1
|
Overton AK, Knapp JJ, Lawal OU, Gibson R, Fedynak AA, Adebiyi AI, Maxwell B, Cheng L, Bee C, Qasim A, Atanas K, Payne M, Stuart R, Fleury MD, Knox NC, Nash D, Hungwe YC, Prasla SR, Ho H, Agboola SO, Kwon SH, Naik S, Parreira VR, Rizvi F, Precious MJ, Thomas S, Zambrano M, Fang V, Gilliland E, Varia M, Horn M, Landgraff C, Arts EJ, Goodridge L, Becker D, Charles TC. Genomic surveillance of Canadian airport wastewater samples allows early detection of emerging SARS-CoV-2 lineages. Sci Rep 2024; 14:26534. [PMID: 39489759 PMCID: PMC11532424 DOI: 10.1038/s41598-024-76925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has shown wastewater (WW) surveillance to be an effective means of tracking the emergence of viral lineages which arrive by many routes of transmission including via transportation hubs. In the Canadian province of Ontario, numerous municipal wastewater treatment plants (WWTPs) participate in WW surveillance of infectious disease targets such as SARS-CoV-2 by qPCR and whole genome sequencing (WGS). The Greater Toronto Airports Authority (GTAA), operator of Toronto Pearson International Airport (Toronto Pearson), has been participating in WW surveillance since January 2022. As a major international airport in Canada and the largest national hub, this airport is an ideal location for tracking globally emerging SARS-CoV-2 variants of concern (VOCs). In this study, WW collected from Toronto Pearson's two terminals and pooled aircraft sewage was processed for WGS using a tiled-amplicon approach targeting the SARS-CoV-2 virus genome. Data generated was analyzed to monitor trends of SARS-CoV-2 lineage frequencies. Initial detections of emerging lineages were compared between Toronto Pearson WW samples, municipal WW samples collected from the surrounding regions, and Ontario clinical data as published by Public Health Ontario. Results enabled the early detection of VOCs and individual mutations emerging in Ontario. On average, the emergence of novel lineages at the airport preceded clinical detections by 1-4 weeks, and up to 16 weeks in one case. This project illustrates the efficacy of WW surveillance at transitory transportation hubs and sets an example that could be applied to other viruses as part of a pandemic preparedness strategy and to provide monitoring on a mass scale.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lydia Cheng
- Regional Municipality of Peel, Mississauga, ON, Canada
| | - Carina Bee
- Regional Municipality of York, Newmarket, ON, Canada
| | - Asim Qasim
- Regional Municipality of York, Newmarket, ON, Canada
| | - Kyle Atanas
- Regional Municipality of Peel, Mississauga, ON, Canada
| | - Mark Payne
- Regional Municipality of York, Newmarket, ON, Canada
| | | | | | | | - Delaney Nash
- University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| | | | | | - Hannifer Ho
- University of Waterloo, Waterloo, ON, Canada
| | | | | | - Shiv Naik
- University of Waterloo, Waterloo, ON, Canada
| | | | | | | | - Steven Thomas
- Greater Toronto Airports Authority, Mississauga, ON, Canada
| | | | - Vixey Fang
- Regional Municipality of York, Newmarket, ON, Canada
| | | | - Monali Varia
- Regional Municipality of Peel, Mississauga, ON, Canada
| | - Maureen Horn
- Regional Municipality of Peel, Mississauga, ON, Canada
| | | | | | | | - Devan Becker
- Wilfrid Laurier University, Waterloo, ON, Canada
| | - Trevor C Charles
- University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
2
|
Jones DL, Bridgman M, Pellett C, Weightman AJ, Kille P, García Delgado Á, Cross G, Cobley S, Howard-Jones H, Chadwick DR, Farkas K. Use of wastewater from passenger ships to assess the movement of COVID-19 and other pathogenic viruses across maritime international boundaries. Front Public Health 2024; 12:1377996. [PMID: 39076415 PMCID: PMC11284076 DOI: 10.3389/fpubh.2024.1377996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Objective The worldwide spread of SARS-CoV-2 and the resulting COVID-19 pandemic has been driven by international travel. This has led to the desire to develop surveillance approaches which can estimate the rate of import of pathogenic organisms across international borders. The aim of this study was to investigate the use of wastewater-based approaches for the surveillance of viral pathogens on commercial short-haul (3.5 h transit time) roll-on/roll-off passenger/freight ferries operating between the UK and the Republic of Ireland. Methods Samples of toilet-derived wastewater (blackwater) were collected from two commercial ships over a 4-week period and analysed for SARS-CoV-2, influenza, enterovirus, norovirus, the faecal-marker virus crAssphage and a range of physical and chemical indicators of wastewater quality. Results A small proportion of the wastewater samples were positive for SARS-CoV-2 (8% of the total), consistent with theoretical predictions of detection frequency (4%-15% of the total) based on the national COVID-19 Infection Survey and defecation behaviour. In addition, norovirus was detected in wastewater at low frequency. No influenza A/B viruses, enterovirus or enterovirus D68 were detected throughout the study period. Conclusion We conclude that testing of wastewater from ships that cross international maritime boundaries may provide a cost-effective and relatively unbiased method to estimate the flow of infected individuals between countries. The approach is also readily applicable for the surveillance of other disease-causing agents.
Collapse
Affiliation(s)
- Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Mathew Bridgman
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Cameron Pellett
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Andrew J. Weightman
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Peter Kille
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Álvaro García Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cardiff, United Kingdom
| | - Steve Cobley
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cardiff, United Kingdom
| | - Helen Howard-Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - David R. Chadwick
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
3
|
Tay M, Lee B, Ismail MH, Yam J, Maliki D, Gin KYH, Chae SR, Ho ZJM, Teoh YL, Ng LC, Wong JCC. Usefulness of aircraft and airport wastewater for monitoring multiple pathogens including SARS-CoV-2 variants. J Travel Med 2024; 31:taae074. [PMID: 38813965 DOI: 10.1093/jtm/taae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND As global travel resumed in coronavirus disease 2019 (COVID-19) endemicity, the potential of aircraft wastewater monitoring to provide early warning of disease trends for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other infectious diseases, particularly at international air travel hubs, was recognized. We therefore assessed and compared the feasibility of testing wastewater from inbound aircraft and airport terminals for 18 pathogens including SARS-CoV-2 in Singapore, a popular travel hub in Asia. METHODS Wastewater samples collected from inbound medium- and long-haul flights and airport terminals were tested for SARS-CoV-2. Next Generation Sequencing was carried out on positive samples to identify SARS-CoV-2 variants. Airport and aircraft samples were further tested for 17 other pathogens through quantitative reverse transcription polymerase chain reaction. RESULTS The proportion of SARS-CoV-2-positive samples and the average virus load was higher for wastewater samples from aircraft as compared with airport terminals. Cross-correlation analyses indicated that viral load trends from airport wastewater led local COVID-19 case trends by 2-5 days. A total of 10 variants (44 sub-lineages) were successfully identified from aircraft wastewater and airport terminals, and four variants of interest and one variant under monitoring were detected in aircraft and airport wastewater 18-31 days prior to detection in local clinical cases. The detection of five respiratory and four enteric viruses in aircraft wastewater samples further underscores the potential to expand aircraft wastewater to monitoring pathogens beyond SARS-CoV-2. CONCLUSION Our findings demonstrate the feasibility of aircraft wastewater testing for monitoring infectious diseases threats, potentially detecting signals before clinical cases are reported. The triangulation of similar datapoints from aircraft wastewater of international travel nodes could therefore serve as a useful early warning system for global health threats.
Collapse
Affiliation(s)
- Martin Tay
- Environmental Health Institute, National Environment Agency, Singapore
| | - Benjamin Lee
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Jerald Yam
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
- Department of Civil & Environmental Engineering, National University of Singapore, Singapore
| | - Sae-Rom Chae
- Communicable Diseases Group, Ministry of Health, Singapore
- National Centre for Infectious Diseases, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | | | - Yee Leong Teoh
- Communicable Diseases Group, Ministry of Health, Singapore
- National Centre for Infectious Diseases, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
4
|
Pasha ABT, Kotlarz N, Holcomb D, Reckling S, Kays J, Bailey E, Guidry V, Christensen A, Berkowitz S, Engel LS, de Los Reyes F, Harris A. Monitoring SARS-CoV-2 RNA in wastewater from a shared septic system and sub-sewershed sites to expand COVID-19 disease surveillance. JOURNAL OF WATER AND HEALTH 2024; 22:978-992. [PMID: 38935450 DOI: 10.2166/wh.2024.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 06/29/2024]
Abstract
Wastewater-based epidemiology has expanded as a tool for collecting COVID-19 surveillance data, but there is limited information on the feasibility of this form of surveillance within decentralized wastewater systems (e.g., septic systems). This study assessed SARS-CoV-2 RNA concentrations in wastewater samples from a septic system servicing a mobile home park (66 households) and from two pumping stations serving a similarly sized (71 households) and a larger (1,000 households) neighborhood within a nearby sewershed over 35 weeks in 2020. Also, raw wastewater from a hospital in the same sewershed was sampled. The mobile home park samples had the highest detection frequency (39/39 days) and mean concentration of SARS-CoV-2 RNA (2.7 × 107 gene copies/person/day for the N1) among the four sampling sites. N1 gene and N2 gene copies were highly correlated across mobile home park samples (Pearson's r = 0.93, p < 0.0001). In the larger neighborhood, new COVID-19 cases were reported every week during the sampling period; however, we detected SARS-CoV-2 RNA in 12% of the corresponding wastewater samples. The results of this study suggest that sampling from decentralized wastewater infrastructure can be used for continuous monitoring of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- A B Tanvir Pasha
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | - Nadine Kotlarz
- Center for Human Health and the Environment, NC State, Raleigh, NC, USA
| | - David Holcomb
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stacie Reckling
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Judith Kays
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | | | - Virginia Guidry
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Ariel Christensen
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Steven Berkowitz
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Francis de Los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | - Angela Harris
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA E-mail:
| |
Collapse
|
5
|
Koiso S, Gulbas E, Dike L, Mulroy NM, Ciaranello AL, Freedberg KA, Jalali MS, Walker AT, Ryan ET, LaRocque RC, Hyle EP. Modeling approaches to inform travel-related policies for COVID-19 containment: A scoping review and future directions. Travel Med Infect Dis 2024; 62:102730. [PMID: 38830442 DOI: 10.1016/j.tmaid.2024.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Travel-related strategies to reduce the spread of COVID-19 evolved rapidly in response to changes in the understanding of SARS-CoV-2 and newly available tools for prevention, diagnosis, and treatment. Modeling is an important methodology to investigate the range of outcomes that could occur from different disease containment strategies. METHODS We examined 43 articles published from December 2019 through September 2022 that used modeling to evaluate travel-related COVID-19 containment strategies. We extracted and synthesized data regarding study objectives, methods, outcomes, populations, settings, strategies, and costs. We used a standardized approach to evaluate each analysis according to 26 criteria for modeling quality and rigor. RESULTS The most frequent approaches included compartmental modeling to examine quarantine, isolation, or testing. Early in the pandemic, the goal was to prevent travel-related COVID-19 cases with a focus on individual-level outcomes and assessing strategies such as travel restrictions, quarantine without testing, social distancing, and on-arrival PCR testing. After the development of diagnostic tests and vaccines, modeling studies projected population-level outcomes and investigated these tools to limit COVID-19 spread. Very few published studies included rapid antigen screening strategies, costs, explicit model calibration, or critical evaluation of the modeling approaches. CONCLUSION Future modeling analyses should leverage open-source data, improve the transparency of modeling methods, incorporate newly available prevention, diagnostics, and treatments, and include costs and cost-effectiveness so that modeling analyses can be informative to address future SARS-CoV-2 variants of concern and other emerging infectious diseases (e.g., mpox and Ebola) for travel-related health policies.
Collapse
Affiliation(s)
- Satoshi Koiso
- Medical Practice Evaluation Center, Massachusetts General Hospital, 100 Cambridge St., 16th Floor, Boston, MA, USA.
| | - Eren Gulbas
- Medical Practice Evaluation Center, Massachusetts General Hospital, 100 Cambridge St., 16th Floor, Boston, MA, USA
| | - Lotanna Dike
- Medical Practice Evaluation Center, Massachusetts General Hospital, 100 Cambridge St., 16th Floor, Boston, MA, USA
| | - Nora M Mulroy
- Medical Practice Evaluation Center, Massachusetts General Hospital, 100 Cambridge St., 16th Floor, Boston, MA, USA
| | - Andrea L Ciaranello
- Medical Practice Evaluation Center, Massachusetts General Hospital, 100 Cambridge St., 16th Floor, Boston, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Kenneth A Freedberg
- Medical Practice Evaluation Center, Massachusetts General Hospital, 100 Cambridge St., 16th Floor, Boston, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA; Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Mohammad S Jalali
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA; Institute for Technology Assessment, Massachusetts General Hospital, 101 Merrimac St., Suite, 1010, Boston, MA, USA
| | - Allison T Walker
- Division of Global Migration Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, USA
| | - Edward T Ryan
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA; Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA; Travelers' Advice and Immunization Center, Massachusetts General Hospital, Cox Building, 5th Floor, 55 Fruit Street, Boston, MA, USA
| | - Regina C LaRocque
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA; Travelers' Advice and Immunization Center, Massachusetts General Hospital, Cox Building, 5th Floor, 55 Fruit Street, Boston, MA, USA
| | - Emily P Hyle
- Medical Practice Evaluation Center, Massachusetts General Hospital, 100 Cambridge St., 16th Floor, Boston, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA; Travelers' Advice and Immunization Center, Massachusetts General Hospital, Cox Building, 5th Floor, 55 Fruit Street, Boston, MA, USA.
| |
Collapse
|
6
|
van der Drift AMR, Haver A, Kloosterman A, van der Beek RFHJ, Nagelkerke E, Eggink D, Laros JFJ, Nrs C, van Dissel JT, de Roda Husman AM, Lodder WJ. Long-term wastewater monitoring of SARS-CoV-2 viral loads and variants at the major international passenger hub Amsterdam Schiphol Airport: A valuable addition to COVID-19 surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173535. [PMID: 38802021 DOI: 10.1016/j.scitotenv.2024.173535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Wastewater-based epidemiological surveillance at municipal wastewater treatment plants has proven to play an important role in COVID-19 surveillance. Considering international passenger hubs contribute extensively to global transmission of viruses, wastewater surveillance at this type of location may be of added value as well. The aim of this study is to explore the potential of long-term wastewater surveillance at a large passenger hub as an additional tool for public health surveillance during different stages of a pandemic. Here, we present an analysis of SARS-CoV-2 viral loads in airport wastewater by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) from the beginning of the COVID-19 pandemic in Feb 2020, and an analysis of SARS-CoV-2 variants by whole-genome next-generation sequencing from Sep 2020, both until Sep 2022, in the Netherlands. Results are contextualized using (inter)national measures and data sources such as passenger numbers, clinical surveillance data and national wastewater surveillance data. Our findings show that wastewater surveillance was possible throughout the study period, irrespective of measures, as viral loads were detected and quantified in 98.6 % (273/277) of samples. Emergence of SARS-CoV-2 variants, identified in 91.0 % (161/177) of sequenced samples, coincided with increases in viral loads. Furthermore, trends in viral load and variant detection in airport wastewater closely followed, and in some cases preceded, trends in national daily average viral load in wastewater and variants detected in clinical surveillance. Wastewater-based epidemiology at a large international airport is a valuable addition to classical COVID-19 surveillance and the developed expertise can be applied in pandemic preparedness plans for other (emerging) pathogens in the future.
Collapse
Affiliation(s)
- Anne-Merel R van der Drift
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Science (IRAS), Utrecht University (UU), Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Auke Haver
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Astrid Kloosterman
- Centre for Environmental Safety and Security (M&V), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721, MA, Bilthoven, the Netherlands
| | - Rudolf F H J van der Beek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Erwin Nagelkerke
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Dirk Eggink
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Applied Evolutionary Biology, 1105 AZ Amsterdam, the Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics (HG), Leiden University Medical Center (LUMC); Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Department of BioInformatics and computational services (BIR), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721, MA, Bilthoven, the Netherlands
| | - Consortium Nrs
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Jaap T van Dissel
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Department of Infectious Diseases, Leiden University Medical Center (LUMC); Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Science (IRAS), Utrecht University (UU), Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Willemijn J Lodder
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
7
|
Rashid SA, Rajendiran S, Nazakat R, Mohammad Sham N, Khairul Hasni NA, Anasir MI, Kamel KA, Muhamad Robat R. A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic. Heliyon 2024; 10:e30600. [PMID: 38765075 PMCID: PMC11098849 DOI: 10.1016/j.heliyon.2024.e30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, wastewater-based epidemiology (WBE) research has experienced a strong impetus during the Coronavirus disease 2019 (COVID-19) pandemic. However, a few technical issues related to surveillance strategies, such as standardized procedures ranging from sampling to testing protocols, need to be resolved in preparation for future infectious disease outbreaks. This review highlights the study characteristics, potential use of WBE and overview of methods, as well as methods utilized to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including its variant in wastewater. A literature search was performed electronically in PubMed and Scopus according to PRISMA guidelines for relevant peer-reviewed articles published between January 2020 and March 2022. The search identified 588 articles, out of which 221 fulfilled the necessary criteria and are discussed in this review. Most global WBE studies were conducted in North America (n = 75, 34 %), followed by Europe (n = 68, 30.8 %), and Asia (n = 43, 19.5 %). The review also showed that most of the application of WBE observed were to correlate SARS-CoV-2 ribonucleic acid (RNA) trends in sewage with epidemiological data (n = 90, 40.7 %). The techniques that were often used globally for sample collection, concentration, preferred matrix recovery control and various sample types were also discussed. Overall, this review provided a framework for researchers specializing in WBE to apply strategic approaches to their research questions in achieving better functional insights. In addition, areas that needed more in-depth analysis, data collection, and ideas for new initiatives were identified.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sakshaleni Rajendiran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Noraishah Mohammad Sham
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Khayri Azizi Kamel
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Occupational & Environmental Health Unit, Public Health Division, Selangor State Health Department, Ministry of Health Malaysia, Malaysia
| |
Collapse
|
8
|
Folkes M, Castro-Gutierrez V, Lundy L, Bajón-Fernández Y, Soares A, Jeffrey P, Hassard F. Campus source to sink wastewater surveillance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100240. [PMID: 38774836 PMCID: PMC11106825 DOI: 10.1016/j.crmicr.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Wastewater-based surveillance (WBS) offers an aggregate, and cost-effective approach for tracking infectious disease outbreak prevalence within communities, that provides data on community health complementary to individual clinical testing. This study reports on a 16-month WBS initiative on a university campus in England, UK, assessing the presence of SARS-CoV-2 in sewers from large buildings, downstream sewer locations, raw wastewater, partially treated and treated effluents. Key findings include the detection of the Alpha (B.1.1.7) variant in wastewater, with 70 % of confirmed campus cases correlating with positive wastewater samples. Notably, ammonium nitrogen (NH4-N) levels showed a positive correlation (ρ = 0.543, p < 0.01) with virus levels at the large building scale, a relationship not observed at the sewer or wastewater treatment works (WWTW) levels due to dilution. The WWTW was compliant to wastewater standards, but the secondary treatment processes were not efficient for virus removal as SARS-CoV-2 was consistently detected in treated discharges. Tools developed through WBS can also be used to enhance traditional environmental monitoring of aquatic systems. This study provides a detailed source-to-sink evaluation, emphasizing the critical need for the widespread application and improvement of WBS. It showcases WBS utility and reinforces the ongoing challenges posed by viruses to receiving water quality.
Collapse
Affiliation(s)
- M. Folkes
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - V.M. Castro-Gutierrez
- Center for Research on Environmental Pollution (CICA), Universidad de Costa Rica, Montes de Oca, 11501, Costa Rica
| | - L. Lundy
- Department of Natural Sciences, Middlesex University, NW4 4BT, UK
| | - Y. Bajón-Fernández
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - A. Soares
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - P. Jeffrey
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - F. Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
9
|
Jin S, Dickens BL, Toh KY, Lye DCB, Lee VJ, Cook AR. Feasibility of wastewater-based detection of emergent pandemics through a global network of airports. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003010. [PMID: 38478549 PMCID: PMC10936834 DOI: 10.1371/journal.pgph.0003010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/16/2024] [Indexed: 11/02/2024]
Abstract
Wastewater-based surveillance has been put into practice during the pandemic. Persistence of SARS-CoV-2 in faeces of infected individuals, and high volume of passengers travelling by air, make it possible to detect virus from aircraft wastewater, lending itself to the potential identification of a novel pathogen prior to clinical diagnosis. In this study, we estimated the likelihood of detecting the virus through aircraft wastewater from the probabilities of air travel, viral shedding, defecation, testing sensitivity, and sampling. We considered various hypothetical scenarios, with diverse sampling proportions of inbound flights, surveillance airports, and sources of outbreaks. Our calculations showed that the probability of detecting SARS-CoV-2 would increase exponentially against time in the early phase of the pandemic, and would be much higher if the 20 major airports in Asia, Europe, and North America cooperated to perform aircraft wastewater surveillance. We also found other contributors to early detection, including high sampling proportion of inbound flight at destination airports, small population size of the epicentre relative to the travel volume, and large volume of outbound travelers to major airports around the globe. We concluded that routine aircraft wastewater monitoring could be a feasible approach for early identification and tracking of an emerging pathogen with high faecal shedding rates, particularly when implemented through a global surveillance network of major airports.
Collapse
Affiliation(s)
- Shihui Jin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Borame L. Dickens
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - David Chien Boon Lye
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
| | - Vernon J. Lee
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
| | - Alex R. Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Brogna C, Montano L, Zanolin ME, Bisaccia DR, Ciammetti G, Viduto V, Fabrowski M, Baig AM, Gerlach J, Gennaro I, Bignardi E, Brogna B, Frongillo A, Cristoni S, Piscopo M. A retrospective cohort study on early antibiotic use in vaccinated and unvaccinated COVID-19 patients. J Med Virol 2024; 96:e29507. [PMID: 38504586 DOI: 10.1002/jmv.29507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The bacteriophage behavior of SARS-CoV-2 during the acute and post-COVID-19 phases appears to be an important factor in the development of the disease. The early use of antibiotics seems to be crucial to inhibit disease progression-to prevent viral replication in the gut microbiome, and control toxicological production from the human microbiome. To study the impact of specific antibiotics on recovery from COVID-19 and long COVID (LC) taking into account: vaccination status, comorbidities, SARS-CoV-2 wave, time of initiation of antibiotic therapy and concomitant use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). A total of 211 COVID-19 patients were included in the study: of which 59 were vaccinated with mRNA vaccines against SARS-CoV-2 while 152 were unvaccinated. Patients were enrolled in three waves: from September 2020 to October 2022, corresponding to the emergence of the pre-Delta, Delta, and Omicron variants of the SARS-CoV-2 virus. The three criteria for enrolling patients were: oropharyngeal swab positivity or fecal findings; moderate symptoms with antibiotic intake; and measurement of blood oxygen saturation during the period of illness. The use of antibiotic combinations, such as amoxicillin with clavulanic acid (875 + 125 mg tablets, every 12 h) plus rifaximin (400 mg tablets every 12 h), as first choice, as suggested from the previous data, or azithromycin (500 mg tablets every 24 h), plus rifaximin as above, allows healthcare professionals to focus on the gut microbiome and its implications in COVID-19 disease during patient care. The primary outcome measured in this study was the estimated average treatment effect, which quantified the difference in mean recovery between patients receiving antibiotics and those not receiving antibiotics at 3 and 9 days after the start of treatment. In the analysis, both vaccinated and unvaccinated groups had a median illness duration of 7 days (interquartile range [IQR] 6-9 days for each; recovery crude hazard ratio [HR] = 0.94, p = 0.700). The median illness duration for the pre-Delta and Delta waves was 8 days (IQR 7-10 days), while it was shorter, 6.5 days, for Omicron (IQR 6-8 days; recovery crude HR = 1.71, p < 0.001). These results were confirmed by multivariate analysis. Patients with comorbidities had a significantly longer disease duration: median 8 days (IQR 7-10 days) compared to 7 days (IQR 6-8 days) for those without comorbidities (crude HR = 0.75, p = 0.038), but this result was not confirmed in multivariate analysis as statistical significance was lost. Early initiation of antibiotic therapy resulted in a significantly shorter recovery time (crude HR = 4.74, p < 0.001). Concomitant use of NSAIDs did not reduce disease duration and in multivariate analysis prolonged the disease (p = 0.041). A subgroup of 42 patients receiving corticosteroids for a median of 3 days (IQR 3-6 days) had a longer recovery time (median 9 days, IQR 8-10 days) compared to others (median 7 days, IQR 6-8 days; crude HR = 0.542, p < 0.001), as confirmed also by the adjusted HR. In this study, a statistically significant reduction in recovery time was observed among patients who received early antibiotic treatment. Early initiation of antibiotics played a crucial role in maintaining higher levels of blood oxygen saturation. In addition, it is worth noting that a significant number of patients who received antibiotics in the first 3 days and for a duration of 7 days, during the acute phase did not develop LC.
Collapse
Affiliation(s)
- Carlo Brogna
- Craniomed Group Srl. Research Facility, Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL), Salerno, Italy
| | | | | | - Gianluca Ciammetti
- Otorhinolaryngology Unit, Hospital Ferdinando Veneziale Isernia, Regional Health Authority of Molise, Italy
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | - Abdul M Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Iapicca Gennaro
- Pineta Grande Hospital Group, Department of Urology, Santa Rita Clinic, Atripalda, Italy
| | | | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Avellino, Italy
| | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Brighton K, Fisch S, Wu H, Vigil K, Aw TG. Targeted community wastewater surveillance for SARS-CoV-2 and Mpox virus during a festival mass-gathering event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167443. [PMID: 37793442 DOI: 10.1016/j.scitotenv.2023.167443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Wastewater surveillance has emerged recently as a powerful approach to understanding infectious disease dynamics in densely populated zones. Wastewater surveillance, while promising as a public health tool, is often hampered by slow turn-around times, complex analytical protocols, and resource-intensive techniques. In this study, we evaluated an affinity capture method and microfluidic digital PCR as a rapid approach to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mpox (formerly known as monkeypox) virus, and fecal indicator, pepper mild mottle virus (PMMoV) in wastewater during a mass-gathering event. Wastewater samples (n = 131) were collected from residential and commercial manholes, pump stations, and a city's wastewater treatment plant. The use of Nanotrap® Microbiome Particles and microfluidic digital PCR produced comparable results to other established methodologies, with reduced process complexity and analytical times, providing same day results for public health preparedness and response. Using indigenous SARS-CoV-2 and PMMoV in wastewater, the average viral recovery efficiency was estimated at 10.1 %. Both SARS-CoV-2 N1 and N2 genes were consistently detected throughout the sampling period, with increased RNA concentrations mainly in wastewater samples collected from commercial area after festival mass gatherings. The mpox virus was sporadically detected in wastewater samples during the surveillance period, without distinct temporal trends. SARS-CoV-2 RNA concentrations in the city's wastewater mirrored the city's COVID-19 cases, confirming the predictive properties of wastewater surveillance. Wastewater surveillance continues to be beneficial for tracking diseases that display gastrointestinal symptoms, including SARS-CoV-2, and can be a powerful tool for sentinel surveillance. However, careful site selection and a thorough understanding of community dynamics are necessary when performing targeted surveillance during temporary mass-gathering events as potential confirmation bias may occur.
Collapse
Affiliation(s)
- Keegan Brighton
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Samuel Fisch
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Huiyun Wu
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
12
|
Murakami M, Kitajima M, Endo N, Ahmed W, Gawlik BM. The growing need to establish a global wastewater surveillance consortium for future pandemic preparedness. J Travel Med 2023; 30:taad035. [PMID: 36928722 PMCID: PMC10658654 DOI: 10.1093/jtm/taad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Recognizing the risk of pandemic and the importance of monitoring and data sharing, we highlight the importance of establishing a global wastewater surveillance consortium, particularly under the umbrella of an international organization such as WHO, to strengthen future pandemic preparedness.
Collapse
Affiliation(s)
- Michio Murakami
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Noriko Endo
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga 520-0811, Japan
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | | |
Collapse
|
13
|
Ahmed W, Smith WJM, Tiwari A, Bivins A, Simpson SL. Unveiling indicator, enteric, and respiratory viruses in aircraft lavatory wastewater using adsorption-extraction and Nanotrap® Microbiome A Particles workflows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165007. [PMID: 37348715 DOI: 10.1016/j.scitotenv.2023.165007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
The effective detection of viruses in aircraft wastewater is crucial to establish surveillance programs for monitoring virus spread via aircraft passengers. This study aimed to compare the performance of two virus concentration workflows, adsorption-extraction (AE) and Nanotrap® Microbiome A Particles (NMAP), in detecting the prevalence and concentrations of 15 endogenous viruses including ssDNA, dsDNA, ssRNA in 24 aircraft lavatory wastewater samples. The viruses tested included two indicator viruses, four enteric viruses, and nine respiratory viruses. The results showed that cross-assembly phage (crAssphage), human polyomavirus (HPyV), rhinovirus A (RhV A), and rhinovirus B (RhV B) were detected in all wastewater samples using both workflows. However, enterovirus (EV), human norovirus GII (HNoV GII), human adenovirus (HAdV), bocavirus (BoV), parechovirus (PeV), epstein-barr virus (EBV). Influenza A virus (IAV), and respiratory syncytial virus B (RsV B) were infrequently detected by both workflows, and hepatitis A virus (HAV), influenza B virus (IBV), and respiratory syncytial virus B (RsV A) were not detected in any samples. The NMAP workflow had greater detection rates of RNA viruses (EV, PeV, and RsV B) than the AE workflow, while the AE workflow had greater detection rates of DNA viruses (HAdV, BoV, and EBV) than the NMAP workflow. The concentration of each virus was also analyzed, and the results showed that crAssphage had the highest mean concentration (6.76 log10 GC/12.5 mL) followed by HPyV (5.46 log10 GC/12.5 mL using the AE workflow, while the mean concentrations of enteric and respiratory viruses ranged from 2.48 to 3.63 log10 GC/12.5 mL. Using the NMAP workflow, the mean concentration of crAssphage was 5.18 log10 GC/12.5 mL and the mean concentration of HPyV was 4.20 log10 GC/12.5 mL, while mean concentrations of enteric and respiratory viruses ranged from 2.55 to 3.74 log10 GC/12.5 mL. Significantly higher (p < 0.05) mean concentrations of crAssphage and HPyV were observed when employing the AE workflow in comparison to the NMAP workflow. Conversely, the NMAP workflow yielded significantly greater (p < 0.05) concentrations of RhV A, and RhV B compared to the AE workflow. The findings of this study can aid in the selection of an appropriate concentration workflow for virus surveillance studies and contribute to the development of efficient virus detection methods.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ananda Tiwari
- Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
14
|
Amato E, Hyllestad S, Heradstveit P, Langlete P, Moen LV, Rohringer A, Pires J, Baz Lomba JA, Bragstad K, Feruglio SL, Aavitsland P, Madslien EH. Evaluation of the pilot wastewater surveillance for SARS-CoV-2 in Norway, June 2022 - March 2023. BMC Public Health 2023; 23:1714. [PMID: 37667223 PMCID: PMC10476384 DOI: 10.1186/s12889-023-16627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND During the COVID-19 pandemic, wastewater-based surveillance gained great international interest as an additional tool to monitor SARS-CoV-2. In autumn 2021, the Norwegian Institute of Public Health decided to pilot a national wastewater surveillance (WWS) system for SARS-CoV-2 and its variants between June 2022 and March 2023. We evaluated the system to assess if it met its objectives and its attribute-based performance. METHODS We adapted the available guidelines for evaluation of surveillance systems. The evaluation was carried out as a descriptive analysis and consisted of the following three steps: (i) description of the WWS system, (ii) identification of users and stakeholders, and (iii) analysis of the system's attributes and performance including sensitivity, specificity, timeliness, usefulness, representativeness, simplicity, flexibility, stability, and communication. Cross-correlation analysis was performed to assess the system's ability to provide early warning signal of new wave of infections. RESULTS The pilot WWS system was a national surveillance system using existing wastewater infrastructures from the largest Norwegian municipalities. We found that the system was sensitive, timely, useful, representative, simple, flexible, acceptable, and stable to follow the general trend of infection. Preliminary results indicate that the system could provide an early signal of changes in variant distribution. However, challenges may arise with: (i) specificity due to temporary fluctuations of RNA levels in wastewater, (ii) representativeness when downscaling, and (iii) flexibility and acceptability when upscaling the system due to limited resources and/or capacity. CONCLUSIONS Our results showed that the pilot WWS system met most of its surveillance objectives. The system was able to provide an early warning signal of 1-2 weeks, and the system was useful to monitor infections at population level and complement routine surveillance when individual testing activity was low. However, temporary fluctuations of WWS values need to be carefully interpreted. To improve quality and efficiency, we recommend to standardise and validate methods for assessing trends of new waves of infection and variants, evaluate the WWS system using a longer operational period particularly for new variants, and conduct prevalence studies in the population to calibrate the system and improve data interpretation.
Collapse
Affiliation(s)
- Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway.
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Heradstveit
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Victoria Moen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andreas Rohringer
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
- Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), ECDC Fellowship Programme, Stockholm, Sweden
| | - Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Karoline Bragstad
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri Laura Feruglio
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Preben Aavitsland
- Norwegian Institute of Public Health, Oslo, Norway
- Pandemic Centre, University of Bergen, Bergen, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
15
|
Ram JL, Shuster W, Gable L, Turner CL, Hartrick J, Vasquez AA, West NW, Bahmani A, David RE. Wastewater Monitoring for Infectious Disease: Intentional Relationships between Academia, the Private Sector, and Local Health Departments for Public Health Preparedness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6651. [PMID: 37681792 PMCID: PMC10487196 DOI: 10.3390/ijerph20176651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
The public health emergency caused by the COVID-19 pandemic stimulated stakeholders from diverse disciplines and institutions to establish new collaborations to produce informed public health responses to the disease. Wastewater-based epidemiology for COVID-19 grew quickly during the pandemic and required the rapid implementation of such collaborations. The objective of this article is to describe the challenges and results of new relationships developed in Detroit, MI, USA among a medical school and an engineering college at an academic institution (Wayne State University), the local health department (Detroit Health Department), and an environmental services company (LimnoTech) to utilize markers of the COVID-19 virus, SARS-CoV-2, in wastewater for the goal of managing COVID-19 outbreaks. Our collaborative team resolved questions related to sewershed selection, communication of results, and public health responses and addressed technical challenges that included ground-truthing the sewer maps, overcoming supply chain issues, improving the speed and sensitivity of measurements, and training new personnel to deal with a new disease under pandemic conditions. Recognition of our complementary roles and clear communication among the partners enabled city-wide wastewater data to inform public health responses within a few months of the availability of funding in 2020, and to make improvements in sensitivity and understanding to be made as the pandemic progressed and evolved. As a result, the outbreaks of COVID-19 in Detroit in fall and winter 2021-2022 (corresponding to Delta and Omicron variant outbreaks) were tracked in 20 sewersheds. Data comparing community- and hospital-associated sewersheds indicate a one- to two-week advance warning in the community of subsequent peaks in viral markers in hospital sewersheds. The new institutional relationships impelled by the pandemic provide a good basis for continuing collaborations to utilize wastewater-based human and pathogen data for improving the public health in the future.
Collapse
Affiliation(s)
- Jeffrey L. Ram
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - William Shuster
- College of Engineering, Wayne State University, Detroit, MI 48202, USA;
| | - Lance Gable
- Law School, Wayne State University, Detroit, MI 48202, USA
| | | | | | - Adrian A. Vasquez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Nicholas W. West
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Azadeh Bahmani
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Randy E. David
- Detroit Health Department, Detroit, MI 48201, USA
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Breulmann M, Kallies R, Bernhard K, Gasch A, Müller RA, Harms H, Chatzinotas A, van Afferden M. A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164143. [PMID: 37182773 PMCID: PMC10181866 DOI: 10.1016/j.scitotenv.2023.164143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Wastewater-based monitoring of SARS-CoV-2 has become a promising and useful tool in tracking the potential spread or dynamics of the virus. Its recording can be used to predict how the potential number of infections in a population will develop. Recent studies have shown that the use of passive samplers is also suitable for the detection of SARS-CoV-2 genome copies (GC) in wastewater. They can be used at any site, provide timely data and may collect SARS-CoV-2 GC missed by traditional sampling methods. Therefore, the aim of this study was to evaluate the suitability of passive samplers for the detection of SARS-CoV-2 GC in wastewater in the long-term at two different scales. Polyethylene-based plastic passive samplers were deployed at the city-scale level of Leipzig at 13 different locations, with samples being taken from March 2021 to August 2022. At the smaller city district level, three types of passive samplers (cotton-cloth, unravelled polypropylene plastic rope and polyethylene-based plastic strips) were used and sampled on a weekly basis from March to August 2022. The results are discussed in relation to wastewater samples taken at the individual passive sampling point. Our results show that passive samplers can indicate at a city-scale level an accurate level of positive infections in the population (positive-rate: 86 %). On a small-scale level, the use of passive samplers was also feasible and effective to detect SARS-CoV-2 GC easily and cost-effectively, mirroring a similar trend to that at a city-scale level. Thus, this study demonstrated that passive samplers provide reproducible SARS-CoV-2 GC signals from wastewater and a time-integrated measurement of the sampled matrix with greater sensitivity compared to wastewater. We thus recommend the use of passive samplers as an alternative method for wastewater-based epidemiology. Passive samplers can in particular be considered for a better estimation of infections compared to incidence levels.
Collapse
Affiliation(s)
- Marc Breulmann
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Katy Bernhard
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Gasch
- Wastewater Monitoring Department, Kommunale Wasserwerke Leipzig GmbH, Johannisgasse 7-9, 04103 Leipzig, Germany
| | - Roland Arno Müller
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Manfred van Afferden
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
17
|
Ladner JT, Sahl JW. Towards a post-pandemic future for global pathogen genome sequencing. PLoS Biol 2023; 21:e3002225. [PMID: 37527248 PMCID: PMC10393143 DOI: 10.1371/journal.pbio.3002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Pathogen genome sequencing has become a routine part of our response to active outbreaks of infectious disease and should be an important part of our preparations for future epidemics. In this Essay, we discuss the innovations that have enabled routine pathogen genome sequencing, as well as how genome sequences can be used to understand and control the spread of infectious disease. We also explore the impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic on the field of pathogen genomics and outline the challenges we must address to further improve the utility of pathogen genome sequencing in the future.
Collapse
Affiliation(s)
- Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
18
|
Zhao L, Geng Q, Corchis-Scott R, McKay RM, Norton J, Xagoraraki I. Targeting a free viral fraction enhances the early alert potential of wastewater surveillance for SARS-CoV-2: a methods comparison spanning the transition between delta and omicron variants in a large urban center. Front Public Health 2023; 11:1140441. [PMID: 37546328 PMCID: PMC10400354 DOI: 10.3389/fpubh.2023.1140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Wastewater surveillance has proven to be a valuable approach to monitoring the spread of SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19). Recognizing the benefits of wastewater surveillance as a tool to support public health in tracking SARS-CoV-2 and other respiratory pathogens, numerous wastewater virus sampling and concentration methods have been tested for appropriate applications as well as their significance for actionability by public health practices. Methods Here, we present a 34-week long wastewater surveillance study that covers nearly 4 million residents of the Detroit (MI, United States) metropolitan area. Three primary concentration methods were compared with respect to recovery of SARS-CoV-2 from wastewater: Virus Adsorption-Elution (VIRADEL), polyethylene glycol precipitation (PEG), and polysulfone (PES) filtration. Wastewater viral concentrations were normalized using various parameters (flow rate, population, total suspended solids) to account for variations in flow. Three analytical approaches were implemented to compare wastewater viral concentrations across the three primary concentration methods to COVID-19 clinical data for both normalized and non-normalized data: Pearson and Spearman correlations, Dynamic Time Warping (DTW), and Time Lagged Cross Correlation (TLCC) and peak synchrony. Results It was found that VIRADEL, which captures free and suspended virus from supernatant wastewater, was a leading indicator of COVID-19 cases within the region, whereas PEG and PES filtration, which target particle-associated virus, each lagged behind the early alert potential of VIRADEL. PEG and PES methods may potentially capture previously shed and accumulated SARS-CoV-2 resuspended from sediments in the interceptors. Discussion These results indicate that the VIRADEL method can be used to enhance the early-warning potential of wastewater surveillance applications although drawbacks include the need to process large volumes of wastewater to concentrate sufficiently free and suspended virus for detection. While lagging the VIRADEL method for early-alert potential, both PEG and PES filtration can be used for routine COVID-19 wastewater monitoring since they allow a large number of samples to be processed concurrently while being more cost-effective and with rapid turn-around yielding results same day as collection.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Robert Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Boehm AB, Wolfe MK, White B, Hughes B, Duong D. Divergence of wastewater SARS-CoV-2 and reported laboratory-confirmed COVID-19 incident case data coincident with wide-spread availability of at-home COVID-19 antigen tests. PeerJ 2023; 11:e15631. [PMID: 37397016 PMCID: PMC10312197 DOI: 10.7717/peerj.15631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Concentrations of SARS-CoV-2 RNA in wastewater settled solids from publicly owned treatment works (POTWs) historically correlated strongly with laboratory confirmed incident COVID-19 case data. With the increased availability of at-home antigen tests since late 2021 and early 2022, laboratory test availability and test seeking behavior has decreased. In the United States, the results from at-home antigen tests are not typically reportable to public health agencies and thus are not counted in case reports. As a result, the number of reported laboratory-confirmed incident COVID-19 cases has decreased dramatically, even during times of increased test positivity rates and wastewater concentrations of SARS-CoV-2 RNA. Herein, we tested whether the correlative relationship between wastewater concentrations of SARS-CoV-2 RNA and reported laboratory-confirmed COVID-19 incidence rate has changed since 1 May 2022, a point in time immediately before the onset of the BA.2/BA.5 surge, the first surge to begin after at-home antigen test availability was high in the region. We used daily data from three POTWs in the Greater San Francisco Bay Area of California, USA for the analysis. We found that although there is a significant positive association between wastewater measurements and incident rate data collected after 1 May 2022, the parameters describing the relationship are different than those describing the relationship between the data collected prior to 1 May 2022. If laboratory test seeking or availability continues to change, the relationship between wastewater and reported case data will continue to change. Our results suggest, assuming SARS-CoV-2 RNA shedding remains relatively stable among those infected with the virus as different variants emerge, that wastewater concentrations of SARS-CoV-2 RNA can be used to estimate COVID-19 cases as they would have been during the time when laboratory testing availability and test seeking behavior were at a high (here, before 1 May 2022) using the historical relationship between SARS-CoV-2 RNA and COVID-19 case data.
Collapse
Affiliation(s)
| | | | - Bradley White
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Bridgette Hughes
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Dorothea Duong
- Verily Life Sciences, South San Francisco, CA, United States of America
| |
Collapse
|
20
|
Shingleton JW, Lilley CJ, Wade MJ. Evaluating the theoretical performance of aircraft wastewater monitoring as a tool for SARS-CoV-2 surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001975. [PMID: 37347725 DOI: 10.1371/journal.pgph.0001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Air travel plays an important role in the cross-border spread of infectious diseases. During the SARS-CoV-2 pandemic many countries introduced strict border testing protocols to monitor the incursion of the virus. However, high implementation costs and significant inconvenience to passengers have led public health authorities to consider alternative methods of disease surveillance at borders. Aircraft wastewater monitoring has been proposed as one such alternative. In this paper we assess the theoretical limits of aircraft wastewater monitoring and compare its performance to post-arrival border screening approaches. Using an infectious disease model, we simulate an unmitigated SARS-CoV-2 epidemic originating in a seed country and spreading to the United Kingdom (UK) through daily flights. We use a probabilistic approach to estimate the time of first detection in the UK in aircraft wastewater and respiratory swab screening. Across a broad range of model parameters, our analysis indicates that the median time between the first incursion and detection in wastewater would be approximately 17 days (IQR: 7-28 days), resulting in a median of 25 cumulative cases (IQR: 6-84 cases) in the UK at the point of detection. Comparisons to respiratory swab screening suggest that aircraft wastewater monitoring is as effective as random screening of 20% of passengers at the border, using a test with 95% sensitivity. For testing regimes with sensitivity of 85% or less, the required coverage to outperform wastewater monitoring increases to 30%. Analysis of other model parameters suggests that wastewater monitoring is most effective when used on long-haul flights where probability of defecation is above 30%, and when the target pathogen has high faecal shedding rates and reasonable detectability in wastewater. These results demonstrate the potential use cases of aircraft wastewater monitoring and its utility in a wider system of public health surveillance.
Collapse
Affiliation(s)
- Joseph W Shingleton
- Analytics & Data Science Directorate, UK Health Security Agency, Nobel House, Smith Square, London, United Kingdom
| | - Chris J Lilley
- Analytics & Data Science Directorate, UK Health Security Agency, Nobel House, Smith Square, London, United Kingdom
| | - Matthew J Wade
- Analytics & Data Science Directorate, UK Health Security Agency, Nobel House, Smith Square, London, United Kingdom
| |
Collapse
|
21
|
Gentry Z, Zhao L, Faust RA, David RE, Norton J, Xagoraraki I. Wastewater surveillance beyond COVID-19: a ranking system for communicable disease testing in the tri-county Detroit area, Michigan, USA. Front Public Health 2023; 11:1178515. [PMID: 37333521 PMCID: PMC10272568 DOI: 10.3389/fpubh.2023.1178515] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been utilized to monitor the disease in the United States through routine national, statewide, and regional monitoring projects. A significant canon of evidence was produced showing that wastewater surveillance is a credible and effective tool for disease monitoring. Hence, the application of wastewater surveillance can extend beyond monitoring SARS-CoV-2 to encompass a diverse range of emerging diseases. This article proposed a ranking system for prioritizing reportable communicable diseases (CDs) in the Tri-County Detroit Area (TCDA), Michigan, for future wastewater surveillance applications at the Great Lakes Water Authority's Water Reclamation Plant (GLWA's WRP). Methods The comprehensive CD wastewater surveillance ranking system (CDWSRank) was developed based on 6 binary and 6 quantitative parameters. The final ranking scores of CDs were computed by summing the multiplication products of weighting factors for each parameter, and then were sorted based on decreasing priority. Disease incidence data from 2014 to 2021 were collected for the TCDA. Disease incidence trends in the TCDA were endowed with higher weights, prioritizing the TCDA over the state of Michigan. Results Disparities in incidences of CDs were identified between the TCDA and state of Michigan, indicating epidemiological differences. Among 96 ranked CDs, some top ranked CDs did not present relatively high incidences but were prioritized, suggesting that such CDs require significant attention by wastewater surveillance practitioners, despite their relatively low incidences in the geographic area of interest. Appropriate wastewater sample concentration methods are summarized for the application of wastewater surveillance as per viral, bacterial, parasitic, and fungal pathogens. Discussion The CDWSRank system is one of the first of its kind to provide an empirical approach to prioritize CDs for wastewater surveillance, specifically in geographies served by centralized wastewater collection in the area of interest. The CDWSRank system provides a methodological tool and critical information that can help public health officials and policymakers allocate resources. It can be used to prioritize disease surveillance efforts and ensure that public health interventions are targeted at the most potentially urgent threats. The CDWSRank system can be easily adopted to geographical locations beyond the TCDA.
Collapse
Affiliation(s)
- Zachary Gentry
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Randy E. David
- Wayne State University School of Medicine, Detroit, MI, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Ng WY, Thoe W, Yang R, Cheung WP, Chen CK, To KH, Pak KM, Leung HW, Lai WK, Wong TK, Lau TK, Au KW, Xu XQ, Zheng XW, Deng Y, Lau YK, To CK, Peiris M, Leung GM, Zhang T, Yang M, An W, Chen W, Wang C, Chui HK. The city-wide full-scale interactive application of sewage surveillance programme for assisting real-time COVID-19 pandemic control - A case study in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162661. [PMID: 36898549 PMCID: PMC9991928 DOI: 10.1016/j.scitotenv.2023.162661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The paper discusses the implementation of Hong Kong's tailor-made sewage surveillance programme led by the Government, which has demonstrated how an efficient and well-organized sewage surveillance system can complement conventional epidemiological surveillance to facilitate the planning of intervention strategies and actions for combating COVID-19 pandemic in real-time. This included the setting up of a comprehensive sewerage network-based SARS-CoV-2 virus surveillance programme with 154 stationary sites covering 6 million people (or 80 % of the total population), and employing an intensive monitoring programme to take samples from each stationary site every 2 days. From 1 January to 22 May 2022, the daily confirmed case count started with 17 cases per day on 1 January to a maximum of 76,991 cases on 3 March and dropped to 237 cases on 22 May. During this period, a total of 270 "Restriction-Testing Declaration" (RTD) operations at high-risk residential areas were conducted based on the sewage virus testing results, where over 26,500 confirmed cases were detected with a majority being asymptomatic. In addition, Compulsory Testing Notices (CTN) were issued to residents, and the distribution of Rapid Antigen Test kits was adopted as alternatives to RTD operations in areas of moderate risk. These measures formulated a tiered and cost-effective approach to combat the disease in the local setting. Some ongoing and future enhancement efforts to improve efficacy are discussed from the perspective of wastewater-based epidemiology. Forecast models on case counts based on sewage virus testing results were also developed with R2 of 0.9669-0.9775, which estimated that up to 22 May 2022, around 2,000,000 people (~67 % higher than the total number of 1,200,000 reported to the health authority, due to various constraints or limitations) had potentially contracted the disease, which is believed to be reflecting the real situation occurring in a highly urbanized metropolis like Hong Kong.
Collapse
Affiliation(s)
- Wai-Yin Ng
- Environmental Protection Department, Hong Kong SAR Government, China
| | - Wai Thoe
- Environmental Protection Department, Hong Kong SAR Government, China
| | - Rong Yang
- Environmental Protection Department, Hong Kong SAR Government, China
| | - Wai-Ping Cheung
- Environmental Protection Department, Hong Kong SAR Government, China
| | - Che-Kong Chen
- Environmental Protection Department, Hong Kong SAR Government, China
| | - King-Ho To
- Environmental Protection Department, Hong Kong SAR Government, China
| | - Kan-Ming Pak
- Drainage Service Department, Hong Kong SAR Government, China
| | - Hon-Wan Leung
- Drainage Service Department, Hong Kong SAR Government, China
| | - Wai-Kwan Lai
- Drainage Service Department, Hong Kong SAR Government, China
| | - Tsz-Kin Wong
- Drainage Service Department, Hong Kong SAR Government, China
| | - Tat-Kwong Lau
- Drainage Service Department, Hong Kong SAR Government, China
| | - Ka-Wing Au
- Centre for Health Protection, Department of Health, Hong Kong SAR Government, China
| | - Xiao-Qing Xu
- Department of Civil Engineering, The University of Hong Kong, China
| | - Xia-Wan Zheng
- Department of Civil Engineering, The University of Hong Kong, China
| | - Yu Deng
- Department of Civil Engineering, The University of Hong Kong, China
| | - Yan-Kin Lau
- CMA Industrial Development Foundation Limited, Hong Kong, China
| | - Chi-Kai To
- CMA Industrial Development Foundation Limited, Hong Kong, China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, China
| | | | - Tong Zhang
- Department of Civil Engineering, The University of Hong Kong, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiu Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chen Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ho-Kwong Chui
- Environmental Protection Department, Hong Kong SAR Government, China; Hong Kong University of Science and Technology, China.
| |
Collapse
|
23
|
Jiang G, Liu Y, Tang S, Kitajima M, Haramoto E, Arora S, Choi PM, Jackson G, D'Aoust PM, Delatolla R, Zhang S, Guo Y, Wu J, Chen Y, Sharma E, Prosun TA, Zhao J, Kumar M, Honda R, Ahmed W, Meiman J. Moving forward with COVID-19: Future research prospects of wastewater-based epidemiology methodologies and applications. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100458. [PMID: 37034453 PMCID: PMC10065412 DOI: 10.1016/j.coesh.2023.100458] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models. Further specific research is essential in the monitoring of other viral pathogens with pandemic potential and subcatchment applications to maximize the benefits of WBE beyond COVID-19.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Chaoyang District, Beijing 100021, China
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Phil M Choi
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Australia
| | - Greg Jackson
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Australia
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tanjila Alam Prosun
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiawei Zhao
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Jon Meiman
- Wisconsin Department of Health Services, Madison, WI 53701, USA
| |
Collapse
|
24
|
Hassard F, Vu M, Rahimzadeh S, Castro-Gutierrez V, Stanton I, Burczynska B, Wildeboer D, Baio G, Brown MR, Garelick H, Hofman J, Kasprzyk-Hordern B, Majeed A, Priest S, Denise H, Khalifa M, Bassano I, Wade MJ, Grimsley J, Lundy L, Singer AC, Di Cesare M. Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year. PLoS One 2023; 18:e0286259. [PMID: 37252922 PMCID: PMC10228768 DOI: 10.1371/journal.pone.0286259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases.
Collapse
Affiliation(s)
- Francis Hassard
- Cranfield University, Bedfordshire, United Kingdom
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Johannesburg, South Africa
| | - Milan Vu
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Shadi Rahimzadeh
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Victor Castro-Gutierrez
- Cranfield University, Bedfordshire, United Kingdom
- Environmental Pollution Research Centre (CICA), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Isobel Stanton
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Beata Burczynska
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Dirk Wildeboer
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Gianluca Baio
- Department of Statistical Science, University College London, London, United Kingdom
| | - Mathew R. Brown
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Hemda Garelick
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Jan Hofman
- Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Barbara Kasprzyk-Hordern
- Water Innovation & Research Centre, Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Azeem Majeed
- Department of Primary Care & Public Health, Imperial College Faculty of Medicine, London, United Kingdom
| | - Sally Priest
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Hubert Denise
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Mohammad Khalifa
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Irene Bassano
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Matthew J. Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Jasmine Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Lian Lundy
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Mariachiara Di Cesare
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
- Institute of Public Health and Wellbeing, University of Essex, Colchester, United Kingdom
| |
Collapse
|
25
|
Lopez Marin MA, Zdenkova K, Bartackova J, Cermakova E, Dostalkova A, Demnerova K, Vavruskova L, Novakova Z, Sykora P, Rumlova M, Bartacek J. Monitoring COVID-19 spread in selected Prague's schools based on the presence of SARS-CoV-2 RNA in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161935. [PMID: 36731569 PMCID: PMC9886433 DOI: 10.1016/j.scitotenv.2023.161935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 pandemic has demanded a broad range of techniques to better monitor its extent. Owing to its consistency, non-invasiveness, and cost effectiveness, wastewater-based epidemiology has emerged as a relevant approach to monitor the pandemic's course. In this work, we analyzed the extent of the COVID-19 pandemic in five primary schools in Prague, the Czech Republic, and how different preventive measures impact the presence of SARS-CoV-2 RNA copy numbers in wastewaters. Copy numbers were measured by reverse transcription-multiplex quantitative real-time PCR. These copy numbers were compared to the number of infected individuals in each school identified through regular clinical tests. Each school had a different monitoring regime and subsequent application of preventive measures to thwart the spread of COVID-19. The schools that constantly identified and swiftly quarantined infected individuals exhibited persistently low amounts of SARS-CoV-2 RNA copies in their wastewaters. In one school, a consistent monitoring of infected individuals, coupled with a delayed action to quarantine, allowed for the estimation of a linear model to predict the number of infected individuals based on the presence of SARS-CoV-2 RNA in the wastewater. The results show the importance of case detection and quarantining to stop the spread of the pandemic and its impact on the presence of SARS-CoV-2 RNA in wastewaters. This work also shows that wastewater-based epidemiological models can be reliably used even in small water catchments, but difficulties arise to fit models due to the nonconstant input of viral particles into the wastewater systems.
Collapse
Affiliation(s)
- Marco A Lopez Marin
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| | - K Zdenkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia.
| | - J Bartackova
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| | - E Cermakova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia
| | - A Dostalkova
- Department of Biotechnology, University of Chemistry and Technology Prague, Czechia
| | - K Demnerova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia
| | | | - Z Novakova
- Prazske vodovody a kanalizace, a.s., Czechia
| | - P Sykora
- Prazske vodovody a kanalizace, a.s., Czechia
| | - M Rumlova
- Department of Biotechnology, University of Chemistry and Technology Prague, Czechia
| | - J Bartacek
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| |
Collapse
|
26
|
Li J, Hosegood I, Powell D, Tscharke B, Lawler J, Thomas KV, Mueller JF. A global aircraft-based wastewater genomic surveillance network for early warning of future pandemics. Lancet Glob Health 2023; 11:e791-e795. [PMID: 37061316 PMCID: PMC10101754 DOI: 10.1016/s2214-109x(23)00129-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 04/17/2023]
Abstract
International airports can have a key role in screening, detecting, and mitigating cross-border transmission of SARS-CoV-2 and potentially other infectious diseases. With aircraft passengers representing a subpopulation of a country or region, aircraft-based wastewater surveillance can be a promising approach to effectively identifying emerging viruses, tracing their evolution, and mapping global spread with international flights. Therefore, we propose the development of a global aircraft-based wastewater genomic surveillance network, with the busiest international airports as central nodes and continuing air travel journeys as vectors. This surveillance programme requires routinely collecting aircraft wastewater samples for microbiological analysis and sequencing and linking the resulting data with associated international air traffic information. With the creation of a strong international alliance between the airline industry and health authorities, this surveillance network will potentially complement public health systems with a true early warning ability to inform decision making for new variants and future global health risks.
Collapse
Affiliation(s)
- Jiaying Li
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | | | - David Powell
- International Air Transport Association, Geneva, Switzerland
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jenny Lawler
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Yang K, Guo J, Møhlenberg M, Zhou H. SARS-CoV-2 surveillance in medical and industrial wastewater-a global perspective: a narrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63323-63334. [PMID: 36988799 PMCID: PMC10049894 DOI: 10.1007/s11356-023-26571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 05/11/2023]
Abstract
The novel coronavirus SARS-CoV-2 has spread at an unprecedented rate since late 2019, leading to the global COVID-19 pandemic. During the pandemic, being able to detect SARS-CoV-2 in human populations with high coverage quickly is a huge challenge. As SARS-CoV-2 is excreted in human excreta and thus exposed to the aqueous environment through sewers, the goal is to develop an ideal, non-invasive, cost-effective epidemiological method for detecting SARS-CoV-2. Wastewater surveillance has gained widespread interest and is increasingly being investigated as an effective early warning tool for monitoring the spread and evolution of the virus. This review emphasizes important findings on SARS-CoV-2 wastewater-based epidemiology (WBE) in different continents and techniques used to detect SARS-CoV-2 in wastewater during the period 2020-2022. The results show that WBE is a valuable population-level method for monitoring SARS-CoV-2 and is a valuable early warning alert. It can assist policymakers in formulating relevant policies to avoid the negative impacts of early or delayed action. Such strategy can also help avoid unnecessary wastage of medical resources, rationalize vaccine distribution, assist early detection, and contain large-scale outbreaks.
Collapse
Affiliation(s)
- Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China
| | - Michelle Møhlenberg
- Department of Biomedicine, Høegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China.
| |
Collapse
|
28
|
Mohapatra S, Bhatia S, Senaratna KYK, Jong MC, Lim CMB, Gangesh GR, Lee JX, Giek GS, Cheung C, Yutao L, Luhua Y, Yong NH, Peng LC, Wong JCC, Ching NL, Gin KYH. Wastewater surveillance of SARS-CoV-2 and chemical markers in campus dormitories in an evolving COVID - 19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130690. [PMID: 36603423 PMCID: PMC9795800 DOI: 10.1016/j.jhazmat.2022.130690] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 05/21/2023]
Abstract
In this study, we report the implementation of a comprehensive wastewater surveillance testing program at a university campus in Singapore to identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infected individuals and the usage of pharmaceuticals and personal care products (PPCPs) as well as other emerging contaminants (ECs). This unique co-monitoring program simultaneously measured SARS-CoV-2 with chemical markers/contaminants as the COVID-19 situation evolved from pandemic to endemic stages, following a nationwide mass vaccination drive. SARS-CoV-2 RNA concentrations in wastewater from campus dormitories were measured using real-time reverse transcription-polymerase chain reaction (RT-qPCR) and corroborated with the number of symptomatic COVID-19 cases confirmed with the antigen rapid test (ART). Consistent results were observed where the concentrations of SARS-CoV-2 RNA detected in wastewater increased proportionately with the number of COVID-19 infected individuals residing on campus. Similarly, a wide range of ECs, including disinfectants and antibiotics, were detected through sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques to establish PPCPs consumption patterns during various stages of the COVID-19 pandemic in Singapore. Statistical correlation of SARS-CoV-2 RNA was observed with few ECs belonging to disinfectants, PCPs and antibiotics. A high concentration of disinfectants and subsequent positive correlation with the number of reported cases on the university campus indicates that disinfectants could serve as a chemical marker during such unprecedented times.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Sumedha Bhatia
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | | | - Mui-Choo Jong
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Chun Min Benjamin Lim
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - G Reuben Gangesh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Jia Xiong Lee
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Goh Shin Giek
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Callie Cheung
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore
| | - Lin Yutao
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - You Luhua
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Ng How Yong
- Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore
| | - Lim Cheh Peng
- Office of Risk Management and Compliance, National University of Singapore, 119077, Singapore
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, 138667, Singapore
| | - Ng Lee Ching
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, 138667, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
29
|
Xu D, Zhang W, Li H, Li N, Lin JM. Advances in droplet digital polymerase chain reaction on microfluidic chips. LAB ON A CHIP 2023; 23:1258-1278. [PMID: 36752545 DOI: 10.1039/d2lc00814a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The PCR technique has been known to the general public since the pandemic outbreak of COVID-19. This technique has progressed through three stages: from simple PCR to real-time fluorescence PCR to digital PCR. Among them, the microfluidic-based droplet digital PCR technique has attracted much attention and has been widely applied due to its advantages of high throughput, high sensitivity, low reagent consumption, low cross-contamination, and absolute quantification ability. In this review, we introduce various designs of microfluidic-based ddPCR developed within the last decade. The microfluidic-based droplet generation methods, thermal cycle strategies, and signal counting approaches are described, and the applications in the fields of single-cell analysis, disease diagnosis, and pathogen detection are introduced. Further, the challenges and prospects of microfluidic-based ddPCR are discussed. We hope that this review can contribute to the further development of the microfluidic-based ddPCR technique.
Collapse
Affiliation(s)
- Danfeng Xu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Weifei Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| |
Collapse
|
30
|
Bowes DA, Driver EM, Savic S, Cheng Q, Whisner CM, Krajmalnik-Brown R, Halden RU. Integrated multiomic wastewater-based epidemiology can elucidate population-level dietary behaviour and inform public health nutrition assessments. NATURE FOOD 2023; 4:257-266. [PMID: 37118274 DOI: 10.1038/s43016-023-00717-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/08/2023] [Indexed: 04/30/2023]
Abstract
Population-level nutritional assessments often rely on self-reported data, which increases the risk of recall bias. Here, we demonstrate that wastewater-based epidemiology can be used for near real-time population dietary assessments. Neighbourhood-level, untreated wastewater samples were collected monthly from within an urban population in the south-western United States from August 2017 to July 2019. Using liquid chromatography-tandem mass spectrometry, we identify recurring seasonal dynamics in phytoestrogen consumption, including dietary changes linked to the winter holiday season. Using 16S ribosomal RNA gene amplicon sequencing, we demonstrated the feasibility of detecting sewage-derived human gut bacterial taxa involved in phytoestrogen metabolism, including Bifidobacterium, Blautia and Romboutsia. Combined metabolomic and genomic wastewater analysis can inform nutritional assessments at population scale, indicating wastewater-based epidemiology as a promising tool for actionable and cost-effective data collection to support public health nutrition.
Collapse
Affiliation(s)
- Devin A Bowes
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
- The Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Erin M Driver
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Sonja Savic
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Qiwen Cheng
- The Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Corrie M Whisner
- The Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Rosa Krajmalnik-Brown
- The Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- School for Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rolf U Halden
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA.
- School for Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
- OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- Global Futures Laboratory, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
31
|
Bhattacharya S, Abhishek K, Samiksha S, Sharma P. Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100221. [PMID: 36818681 PMCID: PMC9762044 DOI: 10.1016/j.hazadv.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
This paper explains the transmission of SARS-CoV and influences of several environmental factors in the transmission process. The article highlighted several methods of collection, sampling and monitoring/estimation as well as surveillance tool for detecting SARS-CoV in wastewater streams. In this context, WBE (Wastewater based epidemiology) is found to be the most effective surveillance tool. Several methods of genomic sequencing are discussed in the paper, which are applied in WBE, like qPCR-based wastewater testing, metagenomics-based analysis, next generation sequencing etc. Additionally, several types of biosensors (colorimetric biosensor, mobile phone-based biosensors, and nanomaterials-based biosensors) showed promising results in sensing SARS-CoV in wastewater. Further, this review paper outlined the gaps in assessing the factors responsible for transmission and challenges in detection and monitoring along with the remediation and disinfection methods of this virus in wastewater. Various methods of disinfection of SARS-CoV-2 in wastewater are discussed (primary, secondary, and tertiary phases) and it is found that a suite of disinfection methods can be used for complete disinfection/removal of the virus. Application of ultraviolet light, ozone and chlorine-based disinfectants are also discussed in the context of treatment methods. This study calls for continuous efforts to gather more information about the virus through continuous monitoring and analyses and to address the existing gaps and identification of the most effective tool/ strategy to prevent SARS-CoV-2 transmission. Wastewater surveillance can be very useful in effective surveillance of future pandemics and epidemics caused by viruses, especially after development of new technologies in detecting and disinfecting viral pathogens more effectively.
Collapse
Affiliation(s)
- Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Kumar Abhishek
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
- Department of Environment Forest and Climate Change, Government of Bihar, Patna, 800015, Bihar, India
| | - Shilpi Samiksha
- Bihar State Pollution Control Board, Patna, 800015, Bihar, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|
32
|
Amin V, Bowes DA, Halden RU. Systematic scoping review evaluating the potential of wastewater-based epidemiology for monitoring cardiovascular disease and cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160103. [PMID: 36370774 PMCID: PMC9643312 DOI: 10.1016/j.scitotenv.2022.160103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Cardiovascular disease (CVD) and cancer are collectively responsible for tens of millions of global deaths each year. These rates are projected to intensify as the COVID-19 pandemic has caused delays in individualized diagnostics, or exacerbated prevalence due to Post Acute Coronavirus (COVID-19) Syndrome. Wastewater-based epidemiology (WBE) has successfully been employed as a useful tool for generating population-level health assessments, and was examined here in this systematic scoping literature review to (i) identify endogenous human biomarkers reported to indicate CVD or cancer in clinical practice, (ii) assess specificity to the indicated diseases, (iii) evaluate the utility for estimating population-level disease prevalence in community wastewater, and (iv) contextualize the obtained information for monitoring CVD and cancer presence via WBE. A total of 48 peer-reviewed papers were critically examined identifying five urinary protein biomarkers: cardiac troponin I (cTnI) (heart attack/heart failure), cystatin C (atherosclerosis), normetanephrine (tumor presence), α-fetoprotein (prostate and liver cancer), and microtubule assisted serine/threonine kinase 4 (MAST4) (breast cancer). Next, urinary excretion information was utilized to predict biomarker concentrations extant in community wastewater, resulting in average healthy concentrations ranging from 0.02 to 1159 ng/L, and disease-indicating thresholds from 0.16 to 3041 ng/L. Finally, estimating prevalence-adjusted wastewater measurements was explored in order to assess community-level CVD and cancer presence utilizing U.S. reported prevalence rates. Results obtained suggest that WBE can serve as a viable tool in support of current methods for CVD and cancer assessment to reduce morbidities and mortalities worldwide.
Collapse
Affiliation(s)
- Vivek Amin
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA
| | - Devin A Bowes
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA
| | - Rolf U Halden
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA; School for Sustainable Engineering and the Built Environment, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
33
|
Grube AM, Coleman CK, LaMontagne CD, Miller ME, Kothegal NP, Holcomb DA, Blackwood AD, Clerkin TJ, Serre ML, Engel LS, Guidry VT, Noble RT, Stewart JR. Detection of SARS-CoV-2 RNA in wastewater and comparison to COVID-19 cases in two sewersheds, North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159996. [PMID: 36356771 PMCID: PMC9639408 DOI: 10.1016/j.scitotenv.2022.159996] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be useful for monitoring population-wide coronavirus disease 2019 (COVID-19) infections, especially given asymptomatic infections and limitations in diagnostic testing. We aimed to detect SARS-CoV-2 RNA in wastewater and compare viral concentrations to COVID-19 case numbers in the respective counties and sewersheds. Influent 24-hour composite wastewater samples were collected from July to December 2020 from two municipal wastewater treatment plants serving different population sizes in Orange and Chatham Counties in North Carolina. After a concentration step via HA filtration, SARS-CoV-2 RNA was detected and quantified by reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) and quantitative PCR (RT-qPCR), targeting the N1 and N2 nucleocapsid genes. SARS-CoV-2 RNA was detected by RT-ddPCR in 100 % (24/24) and 79 % (19/24) of influent wastewater samples from the larger and smaller plants, respectively. In comparison, viral RNA was detected by RT-qPCR in 41.7 % (10/24) and 8.3 % (2/24) of samples from the larger and smaller plants, respectively. Positivity rates and method agreement further increased for the RT-qPCR assay when samples with positive signals below the limit of detection were counted as positive. The wastewater data from the larger plant generally correlated (⍴ ~0.5, p < 0.05) with, and even anticipated, the trends in reported COVID-19 cases, with a notable spike in measured viral RNA preceding a spike in cases when students returned to a college campus in the Orange County sewershed. Correlations were generally higher when using estimates of sewershed-level case data rather than county-level data. This work supports use of wastewater surveillance for tracking COVID-19 disease trends, especially in identifying spikes in cases. Wastewater-based epidemiology can be a valuable resource for tracking disease trends, allocating resources, and evaluating policy in the fight against current and future pandemics.
Collapse
Affiliation(s)
- Alyssa M Grube
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Collin K Coleman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Connor D LaMontagne
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Megan E Miller
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Nikhil P Kothegal
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - David A Holcomb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - A Denene Blackwood
- Institute of Marine Sciences, Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, United States
| | - Thomas J Clerkin
- Institute of Marine Sciences, Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, United States
| | - Marc L Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Virginia T Guidry
- Occupational and Environmental Epidemiology Branch, NC Department of Health and Human Services, 5505 Six Forks Road, Raleigh, NC 27609, United States
| | - Rachel T Noble
- Institute of Marine Sciences, Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, United States
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, United States.
| |
Collapse
|
34
|
Sharaby Y, Gilboa Y, Alfiya Y, Sabach S, Cheruti U, Friedler E. Whole campus wastewater surveillance of SARS-CoV-2 for COVID-19 outbreak management. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:910-923. [PMID: 36853770 DOI: 10.2166/wst.2023.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this long-term study (eight months), a wastewater-based epidemiology program was initiated as a decision support tool for the detection and containment of COVID-19 spread in the Technion campus. The on-campus students' accommodations (∼3,300 residents) were divided into housing clusters and monitored through wastewater SARS-CoV-2 surveillance in 10 manholes. Results were used to create a 'traffic-light' scheme allowing the Technion's COVID-19 task force to track COVID-19 spatiotemporal spread on the campus, and consequently, contain it before high morbidity levels develop. Of the 523 sewage samples analysed, 87.4% were negative for SARS-CoV-2 while 11.5% were positive, corroborating morbidity information the COVID-19 task force had. For 7.6% of the SARS-CoV-2 positive samples, the task force had no information about positive resident/s. In these events, new cases were identified after the relevant residents were clinically surge tested for COVID-19. Hence, in these instances, wastewater surveillance provided early warning helping to secure the health of the campus residents by minimising COVID-19 spread. The inflammation biomarker ferritin levels in SARS-CoV-2 positive sewage samples were significantly higher than in negative ones. This may indicate that in the future, ferritin (and other biomarkers) concentrations in wastewater could serve as indicators of infectious and inflammatory disease outbreaks.
Collapse
Affiliation(s)
- Y Sharaby
- Faculty of Civil & Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel E-mail: ; Current address: Department of Biology & Environment, University of Haifa, Oranim, Tivon, Israel
| | - Y Gilboa
- Faculty of Civil & Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel E-mail:
| | - Y Alfiya
- Faculty of Civil & Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel E-mail:
| | - S Sabach
- Faculty of Civil & Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel E-mail:
| | - U Cheruti
- Faculty of Civil & Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel E-mail:
| | - Eran Friedler
- Faculty of Civil & Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel E-mail:
| |
Collapse
|
35
|
Farkas K, Williams R, Alex-Sanders N, Grimsley JMS, Pântea I, Wade MJ, Woodhall N, Jones DL. Wastewater-based monitoring of SARS-CoV-2 at UK airports and its potential role in international public health surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001346. [PMID: 36963000 PMCID: PMC10021541 DOI: 10.1371/journal.pgph.0001346] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
It is well established that air travel plays a key role in the global spread of many enteric and respiratory diseases, including COVID-19. Even with travel restrictions (e.g. mask wearing, negative COVID-19 test prior to departure), SARS-CoV-2 may be transmitted by asymptomatic or pre-symptomatic individuals carrying the virus. Due to the limitation of current clinical surveillance approaches, complementary methods need to be developed to allow estimation of the frequency of SARS-CoV-2 entry across international borders. Wastewater-based epidemiology (WBE) represents one such approach, allowing the unbiased sampling of SARS-CoV-2 carriage by passenger cohorts entering via airports. In this study, we monitored sewage in samples from terminals (n = 150) and aircraft (n = 32) at three major international airports in the UK for 1-3 weeks in March 2022. As the raw samples were more turbid than typical municipal wastewater, we used beef extract treatment followed by polyethylene glycol (PEG) precipitation to concentrate viruses, followed by reverse transcription quantitative PCR (RT-qPCR) for the detection of SARS-CoV-2 and a faecal indicator virus, crAssphage. All samples taken from sewers at the arrival terminals of Heathrow and Bristol airports, and 85% of samples taken from sites at Edinburgh airport, were positive for SARS-CoV-2. This suggests a high COVID-19 prevalence among passengers and/or airport staff members. Samples derived from aircraft also showed 93% SARS-CoV-2 positivity. No difference in viral prevalence was found before and after COVID-19 travel restrictions were lifted. Our results suggest that WBE is a useful tool for monitoring the global transfer rate of human pathogens and other disease-causing agents across international borders and should form part of wider international efforts to monitor and contain the spread of future disease outbreaks.
Collapse
Affiliation(s)
- Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom
| | - Rachel Williams
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Jasmine M. S. Grimsley
- Data, Analytics, and Surveillance Group, UK Health Security Agency, London, United Kingdom
- The London Data Company, London, United Kingdom
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Matthew J. Wade
- Data, Analytics, and Surveillance Group, UK Health Security Agency, London, United Kingdom
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- Food Futures Institute, Murdoch University, Murdoch, Australia
| |
Collapse
|
36
|
Rainey AL, Buschang K, O’Connor A, Love D, Wormington AM, Messcher RL, Loeb JC, Robinson SE, Ponder H, Waldo S, Williams R, Shapiro J, McAlister EB, Lauzardo M, Lednicky JA, Maurelli AT, Sabo-Attwood T, Bisesi J. Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T WATER 2023; 3:16-29. [PMID: 37552720 PMCID: PMC9762499 DOI: 10.1021/acsestwater.2c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Katherine Buschang
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Amber O’Connor
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Deirdre Love
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Alexis M. Wormington
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Julia C. Loeb
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Sarah E. Robinson
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Hunter Ponder
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Sarah Waldo
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Roy Williams
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Jerne Shapiro
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
- Department of Epidemiology, College of Public
Health and Health Professions and College of Medicine, Gainesville,
Florida32611, United States
| | | | - Michael Lauzardo
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Department of Medicine, College of Medicine,
University of Florida, Gainesville, Florida32611,
United States
| | - John A. Lednicky
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Joseph
H. Bisesi
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| |
Collapse
|
37
|
Tiwari A, Kurittu P, Al-Mustapha AI, Heljanko V, Johansson V, Thakali O, Mishra SK, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Wastewater surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front Microbiol 2022; 13:977106. [PMID: 36590429 PMCID: PMC9798455 DOI: 10.3389/fmicb.2022.977106] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases caused by antibiotic-resistant bacterial (ARB) pathogens are a serious threat to human and animal health. The active surveillance of ARB using an integrated one-health approach can help to reduce the emergence and spread of ARB, reduce the associated economic impact, and guide antimicrobial stewardship programs. Wastewater surveillance (WWS) of ARB provides composite samples for a total population, with easy access to the mixed community microbiome. This concept is emerging rapidly, but the clinical utility, sensitivity, and uniformity of WWS of ARB remain poorly understood especially in relation to clinical evidence in sewershed communities. Here, we systematically searched the literature to identify studies that have compared findings from WWS of ARB and antibiotic resistance genes (ARG) with clinical evidence in parallel, thereby evaluating how likely WWS of ARB and ARG can relate to the clinical cases in communities. Initially, 2,235 articles were obtained using the primary search keywords, and 1,219 articles remained after de-duplication. Among these, 35 articles fulfilled the search criteria, and an additional 13 relevant articles were included by searching references in the primary literature. Among the 48 included papers, 34 studies used a culture-based method, followed by 11 metagenomics, and three PCR-based methods. A total of 28 out of 48 included studies were conducted at the single sewershed level, eight studies involved several countries, seven studies were conducted at national or regional scales, and five at hospital levels. Our review revealed that the performance of WWS of ARB pathogens has been evaluated more frequently for Escherichia coli, Enterococcus spp., and other members of the family Enterobacteriaceae, but has not been uniformly tested for all ARB pathogens. Many wastewater-based ARB studies comparing the findings with clinical evidence were conducted to evaluate the public health risk but not to relate with clinical evidence and to evaluate the performance of WWS of ARB. Indeed, relating WWS of ARB with clinical evidence in a sewershed is not straightforward, as the source of ARB in wastewater cannot be only from symptomatic human individuals but can also be from asymptomatic carriers as well as from animal sources. Further, the varying fates of each bacterial species and ARG within the sewerage make the aim of connecting WWS of ARB with clinical evidence more complicated. Therefore, future studies evaluating the performance of many AMR pathogens and their genes for WWS one by one can make the process simpler and the interpretation of results easier.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Ananda Tiwari,
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ahmad I. Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria,Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Nigeria
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shyam Kumar Mishra
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
38
|
Mangwana N, Archer E, Muller CJF, Preiser W, Wolfaardt G, Kasprzyk-Hordern B, Carstens A, Brocker L, Webster C, McCarthy D, Street R, Mathee A, Louw J, Mdhluli M, Johnson R. Sewage surveillance of SARS-CoV-2 at student campus residences in the Western Cape, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158028. [PMID: 35973539 PMCID: PMC9375247 DOI: 10.1016/j.scitotenv.2022.158028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic capacity is limited in defined communities, posing a challenge in tracking and tracing new infections. Monitoring student residences, which are considered infection hotspots, with targeted wastewater surveillance is crucial. This study evaluated the efficacy of SARS-CoV-2 targeted wastewater surveillance for outbreak mitigation at Stellenbosch University's student residences in South Africa. Using torpedo-style passive sampling devices, wastewater samples were collected biweekly from manholes at twelve Stellenbosch University Tygerberg (SUT) campus and Stellenbosch University-Main (SUM) campus student residences. The surveillance led to an early warning detection of SARS-CoV-2 presence on campus, followed by an informed management strategy leading to restriction of student activities on campus and a delay in the onset of the third wave that was experienced throughout the country. Moreover, the study highlighted the extent of possible infections at defined locations even when a low number of confirmed coronavirus disease 2019 (COVID-19) cases were reported. The study also tracked the surge of the Delta and Omicron variants in the student residences using the Thermo Fisher TaqMan® RT-qPCR genotyping assay.
Collapse
Affiliation(s)
- Noluxabiso Mangwana
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Edward Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Centre for Cardiometabolic Research in Africa, Stellenbosch University, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine & Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; National Health Laboratory Services, Tygerberg Hospital, Tygerberg, Cape Town 7505, South Africa
| | - Gideon Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Alno Carstens
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ludwig Brocker
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Candice Webster
- Environment and Health Research Unit, South African Medical Research Council (SAMRC), Johannesburg, South Africa
| | - David McCarthy
- Environmental and Public Health Microbiology Lab (EPHM LAB), Monash Infrastructure Institute, Department of Civil Engineering, Monash University, Clayton 3800, Australia
| | - Renee Street
- Environment and Health Research Unit, South African Medical Research Council (SAMRC), Durban, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council (SAMRC), Johannesburg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Mongezi Mdhluli
- Chief Research Operations Office, South African Medical Research Council, Tygerberg 7050, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Centre for Cardiometabolic Research in Africa, Stellenbosch University, South Africa.
| |
Collapse
|
39
|
Bonanno Ferraro G, Veneri C, Mancini P, Iaconelli M, Suffredini E, Bonadonna L, Lucentini L, Bowo-Ngandji A, Kengne-Nde C, Mbaga DS, Mahamat G, Tazokong HR, Ebogo-Belobo JT, Njouom R, Kenmoe S, La Rosa G. A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater Surveillance for the Monitoring of the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:315-354. [PMID: 34727334 PMCID: PMC8561373 DOI: 10.1007/s12560-021-09498-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
The outbreak of coronavirus infectious disease-2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. Several studies have shown that detecting SARS-CoV-2 in untreated wastewater can be a useful tool to identify new outbreaks, establish outbreak trends, and assess the prevalence of infections. On 06 May 2021, over a year into the pandemic, we conducted a scoping review aiming to summarize research data on SARS-CoV-2 in sewage. Papers dealing with raw sewage collected at wastewater treatment plants, sewer networks, septic tanks, and sludge treatment facilities were included in this review. We also reviewed studies on sewage collected in community settings such as private or municipal hospitals, healthcare facilities, nursing homes, dormitories, campuses, airports, aircraft, and cruise ships. The literature search was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded 1090 results, 66 of which met the inclusion criteria and are discussed in this review. Studies from 26 countries worldwide have investigated the occurrence of SARS-CoV-2 in sewage of different origin. The percentage of positive samples in sewage ranged from 11.6 to 100%, with viral concentrations ranging from ˂LOD to 4.6 × 108 genome copies/L. This review outlines the evidence currently available on wastewater surveillance: (i) as an early warning system capable of predicting COVID-19 outbreaks days or weeks before clinical cases; (ii) as a tool capable of establishing trends in current outbreaks; (iii) estimating the prevalence of infections; and (iv) studying SARS-CoV-2 genetic diversity. In conclusion, as a cost-effective, rapid, and reliable source of information on the spread of SARS-CoV-2 and its variants in the population, wastewater surveillance can enhance genomic and epidemiological surveillance with independent and complementary data to inform public health decision-making during the ongoing pandemic.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - C Kengne-Nde
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - G Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - H R Tazokong
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - R Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - S Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
40
|
Corpuz MVA, Buonerba A, Zarra T, Hasan SW, Korshin GV, Belgiorno V, Naddeo V. Advances in virus detection methods for wastewater-based epidemiological applications. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100238. [PMID: 37520925 PMCID: PMC9339091 DOI: 10.1016/j.cscee.2022.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/08/2023]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool that has the potential to reveal the extent of an ongoing disease outbreak or to predict an emerging one. Recent studies have shown that SARS-CoV-2 concentration in wastewater may be correlated with the number of COVID-19 cases in the corresponding population. Most of the recent studies and applications of wastewater-based surveillance of SARS-CoV-2 applied the "gold standard" real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) detection method. However, this method also has its limitations. The paper aimed to present recent improvements and applications of the PCR-based methods for SARS-CoV-2 monitoring in wastewater. Furthermore, it aimed to review alternative methods utilized and/or proposed for the detection of the virus in wastewater matrices. From the review, it was found that several studies have investigated the use of reverse-transcription digital polymerase reaction (RT-dPCR), which was generally shown to have a lower limit of detection (LOD) over the RT-qPCR. Aside from this, non-PCR-based and non-RNA based methods have also been explored for the detection of SARS-CoV-2 in wastewater, with detailed attention given to the detection of SARS-CoV-2 proteins. The potential methods for protein detection include mass spectrometry, the use of immunosensors, and nanotechnological applications. In addition, the review of recent studies also revealed two types of emerging methods related to the detection of SARS-CoV-2 in wastewater: i) capsid-integrity assays to infer about the infectivity of SARS-CoV-2 present in wastewater, and ii) alternative methods for detection of SARS-CoV-2 variants of concern (VOCs) in wastewater. The recent studies on proposed methods of SARS-CoV-2 detection in wastewater have considered improving this approach in one or more of the following aspects: rapidity, simplicity, cost, sensitivity, and specificity. However, further studies are needed in order to realize the full application of these methods for WBE in the field.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| |
Collapse
|
41
|
Gonçalves J, Torres-Franco A, Rodriguéz E, Diaz I, Koritnik T, Silva PGD, Mesquita JR, Trkov M, Paragi M, Muñoz R, García-Encina PA. Centralized and decentralized wastewater-based epidemiology to infer COVID-19 transmission - A brief review. One Health 2022; 15:100405. [PMID: 35664497 PMCID: PMC9150914 DOI: 10.1016/j.onehlt.2022.100405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Wastewater-based epidemiology has shown to be a promising and innovative approach to measure a wide variety of illicit drugs that are consumed in the communities. In the same way as for illicit drugs, wastewater-based epidemiology is a promising approach to understand the prevalence of viruses in a community-level. The ongoing coronavirus disease 2019 (COVID-19) pandemic created an unprecedented burden on public health and diagnostic laboratories all over the world because of the need for massive laboratory testing. Many studies have shown the applicability of a centralized wastewater-based epidemiology (WBE) approach, where samples are collected at WWTPs. A more recent concept is a decentralized approach for WBE where samples are collected at different points of the sewer system and at polluted water bodies. The second being particularly important in countries where there are insufficient connections from houses to municipal sewage pipelines and thus untreated wastewater is discharged directly in environmental waters. A decentralized approach can be used to focus the value of diagnostic tests in what we call targeted-WBE, by monitoring wastewater in parts of the population where an outbreak is likely to happen, such as student dorms, retirement homes and hospitals. A combination of centralized and decentralized WBE should be considered for an affordable, sustainable, and successful WBE implementation in high-, middle- and low-income countries.
Collapse
Affiliation(s)
- José Gonçalves
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Andrés Torres-Franco
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Elisa Rodriguéz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Israel Diaz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Tom Koritnik
- Department for Public Health Microbiology, National Laboratory of Health, Environment and Food, Ljubljana, Slovenia
| | - Priscilla Gomes da Silva
- ICBAS – School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - João R. Mesquita
- ICBAS – School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Marija Trkov
- Department for Public Health Microbiology, National Laboratory of Health, Environment and Food, Ljubljana, Slovenia
| | - Metka Paragi
- Department for Public Health Microbiology, National Laboratory of Health, Environment and Food, Ljubljana, Slovenia
| | - Raúl Muñoz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Pedro A. García-Encina
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid 47011, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| |
Collapse
|
42
|
Innes GK, Schmitz BW, Brierley PE, Guzman J, Prasek SM, Ruedas M, Sanchez A, Bhattacharjee S, Slinski S. Wastewater-Based Epidemiology Mitigates COVID-19 Outbreaks at a Food Processing Facility near the Mexico-U.S. Border-November 2020-March 2022. Viruses 2022; 14:2684. [PMID: 36560688 PMCID: PMC9786163 DOI: 10.3390/v14122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Wastewater-based epidemiology (WBE) has the potential to inform activities to contain infectious disease outbreaks in both the public and private sectors. Although WBE for SARS-CoV-2 has shown promise over short time intervals, no other groups have evaluated how a public-private partnership could influence disease spread through public health action over time. The aim of this study was to characterize and assess the application of WBE to inform public health response and contain COVID-19 infections in a food processing facility. Methods: Over the period November 2020-March 2022, wastewater in an Arizona food processing facility was monitored for the presence of SARS-CoV-2 using Real-Time Quantitative PCR. Upon positive detection, partners discussed public health intervention strategies, including infection control reinforcement, antigen testing, and vaccination. Results: SARS-CoV-2 RNA was detected on 18 of 205 days in which wastewater was sampled and analyzed (8.8%): seven during Wild-type predominance and 11 during Omicron-variant predominance. All detections triggered the reinforcement of infection control guidelines. In five of the 18 events, active antigen testing identified asymptomatic workers. Conclusions: These steps heightened awareness to refine infection control protocols and averted possible transmission events during periods where detection occurred. This public-private partnership has potentially decreased human illness and economic loss during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Gabriel K. Innes
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, USA
| | - Bradley W. Schmitz
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, USA
| | - Paul E. Brierley
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, USA
| | - Juan Guzman
- DatePac LLC, 2575 E 23rd Ln, Yuma, AZ 85365, USA
| | - Sarah M. Prasek
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Martha Ruedas
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, USA
| | - Ana Sanchez
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, USA
| | - Subhadeep Bhattacharjee
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, USA
| | - Stephanie Slinski
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, USA
| |
Collapse
|
43
|
Rocha AY, Verbyla ME, Sant KE, Mladenov N. Detection, Quantification, and Simplified Wastewater Surveillance Model of SARS-CoV-2 RNA in the Tijuana River. ACS ES&T WATER 2022; 2:2134-2143. [PMID: 36398132 PMCID: PMC9063987 DOI: 10.1021/acsestwater.2c00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The COVID-19 pandemic and the detection of SARS-CoV-2 RNA in sewage has expanded global interest in wastewater surveillance. However, many underserved communities throughout the world lack improved sanitation and use informal combined sanitary and storm sewer systems. Sewage is transported via open channels, ditches, and rivers, where it mixes with surface water and/or stormwater. There is a need to develop better methods for the surveillance of pathogens such as SARS-CoV-2 RNA in this context. We developed a simplified surveillance system and monitored flow rates and concentrations of SARS-CoV-2 RNA in the Tijuana River at two locations downstream of the United States-Mexico border in California, United States. SARS-CoV-2 RNA was detected in the upstream location on six out of eight occasions, two of which were at concentrations as high as those reported in untreated wastewater from California sanitary sewer systems. The virus was not detected in any of the eight samples collected at the downstream (estuarine) sampling location, despite the consistent detection of PMMoV RNA. Synchrony was observed between the number of cases reported in Tijuana and the SARS-CoV-2 RNA concentrations measured with the CDC N1 assay when the latter were normalized by the reported flow rates in the river.
Collapse
Affiliation(s)
- Alma Y. Rocha
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Matthew E. Verbyla
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Karilyn E. Sant
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Natalie Mladenov
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
44
|
Zambrana W, Catoe D, Coffman MM, Kim S, Anand A, Solis D, Sahoo MK, Pinsky BA, Bhatt AS, Boehm AB, Wolfe MK. SARS-CoV-2 RNA and N Antigen Quantification via Wastewater at the Campus Level, Building Cluster Level, and Individual-Building Level. ACS ES&T WATER 2022; 2:2025-2033. [PMID: 37552722 PMCID: PMC9128006 DOI: 10.1021/acsestwater.2c00050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 05/30/2023]
Abstract
Monitoring wastewater for SARS-CoV-2 from populations smaller than those served by wastewater treatment plants may help identify small spatial areas (subsewersheds) where COVID-19 infections are present. We sampled wastewater from three nested locations with different sized populations within the same sewer network at a university campus and quantified SARS-CoV-2 RNA using reverse transcriptase droplet digital polymerase chain reaction (PCR). SARS-CoV-2 RNA concentrations and/or concentrations normalized by PMMoV were positively associated with laboratory-confirmed COVID-19 cases for both the sewershed level and the subsewershed level. We also used an antigen-based assay to detect the nucleocapsid (N) antigen from SARS-CoV-2 in wastewater samples at the sewershed level. The N antigen was regularly detected at the sewershed level, but the results were not associated with either laboratory-confirmed COVID-19 cases or SARS-CoV-2 RNA concentrations. The results of this study indicate that wastewater monitoring based on quantification of SARS-CoV-2 RNA using PCR-based methods is associated with COVID-19 cases at multiple geographic scales within the subsewershed level and can serve to aid the public health response.
Collapse
Affiliation(s)
- Winnie Zambrana
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - David Catoe
- Joint Initiative for Metrology in Biology,
SLAC National Accelerator Laboratory, 2575 Sand Hill Road,
Menlo Park, California 94025, United States
| | - Mhara M. Coffman
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - Sooyeol Kim
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - Archana Anand
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - Daniel Solis
- Department of Pathology, Stanford
University School of Medicine, Stanford, California 94305, United
States
| | - Malaya K. Sahoo
- Department of Pathology, Stanford
University School of Medicine, Stanford, California 94305, United
States
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford
University School of Medicine, Stanford, California 94305, United
States
- Department of Medicine, Division of Infectious
Diseases and Geographic Medicine, Stanford University School of
Medicine, Stanford, California 94305, United
States
| | - Ami S. Bhatt
- Department of Medicine (Hematology) and Department of
Genetics, Stanford University, Stanford, California 94305,
United States
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - Marlene K. Wolfe
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
- Gangarosa Department of Environmental Health, Rollins School
of Public Health, Emory University, Atlanta, Georgia 30322,
United States
| |
Collapse
|
45
|
Martins RM, Carvalho T, Bittar C, Quevedo DM, Miceli RN, Nogueira ML, Ferreira HL, Costa PI, Araújo JP, Spilki FR, Rahal P, Calmon MF. Long-Term Wastewater Surveillance for SARS-CoV-2: One-Year Study in Brazil. Viruses 2022; 14:v14112333. [PMID: 36366431 PMCID: PMC9692902 DOI: 10.3390/v14112333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023] Open
Abstract
Wastewater-based epidemiology (WBE) is a tool involving the analysis of wastewater for chemicals and pathogens at the community level. WBE has been shown to be an effective surveillance system for SARS-CoV-2, providing an early-warning-detection system for disease prevalence in the community via the detection of genetic materials in the wastewater. In numerous nation-states, studies have indicated the presence of SARS-CoV-2 in wastewater. Herein, we report the primary time-course monitoring of SARS-CoV-2 RNA in wastewater samples in São José do Rio Preto-SP/Brazil in order to explain the dynamics of the presence of SARS-CoV-2 RNA during one year of the SARS-CoV-2 pandemic and analyze possible relationships with other environmental parameters. We performed RNA quantification of SARS-CoV-2 by RT-qPCR using N1 and N2 targets. The proportion of positive samples for every target resulted in 100% and 96.6% for N1 and N2, respectively. A mean lag of -5 days is observed between the wastewater signal and the new SARS-CoV-2-positive cases reported. A correlation was found between the air and wastewater temperatures and therefore between the SARS-CoV-2 viral titers for N1 and N2 targets. We also observed a correlation between SARS-CoV-2 viral titers and media wastewater flow for the N1 target. In addition, we observed higher viral genome copies within the wastewater samples collected on non-rainy days for the N1 target. Thus, we propose that, based on our results, monitoring raw wastewater may be a broadly applicable strategy that might contribute to resolving the pressing problem of insufficient diagnostic testing; it may represent an inexpensive and early-warning method for future COVID-19 outbreaks, mainly in lower- and middle-income countries.
Collapse
Affiliation(s)
- Renan Moura Martins
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Tamara Carvalho
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Cintia Bittar
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Daniela Muller Quevedo
- Institute of Exact and Technological Sciences (ICET), University Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Rafael Nava Miceli
- SeMAE-Autonomous Municipal Water and Sewage Service, São José do Rio Preto 15048-000, SP, Brazil
| | - Mauricio Lacerda Nogueira
- Virology Research Laboratory (LPV), Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Helena Lage Ferreira
- Applied Preventive Veterinary Medicine Laboratory, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Paulo Inácio Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-360, SP, Brazil
| | - João Pessoa Araújo
- Biotechnology Institute, São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil
| | - Fernando Rosado Spilki
- Molecular Microbiology Laboratory, University Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Paula Rahal
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Marilia Freitas Calmon
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
- Correspondence:
| |
Collapse
|
46
|
Rosca EC, Heneghan C, Spencer EA, Brassey J, Plüddemann A, Onakpoya IJ, Evans D, Conly JM, Jefferson T. Transmission of SARS-CoV-2 Associated with Cruise Ship Travel: A Systematic Review. Trop Med Infect Dis 2022; 7:290. [PMID: 36288031 PMCID: PMC9610645 DOI: 10.3390/tropicalmed7100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Maritime and river travel may be associated with respiratory viral spread via infected passengers and/or crew and potentially through other transmission routes. The transmission models of SARS-CoV-2 associated with cruise ship travel are based on transmission dynamics of other respiratory viruses. We aimed to provide a summary and evaluation of relevant data on SARS-CoV-2 transmission aboard cruise ships, report policy implications, and highlight research gaps. Methods: We searched four electronic databases (up to 26 May 2022) and included studies on SARS-CoV-2 transmission aboard cruise ships. The quality of the studies was assessed based on five criteria, and relevant findings were reported. Results: We included 23 papers on onboard SARS-CoV-2 transmission (with 15 reports on different aspects of the outbreak on Diamond Princess and nine reports on other international cruises), 2 environmental studies, and 1 systematic review. Three articles presented data on both international cruises and the Diamond Princess. The quality of evidence from most studies was low to very low. Index case definitions were heterogeneous. The proportion of traced contacts ranged from 0.19 to 100%. Studies that followed up >80% of passengers and crew reported attack rates (AR) up to 59%. The presence of a distinct dose−response relationship was demonstrated by findings of increased ARs in multi-person cabins. Two studies performed viral cultures with eight positive results. Genomic sequencing and phylogenetic analyses were performed in individuals from three cruises. Two environmental studies reported PCR-positive samples (cycle threshold range 26.21−39.00). In one study, no infectious virus was isolated from any of the 76 environmental samples. Conclusion: Our review suggests that crowding and multiple persons per cabin were associated with an increased risk of transmission on cruise ships. Variations in design, methodology, and case ascertainment limit comparisons across studies and quantification of transmission risk. Standardized guidelines for conducting and reporting studies on cruise ships of acute respiratory infection transmission should be developed.
Collapse
Affiliation(s)
- Elena Cecilia Rosca
- Department of Neurology, Victor Babes University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania
| | - Carl Heneghan
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Elizabeth A. Spencer
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Jon Brassey
- Trip Database Ltd., Glasllwch Lane, Newport NP20 3PS, UK
| | - Annette Plüddemann
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Igho J. Onakpoya
- Department for Continuing Education, University of Oxford, Rewley House, 1 Wellington Square, Oxford OX1 2JA, UK
| | - David Evans
- Li Ka Shing Institute of Virology, and Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - John M. Conly
- Departments of Medicine, Microbiology, Immunology & Infectious Diseases, and Pathology & Laboratory Medicine, Synder Institute for Chronic Diseases and O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| | - Tom Jefferson
- Department for Continuing Education, University of Oxford, Rewley House, 1 Wellington Square, Oxford OX1 2JA, UK
| |
Collapse
|
47
|
Castro GB, Bernegossi AC, Sousa BJDO, De Lima E Silva MR, Silva FRD, Freitas BLS, Ogura AP, Corbi JJ. Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2160-2199. [PMID: 34310248 DOI: 10.1080/09603123.2021.1949437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This paper includes a systematic review of the SARS-CoV-2 occurrence in environmental aquatic matrices and a critical sanitation analysis. We discussed the interconnection of sanitation services (wastewater, water supply, solid waste, and stormwater drainage) functioning as an important network for controlling the spread of SARS-CoV-2 in waters. We collected 98 studies containing data of the SARS-CoV-2 occurrence in aquatic matrices around the world, of which 40% were from developing countries. Alongside a significant number of people infected by the virus, developing countries face socioeconomic deficiencies and insufficient public investment in infrastructure. Therefore, our study focused on highlighting solutions to provide sanitation in developing countries, considering the virus control in waters by disinfection techniques and sanitary measures, including alternatives for the vulnerable communities. The need for multilateral efforts to improve the universal coverage of sanitation services demands urgent attention in a pandemic scenario.
Collapse
Affiliation(s)
- Gleyson B Castro
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline C Bernegossi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno José de O Sousa
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | - Fernando R Da Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Luíza S Freitas
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Allan P Ogura
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- PPG-SEA and CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Juliano J Corbi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
48
|
Meynard JB, de Laval F, Texier G, Gorgé O, Degui H, Pommier de Santi V. [Management of the COVID-19 epidemic in the carrier battle group (January-April 2020) by the Armed Forces Epidemiology and Public Health Center]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2022; 206:997-1010. [PMID: 35879932 PMCID: PMC9301959 DOI: 10.1016/j.banm.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives Faced with the COVID-19 epidemic that occurred within the naval air group and the nuclear aircraft carrier Charles de Gaulle, the French Armed Forces Epidemiology and Public Health Center (CESPA) carried out an investigation (January - April 2020) whose objectives were: to identify the possible routes of introduction of the virus ; to describe the characteristics of the epidemic and to describe and model the dynamics of the epidemic's spread. Methods A telephone survey was conducted. The biological diagnoses were transmitted by the medical antennas. A time/place/population analysis was carried out, as well as the description of the clinical pictures with their exposure factors. The instantaneous reproduction rate Rt of the epidemic was modeled. A spatial analysis of the epidemic on board was carried out. Forty-three viral genomes were sequenced and compared to the reference bases. Results 0f 1767 sailors, 1568 (89%) participated in the telephone survey and 1064 (67.9%) were confirmed cases. Four patient profiles have been described: asymptomatic (13.0%); non-specific symptomatic (8.1%); specific symptomatic (76.3%); severe cases (2.6%). In univariate and multivariate analysis, age, overweight and obesity were significantly associated with the risk of having a severe form. Smoking was a protective factor. The evolution kinetics of Rt was in favor of an introduction of the virus at the end of February with a reintroduction during the stopover in Brest. Analysis of viral genomes ruled out introduction and spread of a single strain. Conclusion Despite the control measures taken, an epidemic occurred. The often pauci-symptomatic clinical pictures resulted in a delay in identification. CESPA was able to carry out this epidemiological investigation within a highly constrained timeframe, showing all the interest of its integrated public health model.
Collapse
Affiliation(s)
- J-B Meynard
- Direction de la formation, de la recherche et de l'innovation du service de santé des armées, Val-de-Grâce, 1, place Alphonse Laveran, 75005 Paris, France
- UMR 1252-sciences économiques et sociales de la santé et traitement de l'information médicale, SESSTIM, Inserm/IRD/Aix-Marseille université, faculté de médecine, 27, boulevard Jean Moulin, 13385 Marseille cedex 5, France
- École du Val-de-Grâce, Val-de-Grâce, 1, place Alphonse Laveran, 75005 Paris, France
| | - F de Laval
- UMR 1252-sciences économiques et sociales de la santé et traitement de l'information médicale, SESSTIM, Inserm/IRD/Aix-Marseille université, faculté de médecine, 27, boulevard Jean Moulin, 13385 Marseille cedex 5, France
- Centre d'épidémiologie et de santé publique des armées, base de défense Marseille Aubagne - 111, avenue de la Corse BP40026, 13568 Marseille cedex 02, France
| | - G Texier
- École du Val-de-Grâce, Val-de-Grâce, 1, place Alphonse Laveran, 75005 Paris, France
- Centre d'épidémiologie et de santé publique des armées, base de défense Marseille Aubagne - 111, avenue de la Corse BP40026, 13568 Marseille cedex 02, France
- UMR 257-Vecteurs, infections tropicales et méditerranéennes-VITROME-IRD/SSA/AP-HM/Aix-Marseille université, 19-21, boulevard Jean Moulin, 13005 Marseille, France
| | - O Gorgé
- Institut de recherche biomédicale des armées, 1, place du général Valérie André BP 73, 91223 Brétigny-sur-Orge, France
| | - H Degui
- Centre d'épidémiologie et de santé publique des armées, base de défense Marseille Aubagne - 111, avenue de la Corse BP40026, 13568 Marseille cedex 02, France
| | - V Pommier de Santi
- Centre d'épidémiologie et de santé publique des armées, base de défense Marseille Aubagne - 111, avenue de la Corse BP40026, 13568 Marseille cedex 02, France
- UMR 257-Vecteurs, infections tropicales et méditerranéennes-VITROME-IRD/SSA/AP-HM/Aix-Marseille université, 19-21, boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
49
|
Nyaruaba R, Mwaliko C, Dobnik D, Neužil P, Amoth P, Mwau M, Yu J, Yang H, Wei H. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: a Roadmap for Future Outbreaks. Clin Microbiol Rev 2022; 35:e0016821. [PMID: 35258315 PMCID: PMC9491181 DOI: 10.1128/cmr.00168-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pavel Neužil
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
50
|
de Araújo JC, Mota VT, Teodoro A, Leal C, Leroy D, Madeira C, Machado EC, Dias MF, Souza CC, Coelho G, Bressani T, Morandi T, Freitas GTO, Duarte A, Perdigão C, Tröger F, Ayrimoraes S, de Melo MC, Laguardia F, Reis MTP, Mota C, Chernicharo CAL. Long-term monitoring of SARS-CoV-2 RNA in sewage samples from specific public places and STPs to track COVID-19 spread and identify potential hotspots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155959. [PMID: 35588823 DOI: 10.2139/ssrn.4055085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 05/21/2023]
Abstract
Coronavirus pandemic started in March 2020 and since then has caused millions of deaths worldwide. Wastewater-based epidemiology (WBE) can be used as an epidemiological surveillance tool to track SARS-CoV-2 dissemination and provide warning of COVID-19 outbreaks. Considering that there are public places that could be potential hotspots of infected people that may reflect the local epidemiological situation, the presence of SARS-CoV-2 RNA was analyzed by RT-qPCR for approximately 16 months in sewage samples from five public places located in the metropolitan area of Belo Horizonte, MG, Brazil: the sewage treatment plant of Confins International Airport (AIR), the main interstate bus terminal (BUS), an upscale shopping centre (SHC1), a popular shopping centre (SHC2) and a university institute (UNI). The results were compared to those of the influent sewage of the two main sewage treatment plants of Belo Horizonte (STP1 and STP2). Viral monitoring in the STPs proved to be an useful regional surveillance tool, reflecting the trends of COVID-19 cases. However, the viral concentrations in the samples from the selected public places were generally much lower than those of the municipal STPs, which may be due to the behaviour of the non-infected or asymptomatic people, who are likely to visit these places relatively more than the symptomatic infected ones. Among these places, the AIR samples presented the highest viral concentrations and concentration peaks were observed previously to local outbreaks. Therefore, airport sewage monitoring can provide an indication of the regional epidemiological situation. For the other places, particularly the UNI, the results suggested a greater potential to detect the infection and trace cases especially among employees and regular attendees. Taken together, the results indicate that for a regular and permanent sentinel sewage surveillance the sewage from STPs, AIR and UNI could be monitored.
Collapse
Affiliation(s)
- Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil.
| | - Vera Tainá Mota
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Amanda Teodoro
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Cíntia Leal
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Deborah Leroy
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Camila Madeira
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Elayne C Machado
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Marcela F Dias
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Cassia C Souza
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Gabriela Coelho
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Thiago Bressani
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Thiago Morandi
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Gabriel Tadeu O Freitas
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Alyne Duarte
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | | | - Flávio Tröger
- National Agency for Water and Sanitation (ANA), Brazil
| | | | | | | | | | - César Mota
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Carlos A L Chernicharo
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| |
Collapse
|