1
|
Gong C, Yin X, Cheng L, Huang Y, Shi R, Xie M, Yang G, Kong L, Zhang W, Chen X. GmIRT1.1 from soybean (Glycine max L.) is involved in transporting Fe, Mn and Cd. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109010. [PMID: 39146910 DOI: 10.1016/j.plaphy.2024.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Soybean is one of the most important crops for producing high quality oil and protein. Mineral nutrient deficiencies are frequently observed in soybeans. However, there are few studies to understand the absorption process of mineral nutrients in soybeans. Here, we investigated the functions of soybean (Glycine max L.) IRT1.1 (IRON-REGULATED TRANSPORTER 1.1) in the transportation of mineral elements. Heterologous expression of GmIRT1.1 in yeast mutants revealed that GmIRT1.1 compensated for the growth defects of Δfet3fet4 and Δsmf1 mutants under iron (Fe) and manganese (Mn) deficiency conditions, respectively, and enhanced the sensitivity of the Δycf1 mutant to cadmium (Cd) toxicity. Expression analysis revealed that GmIRT1.1 was only significantly induced by Fe deficiency and was primarily expressed in roots. Furthermore, the GmIRT1.1 overexpression lines enhanced Arabidopsis tolerance to Fe deficiency, leading to increased accumulation of Fe in the roots and shoots. Additionally, the transgenic lines increased the sensitivity to Mn and Cd toxicity. Subcellular localization analysis revealed that GmIRT1.1 was localized on the plasma membrane. Moreover, the results obtained from the soybean hairy roots system indicated that the localization of GmIRT1.1 was dependent on the regulation of Fe homeostasis in plant. Consequently, these results suggested that GmIRT1.1 was responsible for the transportation of Fe, Mn and Cd.
Collapse
Affiliation(s)
- Changyi Gong
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xinghua Yin
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Liqing Cheng
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yunfeng Huang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Renkui Shi
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Mengya Xie
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Linghui Kong
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Carey-Fung O, Beasley JT, Broad RC, Hellens RP, Johnson AAT. Discovery of a conserved translationally repressive upstream open reading frame within the iron-deficiency response regulator IDEF2. BMC PLANT BIOLOGY 2024; 24:891. [PMID: 39343926 PMCID: PMC11440899 DOI: 10.1186/s12870-024-05473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Iron (Fe) deficiency affects 30-50% of the world's population. Genetic biofortification of staple crops is a promising strategy for improving human nutrition, but the number of effective precision breeding targets for Fe biofortification is small. Upstream open reading frames (uORFs) are cis-regulatory elements within the 5' leader sequence (LS) of genes that generally repress translation of the main open reading frame (mORF). RESULTS We aligned publicly available rice (Oryza sativa L.) ribo-seq datasets and transcriptomes to identify putative uORFs within important Fe homeostasis genes. A dual luciferase assay (DLA) was used to determine whether these uORFs cause repression of mORF translation and pinpoint LS regions that can be mutated for mORF derepression. A translationally repressive uORF region was identified in two positive regulators of the Fe-deficiency response: IDEF1 and IDEF2. The IDEF2-uORF peptide was highly conserved among monocots and a mutation series in the 5' LS of the wheat (Triticum aestivum L.) TaIDEF2-A1 gene demonstrated variable mORF derepression. CONCLUSIONS Together these results reveal a possible regulatory mechanism by which IDEF2 transcription factors modulate the Fe deficiency response in monocots, and highlight novel precision breeding targets to improve crop nutrition and abiotic stress tolerance.
Collapse
Affiliation(s)
- Oscar Carey-Fung
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jesse T Beasley
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ronan C Broad
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | | | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
5
|
Wu X, Jia Y, Ma Q, Wang T, Xu J, Chen H, Wang M, Song H, Cao S. The transcription factor bZIP44 cooperates with MYB10 and MYB72 to regulate the response of Arabidopsis thaliana to iron deficiency stress. THE NEW PHYTOLOGIST 2024; 242:2586-2603. [PMID: 38523234 DOI: 10.1111/nph.19706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Nicotianamine (NA) plays a crucial role in transporting metal ions, including iron (Fe), in plants; therefore, NICOTIANAMINE SYNTHASE (NAS) genes, which control NA synthesis, are tightly regulated at the transcriptional level. However, the transcriptional regulatory mechanisms of NAS genes require further investigations. In this study, we determined the role of bZIP44 in mediating plant response to Fe deficiency stress by conducting transformation experiments and assays. bZIP44 positively regulated the response of Arabidopsis to Fe deficiency stress by interacting with MYB10 and MYB72 to enhance their abilities to bind at NAS2 and NAS4 promoters, thereby increasing NAS2 and NAS4 transcriptional levels and promote NA synthesis. In summary, the transcription activities of bZIP44, MYB10, and MYB72 were induced in response to Fe deficiency stress, which enhanced the interaction between bZIP44 and MYB10 or MYB72 proteins, synergistically activated the transcriptional activity of NAS2 and NAS4, promoted NA synthesis, and improved Fe transport, thereby enhancing plant tolerance to Fe deficiency stress.
Collapse
Affiliation(s)
- Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yafeng Jia
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qian Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiena Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongli Chen
- Anhui Society for Horticultural Science, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Mingxia Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
6
|
Gao F, Dubos C. The arabidopsis bHLH transcription factor family. TRENDS IN PLANT SCIENCE 2024; 29:668-680. [PMID: 38143207 DOI: 10.1016/j.tplants.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Basic helix-loop-helices (bHLHs) are present in all eukaryotes and form one of the largest families of transcription factors (TFs) found in plants. bHLHs function as transcriptional activators and/or repressors of genes involved in key processes involved in plant growth and development in interaction with the environment (e.g., stomata and root hair development, iron homeostasis, and response to heat and shade). Recent studies have improved our understanding of the functioning of bHLH TFs in complex regulatory networks where a series of post-translational modifications (PTMs) have critical roles in regulating their subcellular localization, DNA-binding capacity, transcriptional activity, and/or stability (e.g., protein-protein interactions, phosphorylation, ubiquitination, and sumoylation). Further elucidating the function and regulation of bHLHs will help further understanding of the biology of plants in general and for the development of new tools for crop improvement.
Collapse
Affiliation(s)
- Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| | - Christian Dubos
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
7
|
Chauhan H, Alok A, Aiana, Upadhyay SK, Pandey A, Singh K. CRISPR/Cas9 edited StbHLH47 lines exhibit altered expression profiling of iron regulating genes and increased iron content in Solanum tuberosum. CURRENT PLANT BIOLOGY 2024; 38:100354. [DOI: 10.1016/j.cpb.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
8
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
9
|
Gao F, Li M, Dubos C. bHLH121 and clade IVc bHLH transcription factors synergistically function to regulate iron homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2933-2950. [PMID: 38441949 DOI: 10.1093/jxb/erae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
Iron is an essential micronutrient for plant growth and development. In Arabidopsis thaliana, an intricate regulatory network involving several basic helix-loop-helix (bHLH) transcription factors controls the homeostasis of iron. Among these transcription factors, bHLH121 plays a crucial role. bHLH121 interacts in vivo with clade IVc bHLH transcription factors and activates the expression of FIT and clade Ib bHLH transcription factors to stimulate the uptake of iron. How bHLH121 and clade IVc bHLH transcription factors function collectively and efficiently to maintain iron homeostasis is still unclear. Herein, we found that double loss-of-function mutants involving bhlh121 and one of the clade IVc bHLH transcription factors displayed more severe iron deficiency-associated growth defects than each of the single mutants. We also found that among the four clade IVc bHLH transcription factors, only bHLH34 and bHLH105 could partially complement the iron-associated growth defects of bhlh121 when overexpressed. These data, together with protein localization analysis, support that bHLH121 and clade IVc bHLH transcription factors act synergistically to regulate iron homeostasis and that different bHLH121/clade IVc and clade IVc/clade IVc protein complexes are involved in this process.
Collapse
Affiliation(s)
- Fei Gao
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Meijie Li
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
10
|
Xin J. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123890. [PMID: 38554840 DOI: 10.1016/j.envpol.2024.123890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Agro-products accumulate Cd from the soil and are the main source of Cd in humans. Their use must therefore be minimized using effective strategies. Large soil beds containing low-to-moderate Cd-contamination are used to produce agro-products in many developing countries to keep up with the demand of their large populations. Improving the health of Cd-contaminated soils could be a cost-effective method for minimizing Cd accumulation in crops. In this review, the latest knowledge on the physiological and molecular mechanisms of Cd uptake and translocation in crops is presented, providing a basis for developing advanced technologies for producing Cd-safe agro-products. Inoculation of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, application of organic matter, essential nutrients, beneficial elements, regulation of soil pH, and water management are efficient techniques used to decrease soil Cd bioavailability and inhibiting the uptake and accumulation of Cd in crops. In combination, these strategies for improving soil health are environmentally friendly and practical for reducing Cd accumulation in crops grown in lightly to moderately Cd-contaminated soil.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang 421002, China.
| |
Collapse
|
11
|
Liu XJ, Liu X, Zhao Q, Dong YH, Liu Q, Xue Y, Yao YX, You CX, Kang H, Wang XF. Calmodulin-like protein MdCML15 interacts with MdBT2 to modulate iron homeostasis in apple. HORTICULTURE RESEARCH 2024; 11:uhae081. [PMID: 38766530 PMCID: PMC11101318 DOI: 10.1093/hr/uhae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
BTB and TAZ domain proteins (BTs) function as specialized adaptors facilitating substrate recognition of the CUL3-RING ubiquitin ligase (CRL3) complex that targets proteins for ubiquitination in reaction to diverse pressures. Nonetheless, knowledge of the molecular mechanisms by which the apple scaffold protein MdBT2 responds to external and internal signals is limited. Here we demonstrate that a putative Ca 2+ sensor, calmodulin-like 15 (MdCML15), acts as an upstream regulator of MdBT2 to negatively modulate its functions in plasma membrane H+-ATPase regulation and iron deficiency tolerance. MdCML15 was identified to be substantially linked to MdBT2, and to result in the ubiquitination and degradation of the MdBT2 target protein MdbHLH104. Consequently, MdCML15 repressed the MdbHLH104 target, MdAHA8's expression, reducing levels of a specific membrane H+-ATPase. Finally, the phenotype of transgenic apple plantlets and calli demonstrated that MdCML15 modulates membrane H+-ATPase-produced rhizosphere pH lowering alongside iron homeostasis through an MdCML15-MdBT2-MdbHLH104-MdAHA8 pathway. Our results provide new insights into the relationship between Ca2+ signaling and iron homeostasis.
Collapse
Affiliation(s)
- Xiao-Juan Liu
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Institute of Forestry and Pomology, Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Qiang Zhao
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan-Hua Dong
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Qiangbo Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuan Xue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yu-Xin Yao
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
12
|
Grillet L, Hsieh EJ, Schmidt W. Transcriptome analysis of iron over-accumulating Arabidopsis genotypes uncover putative novel regulators of systemic and retrograde signaling. THE PLANT GENOME 2024; 17:e20411. [PMID: 38054209 DOI: 10.1002/tpg2.20411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023]
Abstract
On account of its competence to accept and donate electrons, iron (Fe) is an essential element across all forms of life, including plants. Maintaining Fe homeostasis requires precise orchestration of its uptake, trafficking, and translocation in order to meet the demand for Fe sinks such as plastids. Plants harboring defects in the systemic Fe transporter OPT3 (OLIGOPEPTIDE TRANSPORTER 3) display constitutive Fe deficiency responses and accumulate toxic levels of Fe in their leaves. Similarly, ectopic expression of IRONMAN (IMA) genes, encoding a family of phloem-localized signaling peptides, triggers the uptake and accumulation of Fe by inhibiting the putative Fe sensor BRUTUS. This study aims at elucidating the mechanisms operating between OPT3-mediated systemic Fe transport, activation of IMA genes in the phloem, and activation of Fe uptake in the root epidermis. Transcriptional profiling of opt3-2 mutant and IMA1/IMA3 overexpressing (IMA Ox) lines uncovered a small subset of genes that were consistently differentially expressed across all three genotypes and Fe-deficient control plants, constituting potential novel regulators of cellular Fe homeostasis. In particular, expression of the the F-box protein At1g73120 was robustly induced in all genotypes, suggesting a putative function in the posttranslational regulation of cellular Fe homeostasis. As further constituents of this module, two plastid-encoded loci that putatively produce transfer ribonucleic acid (tRNA)-derived small ribonucleic acids are possibly involved in retrograde control of root Fe uptake.
Collapse
Affiliation(s)
- Louis Grillet
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - En-Jung Hsieh
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
DeLoose M, Cho H, Bouain N, Choi I, Prom-U-Thai C, Shahzad Z, Zheng L, Rouached H. PDR9 allelic variation and MYB63 modulate nutrient-dependent coumarin homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1716-1727. [PMID: 38361338 DOI: 10.1111/tpj.16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Plant roots release phytochemicals into the soil environment to influence nutrient availability and uptake. Arabidopsis thaliana roots release phenylpropanoid coumarins in response to iron (Fe) deficiency, likely to enhance Fe uptake and improve plant health. This response requires sufficient phosphorus (P) in the root environment. Nonetheless, the regulatory interplay influencing coumarin production under varying availabilities of Fe and P is not known. Through genome-wide association studies, we have pinpointed the influence of the ABC transporter G family member, PDR9, on coumarin accumulation and trafficking (homeostasis) under combined Fe and P deficiency. We show that genetic variation in the promoter of PDR9 regulates its expression in a manner associated with coumarin production. Furthermore, we find that MYB63 transcription factor controls dedicated coumarin production by regulating both COUMARIN SYNTHASE (COSY) and FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) expression while orchestrating secretion through PDR9 genes under Fe and P combined deficiency. This integrated approach illuminates the intricate connections between nutrient signaling pathways in coumarin response mechanisms.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Nadia Bouain
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48823, USA
| | - Ilyeong Choi
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | - Zaigham Shahzad
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
14
|
Shekhawat PK, Sardar S, Yadav B, Salvi P, Soni P, Ram H. Meta-analysis of transcriptomics studies identifies novel attributes and set of genes involved in iron homeostasis in rice. Funct Integr Genomics 2023; 23:336. [PMID: 37968542 DOI: 10.1007/s10142-023-01265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Iron (Fe) is an important micronutrient for humans as well as for plant growth and development. Rice employs multiple mechanisms to counteract the negative effects of Fe deficiency and Fe toxicity. Previously, many transcriptomics studies have identified hundreds of genes affected by Fe deficiency and/or Fe toxicity. These studies are highly valuable to identify novel genes involved in Fe homeostasis. However, in the absence of their systematic integration, they remain underutilized. A systematic meta-analysis of transcriptomics data from such ten previous studies was performed here to identify various common attributes. From this meta-analysis, it is revealed that under Fe deficiency conditions, root transcriptome is more sensitive and exhibits greater similarity across multiple studies than the shoot transcriptome. Furthermore, under Fe toxicity conditions, upregulated genes are more reliable and consistent than downregulated genes in susceptible cultivars. The integration of data from Fe deficiency and Fe toxicity conditions helped to identify key marker genes for Fe stress. As a proof-of-concept of the analysis, among the genes consistently regulated in opposite directions under Fe deficiency and toxicity conditions, two genes were selected: a proton-dependent oligopeptide transporter (POT) family protein and Vacuolar Iron Transporter (VIT)-Like (VTL) gene, and validated their expression and sub-cellular localization. Since VIT genes are known to play an important role in Fe homeostasis in plants, the entire OsVTL gene family in rice was characterized. This meta-analysis has identified many novel candidate genes that exhibit consistent expression patterns across multiple tissues, conditions, and studies. This makes them potential targets for future research aimed at developing Fe-biofortified rice varieties, as well as varieties tolerant to sub-optimal Fe levels in soil.
Collapse
Affiliation(s)
- Pooja Kanwar Shekhawat
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004, India
| | - Shaswati Sardar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute, Sector-81, SAS Nagar Mohali, India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India.
| |
Collapse
|
15
|
Tan Z, Lu D, Yu Y, Li L, Dong W, Xu L, Yang Q, Wan X, Liang H. Genome-Wide Identification and Characterization of the bHLH Gene Family and Its Response to Abiotic Stresses in Carthamus tinctorius. PLANTS (BASEL, SWITZERLAND) 2023; 12:3764. [PMID: 37960120 PMCID: PMC10648185 DOI: 10.3390/plants12213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family.
Collapse
Affiliation(s)
- Zhengwei Tan
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dandan Lu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wei Dong
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lanjie Xu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qing Yang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, China;
| | - Huizhen Liang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
16
|
Wang R, Fei Y, Pan Y, Zhou P, Adegoke JO, Shen R, Lan P. IMA peptides function in iron homeostasis and cadmium resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111868. [PMID: 37722507 DOI: 10.1016/j.plantsci.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Iron (Fe), an essential micronutrient, participates in photosynthesis, respiration, and many other enzymatic reactions. Cadmium (Cd), by contrast, is a toxic element to virtually all living organisms. Both Fe deficiency and Cd toxicity severally impair crop growth and productivity, finally leading to human health issues. Understanding how plants control the uptake and homeostasis of Fe and combat Cd toxicity thus is mandatory to develop Fe-enriched but Cd-cleaned germplasms for human beings. Recent studies in Arabidopsis and rice have revealed that IRON MAN (IMA) peptides stand out as a key regulator to respond to Fe deficiency by competitively interacting with a ubiquitin E3 ligase, thus inhibiting the degradation of IVc subgroup bHLH transcription factors (TFs), mediated by 26 S proteasome. Elevated expression of IMA confers tolerance to Cd stress in both Arabidopsis and wheat by activating the iron deficiency response. Here, we discuss recent breakthroughs that IMA peptides function in the Fe-deficiency response to attain Fe homeostasis and combat Cd toxicity as a potential candidate for phytoremediation.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Fei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peijun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Julius Oluwaseun Adegoke
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Yang Q, Wang T, Cao J, Wang HL, Tan S, Zhang Y, Park S, Park H, Woo HR, Li X, Xia X, Guo H, Li Z. Histone variant HTB4 delays leaf senescence by epigenetic control of Ib bHLH transcription factor-mediated iron homeostasis. THE NEW PHYTOLOGIST 2023; 240:694-709. [PMID: 37265004 DOI: 10.1111/nph.19008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
Leaf senescence is an orderly process regulated by multiple internal factors and diverse environmental stresses including nutrient deficiency. Histone variants are involved in regulating plant growth and development. However, their functions and underlying regulatory mechanisms in leaf senescence remain largely unclear. Here, we found that H2B histone variant HTB4 functions as a negative regulator of leaf senescence. Loss of function of HTB4 led to early leaf senescence phenotypes that were rescued by functional complementation. RNA-seq analysis revealed that several Ib subgroup basic helix-loop-helix (bHLH) transcription factors (TFs) involved in iron (Fe) homeostasis, including bHLH038, bHLH039, bHLH100, and bHLH101, were suppressed in the htb4 mutant, thereby compromising the expressions of FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER (IRT1), two important components of the Fe uptake machinery. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that HTB4 could bind to the promoter regions of Ib bHLH TFs and enhance their expression by promoting the enrichment of the active mark H3K4me3 near their transcriptional start sites. Moreover, overexpression of Ib bHLH TFs or IRT1 suppressed the premature senescence phenotype of the htb4 mutant. Our work established a signaling pathway, HTB4-bHLH TFs-FRO2/IRT1-Fe homeostasis, which regulates the onset and progression of leaf senescence.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Xiaojuan Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
18
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
Tisarum R, Rika R, Pipatsitee P, Sotesaritkul T, Samphumphuang T, Cha-um K, Cha-um S. Iron (Fe) toxicity, uptake, translocation, and physio-morphological responses in Catharanthus roseus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1289-1299. [PMID: 38024951 PMCID: PMC10678865 DOI: 10.1007/s12298-023-01379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Iron (Fe) toxicity in plant species depends on the availability of Fe in the soil, uptake ability by the root system, and translocation rate to other parts of the plant. The aim of this study was to assess Fe uptake by root tissues of Catharanthus roseus, translocation rate to leaf tissues, and the impairment of plant physio-morphological characteristics. Fe uptake by the roots (~ 700 µg g-1 DW) of C. roseus was observed during the early exposure period (1 week), and translocation factor from root to shoot was fluctuated as an independent strategy. A high level of Fe content in the root tissues significantly inhibited root length and root dry weight. Under acidic pH condition, an enrichment of Fe in the shoots (~ 400 µg g-1 DW) led to increase in leaf temperature (> 2.5 °C compared to control) and crop stress index (> 0.6), resulting in stomatal closure, subsequently decreasing CO2 assimilation rate and H2O transpiration rate. An increment of CSI in Fe-stressed plants was negatively related to stomatal conductance, indicating stomatal closure with an increase in Fe in the leaf tissues. High Fe levels in the leaf tissues directly induced toxic symptoms including leaf bronzing, leaf spotting, leaf necrosis, leaf chlorosis, and leaf senescence in C. roseus plants. In summary, C. roseus was identified as a good candidate plant for Fe phytoextraction, depending on Fe bioaccumulation, therefore 50 mM Fe treatment was designated as an excess Fe to cause the growth inhibition, especially in the prolonged Fe incubation periods. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01379-5.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| | - Rika Rika
- Indonesia International Institute for Life Science, Jl. Pulomas Barat Kav. 88, Jakarta Timur, 13210 Indonesia
| | - Piyanan Pipatsitee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| | - Kwankhao Cha-um
- Science Classrooms in University-Affiliated School Project (SCIUS), Thamasart University, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Suriyan Cha-um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| |
Collapse
|
20
|
Müller B. Iron transport mechanisms and their evolution focusing on chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154059. [PMID: 37586271 DOI: 10.1016/j.jplph.2023.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
21
|
Romera FJ, García MJ, Lucena C, Angulo M, Pérez-Vicente R. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants. Int J Mol Sci 2023; 24:12617. [PMID: 37628796 PMCID: PMC10454737 DOI: 10.3390/ijms241612617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants.
Collapse
Affiliation(s)
- Francisco Javier Romera
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - María José García
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| | - Macarena Angulo
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| |
Collapse
|
22
|
Fuentes M, Bosch G, de Hita D, Olaetxea M, Erro J, Zamarreño AM, Garcia-Mina JM. Supramolecular Arrangement of Lignosulfonate-Based Iron Heteromolecular Complexes and Consequences of Their Interaction with Ca 2+ at Alkaline pH and Fe Plant Root Uptake Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11404-11417. [PMID: 37462422 PMCID: PMC10401718 DOI: 10.1021/acs.jafc.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Previous studies have shown that natural heteromolecular complexes might be an alternative to synthetic chelates to correct iron (Fe) deficiency. To investigate the mechanism of action of these complexes, we have studied their interaction with Ca2+ at alkaline pH, Fe-binding stability, Fe-root uptake in cucumber, and chemical structure using molecular modeling. The results show that a heteromolecular Fe complex including citric acid and lignosulfonate as binding ligands (Ls-Cit) forms a supramolecular system in solution with iron citrate interacting with the hydrophobic inner core of the lignosulfonate system. These structural features are associated with high stability against Ca2+ at basic pH. Likewise, unlike Fe-EDDHA, root Fe uptake from Ls-Cit implies the activation of the main root responses under Fe deficiency at the transcriptional level but not at the post-transcriptional level. These results are consistent with the involvement of some plant responses to Fe deficiency in the plant assimilation of complexed Fe in Ls-Cit under field conditions.
Collapse
Affiliation(s)
- Marta Fuentes
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - German Bosch
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - David de Hita
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Maite Olaetxea
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Javier Erro
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Angel Ma Zamarreño
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Jose Ma Garcia-Mina
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| |
Collapse
|
23
|
Aghabi D, Sloan M, Gill G, Hartmann E, Antipova O, Dou Z, Guerra AJ, Carruthers VB, Harding CR. The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii. Nat Commun 2023; 14:3659. [PMID: 37339985 PMCID: PMC10281983 DOI: 10.1038/s41467-023-39436-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.
Collapse
Affiliation(s)
- Dana Aghabi
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Megan Sloan
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Grace Gill
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Hartmann
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Olga Antipova
- X-Ray Sciences Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alfredo J Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Cayman Chemical Company, Ann Arbor, MI, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Clare R Harding
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
Li J, Nie K, Wang L, Zhao Y, Qu M, Yang D, Guan X. The Molecular Mechanism of GhbHLH121 in Response to Iron Deficiency in Cotton Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1955. [PMID: 37653872 PMCID: PMC10224022 DOI: 10.3390/plants12101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron deficiency caused by high pH of saline-alkali soil is a major source of abiotic stress affecting plant growth. However, the molecular mechanism underlying the iron deficiency response in cotton (Gossypium hirsutum) is poorly understood. In this study, we investigated the impacts of iron deficiency at the cotton seedling stage and elucidated the corresponding molecular regulation network, which centered on a hub gene GhbHLH121. Iron deficiency induced the expression of genes with roles in the response to iron deficiency, especially GhbHLH121. The suppression of GhbHLH121 with virus-induced gene silence technology reduced seedlings' tolerance to iron deficiency, with low photosynthetic efficiency and severe damage to the structure of the chloroplast. Contrarily, ectopic expression of GhbHLH121 in Arabidopsis enhanced tolerance to iron deficiency. Further analysis of protein/protein interactions revealed that GhbHLH121 can interact with GhbHLH IVc and GhPYE. In addition, GhbHLH121 can directly activate the expression of GhbHLH38, GhFIT, and GhPYE independent of GhbHLH IVc. All told, GhbHLH121 is a positive regulator of the response to iron deficiency in cotton, directly regulating iron uptake as the upstream gene of GhFIT. Our results provide insight into the complex network of the iron deficiency response in cotton.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| | - Donglei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| |
Collapse
|
25
|
Pu MN, Liang G. The transcription factor POPEYE negatively regulates the expression of bHLH Ib genes to maintain iron homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2754-2767. [PMID: 36787175 PMCID: PMC10797486 DOI: 10.1093/jxb/erad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/11/2023] [Indexed: 06/06/2023]
Abstract
Iron (Fe) is an essential trace element for plants. When suffering from Fe deficiency, plants modulate the expression of Fe deficiency-responsive genes to promote Fe uptake. POPEYE (PYE) is a key bHLH (basic helix-loop-helix) transcription factor involved in Fe homeostasis. However, the molecular mechanism of PYE regulating the Fe deficiency response remains elusive in Arabidopsis. We found that the overexpression of PYE attenuates the expression of Fe deficiency-responsive genes. PYE directly represses the transcription of bHLH Ib genes (bHLH38, bHLH39, bHLH100, and bHLH101) by associating with their promoters. Although PYE contains an ethylene response factor-associated amphiphilic repression (EAR) motif, it does not interact with the transcriptional co-repressors TOPLESS/TOPLESS-RELATED (TPL/TPRs). Sub-cellular localization analysis indicated that PYE localizes in both the cytoplasm and nucleus. PYE contains a nuclear export signal (NES) which is required for the cytoplasmic localization of PYE. Mutation of the NES amplifies the repression function of PYE, resulting in down-regulation of Fe deficiency-responsive genes. Co-expression assays indicated that three bHLH IVc members (bHLH104, bHLH105/ILR3, and bHLH115) facilitate the nuclear accumulation of PYE. Conversely, PYE indirectly represses the transcription activation ability of bHLH IVc. Additionally, PYE directly negatively regulates its own transcription. This study provides new insights into the Fe deficiency response signalling pathway and enhances the understanding of PYE functions in Arabidopsis.
Collapse
Affiliation(s)
- Meng Na Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Li S, Zhang Y, Wu Q, Huang J, Shen RF, Zhu XF. Decrease in hemicellulose content and its retention of iron contributes to phosphorus deficiency alleviated iron deficiency in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111605. [PMID: 36702178 DOI: 10.1016/j.plantsci.2023.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The physiological and molecular mechanisms between phosphorus (P) and iron (Fe) interactions are still elusive although they have been extensively investigated. In this study, we uncovered that limiting P supply could alleviate Fe deficiency in Arabidopsis (Col-0). Under Fe deficiency, P deficiency (-Fe-P) decreased cell wall Fe accumulation in root, but elevated Fe accumulation in the shoot, implying that the reduced Fe retention in the root cell wall may contribute to the P-deficiency-alleviated Fe deficiency in the shoot. On the other hand, increasing P supply could mimic the degree of Fe deficiency in terms of the expressions of genes induced after Fe deficient treatment. The components of the root cell wall showed that there was no distinction in the pectin content and the Fe retention in pectin between -Fe and -Fe-P treatments, while hemicellulose 1 content and Fe retained in it were decreased significantly in -Fe-P treatment as compared with -Fe treatment. The time-course experiment showed that decreasing cell wall retained Fe was mainly from the corresponding decrease in hemicellulose 1 retained Fe. Furthermore, the up-regulation of IRT1 expression in -Fe-P was obviously lower than -Fe. All these suggest that the P deficiency-induced decrease of hemicellulose 1 component leads to reutilization of root cell wall Fe and improvement of Fe nutrition in shoot in Fe deficient Arabidopsis. Our results provide a novel explanation of the interplay between Fe and P in Arabidopsis.
Collapse
Affiliation(s)
- Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Yue Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210008, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China.
| |
Collapse
|
27
|
Vélez-Bermúdez IC, Schmidt W. Iron sensing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145510. [PMID: 36968364 PMCID: PMC10032465 DOI: 10.3389/fpls.2023.1145510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The ease of accepting or donating electrons is the raison d'être for the pivotal role iron (Fe) plays in a multitude of vital processes. In the presence of oxygen, however, this very property promotes the formation of immobile Fe(III) oxyhydroxides in the soil, which limits the concentration of Fe that is available for uptake by plant roots to levels well below the plant's demand. To adequately respond to a shortage (or, in the absence of oxygen, a possible surplus) in Fe supply, plants have to perceive and decode information on both external Fe levels and the internal Fe status. As a further challenge, such cues have to be translated into appropriate responses to satisfy (but not overload) the demand of sink (i.e., non-root) tissues. While this seems to be a straightforward task for evolution, the multitude of possible inputs into the Fe signaling circuitry suggests diversified sensing mechanisms that concertedly contribute to govern whole plant and cellular Fe homeostasis. Here, we review recent progress in elucidating early events in Fe sensing and signaling that steer downstream adaptive responses. The emerging picture suggests that Fe sensing is not a central event but occurs in distinct locations linked to distinct biotic and abiotic signaling networks that together tune Fe levels, Fe uptake, root growth, and immunity in an interwoven manner to orchestrate and prioritize multiple physiological readouts.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Lu CK, Liang G. Fe deficiency-induced ethylene synthesis confers resistance to Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 237:1843-1855. [PMID: 36440498 DOI: 10.1111/nph.18638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Although iron (Fe) deficiency is an adverse condition to growth and development of plants, it increases the resistance to pathogens. How Fe deficiency induces the resistance to pathogens is still unclear. Here, we reveal that the inoculation of Botrytis cinerea activates the Fe deficiency response of plants, which further induces ethylene synthesis and then resistance to B. cinerea. FIT and bHLH Ib are a pair of bHLH transcription factors, which control the Fe deficiency response. Both the Fe deficiency-induced ethylene synthesis and resistance are blocked in fit-2 and bhlh4x-1 (a quadruple mutant for four bHLH Ib members). SAM1 and SAM2, two ethylene synthesis-associated genes, are induced by Fe deficiency in a FIT-bHLH Ib-dependent manner. Moreover, SAM1 and SAM2 are required for the increased ethylene and resistance to B. cinerea under Fe-deficient conditions. Our findings suggest that the FIT-bHLH Ib module activates the expression of SAM1 and SAM2, thereby inducing ethylene synthesis and resistance to B. cinerea. This study uncovers that Fe signaling also functions as a part of the plant immune system against pathogens.
Collapse
Affiliation(s)
- Cheng Kai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
30
|
Liu X, Zhang L, Yang F, Zhou W. Determining reclaimed water quality thresholds and farming practices to improve food crop yield: A meta-analysis combined with random forest model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160774. [PMID: 36513233 DOI: 10.1016/j.scitotenv.2022.160774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Irrigated agricultural systems with reclaimed water (RW) play a crucial role in alleviating global water scarcity and increased food demand. However, appropriate reclaimed water quality thresholds and farming practices to improve food crop yield is virtually unclear. Therefore, for the first time, this study made a large compilation of previous studies using meta-analysis combined with a random forest (RF) model and analyzed the impact of RW versus freshwater (FW) on the yield of food crops (cereals, vegetables, and fruits). It was found that magnesium ion (Mg2+), calcium ion (Ca2+), electrical conductivity (EC), total nitrogen (TN), and potential of hydrogen (pH) were the most important factors for RW quality indicators. Based on the results, water managers should establish more conservative RW quality thresholds to promote food crop production, especially for salts and pollutants in RW. Compared to international water quality standards, it could be slightly relaxed the restrictions of TN in RW. The optimal farming practices obtained that irrigation amount of the mixed RW and FW (RW + FW) was from 1000 m3 ha-1 to 5000 m3 ha-1, and the cultivation period was no more than three years. Flood irrigation (FI) and drip irrigation (DI) for cereals were also recommended. Finally, a comparison of the determined results from this method with other scenarios published, finding a good agreement.
Collapse
Affiliation(s)
- Xufei Liu
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Fuhui Yang
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wei Zhou
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
31
|
Singh G, Ambreen H, Jain P, Chakraborty A, Singh B, Manivannan A, Bhatia S. Comparative transcriptomic and metabolite profiling reveals genotype-specific responses to Fe starvation in chickpea. PHYSIOLOGIA PLANTARUM 2023; 175:e13897. [PMID: 36960640 DOI: 10.1111/ppl.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Iron deficiency is a major nutritional stress that severely impacts crop productivity worldwide. However, molecular intricacies and subsequent physiological and metabolic changes in response to Fe starvation, especially in leguminous crops like chickpea, remain elusive. In the present study, we investigated physiological, transcriptional, and metabolic reprogramming in two chickpea genotypes (H6013 and L4958) with contrasting seed iron concentrations upon Fe deficiency. Our findings revealed that iron starvation affected growth and physiological parameters of both chickpea genotypes. Comparative transcriptome analysis led to the identification of differentially expressed genes between the genotypes related to strategy I uptake, metal ions transporters, reactive oxygen species-associated genes, transcription factors, and protein kinases that could mitigate Fe deficiency. Our gene correlation network discovered several putative candidate genes like CIPK25, CKX3, WRKY50, NAC29, MYB4, and PAP18, which could facilitate the investigation of the molecular rationale underlying Fe tolerance in chickpea. Furthermore, the metabolite analysis also illustrated the differential accumulation of organic acids, amino acids and other metabolites associated with Fe mobilization in chickpea genotypes. Overall, our study demonstrated the comparative transcriptional dynamics upon Fe starvation. The outcomes of the current endeavor will enable the development of Fe deficiency tolerant chickpea cultivars.
Collapse
Affiliation(s)
- Gourav Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Heena Ambreen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Anirban Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Abinaya Manivannan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
32
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
33
|
Li M, Watanabe S, Gao F, Dubos C. Iron Nutrition in Plants: Towards a New Paradigm? PLANTS (BASEL, SWITZERLAND) 2023; 12:384. [PMID: 36679097 PMCID: PMC9862363 DOI: 10.3390/plants12020384] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development. Fe availability affects crops' productivity and the quality of their derived products and thus human nutrition. Fe is poorly available for plant use since it is mostly present in soils in the form of insoluble oxides/hydroxides, especially at neutral to alkaline pH. How plants cope with low-Fe conditions and acquire Fe from soil has been investigated for decades. Pioneering work highlighted that plants have evolved two different strategies to mine Fe from soils, the so-called Strategy I (Fe reduction strategy) and Strategy II (Fe chelation strategy). Strategy I is employed by non-grass species whereas graminaceous plants utilize Strategy II. Recently, it has emerged that these two strategies are not fully exclusive and that the mechanism used by plants for Fe uptake is directly shaped by the characteristics of the soil on which they grow (e.g., pH, oxygen concentration). In this review, recent findings on plant Fe uptake and the regulation of this process will be summarized and their impact on our understanding of plant Fe nutrition will be discussed.
Collapse
Affiliation(s)
- Meijie Li
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Shunsuke Watanabe
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Christian Dubos
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
34
|
Singh A, Gracheva M, Kovács Kis V, Keresztes Á, Sági-Kazár M, Müller B, Pankaczi F, Ahmad W, Kovács K, May Z, Tolnai G, Homonnay Z, Fodor F, Klencsár Z, Solti Á. Apoplast utilisation of nanohaematite initiates parallel suppression of RIBA1 and FRO1&3 in Cucumis sativus. NANOIMPACT 2023; 29:100444. [PMID: 36470408 DOI: 10.1016/j.impact.2022.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/13/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Nanoscale Fe containing particles can penetrate the root apoplast. Nevertheless, cell wall size exclusion questions that for Fe mobilisation, a close contact between the membrane integrating FERRIC REDUCTASE OXIDASE (FRO) enzymes and Fe containing particles is required. Haematite nanoparticle suspension, size of 10-20 nm, characterized by 57Fe Mössbauer spectroscopy, TEM, ICP and SAED was subjected to Fe utilisation by the flavin secreting model plant cucumber (Cucumis sativus). Alterations in the structure and distribution of the particles were revealed by 57Fe Mössbauer spectroscopy, HRTEM and EDS element mapping. Biological utilisation of Fe resulted in a suppression of Fe deficiency responses (expression of CsFRO 1, 2 & 3 and RIBOFLAVIN A1; CsRIBA1 genes and root ferric chelate reductase activity). Haematite nanoparticles were stacked in the middle lamella of the apoplast. Fe mobilisation is evidenced by the reduction in the particle size. Fe release from nanoparticles does not require a contact with the plasma membrane. Parallel suppression in the CsFRO 1&3 and CsRIBA1 transcript amounts support that flavin biosynthesis is an inclusive Fe deficiency response involved in the reduction-based Fe utilisation of Cucumis sativus roots. CsFRO2 is suggested to play a role in the intracellular Fe homeostasis.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; PhD School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Maria Gracheva
- Laboratory of Nuclear Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary; Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary; Centre for Energy Research, Eötvös Loránd Research Network, Konkoly-Thege Miklós út. 29-33, Budapest H-1121, Hungary
| | - Viktória Kovács Kis
- Centre for Energy Research, Eötvös Loránd Research Network, Konkoly-Thege Miklós út. 29-33, Budapest H-1121, Hungary; Institute of Environmental Sciences, University of Pannonia, Egyetem út. 10, Veszprém H-8200, Hungary
| | - Áron Keresztes
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; PhD School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Fruzsina Pankaczi
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; PhD School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Waqas Ahmad
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; PhD School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Krisztina Kovács
- Laboratory of Nuclear Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Zoltán May
- Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | | | - Zoltán Homonnay
- Laboratory of Nuclear Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Zoltán Klencsár
- Centre for Energy Research, Eötvös Loránd Research Network, Konkoly-Thege Miklós út. 29-33, Budapest H-1121, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary.
| |
Collapse
|
35
|
Gao F, Dubos C. Chromatin Immunoprecipitation (ChIP) to Study the Transcriptional Regulatory Network that Controls Iron Homeostasis in Arabidopsis thaliana. Methods Mol Biol 2023; 2665:85-94. [PMID: 37166595 DOI: 10.1007/978-1-0716-3183-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In plants, gene expression is orchestrated by thousands of transcription factors (TFs). For instance, a large set of bHLH TFs are involved in the regulation of iron homeostasis in Arabidopsis thaliana. The identification of the direct target genes of TFs through uncovering the interaction between the TFs and cis-regulatory elements has become an essential step toward a comprehensive understanding of the iron homeostasis transcriptional regulatory network in Arabidopsis. Chromatin immunoprecipitation (ChIP) followed by qRT-PCR (ChIP-qPCR), sequencing (ChIP-seq), or chip hybridization (ChIP-chip) is a robust tool to investigate protein-DNA interactions in plants in a physiological context. The procedure generally includes six steps: DNA-protein crosslink, isolation of nuclei, shearing of chromatin, immunoprecipitation, DNA purification, and qRT-PCR analyses. In this protocol, we describe guidelines, experimental setup, and conditions for ChIP experiment in Arabidopsis. This protocol focuses on seedlings grown in control and iron deficiency conditions, but can readily be adapted for use with other Arabidopsis tissues or samples. In addition, the protocol could also be applied to perform ChIP-chip or ChIP-seq experiments.
Collapse
Affiliation(s)
- Fei Gao
- Campus INRAE, SupAgro, Institute for Plant Sciences of Montpellier (IPSiM), Montpellier, France
| | - Christian Dubos
- Campus INRAE, SupAgro, Institute for Plant Sciences of Montpellier (IPSiM), Montpellier, France.
| |
Collapse
|
36
|
Robe K, Conjero G, Dubos C. The Use of Spectral Imaging to Follow the Iron and pH-Dependent Accumulation of Fluorescent Coumarins. Methods Mol Biol 2023; 2665:23-30. [PMID: 37166589 DOI: 10.1007/978-1-0716-3183-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants challenged with iron deficiency produce in their roots and secrete into the rhizosphere several small molecules named coumarins that derive from the phenylpropanoid pathway. Coumarins are biosynthesized in different root cell types and transported to the root epidermis prior to their secretion in the surrounding media. Taking advantage of the natural fluorescence of most coumarins glycosides when exposed to UV light, we developed a method to uncover their individual cellular localization and accumulation. This approach couples spectral imaging acquisition and linear unmixing analysis. In this protocol, we describe guidelines, experimental setup, and conditions for the analysis of coumarins localization and accumulation in Arabidopsis thaliana root seedlings grown in control and iron deficiency conditions, at both acidic and alkaline pH.
Collapse
Affiliation(s)
- Kevin Robe
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conjero
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
37
|
Spielmann J, Cointry V, Devime F, Ravanel S, Neveu J, Vert G. Differential metal sensing and metal-dependent degradation of the broad spectrum root metal transporter IRT1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1252-1265. [PMID: 36269689 DOI: 10.1111/tpj.16010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Iron is an essential micronutrient for plant growth and development. Under low iron conditions, Arabidopsis plants take up soil iron using the root iron transporter IRT1. In addition to iron, IRT1 also transports others divalent metals, including cadmium, which consequently accumulates into plant tissues and enters the food chain. IRT1 expression was shown to be regulated at the transcriptional and post-translational levels by its essential metal substrates to maximize iron uptake while limiting the accumulation of zinc, manganese, or cobalt. Here, we characterized the regulation of IRT1 by cadmium. A short-term exposure to cadmium decreased the cell surface levels of IRT1 through endocytosis and degradation, but with a lower efficiency than observed for other IRT1 metal substrates. We demonstrated that IRT1 endocytosis in response to cadmium is mediated through the direct binding of cadmium to histidine residues within the regulatory loop of IRT1. However, we revealed that the affinity of the metal sensing motif is much lower for cadmium compared to other metal substrates of IRT1. Finally, we proved that cadmium-induced IRT1 degradation takes place through ubiquitin-mediated endocytosis driven by the UBC35/36 E2 ubiquitin-conjugating enzymes and the IDF1 E3 ubiquitin ligase. Altogether, this work sheds light on the mechanisms of cadmium-mediated downregulation of IRT1 and provides an additional molecular basis for cadmium accumulation and toxicity in plants.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3/Toulouse-INP, 24 chemin de Borde Rouge, 31320, Auzeville Tolosane, France
| | - Virginia Cointry
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3/Toulouse-INP, 24 chemin de Borde Rouge, 31320, Auzeville Tolosane, France
| | - Fabienne Devime
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Stéphane Ravanel
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Julie Neveu
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3/Toulouse-INP, 24 chemin de Borde Rouge, 31320, Auzeville Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3/Toulouse-INP, 24 chemin de Borde Rouge, 31320, Auzeville Tolosane, France
| |
Collapse
|
38
|
Wang W, Shinwari KI, Zhang H, Zhang H, Dong L, He F, Zheng L. The bHLH Transcription Factor OsbHLH057 Regulates Iron Homeostasis in Rice. Int J Mol Sci 2022; 23:ijms232314869. [PMID: 36499202 PMCID: PMC9739582 DOI: 10.3390/ijms232314869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Many basic Helix-Loop-Helix (bHLH) transcription factors precisely regulate the expression of Fe uptake and translocation genes to control iron (Fe) homeostasis, as both Fe deficiency and toxicity impair plant growth and development. In rice, three clade IVc bHLH transcription factors have been characterised as positively regulating Fe-deficiency response genes. However, the function of OsbHLH057, another clade IVc bHLH transcription factor, in regulating Fe homeostasis is unknown. Here, we report that OsbHLH057 is involved in regulating Fe homeostasis in rice. OsbHLH057 was highly expressed in the leaf blades and lowly expressed in the roots; it was mainly expressed in the stele and highly expressed in the lateral roots. In addition, OsbHLH057 was slightly induced by Fe deficiency in the shoots on the first day but was not affected by Fe availability in the roots. OsbHLH057 localised in the nucleus exhibited transcriptional activation activity. Under Fe-sufficient conditions, OsbHLH057 knockout or overexpression lines increased or decreased the shoot Fe concentration and the expression of several Fe homeostasis-related genes, respectively. Under Fe-deficient conditions, plants with an OsbHLH057 mutation showed susceptibility to Fe deficiency and accumulated lower Fe concentrations in the shoot compared with the wild type. Unexpectedly, the OsbHLH057-overexpressing lines had reduced tolerance to Fe deficiency. These results indicate that OsbHLH057 plays a positive role in regulating Fe homeostasis, at least under Fe-sufficient conditions.
Collapse
|
39
|
Assunção AGL. The F-bZIP-regulated Zn deficiency response in land plants. PLANTA 2022; 256:108. [PMID: 36348172 PMCID: PMC9643250 DOI: 10.1007/s00425-022-04019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. Zinc is an essential micronutrient for all living organisms due to its presence in a large number of proteins, as a structural or catalytic cofactor. In plants, zinc homeostasis mechanisms comprise uptake from soil, transport and distribution throughout the plant to provide adequate cellular zinc availability. Here, I discuss the transcriptional regulation of the response to zinc deficiency and the zinc sensing mechanisms in Arabidopsis, and their evolutionary conservation in land plants. The Arabidopsis F-group basic region leucine-zipper (F-bZIP) transcription factors bZIP19 and bZIP23 function simultaneously as sensors of intracellular zinc status, by direct binding of zinc ions, and as the central regulators of the zinc deficiency response, with their target genes including zinc transporters from the ZRT/IRT-like Protein (ZIP) family and nicotianamine synthase enzymes that produce the zinc ligand nicotianamine. I note that this relatively simple mechanism of zinc sensing and regulation, together with the evolutionary conservation of F-bZIP transcription factors across land plants, offer important research opportunities. One of them is to use the F-bZIP-regulated zinc deficiency response as a tractable module for evolutionary and comparative functional studies. Another research opportunity is translational research in crop plants, modulating F-bZIP activity as a molecular switch to enhance zinc accumulation. This should become a useful plant-based solution to alleviate effects of zinc deficiency in soils, which impact crop production and crop zinc content, with consequences for human nutrition globally.
Collapse
Affiliation(s)
- Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal.
| |
Collapse
|
40
|
Wairich A, Ricachenevsky FK, Lee S. A tale of two metals: Biofortification of rice grains with iron and zinc. FRONTIERS IN PLANT SCIENCE 2022; 13:944624. [PMID: 36420033 PMCID: PMC9677123 DOI: 10.3389/fpls.2022.944624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) and zinc (Zn) are essential micronutrients needed by virtually all living organisms, including plants and humans, for proper growth and development. Due to its capacity to easily exchange electrons, Fe is important for electron transport in mitochondria and chloroplasts. Fe is also necessary for chlorophyll synthesis. Zn is a cofactor for several proteins, including Zn-finger transcription factors and redox metabolism enzymes such as copper/Zn superoxide dismutases. In humans, Fe participates in oxygen transport, electron transport, and cell division whereas Zn is involved in nucleic acid metabolism, apoptosis, immunity, and reproduction. Rice (Oryza sativa L.) is one of the major staple food crops, feeding over half of the world's population. However, Fe and Zn concentrations are low in rice grains, especially in the endosperm, which is consumed as white rice. Populations relying heavily on rice and other cereals are prone to Fe and Zn deficiency. One of the most cost-effective solutions to this problem is biofortification, which increases the nutritional value of crops, mainly in their edible organs, without yield reductions. In recent years, several approaches were applied to enhance the accumulation of Fe and Zn in rice seeds, especially in the endosperm. Here, we summarize these attempts involving transgenics and mutant lines, which resulted in Fe and/or Zn biofortification in rice grains. We review rice plant manipulations using ferritin genes, metal transporters, changes in the nicotianamine/phytosiderophore pathway (including biosynthetic genes and transporters), regulators of Fe deficiency responses, and other mutants/overexpressing lines used in gene characterization that resulted in Fe/Zn concentration changes in seeds. This review also discusses research gaps and proposes possible future directions that could be important to increase the concentration and bioavailability of Fe and Zn in rice seeds without the accumulation of deleterious elements. We also emphasize the need for a better understanding of metal homeostasis in rice, the importance of evaluating yield components of plants containing transgenes/mutations under field conditions, and the potential of identifying genes that can be manipulated by gene editing and other nontransgenic approaches.
Collapse
Affiliation(s)
- Andriele Wairich
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe K. Ricachenevsky
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Botany, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sichul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, South Korea
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Jeonju, South Korea
| |
Collapse
|
41
|
Okada S, Lei GJ, Yamaji N, Huang S, Ma JF, Mochida K, Hirayama T. FE UPTAKE-INDUCING PEPTIDE1 maintains Fe translocation by controlling Fe deficiency response genes in the vascular tissue of Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:3322-3337. [PMID: 35993196 DOI: 10.1111/pce.14424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
FE UPTAKE-INDUCING PEPTIDE1 (FEP1), also named IRON MAN3 (IMA3) is a short peptide involved in the iron deficiency response in Arabidopsis thaliana. Recent studies uncovered its molecular function, but its physiological function in the systemic Fe response is not fully understood. To explore the physiological function of FEP1 in iron homoeostasis, we performed a transcriptome analysis using the FEP1 loss-of-function mutant fep1-1 and a transgenic line with oestrogen-inducible expression of FEP1. We determined that FEP1 specifically regulates several iron deficiency-responsive genes, indicating that FEP1 participates in iron translocation rather than iron uptake in roots. The iron concentration in xylem sap under iron-deficient conditions was lower in the fep1-1 mutant and higher in FEP1-induced transgenic plants compared with the wild type (WT). Perls staining revealed a greater accumulation of iron in the cortex of fep1-1 roots than in the WT root cortex, although total iron levels in roots were comparable in the two genotypes. Moreover, the fep1-1 mutation partially suppressed the iron overaccumulation phenotype in the leaves of the oligopeptide transporter3-2 (opt3-2) mutant. These data suggest that FEP1 plays a pivotal role in iron movement and in maintaining the iron quota in vascular tissues in Arabidopsis.
Collapse
Affiliation(s)
- Satoshi Okada
- Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Gui J Lei
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Naoki Yamaji
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Sheng Huang
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Jian F Ma
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Keiichi Mochida
- Crop Design Research Team, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Hirayama
- Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- Crop Design Research Team, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
42
|
Su J, Yao Z, Wu Y, Lee J, Jeong J. Minireview: Chromatin-based regulation of iron homeostasis in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:959840. [PMID: 36186078 PMCID: PMC9523571 DOI: 10.3389/fpls.2022.959840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/31/2022] [Indexed: 05/26/2023]
Abstract
Plants utilize delicate mechanisms to effectively respond to changes in the availability of nutrients such as iron. The responses to iron status involve controlling gene expression at multiple levels. The regulation of iron deficiency response by a network of transcriptional regulators has been extensively studied and recent research has shed light on post-translational control of iron homeostasis. Although not as considerably investigated, an increasing number of studies suggest that histone modification and DNA methylation play critical roles during iron deficiency and contribute to fine-tuning iron homeostasis in plants. This review will focus on the current understanding of chromatin-based regulation on iron homeostasis in plants highlighting recent studies in Arabidopsis and rice. Understanding iron homeostasis in plants is vital, as it is not only relevant to fundamental biological questions, but also to agriculture, biofortification, and human health. A comprehensive overview of the effect and mechanism of chromatin-based regulation in response to iron status will ultimately provide critical insights in elucidating the complexities of iron homeostasis and contribute to improving iron nutrition in plants.
Collapse
Affiliation(s)
- Justin Su
- Department of Biology, Amherst College, Amherst, MA, United States
| | - Zhujun Yao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Yixuan Wu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, MA, United States
| |
Collapse
|
43
|
Liang G. Iron uptake, signaling, and sensing in plants. PLANT COMMUNICATIONS 2022; 3:100349. [PMID: 35706354 PMCID: PMC9483112 DOI: 10.1016/j.xplc.2022.100349] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is an essential micronutrient that affects the growth and development of plants because it participates as a cofactor in numerous physiological and biochemical reactions. As a transition metal, Fe is redox active. Fe often exists in soil in the form of insoluble ferric hydroxides that are not bioavailable to plants. Plants have developed sophisticated mechanisms to ensure an adequate supply of Fe in a fluctuating environment. Plants can sense Fe status and modulate the transcription of Fe uptake-associated genes, finally controlling Fe uptake from soil to root. There is a critical need to understand the molecular mechanisms by which plants maintain Fe homeostasis in response to Fe fluctuations. This review focuses on recent advances in elucidating the functions of Fe signaling components. Taking Arabidopsis thaliana and Oryza sativa as examples, this review begins by discussing the Fe acquisition systems that control Fe uptake from soil, the major components that regulate Fe uptake systems, and the perception of Fe status. Future explorations of Fe signal transduction will pave the way for understanding the regulatory mechanisms that underlie the maintenance of plant Fe homeostasis.
Collapse
Affiliation(s)
- Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China.
| |
Collapse
|
44
|
Li W, Han X, Lan P. Emerging roles of protein phosphorylation in plant iron homeostasis. TRENDS IN PLANT SCIENCE 2022; 27:908-921. [PMID: 35414480 DOI: 10.1016/j.tplants.2022.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Remarkable progress has been made in dissecting the molecular mechanisms involved in iron (Fe) homeostasis in plants, especially the identification of key transporter and transcriptional regulatory networks. But how the protein activity of these master players is regulated by Fe status remains underexplored. Recent studies show that major players toggle switch their properties by protein phosphorylation under different Fe conditions and consequently control the signaling cascade and metabolic adjustment. Moreover, Fe deficiency causes changes of multiple kinases and phosphatases. Here, we discuss how these findings highlight the emergence of the protein phosphorylation-dependent regulation for rapid and precise responses to Fe status to attain Fe homeostasis. Further studies will be needed to fully understand the regulation of these intricate networks.
Collapse
Affiliation(s)
- Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuwen Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Lay-Pruitt KS, Wang W, Prom-U-Thai C, Pandey A, Zheng L, Rouached H. A tale of two players: the role of phosphate in iron and zinc homeostatic interactions. PLANTA 2022; 256:23. [PMID: 35767117 DOI: 10.1007/s00425-022-03922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This minireview details the impact of iron-phosphate and zinc-phosphate interactions in plants and provides perspectives for further areas of research regarding nutrient homeostasis. Iron (Fe) and zinc (Zn) are among the most important micronutrients for plant growth and have numerous implications for human health and agriculture. While plants have developed efficient uptake and transport mechanisms for Fe and Zn, emerging research has shown that the availability of other nutrients in the environment influences the homeostasis of Fe and Zn within plants. In this minireview, we present the current knowledge regarding homeostatic interactions of Fe and Zn with the macronutrient phosphorous (P) and the resulting physiological responses to combined deficiencies of these nutrients. Fe and P interactions have been shown to influence root development, photosynthesis, and biological processes aiding Fe uptake. Zn and P interactions also influence root growth, and coordination of Zn-dependent transcriptional regulation contributes to phosphate (Pi) transport in the plant. Understanding homeostatic interactions among these different nutrients is of critical importance to obtain a more complete understanding of plant nutrition in complex soil environments.
Collapse
Affiliation(s)
- Katerina S Lay-Pruitt
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- The Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Wujian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chanakan Prom-U-Thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Ajay Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Knowledge City, Mohali, S.A.S. Nagar, Punjab, 140306, India
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- The Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
46
|
Kenzhebayeva S, Atabayeva S, Sarsu F, Abekova A, Shoinbekova S, Omirbekova N, Doktyrbay G, Beisenova A, Shavrukov Y. Organ-specific expression of genes involved in iron homeostasis in wheat mutant lines with increased grain iron and zinc content. PeerJ 2022; 10:e13515. [PMID: 35707120 PMCID: PMC9190668 DOI: 10.7717/peerj.13515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
Background Iron deficiency is a well-known nutritional disorder, and the imbalance of trace-elements, specifically iron, is the most common nutrient deficiency of foods across the world, including in Kazakhstan. Wheat has significant nutritional relevance, especially in the provision of iron, however many bread wheat varieties have low iron despite the need for human nourishment. In this study, the expression profiles of wheat homologous genes related to iron homeostasis were investigated. The work resulted in the development of two new M5 mutant lines of spring bread wheat through gamma-irradiation (200 Gy) with higher grain iron and zinc content, lower phytic acid content, and enhanced iron bioavailability compared to the parent variety. Mutant lines were also characterized by higher means of yield associated traits such as grain number per main spike, grain weight per main spike, grain weight per plant, and thousand-grain weight. Methods The homologous genes of bread wheat from several groups were selected for gene expression studies exploring the tight control of iron uptake, translocation rate and accumulation in leaves and roots, and comprised the following: (1) S-adenosylmethionine synthase (SAMS), nicotianamine synthase (NAS1), nicotianamine aminotransferase (NAAT), deoxymugineic acid synthetase (DMAS), involved in the synthesis and release of phytosiderophores; (2) transcription factor basic helix-loop-helix (bHLH); (3) transporters of mugineic acid (TOM), involved in long-distance iron transport; (4) yellow stripe-like (YSlA), and the vacuolar transporter (VIT2), involved in intracellular iron transport and storage; and lastly (5) natural resistance-associated macrophage protein (NRAMP) and ferritin (Fer1A). Results The wheat homologous genes TaSAMS, TaNAS1, and TaDMAS, were significantly up-regulated in the roots of both mutant lines by 2.1-4.7-fold compared to the parent variety. The combined over-expression of TaYSlA and TaVIT2 was also revealed in the roots of mutant lines by 1.3-2.7-fold. In one of the mutant lines, genes encoding intracellular iron transport and storage genes TaNRAMP and TaFer1A-D showed significant up-regulation in roots and leaves (by 1.4- and 3.5-fold, respectively). The highest expression was recorded in the transcription factor TabHLH, which was expressed 13.1- and 30.2-fold in the roots of mutant lines. Our research revealed that genotype-dependent and organ-specific gene expression profiles can provide new insights into iron uptake, translocation rate, storage, and regulation in wheat which aid the prioritization of gene targets for iron biofortification and bioavailability.
Collapse
Affiliation(s)
- Saule Kenzhebayeva
- Department of Biotechnology/Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Saule Atabayeva
- Department of Biotechnology/Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Fatma Sarsu
- Plant Breeding and Genetics Section, General Directorate of Agricultural Research and Policies, Ankara, Turkey
| | - Alfiya Abekova
- Kazakh Research Institute of Agriculture and Plant Growing, Almaty Region, Kazakhstan
| | - Sabina Shoinbekova
- Department of Biotechnology/Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nargul Omirbekova
- Department of Biotechnology/Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulina Doktyrbay
- Department of Biotechnology/Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aizhan Beisenova
- Department of Molecular Biology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Yuri Shavrukov
- College of Science and Engineering (Biological Sciences), Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
47
|
Wang W, Ye J, Xu H, Liu X, Fu Y, Zhang H, Rouached H, Whelan J, Shen Z, Zheng L. OsbHLH061 links TOPLESS/TOPLESS-RELATED repressor proteins with POSITIVE REGULATOR OF IRON HOMEOSTASIS 1 to maintain iron homeostasis in rice. THE NEW PHYTOLOGIST 2022; 234:1753-1769. [PMID: 35288933 DOI: 10.1111/nph.18096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/28/2022] [Indexed: 05/16/2023]
Abstract
As excess iron (Fe) is toxic, uptake of this essential micronutrient must be tightly controlled. Previous studies have shown that Oryza sativa (rice) POSITIVE REGULATOR OF IRON HOMEOSTASIS1 (OsPRI1) acts upstream of the iron-related transcription factor 2 (OsIRO2) and OsIRO3 to positively regulate root-to-shoot Fe translocation. However, as expression of OsPRI1 is constitutive it is unclear how the Fe-deficiency response is turned off to prevent toxicity when Fe is sufficient. The bHLH transcription factor OsbHLH061 interacts with OsPRI1, and this study used molecular, genetics, biochemical and physiological approaches to functionally characterise OsbHLH061 and how it affects Fe homeostasis. OsbHLH061 knockout or overexpression lines increase or decrease Fe accumulation in shoots respectively. Mechanistically, OsbHLH061 expression is upregulated by high Fe, and physically interacts with OsPRI1, the OsbHLH061-OsPRI1 complex recruits TOPLESS/TOPLESS-RELATED (OsTPL/TPR) co-repressors to repress OsIRO2 and OsIRO3 expression. The OsbHLH061 ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif is required for this transcriptional repression activity. These results define a functional OsTPL/TPR-OsbHLH061-OsPRI1-OsIRO2/3 module that negatively controls long-distance transport of Fe in plants for adaptation to changing Fe environments and maintain Fe homeostasis in rice.
Collapse
Affiliation(s)
- Wujian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jun Ye
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Heng Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xi Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yue Fu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
48
|
Kobayashi T, Shinkawa H, Nagano AJ, Nishizawa NK. The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1731-1750. [PMID: 35411594 DOI: 10.1111/tpj.15767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 05/16/2023]
Abstract
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Haruka Shinkawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
49
|
Grant-Grant S, Schaffhauser M, Baeza-Gonzalez P, Gao F, Conéjéro G, Vidal EA, Gaymard F, Dubos C, Curie C, Roschzttardtz H. B3 Transcription Factors Determine Iron Distribution and FERRITIN Gene Expression in Embryo but Do Not Control Total Seed Iron Content. FRONTIERS IN PLANT SCIENCE 2022; 13:870078. [PMID: 35599858 PMCID: PMC9120844 DOI: 10.3389/fpls.2022.870078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 05/26/2023]
Abstract
Iron is an essential micronutrient for humans and other organisms. Its deficiency is one of the leading causes of anemia worldwide. The world health organization has proposed that an alternative to increasing iron content in food is through crop biofortification. One of the most consumed part of crops is the seed, however, little is known about how iron accumulation in seed occurs and how it is regulated. B3 transcription factors play a critical role in the accumulation of storage compounds such as proteins and lipids. Their role in seed maturation has been well characterized. However, their relevance in accumulation and distribution of micronutrients like iron remains unknown. In Arabidopsis thaliana and other plant models, three master regulators belonging to the B3 transcription factors family have been identified: FUSCA3 (FUS3), LEAFY COTYLEDON2 (LEC2), and ABSCISIC ACID INSENSITIVE 3 (ABI3). In this work, we studied how seed iron homeostasis is affected in B3 transcription factors mutants using histological and molecular approaches. We determined that iron distribution is modified in abi3, lec2, and fus3 embryo mutants. For abi3-6 and fus3-3 mutant embryos, iron was less accumulated in vacuoles of cells surrounding provasculature compared with wild type embryos. lec2-1 embryos showed no difference in the pattern of iron distribution in hypocotyl, but a dramatic decrease of iron was observed in cotyledons. Interestingly, for the three mutant genotypes, total iron content in dry mutant seeds showed no difference compared to wild type. At the molecular level, we showed that genes encoding the iron storage ferritins proteins are misregulated in mutant seeds. Altogether our results support a role of the B3 transcription factors ABI3, LEC2, and FUS3 in maintaining iron homeostasis in Arabidopsis embryos.
Collapse
Affiliation(s)
- Susana Grant-Grant
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Schaffhauser
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Baeza-Gonzalez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fei Gao
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conéjéro
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Elena A. Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Frederic Gaymard
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
50
|
Du YC, Kong LJ, Cao LS, Zhang W, Zhu Q, Ma CY, Sun K, Dai CC. Endophytic Fungus Phomopsis liquidambaris Enhances Fe Absorption in Peanuts by Reducing Hydrogen Peroxide. FRONTIERS IN PLANT SCIENCE 2022; 13:872242. [PMID: 35574149 PMCID: PMC9100952 DOI: 10.3389/fpls.2022.872242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) deficiency in alkaline calcium soil is a problem that needs to be solved urgently as Fe is an essential and commonly limiting nutrient for plants. Endophytic fungus, Phomopsis liquidambaris (P. liquidambaris), has been reported to promote Fe absorption in peanuts (Arachis hypogaea L.), however, the mechanisms remain unclear. Under prolonged Fe deficiency, an increase in hydrogen peroxide (H2O2) often triggers a series of signaling events and leads to the inhibition of Fe acquisition. The main purpose of this study was to explore whether and how the endophytic fungus P. liquidambaris promote Fe absorption in peanut through regulating H2O2 and assisting in resisting oxidative stress. In this study, we detected the Fe deficiency-induced transcription factor (FIT), Fe2+ transporter (IRT1), and ferric reduction oxidase 2 (FRO2) of peanuts, and confirmed that they were negatively related to Fe concentration. Similarly, FIT, IRT1, and FRO2 were also inhibited by H2O2. The addition of P. liquidambaris reduces H2O2 under Fe-deficiency with an increase in Fe content, while the exogenous addition of H2O2 further decreases it, and the addition of catalase (CAT) under Fe-deficiency reverses this phenomenon. Through transcriptome analysis, we proved that the expression of FIT, IRT1, FRO2 and CAT are consistent with our hypothesis, and P. liquidambaris has a stress-mitigating effect on peanuts mainly via CAT, glutathione peroxidase, and malondialdehyde. Our study proved the Fe-absorption promoting effect and stress mitigation effect of P. liquidambaris under Fe-deficiency in peanuts, and their combined usage may help peanuts grow better.
Collapse
|