wang L, Zhao J, Chen J, Yuan S, He Y, Timofeeva M, Spiliopoulou A, Mesa‐Eguiagaray I, Farrington SM, Ding K, Dunlop MG, Qian X, Theodoratou E, Li X. Exploring the cross-cancer effect of smoking and its fingerprints in blood DNA methylation on multiple cancers: A Mendelian randomization study. Int J Cancer 2023; 153:1477-1486. [PMID: 37449541 PMCID: PMC10952911 DOI: 10.1002/ijc.34656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Aberrant smoking-related DNA methylation has been widely investigated as a carcinogenesis mechanism, but whether the cross-cancer epigenetic pathways exist remains unclear. We conducted two-sample Mendelian randomization (MR) analyses respectively on smoking behaviors (age of smoking initiation, smoking initiation, smoking cessation, and lifetime smoking index [LSI]) and smoking-related DNA methylation to investigate their effect on 15 site-specific cancers, based on a genome-wide association study (GWAS) of 1.2 million European individuals and an epigenome-WAS (EWAS) of 5907 blood samples of Europeans for smoking and 15 GWASs of European ancestry for multiple site-specific cancers. Significantly identified CpG sites were further used for colocalization analysis, and those with cross-cancer effect were validated by overlapping with tissue-specific eQTLs. In the genomic MR, smoking measurements of smoking initiation, smoking cessation and LSI were suggested to be casually associated with risk of seven types of site-specific cancers, among which cancers at lung, cervix and colorectum were provided with strong evidence. In the epigenetic MR, methylation at 75 CpG sites were reported to be significantly associated with increased risks of multiple cancers. Eight out of 75 CpG sites were observed with cross-cancer effect, among which cg06639488 (EFNA1), cg12101586 (CYP1A1) and cg14142171 (HLA-L) were validated by eQTLs at specific cancer sites, and cg07932199 (ATXN2) had strong evidence to be associated with cancers of lung (coefficient, 0.65, 95% confidence interval [CI], 0.31-1.00), colorectum (0.90 [0.61, 1.18]), breast (0.31 [0.20, 0.43]) and endometrium (0.98 [0.68, 1.27]). These findings highlight the potential practices targeting DNA methylation-involved cross-cancer pathways.
Collapse
Affiliation(s)
- Yajing Zhou
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xuan Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Centre for Population Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lijuan Wang
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Centre for Global Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
| | - Jianhui Zhao
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jie Chen
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Yazhou He
- Department of Oncology, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Maria Timofeeva
- Danish Institute for Advanced Study (DIAS), Epidemiology, Biostatistics and Biodemography Research UnitInstitute of Public Health, University of Southern DenmarkOdenseDenmark
| | - Athina Spiliopoulou
- Centre for Population Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
| | - Ines Mesa‐Eguiagaray
- Centre for Global Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Colon Cancer Genetics Group, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Xiao Qian
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Evropi Theodoratou
- Centre for Global Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
19
|
Peng S, Zhang X, Wu Y. Potential applications of DNA methylation testing technology in female tumors and screening methods. Biochim Biophys Acta Rev Cancer 2023; 1878:188941. [PMID: 37329994 DOI: 10.1016/j.bbcan.2023.188941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
DNA methylation is a common epigenetic modification, and the current commonly used methods for DNA methylation detection include methylation-specific PCR, methylation-sensitive restriction endonuclease-PCR, and methylation-specific sequencing. DNA methylation plays an important role in genomic and epigenomic studies, and combining DNA methylation with other epigenetic modifications, such as histone modifications, may lead to better DNA methylation. DNA methylation also plays an important role in the development of disease, and analyzing changes in individual DNA methylation patterns can provide individualized diagnostic and therapeutic solutions. Liquid biopsy techniques are also increasingly well established in clinical practice and may provide new methods for early cancer screening. It is important to find new screening methods that are easy to perform, minimally invasive, patient-friendly, and affordable. DNA methylation mechanisms are thought to have an important role in cancer and have potential applications in the diagnosis and treatment of female tumors. This review discussed early detection targets and screening methods for common female tumors such as breast, ovarian, and cervical cancers and discussed advances in the study of DNA methylation in these tumors. Although existing screening, diagnostic, and treatment modalities exist, the high morbidity and mortality rates of these tumors remain challenging.
Collapse
Affiliation(s)
- Shixuan Peng
- Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China
| | - Xinwen Zhang
- Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China
| | - Yongjun Wu
- Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China.
| |
Collapse
|
20
|
Wang C, Amini H, Xu Z, Peralta AA, Yazdi MD, Qiu X, Wei Y, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Baccarelli AA, Schwartz JD. Long-term exposure to ambient fine particulate components and leukocyte epigenome-wide DNA Methylation in older men: the Normative Aging Study. Environ Health 2023; 22:54. [PMID: 37550674 PMCID: PMC10405403 DOI: 10.1186/s12940-023-01007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Epigenome-wide association studies of ambient fine particulate matter (PM2.5) have been reported. However, few have examined PM2.5 components (PMCs) and sources or included repeated measures. The lack of high-resolution exposure measurements is the key limitation. We hypothesized that significant changes in DNA methylation might vary by PMCs and the sources. METHODS We predicted the annual average of 14 PMCs using novel high-resolution exposure models across the contiguous U.S., between 2000-2018. The resolution was 50 m × 50 m in the Greater Boston Area. We also identified PM2.5 sources using positive matrix factorization. We repeatedly collected blood samples and measured leukocyte DNAm with the Illumina HumanMethylation450K BeadChip in the Normative Aging Study. We then used median regression with subject-specific intercepts to estimate the associations between long-term (one-year) exposure to PMCs / PM2.5 sources and DNA methylation at individual cytosine-phosphate-guanine CpG sites. Significant probes were identified by the number of independent degrees of freedom approach, using the number of principal components explaining > 95% of the variation of the DNA methylation data. We also performed regional and pathway analyses to identify significant regions and pathways. RESULTS We included 669 men with 1,178 visits between 2000-2013. The subjects had a mean age of 75 years. The identified probes, regions, and pathways varied by PMCs and their sources. For example, iron was associated with 6 probes and 6 regions, whereas nitrate was associated with 15 probes and 3 regions. The identified pathways from biomass burning, coal burning, and heavy fuel oil combustion sources were associated with cancer, inflammation, and cardiovascular diseases, whereas there were no pathways associated with all traffic. CONCLUSIONS Our findings showed that the effects of PM2.5 on DNAm varied by its PMCs and sources.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Heresh Amini
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Public Health, Faculty of Health and Medical Sciences, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Zongli Xu
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
21
|
Zheng Q, Shi S, Zhang N, Chen H. A novel cuproptosis-related genes model in breast cancer prognosis. Medicine (Baltimore) 2023; 102:e34507. [PMID: 37543823 PMCID: PMC10402946 DOI: 10.1097/md.0000000000034507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous malignancy with an urgent need to build a proper model to predict its prognosis. Cuproptosis is a recently discovered form of cell death, mediated by protein fatty acylation and tightly associated with mitochondrial metabolism. The role of cuproptosis-related genes (CRGs) in BRCA remains to be explored. We aimed to investigate the applications of CRGs in BRCA prognosis in different clinical contexts, including chemotherapy and immunotherapy, via bioinformatics analysis of the messenger RNA profiles and clinical data obtained from public databases. Molecular subtyping of CRGs was performed through consistent clustering analysis. Differentially expressed genes between different CRG clusters were identified. The differentially expressed genes were then used to build a risk assessment model using least absolute shrinkage and selection operator regression to predict patient survival with BRCA. The model was then validated with the data from the Molecular Taxonomy of Breast Cancer International Consortium, GSE96058, and GSE20685. Differences in somatic mutations, copy number variations, hallmark pathways, drug responses, and prognosis of immunotherapy and chemotherapy were analyzed by comparing the high-risk and low-risk groups. Patients with high-risk scores showed worse overall survival than those with low-risk scores. The results indicated significant differences between the 2 groups immune-related biological pathways and the variable immune status. It also suggests the differential sensitivity to chemotherapy between the 2 groups. The CRGs model showed the promise to predict the prognosis of BRCA patients and shed light on their treatment.
Collapse
Affiliation(s)
- Qun Zheng
- Center of Clinical Reproductive Medicine, Jinhua People's Hospital, Jinhua, Zhejiang Province, P. R. China
| | - Shuai Shi
- Center of Clinical Reproductive Medicine, Jinhua People's Hospital, Jinhua, Zhejiang Province, P. R. China
| | - Ning Zhang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang Province, P. R. China
| | - Haohao Chen
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang Province, P. R. China
| |
Collapse
|
22
|
Sindi S, Hamdi N, Hassan S, Ganash M, Alharbi M, Alburae N, Azhari S, Alkhayyat S, Linjawi A, Alkhatabi H, Elaimi A, Alrefaei G, Alsubhi N, Alrafiah A, Alhazmi S. Promoter Methylation-Regulated Differentially Expressed Genes in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:435-450. [PMID: 37434588 PMCID: PMC10332364 DOI: 10.2147/bctt.s408711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
Background Breast cancer is one of the most common malignancies among women. Recent studies revealed that differentially methylated regions (DMRs) are implicated in regulating gene expression. The goal of this research was to determine which genes and pathways are dysregulated in breast cancer when their promoters are methylated in an abnormal way, leading to differential expression. Whole-genome bisulfite sequencing was applied to analyze DMRs for eight peripheral blood samples collected from five Saudi females diagnosed with stages I and II of breast cancer aligned with three normal females. Three of those patients and three normal samples were used to determine differentially expressed genes (DEG) using Illumina platform NovaSeq PE150. Results Based on ontology (GO) and KEGG pathways, the analysis indicated that DMGs and DEG are closely related to associated processes, such as ubiquitin-protein transferase activity, ubiquitin-mediated proteolysis, and oxidative phosphorylation. The findings indicated a potentially significant association between global hypomethylation and breast cancer in Saudi patients. Our results revealed 81 differentially promoter-methylated and expressed genes. The most significant differentially methylated and expressed genes found in gene ontology (GO) are pumilio RNA binding family member 1 (PUM1) and zinc finger AN1-type containing 2B (ZFAND2B) also known as (AIRAPL). Conclusion The essential outcomes of this study suggested that aberrant hypermethylation at crucial genes that have significant parts in the molecular pathways of breast cancer could be used as a potential prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Samar Sindi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah Hamdi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, King Khalid University, Abha, Saudi Arabia
| | - Sabah Hassan
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadi Alkhayyat
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Heba Alkhatabi
- Hematology Research Unit (HRU), King Fahad Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer Alrefaei
- Department of Biology, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf Alsubhi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Aziza Alrafiah
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Chung FFL, Maldonado SG, Nemc A, Bouaoun L, Cahais V, Cuenin C, Salle A, Johnson T, Ergüner B, Laplana M, Datlinger P, Jeschke J, Weiderpass E, Kristensen V, Delaloge S, Fuks F, Risch A, Ghantous A, Plass C, Bock C, Kaaks R, Herceg Z. Buffy coat signatures of breast cancer risk in a prospective cohort study. Clin Epigenetics 2023; 15:102. [PMID: 37309009 PMCID: PMC10262593 DOI: 10.1186/s13148-023-01509-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Epigenetic alterations are a near-universal feature of human malignancy and have been detected in malignant cells as well as in easily accessible specimens such as blood and urine. These findings offer promising applications in cancer detection, subtyping, and treatment monitoring. However, much of the current evidence is based on findings in retrospective studies and may reflect epigenetic patterns that have already been influenced by the onset of the disease. METHODS Studying breast cancer, we established genome-scale DNA methylation profiles of prospectively collected buffy coat samples (n = 702) from a case-control study nested within the EPIC-Heidelberg cohort using reduced representation bisulphite sequencing (RRBS). RESULTS We observed cancer-specific DNA methylation events in buffy coat samples. Increased DNA methylation in genomic regions associated with SURF6 and REXO1/CTB31O20.3 was linked to the length of time to diagnosis in the prospectively collected buffy coat DNA from individuals who subsequently developed breast cancer. Using machine learning methods, we piloted a DNA methylation-based classifier that predicted case-control status in a held-out validation set with 76.5% accuracy, in some cases up to 15 years before clinical diagnosis of the disease. CONCLUSIONS Taken together, our findings suggest a model of gradual accumulation of cancer-associated DNA methylation patterns in peripheral blood, which may be detected long before clinical manifestation of cancer. Such changes may provide useful markers for risk stratification and, ultimately, personalized cancer prevention.
Collapse
Affiliation(s)
- Felicia Fei-Lei Chung
- International Agency for Research On Cancer (IARC), 25 avenue Tony Garnier, CS 90627, 69366, Lyon, France.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | | | - Amelie Nemc
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Liacine Bouaoun
- International Agency for Research On Cancer (IARC), 25 avenue Tony Garnier, CS 90627, 69366, Lyon, France
| | - Vincent Cahais
- International Agency for Research On Cancer (IARC), 25 avenue Tony Garnier, CS 90627, 69366, Lyon, France
| | - Cyrille Cuenin
- International Agency for Research On Cancer (IARC), 25 avenue Tony Garnier, CS 90627, 69366, Lyon, France
| | - Aurelie Salle
- International Agency for Research On Cancer (IARC), 25 avenue Tony Garnier, CS 90627, 69366, Lyon, France
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bekir Ergüner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marina Laplana
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
- Department of Basic Medical Sciences, University of Lleida, IRBLleida, 25198, Lleida, Spain
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jana Jeschke
- Laboratory of Cancer Epigenetics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elisabete Weiderpass
- International Agency for Research On Cancer (IARC), 25 avenue Tony Garnier, CS 90627, 69366, Lyon, France
| | - Vessela Kristensen
- Faculty of Medicine, Institute for Clinical Epidemiology and Molecular Biology, University of Oslo, Oslo, Norway
| | - Suzette Delaloge
- Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - François Fuks
- Laboratory of Cancer Epigenetics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Angela Risch
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
- Department of Biosciences and Medical Biology, Allergy-Cancer-BioNano Research Centre, University of Salzburg, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Akram Ghantous
- International Agency for Research On Cancer (IARC), 25 avenue Tony Garnier, CS 90627, 69366, Lyon, France
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zdenko Herceg
- International Agency for Research On Cancer (IARC), 25 avenue Tony Garnier, CS 90627, 69366, Lyon, France.
| |
Collapse
|
24
|
Wang C, Xu Z, Qiu X, Wei Y, Peralta AA, Yazdi MD, Jin T, Li W, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Sparrow D, Amarasiriwardena C, Wright RO, Baccarelli AA, Schwartz JD. Epigenome-wide DNA methylation in leukocytes and toenail metals: The normative aging study. ENVIRONMENTAL RESEARCH 2023; 217:114797. [PMID: 36379232 PMCID: PMC9825663 DOI: 10.1016/j.envres.2022.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Environmental metal exposures have been associated with multiple deleterious health endpoints. DNA methylation (DNAm) may provide insight into the mechanisms underlying these relationships. Toenail metals are non-invasive biomarkers, reflecting a medium-term time exposure window. OBJECTIVES This study examined variation in leukocyte DNAm and toenail arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg) among elderly men in the Normative Aging Study, a longitudinal cohort. METHODS We repeatedly collected samples of blood and toenail clippings. We measured DNAm in leukocytes with the Illumina HumanMethylation450 K BeadChip. We first performed median regression to evaluate the effects of each individual toenail metal on DNAm at three levels: individual cytosine-phosphate-guanine (CpG) sites, regions, and pathways. Then, we applied a Bayesian kernel machine regression (BKMR) to assess the joint and individual effects of metal mixtures on DNAm. Significant CpGs were identified using a multiple testing correction based on the independent degrees of freedom approach for correlated outcomes. The approach considers the effective degrees of freedom in the DNAm data using the principal components that explain >95% variation of the data. RESULTS We included 564 subjects (754 visits) between 1999 and 2013. The numbers of significantly differentially methylated CpG sites, regions, and pathways varied by metals. For example, we found six significant pathways for As, three for Cd, and one for Mn. The As-associated pathways were associated with cancer (e.g., skin cancer) and cardiovascular disease, whereas the Cd-associated pathways were related to lung cancer. Metal mixtures were also associated with 47 significant CpG sites, as well as pathways, mainly related to cancer and cardiovascular disease. CONCLUSIONS This study provides an approach to understanding the potential epigenetic mechanisms underlying observed relations between toenail metals and adverse health endpoints.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenyuan Li
- School of Public Health and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chitra Amarasiriwardena
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
25
|
Wang C, DeMeo DL, Kim ES, Cardenas A, Fong KC, Lee LO, Spiro A, Whitsel EA, Horvath S, Hou L, Baccarelli AA, Li Y, Stewart JD, Manson JE, Grodstein F, Kubzansky LD, Schwartz JD. Epigenome-Wide Analysis of DNA Methylation and Optimism in Women and Men. Psychosom Med 2023; 85:89-97. [PMID: 36201768 PMCID: PMC9771983 DOI: 10.1097/psy.0000000000001147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Higher optimism is associated with reduced mortality and a lower risk of age-related chronic diseases. DNA methylation (DNAm) may provide insight into mechanisms underlying these relationships. We hypothesized that DNAm would differ among older individuals who are more versus less optimistic. METHODS Using cross-sectional data from two population-based cohorts of women with diverse races/ethnicities ( n = 3816) and men (only White, n = 667), we investigated the associations of optimism with epigenome-wide leukocyte DNAm. Random-effects meta-analyses were subsequently used to pool the individual results. Significantly differentially methylated cytosine-phosphate-guanines (CpGs) were identified by the "number of independent degrees of freedom" approach: effective degrees of freedom correction using the number of principal components (PCs), explaining >95% of the variation of the DNAm data (PC-correction). We performed regional analyses using comb-p and pathway analyses using the Ingenuity Pathway Analysis software. RESULTS We found that essentially all CpGs (total probe N = 359,862) were homogeneous across sex and race/ethnicity in the DNAm-optimism association. In the single CpG site analyses based on homogeneous CpGs, we identified 13 significantly differentially methylated probes using PC-correction. We found four significantly differentially methylated regions and two significantly differentially methylated pathways. The annotated genes from the single CpG site and regional analyses are involved in psychiatric disorders, cardiovascular disease, cognitive impairment, and cancer. Identified pathways were related to cancer, and neurodevelopmental and neurodegenerative disorders. CONCLUSION Our findings provide new insights into possible mechanisms underlying optimism and health.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dawn L. DeMeo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric S. Kim
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Psychology, University of British Columbia, BC V6T 1Z4, Canada
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Kelvin C. Fong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Lewina O. Lee
- National Center for Posttraumatic Stress Disorder, VA Boston Healthcare System, Boston, MA 02130, USA
- Department Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Avron Spiro
- Department Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA 02130, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - James D. Stewart
- Cardiovascular Program, Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, 27599, USA
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Francine Grodstein
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
26
|
Gianni C, Palleschi M, Merloni F, Di Menna G, Sirico M, Sarti S, Virga A, Ulivi P, Cecconetto L, Mariotti M, De Giorgi U. Cell-Free DNA Fragmentomics: A Promising Biomarker for Diagnosis, Prognosis and Prediction of Response in Breast Cancer. Int J Mol Sci 2022; 23:14197. [PMID: 36430675 PMCID: PMC9695769 DOI: 10.3390/ijms232214197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying novel circulating biomarkers predictive of response and informative about the mechanisms of resistance, is the new challenge for breast cancer (BC) management. The integration of omics information will gradually revolutionize the clinical approach. Liquid biopsy is being incorporated into the diagnostic and decision-making process for the treatment of BC, in particular with the analysis of circulating tumor DNA, although with some relevant limitations, including costs. Circulating cell-free DNA (cfDNA) fragmentomics and its integrity index may become a cheaper, noninvasive biomarker that could provide significant additional information for monitoring response to systemic treatments in BC. The purpose of our review is to focus on the available research on cfDNA integrity and its features as a biomarker of diagnosis, prognosis and response to treatments in BC, highlighting new perspectives and critical issues for future applications.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandra Virga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Marita Mariotti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
27
|
Liu Z, Wang M, Cheng A, Ou X, Mao S, Yang Q, Wu Y, Zhao XX, Huang J, Gao Q, Zhang S, Sun D, Tian B, Jia R, Chen S, Liu M, Zhu D. Gene regulation in animal miRNA biogenesis. Epigenomics 2022; 14:1197-1212. [PMID: 36382497 DOI: 10.2217/epi-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
miRNAs are a class of noncoding RNAs of approximately 19-22 nucleotides that are widely found in animals, plants, bacteria and even viruses. Dysregulation of the expression profile of miRNAs is importantly linked to the development of diseases. Epigenetic modifications regulate gene expression and control cellular phenotypes. Although miRNAs are used as an epigenetic regulation tool, the biogenesis of miRNAs is also regulated by epigenetic events. Here the authors review the mechanisms and roles of epigenetic modification (DNA methylation, histone modifications), RNA modification and ncRNAs in the biogenesis of miRNAs, aiming to deepen the understanding of the miRNA biogenesis regulatory network.
Collapse
Affiliation(s)
- Zezheng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| |
Collapse
|
28
|
Hypomethylation of RPTOR in peripheral blood is associated with very early-stage lung cancer. Clin Chim Acta 2022; 537:173-180. [DOI: 10.1016/j.cca.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
29
|
Elliott HR, Burrows K, Min JL, Tillin T, Mason D, Wright J, Santorelli G, Davey Smith G, Lawlor DA, Hughes AD, Chaturvedi N, Relton CL. Characterisation of ethnic differences in DNA methylation between UK-resident South Asians and Europeans. Clin Epigenetics 2022; 14:130. [PMID: 36243740 PMCID: PMC9571473 DOI: 10.1186/s13148-022-01351-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Ethnic differences in non-communicable disease risk have been described between individuals of South Asian and European ethnicity that are only partially explained by genetics and other known risk factors. DNA methylation is one underexplored mechanism that may explain differences in disease risk. Currently, there is little knowledge of how DNA methylation varies between South Asian and European ethnicities. This study characterised differences in blood DNA methylation between individuals of self-reported European and South Asian ethnicity from two UK-based cohorts: Southall and Brent Revisited and Born in Bradford. DNA methylation differences between ethnicities were widespread throughout the genome (n = 16,433 CpG sites, 3.4% sites tested). Specifically, 76% of associations were attributable to ethnic differences in cell composition with fewer effects attributable to smoking and genetic variation. Ethnicity-associated CpG sites were enriched for EWAS Catalog phenotypes including metabolites. This work highlights the need to consider ethnic diversity in epigenetic research.
Collapse
Affiliation(s)
- Hannah R. Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Josine L. Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Therese Tillin
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford, UK
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alun D. Hughes
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Nishi Chaturvedi
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
Massi MC, Dominoni L, Ieva F, Fiorito G. A Deep Survival EWAS approach estimating risk profile based on pre-diagnostic DNA methylation: An application to breast cancer time to diagnosis. PLoS Comput Biol 2022; 18:e1009959. [PMID: 36155971 PMCID: PMC9536632 DOI: 10.1371/journal.pcbi.1009959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/06/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022] Open
Abstract
Previous studies for cancer biomarker discovery based on pre-diagnostic blood DNA methylation (DNAm) profiles, either ignore the explicit modeling of the Time To Diagnosis (TTD), or provide inconsistent results. This lack of consistency is likely due to the limitations of standard EWAS approaches, that model the effect of DNAm at CpG sites on TTD independently. In this work, we aim to identify blood DNAm profiles associated with TTD, with the aim to improve the reliability of the results, as well as their biological meaningfulness. We argue that a global approach to estimate CpG sites effect profile should capture the complex (potentially non-linear) relationships interplaying between sites. To prove our concept, we develop a new Deep Learning-based approach assessing the relevance of individual CpG Islands (i.e., assigning a weight to each site) in determining TTD while modeling their combined effect in a survival analysis scenario. The algorithm combines a tailored sampling procedure with DNAm sites agglomeration, deep non-linear survival modeling and SHapley Additive exPlanations (SHAP) values estimation to aid robustness of the derived effects profile. The proposed approach deals with the common complexities arising from epidemiological studies, such as small sample size, noise, and low signal-to-noise ratio of blood-derived DNAm. We apply our approach to a prospective case-control study on breast cancer nested in the EPIC Italy cohort and we perform weighted gene-set enrichment analyses to demonstrate the biological meaningfulness of the obtained results. We compared the results of Deep Survival EWAS with those of a traditional EWAS approach, demonstrating that our method performs better than the standard approach in identifying biologically relevant pathways. Blood-derived DNAm profiles could be exploited as new biomarkers for cancer risk stratification and possibly, early detection. This is of particular interest since blood is a convenient tissue to assay for constitutional methylation and its collection is non-invasive. Exploiting pre-diagnostic blood DNAm data opens the further opportunity to investigate the association of DNAm at baseline on cancer risk, modeling the relationship between sites’ methylation and the Time to Diagnosis. Previous studies mostly provide inconsistent results likely due to the limitations of standard EWAS approaches, that model the effect of DNAm at CpG sites on TTD independently. In this work we argue that an approach to estimate single CpG sites’ effect while modeling their combined effect on the survival outcome is needed, and we claim that such approach should capture the complex (potentially non-linear) relationships interplaying between sites. We prove this concept by developing a novel approach to analyze a prospective case-control study on breast cancer nested in the EPIC Italy cohort. A weighted gene set enrichment analysis confirms that our approach outperforms standard EWAS in identifying biologically meaningful pathways.
Collapse
Affiliation(s)
- Michela Carlotta Massi
- Health Data Science Centre, Human Technopole Foundation, Milan, Italy
- MOX Laboratory for Modeling and Scientific Computing, Dept. of Mathematics, Politecnico di Milano, Milan, Italy
- * E-mail:
| | - Lorenzo Dominoni
- MOX Laboratory for Modeling and Scientific Computing, Dept. of Mathematics, Politecnico di Milano, Milan, Italy
| | - Francesca Ieva
- Health Data Science Centre, Human Technopole Foundation, Milan, Italy
- MOX Laboratory for Modeling and Scientific Computing, Dept. of Mathematics, Politecnico di Milano, Milan, Italy
| | - Giovanni Fiorito
- Laboratory of Biostatistics, Dept. of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
31
|
Dugué PA, Bodelon C, Chung FF, Brewer HR, Ambatipudi S, Sampson JN, Cuenin C, Chajès V, Romieu I, Fiorito G, Sacerdote C, Krogh V, Panico S, Tumino R, Vineis P, Polidoro S, Baglietto L, English D, Severi G, Giles GG, Milne RL, Herceg Z, Garcia-Closas M, Flanagan JM, Southey MC. Methylation-based markers of aging and lifestyle-related factors and risk of breast cancer: a pooled analysis of four prospective studies. Breast Cancer Res 2022; 24:59. [PMID: 36068634 PMCID: PMC9446544 DOI: 10.1186/s13058-022-01554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND DNA methylation in blood may reflect adverse exposures accumulated over the lifetime and could therefore provide potential improvements in the prediction of cancer risk. A substantial body of research has shown associations between epigenetic aging and risk of disease, including cancer. Here we aimed to study epigenetic measures of aging and lifestyle-related factors in association with risk of breast cancer. METHODS Using data from four prospective case-control studies nested in three cohorts of European ancestry participants, including a total of 1,655 breast cancer cases, we calculated three methylation-based measures of lifestyle factors (body mass index [BMI], tobacco smoking and alcohol consumption) and seven measures of epigenetic aging (Horvath-based, Hannum-based, PhenoAge and GrimAge). All measures were regression-adjusted for their respective risk factors and expressed per standard deviation (SD). Odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional or unconditional logistic regression and pooled using fixed-effects meta-analysis. Subgroup analyses were conducted by age at blood draw, time from blood sample to diagnosis, oestrogen receptor-positivity status and tumour stage. RESULTS None of the measures of epigenetic aging were associated with risk of breast cancer in the pooled analysis: Horvath 'age acceleration' (AA): OR per SD = 1.02, 95%CI: 0.95-1.10; AA-Hannum: OR = 1.03, 95%CI:0.95-1.12; PhenoAge: OR = 1.01, 95%CI: 0.94-1.09 and GrimAge: OR = 1.03, 95%CI: 0.94-1.12, in models adjusting for white blood cell proportions, body mass index, smoking and alcohol consumption. The BMI-adjusted predictor of BMI was associated with breast cancer risk, OR per SD = 1.09, 95%CI: 1.01-1.17. The results for the alcohol and smoking methylation-based predictors were consistent with a null association. Risk did not appear to substantially vary by age at blood draw, time to diagnosis or tumour characteristics. CONCLUSION We found no evidence that methylation-based measures of aging, smoking or alcohol consumption were associated with risk of breast cancer. A methylation-based marker of BMI was associated with risk and may provide insights into the underlying associations between BMI and breast cancer.
Collapse
Affiliation(s)
- Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia.
| | - Clara Bodelon
- Divison of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA
| | - Felicia F Chung
- International Agency for Research On Cancer (IARC), Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Hannah R Brewer
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Srikant Ambatipudi
- International Agency for Research On Cancer (IARC), Lyon, France
- AMCHSS, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Joshua N Sampson
- Divison of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA
| | - Cyrille Cuenin
- International Agency for Research On Cancer (IARC), Lyon, France
| | - Veronique Chajès
- International Agency for Research On Cancer (IARC), Lyon, France
| | - Isabelle Romieu
- International Agency for Research On Cancer (IARC), Lyon, France
| | - Giovanni Fiorito
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e Della Scienza University-Hospital, Turin, Italy
| | - Vittorio Krogh
- Department of Research, Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, MI, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia Federico II University, Naples, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research AIRE-ONLUS, Ragusa, Italy
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Dallas English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Severi
- CESP UMR1018, Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, Villejuif, France
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Zdenko Herceg
- International Agency for Research On Cancer (IARC), Lyon, France
| | | | - James M Flanagan
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
32
|
Wanowska E, Samorowska K, Szcześniak MW. Emerging Roles of Long Noncoding RNAs in Breast Cancer Epigenetics and Epitranscriptomics. Front Cell Dev Biol 2022; 10:922351. [PMID: 35865634 PMCID: PMC9294602 DOI: 10.3389/fcell.2022.922351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinogenesis is a multistep process that involves both genetic and epigenetic changes. Epigenetics refers to reversible changes in gene expression that are not accompanied by changes in gene sequence. In breast cancer (BC), dysregulated epigenetic changes, such as DNA methylation and histone modifications, are accompanied by epitranscriptomic changes, in particular adenine to inosine modifications within RNA molecules. Factors that trigger these phenomena are largely unknown, but there is evidence for widespread participation of long noncoding RNAs (lncRNAs) that already have been linked to virtually any aspect of BC biology, making them promising biomarkers and therapeutic targets in BC patients. Here, we provide a systematic review of known and possible roles of lncRNAs in epigenetic and epitranscriptomic processes, along with methods and tools to study them, followed by a brief overview of current challenges regarding the use of lncRNAs in medical applications.
Collapse
Affiliation(s)
- Elżbieta Wanowska
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| | - Klaudia Samorowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Michał Wojciech Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| |
Collapse
|
33
|
Lyu M, Zhou J, Jiao L, Wang Y, Zhou Y, Lai H, Xu W, Ying B. Deciphering a TB-related DNA methylation biomarker and constructing a TB diagnostic classifier. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:37-49. [PMID: 34938605 PMCID: PMC8645423 DOI: 10.1016/j.omtn.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/16/2021] [Indexed: 02/09/2023]
Abstract
We systemically identified tuberculosis (TB)-related DNA methylation biomarkers and further constructed classifiers for TB diagnosis. TB-related DNA methylation datasets were searched through October 3, 2020. Limma and DMRcate were employed to identify differentially methylated probes (DMPs) and regions (DMRs). Machine learning methods were used to construct classifiers. The performance of the classifiers was evaluated in discovery datasets and a prospective independent cohort. Eighty-nine DMPs and 24 DMRs were identified based on 67 TB patients and 45 healthy controls from 4 datasets. Nine and three DMRs were selected by elastic net regression and logistic regression, respectively. Among the selected DMRs, two regions (chr3: 195635643-195636243 and chr6: 29691631-29692475) were differentially methylated in the independent cohort (p = 4.19 × 10-5 and 0.024, respectively). Among the ten classifiers, the 3-DMR logistic regression classifier exhibited the strongest performance. The sensitivity, specificity, and area under the curve were, respectively, 79.1%, 84.4%, and 0.888 in the discovery datasets and 64.5%, 90.3%, and 0.838 in the independent cohort. The differential diagnostic ability of this classifier was also assessed. Collectively, these data showed that DNA methylation might be a promising TB diagnostic biomarker. The 3-DMR logistic regression classifier is a potential clinical tool for TB diagnosis, and further validation is needed.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongli Lai
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, 10-511, 610 University Avenue, Toronto, ON M5G 2M9 Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7 Canada
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
34
|
Marino N, German R, Podicheti R, Rusch DB, Rockey P, Huang J, Sandusky GE, Temm CJ, Althouse S, Nephew KP, Nakshatri H, Liu J, Vode A, Cao S, Storniolo AMV. Aberrant epigenetic and transcriptional events associated with breast cancer risk. Clin Epigenetics 2022; 14:21. [PMID: 35139887 PMCID: PMC8830042 DOI: 10.1186/s13148-022-01239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation. RESULTS Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified. CONCLUSIONS Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.
Collapse
Affiliation(s)
- Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA. .,Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Rana German
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Pam Rockey
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Jie Huang
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - George E Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Constance J Temm
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kenneth P Nephew
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Bloomington, IN, 47405, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Liu
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Ashley Vode
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.,Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
35
|
Markozannes G, Kanellopoulou A, Dimopoulou O, Kosmidis D, Zhang X, Wang L, Theodoratou E, Gill D, Burgess S, Tsilidis KK. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med 2022; 20:41. [PMID: 35105367 PMCID: PMC8809022 DOI: 10.1186/s12916-022-02246-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to map and describe the current state of Mendelian randomization (MR) literature on cancer risk and to identify associations supported by robust evidence. METHODS We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive, and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the MR-Egger, weighed median, MRPRESSO, and multivariable MR analyses. Associations not presenting any of the aforementioned sensitivity analyses were not graded. RESULTS We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer. CONCLUSIONS Despite the large amount of research on genetically predicted risk factors for cancer risk, limited associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR analyses and on more transparent reporting.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Afroditi Kanellopoulou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Dimitrios Kosmidis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Xiaomeng Zhang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
36
|
Ohmomo H, Harada S, Komaki S, Ono K, Sutoh Y, Otomo R, Umekage S, Hachiya T, Katanoda K, Takebayashi T, Shimizu A. DNA Methylation Abnormalities and Altered Whole Transcriptome Profiles after Switching from Combustible Tobacco Smoking to Heated Tobacco Products. Cancer Epidemiol Biomarkers Prev 2022; 31:269-279. [PMID: 34728466 PMCID: PMC9398167 DOI: 10.1158/1055-9965.epi-21-0444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The use of heated tobacco products (HTP) has increased exponentially in Japan since 2016; however, their effects on health remain a major concern. METHODS Tsuruoka Metabolome Cohort Study participants (n = 11,002) were grouped on the basis of their smoking habits as never smokers (NS), past smokers (PS), combustible tobacco smokers (CS), and HTP users for <2 years. Peripheral blood mononuclear cells were collected from 52 participants per group matched to HTP users using propensity scores, and DNA and RNA were purified from the samples. DNA methylation (DNAm) analysis of the 17 smoking-associated DNAm biomarker genes (such as AHRR, F2RL3, LRRN3, and GPR15), as well as whole transcriptome analysis, was performed. RESULTS Ten of the 17 genes were significantly hypomethylated in CS and HTP users compared with NS, among which AHRR, F2RL3, and RARA showed intermediate characteristics between CS and NS; nonetheless, AHRR expression was significantly higher in CS than in the other three groups. Conversely, LRRN3 and GPR15 were more hypomethylated in HTP users than in NS, and GPR15 expression was markedly upregulated in all the groups when compared with that in NS. CONCLUSIONS HTP users (switched from CS <2 years) display abnormal DNAm and transcriptome profiles, albeit to a lesser extent than the CS. However, because the molecular genetic effects of long-term HTP use are still unknown, long-term molecular epidemiologic studies are needed. IMPACT This study provides new insights into the molecular genetic effects on DNAm and transcriptome profiles in HTP users who switched from CS.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shohei Komaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Kanako Ono
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Yoichi Sutoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Ryo Otomo
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - So Umekage
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Tsuyoshi Hachiya
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Kota Katanoda
- Division of Cancer Statistics Integration, National Cancer Center Research Institute, Chuo, Tokyo, Japan
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan.,Corresponding Author: Atsushi Shimizu, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate 028-3694, Japan. Phone: 81-19-651-5110, ext. 5473; E-mail:
| |
Collapse
|
37
|
Wen N. Regulatory Mechanism of Neurotrophin Receptor-Interacting Melanoma Antigen Coding Gene Homolog (NRAGE) Gene Methylation on Apoptosis of Breast Cancer Cell Under Tyrosine Kinases/Methyl Ethyl Ketone/Extracellular Regulated Protein Kinases Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to discover the influence of Neurotrophin receptor-interacting MAGE homolog (NRAGE) gene methylation on proliferation (Pro) and apoptosis (Apo) of breast cancer cell (BCC), and its influence on TrkA/MEK/ERK signaling. BCC lines MCF-7, MDA-MB-231, and normal
mammary gland cell (MGC) MCF-10 were selected. Expression of NRAGE mRNA and methylation level in cells was analyzed via reverse transcription-polymerase chain reaction (RT-PCR) and methylation-specific PCR. Different concentrations (0, 5, 10 mol/L) of DNA methylase inhibitor 5-aza-2′-deoxycytidine
(5-Aza-CdR) were adopted to treat the BCC cell line. With dimethyl sulfoxide (DMSO) treatment as control, cell count, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and Western blot were adopted to detect the Pro, Apo, relative expression (REP) of
Apo-related proteins Bcl-2, Bax, and target proteins TrkA, MEK, and ERK1/2 after different treatments. The results showed that NRAGE mRNA level in MDA-MB-231 and MCF-7 was notably reduced versus MCF-10 (P < 0.05), and they could express methylated NRAGE specifically. 5-Aza-CdR can
increase unmethylated NRAGE’s expression in BCC. Cell Pro level of the 5 and 10 mol/L treatments was greatly inhibited than DMSO and 0 mol/L treatments (P < 0.05). Apo rate and Apo-related proteins Bcl-2 and Bax increased obviously (P < 0.05). In addition, the phosphorylation
levels of TrkA in the 5 and 10 mol/L treatments were considerably reduced (P < 0.05), while that in MEK and ERK1/2 was remarkably increased (P < 0.05). In short, NRAGE methylation can inhibit BCC’s Pro and regulate BCC’s Pro and Apo through TrkA/MEK/ERK signaling.
Collapse
Affiliation(s)
- Ningxiao Wen
- Department of Laboratory and Pathology, Armed Police Jiangxi Provincial Corps. Hospital, Nanchang, Jiangxi, 330000, China
| |
Collapse
|
38
|
Wang C, Cardenas A, Hutchinson JN, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Koutrakis P, Baccarelli AA, Schwartz JD. Short- and intermediate-term exposure to ambient fine particulate elements and leukocyte epigenome-wide DNA methylation in older men: the Normative Aging Study. ENVIRONMENT INTERNATIONAL 2022; 158:106955. [PMID: 34717175 PMCID: PMC8710082 DOI: 10.1016/j.envint.2021.106955] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Several epigenome-wide association studies (EWAS) of ambient particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have been reported. However, EWAS of PM2.5 elements (PEs), reflecting different emission sources, are very limited. OBJECTIVES We performed EWAS of short- and intermediate-term exposure to PM2.5 and 13 PEs. We hypothesized that significant changes in DNAm may vary by PM2.5 mass and its elements. METHODS We repeatedly collected blood samples in the Normative Aging Study and measured leukocyte DNA methylation (DNAm) with the Illumina HumanMethylation450K BeadChip. We collected daily PM2.5 and 13 PEs at a fixed central site. To estimate the associations between each PE and DNAm at individual cytosine-phosphate-guanine (CpG) sites, we incorporated a distributed-lag (0-27 d) term in the setting of median regression with subject-specific intercept and examined cumulative lag associations. We also accounted for selection bias due to loss to follow-up and mortality prior to enrollment. Significantly differentially methylated probes (DMPs) were identified using Bonferroni correction for multiple testing. We further conducted regional and pathway analyses to identify significantly differentially methylated regions (DMRs) and pathways. RESULTS We included 695 men with 1,266 visits between 1999 and 2013. The subjects had a mean age of 75 years. The significant DMPs, DMRs, and pathways varied by to PM2.5 total mass and PEs. For example, PM2.5 total mass was associated with 2,717 DMPs and 10,470 DMRs whereas Pb was associated with 3,173 DMPs and 637 DMRs. The identified pathways by PM2.5 mass were mostly involved in mood disorders, neuroplasticity, immunity, and inflammation, whereas the pathways associated with motor vehicles (BC, Cu, Pb, and Zn) were related with cardiovascular disease and cancer (e.g., "PPARs signaling"). CONCLUSIONS PM2.5 and PE were associated with methylation changes at multiple probes and along multiple pathways, in ways that varied by particle components.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John N Hutchinson
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
39
|
Zhu C, Zhang S, Liu D, Wang Q, Yang N, Zheng Z, Wu Q, Zhou Y. A Novel Gene Prognostic Signature Based on Differential DNA Methylation in Breast Cancer. Front Genet 2021; 12:742578. [PMID: 34956313 PMCID: PMC8693898 DOI: 10.3389/fgene.2021.742578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: DNA methylation played essential roles in regulating gene expression. The impact of DNA methylation status on the occurrence and development of cancers has been well demonstrated. However, little is known about its prognostic role in breast cancer (BC). Materials: The Illumina Human Methylation450 array (450k array) data of BC was downloaded from the UCSC xena database. Transcriptomic data of BC was downloaded from the Cancer Genome Atlas (TCGA) database. Firstly, we used univariate and multivariate Cox regression analysis to screen out independent prognostic CpGs, and then we identified methylation-associated prognosis subgroups by consensus clustering. Next, a methylation prognostic model was developed using multivariate Cox analysis and was validated with the Illumina Human Methylation27 array (27k array) dataset of BC. We then screened out differentially expressed genes (DEGs) between methylation high-risk and low-risk groups and constructed a methylation-based gene prognostic signature. Further, we validated the gene signature with three subgroups of the TCGA-BRCA dataset and an external dataset GSE146558 from the Gene Expression Omnibus (GEO) database. Results: We established a methylation prognostic signature and a methylation-based gene prognostic signature, and there was a close positive correlation between them. The gene prognostic signature involved six genes: IRF2, KCNJ11, ZDHHC9, LRP11, PCMT1, and TMEM70. We verified their expression in mRNA and protein levels in BC. Both methylation and methylation-based gene prognostic signatures showed good prognostic stratification ability. The AUC values of 3-years, 5-years overall survival (OS) were 0.737, 0.744 in the methylation signature and 0.725, 0.715 in the gene signature, respectively. In the validation groups, high-risk patients were confirmed to have poorer OS. The AUC values of 3 years were 0.757, 0.735, 0.733 in the three subgroups of TCGA dataset and 0.635 in GSE146558 dataset. Conclusion: This study revealed the DNA methylation landscape and established promising methylation and methylation-based gene prognostic signatures that could serve as potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chunmei Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuyuan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Di Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingqing Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ningning Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhewen Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Ding YC, Hurley S, Park JS, Steele L, Rakoff M, Zhu Y, Zhao J, LaBarge M, Bernstein L, Chen S, Reynolds P, Neuhausen SL. Methylation biomarkers of polybrominated diphenyl ethers (PBDEs) and association with breast cancer risk at the time of menopause. ENVIRONMENT INTERNATIONAL 2021; 156:106772. [PMID: 34425644 PMCID: PMC8385228 DOI: 10.1016/j.envint.2021.106772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Exposure to polybrominated diphenyl ethers (PBDEs) may influence risk of developing post-menopausal breast cancer. Although mechanisms are poorly understood, epigenetic regulation of gene expression may play a role. OBJECTIVES To identify DNA methylation (DNAm) changes associated with PBDE serum levels and test the association of these biomarkers with breast cancer risk. METHODS We studied 397 healthy women (controls) and 133 women diagnosed with breast cancer (cases) between ages 40 and 58 years who participated in the California Teachers Study. PBDE levels were measured in blood. Infinium Human Methylation EPIC Bead Chips were used to measure DNAm. Using multivariable linear regression models, differentially methylated CpG sites (DMSs) and regions (DMRs) associated with serum PBDE levels were identified using controls. For top-ranked DMSs and DMRs, targeted next-generation bisulfite sequencing was used to measure DNAm for 133 invasive breast cancer cases and 301 age-matched controls. Conditional logistic regression was used to evaluate associations between DMSs and DMRs and breast cancer risk. RESULTS We identified 15 DMSs and 10 DMRs statistically significantly associated with PBDE levels (FDR < 0.05). Methylation changes in a DMS at BMP8B and DMRs at TP53 and A2M-AS1 were statistically significantly (FDR < 0.05) associated with breast cancer risk. CONCLUSION We show for the first time that serum PBDE levels are associated with differential methylation and that PBDE-associated DNAm changes in blood are associated with breast cancer risk.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan Hurley
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, Berkeley, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Michele Rakoff
- Breast Cancer Care and Research Fund, Los Angeles, CA, USA
| | - Yun Zhu
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark LaBarge
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
41
|
Zhou X, Lei S, Li L, Xu T, Gu W, Ma F, Yang R. [Peripheral blood EMR3 gene methylation level is correlated with breast cancer in Chinese women]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1456-1463. [PMID: 34755660 DOI: 10.12122/j.issn.1673-4254.2021.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the association of methylation levels of C19orf57, MAP9, EMR3, NEK6 and PCOLCE2 genes in peripheral blood with breast cancer (BC) in Chinese women. METHODS We collected peripheral blood samples from 258 early-stage BC patients and 272 healthy women. Agena matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to quantitatively measure the methylation levels of CpG sites in the genes. The association between DNA methylation and BC was analyzed using a logistic regression model adjusted for covariants. Spearman's correlation analysis was performed to analyze the association between the gene methylation levels and age. The methylation levels of the genes in the BC patients with different clinical characteristics were investigated using non-parametric tests. RESULTS In stead of EMR3 gene hypermethylation as found in BC patients as found in the Caucasian population, EMR3 gene hypomethylation was found to correlate with BC in Chinese women, but this correlation was significant only in women beyond the age of 50 years (for every 10% reduction of the methylation level, EMR3_CpG_1: OR=1.40; EMR3_CpG_2: OR=2.31; EMR3_CpG_3: OR=2.76, P < 0.05). EMR3 methylation was not or was only weakly correlated with tumor stage, size, lymphatic metastasis, ER, PR, HER2, or Ki67. Our data did not show a correlation between C19orf57 methylation and BC. CONCLUSION Peripheral blood EMR3 gene hypomethylation is associated with BC in Chinese women, especially in those at an old age and in postmenopausal women.
Collapse
Affiliation(s)
- X Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - S Lei
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - L Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - T Xu
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, China
| | - W Gu
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, China
| | - F Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - R Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
42
|
Hopper JL, Nguyen TL, Li S. Blood DNA methylation score predicts breast cancer risk: applying OPERA in molecular, environmental, genetic and analytic epidemiology. Mol Oncol 2021; 16:8-10. [PMID: 34655510 PMCID: PMC8732348 DOI: 10.1002/1878-0261.13117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/05/2022] Open
Abstract
In this issue, Kresovich and colleagues have published a hallmark paper in Molecular, Environmental, Genetic and Analytic Epidemiology. By applying artificial intelligence to the Sister Study they created a new methylation-based breast cancer risk score (mBCRS) based on blood DNA methylation. Using a prospective design and after accounting for age and questionnaire-based breast cancer risk factors, the Odds PER Adjusted standard deviation (OPERA) for mBCRS and polygenic risk score (PRS) was 1.58 (95% CI: 1.38, 1.81) and 1.58 (95% CI: 1.36, 1.83), respectively, and the corresponding area under the receiver operating curve was 0.63 for both. Therefore, mBCRS could be as powerful as the current best PRS in differentiating women of the same age in terms of their breast cancer risk. These risk scores are among the strongest known breast cancer risk-stratifiers, shaded only by new mammogram risk scores based on measures other than conventional mammographic density, such as Cirrocumulus and Cirrus, which when combined have an OPERA as high as 2.3. The combination of PRS and mBCRS with the other measured risk factors gave an OPERA of 2.2. OPERA has many advantages over changes in areas under the receiver operator curve because the latter depend on the order in which risk factors are considered. Although more replication is needed using prospective data to protect against reverse causation, there are many novel molecular and analytic aspects to this paper which uncovers a potential mechanism for how genetic and environmental factors combine to cause breast cancer.
Collapse
Affiliation(s)
- John L Hopper
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Vic, Australia
| | - Tuong L Nguyen
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Vic, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
43
|
Hu D, Lou X, Meng N, Li Z, Teng Y, Zou Y, Wang F. Peripheral Blood-Based DNA Methylation of Long Non-Coding RNA H19 and Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promoters are Potential Non-Invasive Biomarkers for Gastric Cancer Detection. Cancer Control 2021; 28:10732748211043667. [PMID: 34615385 PMCID: PMC8504648 DOI: 10.1177/10732748211043667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction The early diagnosis and detection could greatly improve the clinical outcome of gastric cancer (GC) patients. However, the non-invasive biomarkers for GC detection remain to be identified. Method We used online databases (GEPIA, UALCAN, Kaplan-Meier plotter, TIMER, and MEXPRESS) to explore the association between H19 or metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in tissues and the occurrence, development, prognosis, the levels of immune cell infiltration, and methylation of GC; the correlation between mRNA expression and DNA methylation levels of genes were also examined. Methylation levels of H19 or MALAT1 in peripheral blood were compared between 150 GC patients and 100 healthy controls (HCs). Predictive nomograms were constructed among female and male groups for GC diagnosis. The calibration curves, Hosmer–Lemeshow test, and decision curve analysis were also used to examine the nomograms’ predictive ability and clinical values. Results Using multiple online databases, we found that the mRNA expressions of H19 and MALAT1 in tissues were related to the occurrence of GC, and such expressions were associated with immune cell infiltration of GC and negatively correlated with DNA methylation levels of H19 and MALAT1. H19 gene, H19C island, and MALAT1B island, as well as 20 CpG sites were hypermethylated in peripheral blood of GC patients compared with HCs; similar results were also found in female and male groups (P < .05 for all). The combination of H19c3, H19c4, MALAT1b12, and age, as well as the combination of H19b7, H19c1, H19c5, and age in the nomograms could distinguish GC patients from HCs in the female group and male group, respectively. Conclusion We found statistically significant hypermethylation of H19 and MALAT1 promoters in GC patients, and meaningful sensitivity and specificity of MALAT1 and H19 methylation in discriminating GC and HCs were observed in both female and male groups, which indicates that the peripheral blood-based DNA methylation of H19 and MALAT1 could act as potential non-invasive biomarkers for the diagnosis of GC.
Collapse
Affiliation(s)
- Dingtao Hu
- Department of Oncology, 36639The First Affiliated Hospital of Anhui Medical University, China
| | - Xiaoqi Lou
- Department of Oncology, 36639The First Affiliated Hospital of Anhui Medical University, China
| | - Nana Meng
- Department of Quality Management Office, 533251The Second Affiliated Hospital of Anhui Medical University, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health of Anhui Medical University, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health of Anhui Medical University, China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health of Anhui Medical University, China
| | - Fang Wang
- Department of Oncology, 36639The First Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|
44
|
Davidson BA, Croessmann S, Park BH. The breast is yet to come: current and future utility of circulating tumour DNA in breast cancer. Br J Cancer 2021; 125:780-788. [PMID: 34040179 PMCID: PMC8438047 DOI: 10.1038/s41416-021-01422-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in genomic strategies and the development of targeted therapies have enabled precision medicine to revolutionise the field of oncology. Precision medicine uses patient-specific genetic and molecular information, traditionally obtained from tumour biopsy samples, to classify tumours and treat them accordingly. However, biopsy samples often fail to provide complete tumour profiling, and the technique is expensive and, of course, relatively invasive. Advances in genomic techniques have led to improvements in the isolation and detection of circulating tumour DNA (ctDNA), a component of a peripheral blood draw/liquid biopsy. Liquid biopsy offers a minimally invasive method to gather genetic information that is representative of a global snapshot of both primary and metastatic sites and can thereby provide invaluable information for potential targeted therapies and methods for tumour surveillance. However, a lack of prospective clinical trials showing direct patient benefit has limited the implementation of liquid biopsies in standard clinical applications. Here, we review the potential of ctDNA obtained by liquid biopsy to revolutionise personalised medicine and discuss current applications of ctDNA both at the benchtop and bedside.
Collapse
Affiliation(s)
- Brad A Davidson
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Croessmann
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben H Park
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
45
|
Kresovich JK, Xu Z, O'Brien KM, Shi M, Weinberg CR, Sandler DP, Taylor JA. Blood DNA methylation profiles improve breast cancer prediction. Mol Oncol 2021; 16:42-53. [PMID: 34411412 PMCID: PMC8732352 DOI: 10.1002/1878-0261.13087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Although blood DNA methylation (DNAm) profiles are reported to be associated with breast cancer incidence, they have not been widely used in breast cancer risk assessment. Among a breast cancer case–cohort of 2774 women (1551 cases) in the Sister Study, we used candidate CpGs and DNAm estimators of physiologic characteristics to derive a methylation‐based breast cancer risk score, mBCRS. Overall, 19 CpGs and five DNAm estimators were selected using elastic net regularization to comprise mBCRS. In a test set, higher mBCRS was positively associated with breast cancer incidence, showing similar strength to the polygenic risk score (PRS) based on 313 single nucleotide polymorphisms (313 SNPs). Area under the curve for breast cancer prediction was 0.60 for self‐reported risk factors (RFs), 0.63 for PRS, and 0.63 for mBCRS. Adding mBCRS to PRS and RFs improved breast cancer prediction from 0.66 to 0.71. mBCRS findings were replicated in a nested case–control study within the EPIC‐Italy cohort. These results suggest that mBCRS, a risk score derived using blood DNAm, can be used to enhance breast cancer prediction.
Collapse
Affiliation(s)
- Jacob K Kresovich
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.,Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
46
|
Sturgeon SR, Sela DA, Browne EP, Einson J, Rani A, Halabi M, Kania T, Keezer A, Balasubramanian R, Ziegler RG, Schairer C, Kelsey KT, Arcaro KF. Prediagnostic White Blood Cell DNA Methylation and Risk of Breast Cancer in the Prostate Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) Cohort. Cancer Epidemiol Biomarkers Prev 2021; 30:1575-1581. [PMID: 34108140 PMCID: PMC10825794 DOI: 10.1158/1055-9965.epi-20-1717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/11/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND White blood cell (WBC) DNA may contain methylation patterns that are associated with subsequent breast cancer risk. Using a high-throughput array and samples collected, on average, 1.3 years prior to diagnosis, a case-cohort analysis nested in the prospective Sister Study identified 250 individual CpG sites that were differentially methylated between breast cancer cases and noncases. We examined five of the top 40 CpG sites in a case-control study nested in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) Cohort. METHODS We investigated the associations between prediagnostic WBC DNA methylation in 297 breast cancer cases and 297 frequency-matched controls. Two WBC DNA specimens from each participant were used: a proximate sample collected 1 to 2.9 years and a distant sample collected 4.2-7.3 years prior to diagnosis in cases or the comparable timepoints in controls. WBC DNA methylation level was measured using targeted bisulfite amplification sequencing. We used logistic regression to obtain ORs and 95% confidence intervals (CI). RESULTS A one-unit increase in percent methylation in ERCC1 in proximate WBC DNA was associated with increased breast cancer risk (adjusted OR = 1.29; 95% CI, 1.06-1.57). However, a one-unit increase in percent methylation in ERCC1 in distant WBC DNA was inversely associated with breast cancer risk (adjusted OR = 0.83; 95% CI, 0.69-0.98). None of the other ORs met the threshold for statistical significance. CONCLUSIONS There was no convincing pattern between percent methylation in the five CpG sites and breast cancer risk. IMPACT The link between prediagnostic WBC DNA methylation marks and breast cancer, if any, is poorly understood.
Collapse
Affiliation(s)
- Susan R Sturgeon
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts.
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Eva P Browne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Jonah Einson
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Asha Rani
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Mohamed Halabi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Thomas Kania
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Andrew Keezer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts
| | - Regina G Ziegler
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Catherine Schairer
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Karl T Kelsey
- Department of Epidemiology, Department of Pathology, and Department of Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Kathleen F Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
47
|
Lucia RM, Huang WL, Alvarez A, Masunaka I, Ziogas A, Goodman D, Odegaard AO, Norden-Krichmar TM, Park HL. Association of mammographic density with blood DNA methylation. Epigenetics 2021; 17:531-546. [PMID: 34116608 PMCID: PMC9067527 DOI: 10.1080/15592294.2021.1928994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Altered DNA methylation may be an intermediate phenotype between breast cancer risk factors and disease. Mammographic density is a strong risk factor for breast cancer. However, no studies to date have identified an epigenetic signature of mammographic density. We performed an epigenome-wide association study of mammographic density. Methods: White blood cell DNA methylation was measured for 385 postmenopausal women using the Illumina Infinium MethylationEPIC BeadChip array. Differential methylation was assessed using genome-wide, probe-level, and regional analyses. We implemented a resampling-based approach to improve the stability of our findings. Results: On average, women with elevated mammographic density exhibited DNA hypermethylation within CpG islands and gene promoters compared to women with lower mammographic density. We identified 250 CpG sites for which DNA methylation was significantly associated with mammographic density. The top sites were located within genes associated with cancer, including HDLBP, TGFB2, CCT4, and PAX8, and were more likely to be located in regulatory regions of the genome. We also identified differential DNA methylation in 37 regions, including within the promoters of PAX8 and PF4, a gene involved in the regulation of angiogenesis. Overall, our results paint a picture of epigenetic dysregulation associated with mammographic density. Conclusion: Mammographic density is associated with differential DNA methylation throughout the genome, including within genes associated with cancer. Our results suggest the potential involvement of several genes in the biological mechanisms behind differences in breast density between women. Further studies are warranted to explore these potential mechanisms and potential links to breast cancer risk.
Collapse
Affiliation(s)
- Rachel M Lucia
- Department of Epidemiology, University of California, Irvine, USA
| | - Wei-Lin Huang
- Department of Epidemiology, University of California, Irvine, USA
| | - Andrea Alvarez
- Department of Medicine, University of California, Irvine, USA
| | - Irene Masunaka
- Department of Medicine, University of California, Irvine, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, USA
| | - Deborah Goodman
- Department of Epidemiology, University of California, Irvine, USA
| | | | | | - Hannah Lui Park
- Department of Epidemiology, University of California, Irvine, USA.,Department of Pathology and Laboratory Medicine, University of California, Irvine, USA
| |
Collapse
|
48
|
Xu Z, Xie C, Taylor JA, Niu L. ipDMR: identification of differentially methylated regions with interval P-values. Bioinformatics 2021; 37:711-713. [PMID: 32805005 PMCID: PMC8248314 DOI: 10.1093/bioinformatics/btaa732] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
SUMMARY ipDMR is an R software tool for identification of differentially methylated regions (DMRs) using auto-correlated P-values for individual CpGs from epigenome-wide association analysis using array or bisulfite sequencing data. It summarizes P-values for adjacent CpGs, identifies association peaks and then extends peaks to find boundaries of DMRs. ipDMR uses BED format files as input and is easy to use. Simulations guided by real data found that ipDMR outperformed current available methods and provided slightly higher true positive rates and much lower false discovery rates. AVAILABILITY AND IMPLEMENTATION ipDMR is available at https://bioconductor.org/packages/release/bioc/html/ENmix.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.,Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
49
|
Lianidou E. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15:1683-1700. [PMID: 33942482 PMCID: PMC8169441 DOI: 10.1002/1878-0261.12978] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy, a minimally invasive approach, is a highly powerful clinical tool for the real-time follow-up of cancer and overcomes many limitations of tissue biopsies. Epigenetic alterations have a high potential to provide a valuable source of innovative biomarkers for cancer, owing to their stability, frequency, and noninvasive accessibility in bodily fluids. Numerous DNA methylation markers are now tested in circulating tumor DNA (ctDNA) as potential biomarkers, in various types of cancer. DNA methylation in combination with liquid biopsy is very powerful in identifying circulating epigenetic biomarkers of clinical importance. Blood-based epigenetic biomarkers have a high potential for early detection of cancer since DNA methylation in plasma can be detected early during cancer pathogenesis. In this review, we summarize the latest findings on DNA methylation markers in ctDNA for early detection, prognosis, minimal residual disease, risk of relapse, treatment selection, and resistance, for breast, prostate, lung, and colorectal cancer.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor CellsLaboratory of Analytical ChemistryDepartment of ChemistryUniversity of AthensGreece
| |
Collapse
|
50
|
|