1
|
Garnik EY, Vilyanen DV, Vlasova AA, Tarasenko VI, Konstantinov YM. Arabidopsis GDH1 and GDH2 genes double knock-out results in a stay-green phenotype during dark-induced senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1631-1642. [PMID: 39506990 PMCID: PMC11534964 DOI: 10.1007/s12298-024-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Yellowing is the first visually observable sign of plant leaf senescence. We found that Arabidopsis double knockout mutant gdh1gdh2 for genes of NAD(H)-dependent glutamate dehydrogenase retains green color of the leaves (stay-green phenotype) during a dark-induced senescence, in contrast to wild-type plants, whose leaves turn yellow. When the gdh1gdh2 plants are exposed to the dark more than four days, they demonstrate slower chlorophyll degradation than in the wild-type plants under the same conditions, as well as dysregulation of chlorophyll breakdown genes encoding chlorophyll b reductase, Mg-dechelatase, pheophytinase and pheophorbide a oxygenase. The slowed degradation of chlorophyll b in gdh1gdh2 plants significantly alters the chlorophyll a/b ratio. Ion leakage in the mutant plants increases significantly from four to eight days in the darkness, correlating with their premature death during this period. The discovered facts suggest a functional connection between activity of NAD(H)-dependent glutamate dehydrogenase and dark-induced senescence progress in Arabidopsis.
Collapse
Affiliation(s)
- Elena Yu. Garnik
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
| | - Daria V. Vilyanen
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
- Present Address: Institute of Basic Biological Problems RAS, Federal Research Center, Pushchino Scientific Center for Biological Research RAS, Prospekt Nauki 3, Pushchino, Moscow Region, Russia 142290
| | - Anfisa A. Vlasova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
- Present Address: Irkutsk State University, Karl Marx Str. 1, Irkutsk, Russia 664003
| | - Vladislav I. Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
- Present Address: Irkutsk State University, Karl Marx Str. 1, Irkutsk, Russia 664003
| |
Collapse
|
2
|
Grzechowiak M, Sliwiak J, Link A, Ruszkowski M. Legume-type glutamate dehydrogenase: Structure, activity, and inhibition studies. Int J Biol Macromol 2024; 278:134648. [PMID: 39142482 DOI: 10.1016/j.ijbiomac.2024.134648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Glutamate dehydrogenases (GDHs) are key enzymes at the crossroads of N and C metabolism in plants. Legumes, whose N metabolism is particularly intricate, possess a unique type of GDH. This study presents an analysis of a legume-type GDH (isoform 2) from Medicago truncatula (MtGDH2). We measured MtGDH2 activity in both the Glu → 2-oxoglutarate (2OG) and 2OG → Glu reaction directions and obtained kinetic parameters for Glu, 2OG, NAD+, and NADH. Inhibition assays revealed that compounds possessing di- or tricarboxylates act as inhibitors of plant GDHs. Interestingly, 2,6-pyridinedicarboxylate (PYR) weakly inhibits MtGDH2 compared to Arabidopsis thaliana homologs. Furthermore, we explored tetrazole derivatives to discover 3-(1H-tetrazol-5-yl)benzoic acid (TBA) as an MtGDH2 inhibitor. The kinetic experiments are supported by six crystal structures, solved as: (i) unliganded enzyme, (ii) trapping the reaction intermediate 2-amino-2-hydroxyglutarate and NAD+, and also complexed with NAD+ and inhibitors such as (iii) citrate, (iv) PYR, (v) isophthalate, and (vi) TBA. The complex with TBA revealed a new mode of action that, in contrast to other inhibitors, prevents domain closure. This discovery points to TBA as a starting point for the development of novel GDH inhibitors to study the functions of GDH in plants and potentially boost biomass production.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Joanna Sliwiak
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.
| |
Collapse
|
3
|
Montiel J, Dubrovsky JG. Amino acids biosynthesis in root hair development: a mini-review. Biochem Soc Trans 2024; 52:1873-1883. [PMID: 38984866 DOI: 10.1042/bst20231558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Genómica Funcional de Eucariotas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
4
|
Policastro G, Cesaro A, Fabbricino M. Valorization of Purple Phototrophic Bacteria Biomass Resulting from Photo Fermentation Aimed at Biohydrogen Production. Molecules 2024; 29:1679. [PMID: 38611957 PMCID: PMC11013808 DOI: 10.3390/molecules29071679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
This study evaluated the feasibility of contextually producing hydrogen, microbial proteins, and polyhydroxybutyrate (PHB) using a mixed culture of purple phototrophic bacteria biomass under photo fermentative conditions. To this end, three consecutive batch tests were conducted to analyze the biomass growth curve and to explore the potential for optimizing the production process. Experimental findings indicated that inoculating reactors with microorganisms from the exponential growth phase reduced the duration of the process. Furthermore, the most effective approach for simultaneous hydrogen production and the valorization of microbial biomass was found when conducting the process during the exponential growth phase of the biomass. At this stage, achieved after 3 days of fermentation, the productivities of hydrogen, PHB, and microbial proteins were measured at 63.63 L/m3 d, 0.049 kg/m3 d, and 0.045 kg/m3 d, respectively. The biomass composition comprised a total intracellular compound percentage of 56%, with 27% representing PHB and 29% representing proteins. Under these conditions, the estimated daily revenue was maximized, amounting to 0.6 $/m3 d.
Collapse
Affiliation(s)
- Grazia Policastro
- Department of Engineering, Telematic University Pegaso, 80143 Naples, Italy;
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy;
| |
Collapse
|
5
|
Xiong H, Luo Y, Zhao H, Wang J, Hu B, Yan C, Yao T, Zhang Y, Shi X, Rennenberg H. Integrated proteome and physiological traits reveal interactive mechanisms of new leaf growth and storage protein degradation with mature leaves of evergreen citrus trees. TREE PHYSIOLOGY 2024; 44:tpae001. [PMID: 38195893 DOI: 10.1093/treephys/tpae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The growth of fruit trees depends on the nitrogen (N) remobilization in mature tissues and N acquisition from the soil. However, in evergreen mature citrus (Citrus reticulata Blanco) leaves, proteins with N storage functions and hub molecules involved in driving N remobilization remain largely unknown. Here, we combined proteome and physiological analyses to characterize the spatiotemporal mechanisms of growth of new leaves and storage protein degradation in mature leaves of citrus trees exposed to low-N and high-N fertilization in the field. Results show that the growth of new leaves is driven by remobilization of stored reserves, rather than N uptake by the roots. In this context, proline and arginine in mature leaves acted as N sources supporting the growth of new leaves in spring. Time-series analyses with gel electrophoresis and proteome analysis indicated that the mature autumn shoot leaves are probably the sites of storage protein synthesis, while the aspartic endopeptidase protein is related to the degradation of storage proteins in mature citrus leaves. Furthermore, bioinformatic analysis based on protein-protein interactions indicated that glutamate synthetase and ATP-citrate synthetase are hub proteins in N remobilization from mature citrus leaves. These results provide strong physiological data for seasonal optimization of N fertilizer application in citrus orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Yayin Luo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Chengquan Yan
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Tingshan Yao
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
6
|
Brambilla M, Chiari G, Commisso M, Nerva L, Musetti R, Petraglia A, Degola F. Glutamate dehydrogenase in "Liverworld"-A study in selected species to explore a key enzyme of plant primary metabolism in Marchantiophyta. PHYSIOLOGIA PLANTARUM 2023; 175:e14071. [PMID: 38148220 DOI: 10.1111/ppl.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.
Collapse
Affiliation(s)
- Martina Brambilla
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giorgio Chiari
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Conegliano, Italy
| | - Rita Musetti
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Grzechowiak M, Sliwiak J, Jaskolski M, Ruszkowski M. Structural and functional studies of Arabidopsis thaliana glutamate dehydrogenase isoform 2 demonstrate enzyme dynamics and identify its calcium binding site. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107895. [PMID: 37478728 DOI: 10.1016/j.plaphy.2023.107895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Glutamate dehydrogenase (GDH) is an enzyme at the crossroad of plant nitrogen and carbon metabolism. GDH catalyzes the conversion of 2-oxoglutarate into glutamate (2OG → Glu), utilizing ammonia as cosubstrate and NADH as coenzyme. The GDH reaction is reversible, meaning that the NAD+-dependent reaction (Glu → 2OG) releases ammonia. In Arabidopsis thaliana, three GDH isoforms exist, AtGDH1, AtGDH2, and AtGDH3. The subject of this work is AtGDH2. Previous reports have suggested that enzymes homologous to AtGDH2 contain a calcium-binding EF-hand motif located in the coenzyme binding domain. Here, we show that while AtGDH2 indeed does bind calcium, the binding occurs elsewhere and the region predicted to be the EF-hand motif has a completely different structure. As the true calcium binding site is > 20 Å away from the active site, it seems to play a structural, rather than catalytic role. We also performed comparative kinetic characterization of AtGDH1 and AtGDH2 using spectroscopic methods and isothermal titration calorimetry, to note that the isoenzymes generally exhibit similar behavior, with calcium having only a minor effect. However, the spatial and temporal changes in the gene expression profiles of the three AtGDH genes point to AtGDH2 as the most prevalent isoform.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Joanna Sliwiak
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Mariusz Jaskolski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland; Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland.
| |
Collapse
|
8
|
Tercé-Laforgue T, Lothier J, Limami AM, Rouster J, Lea PJ, Hirel B. The Key Role of Glutamate Dehydrogenase 2 (GDH2) in the Control of Kernel Production in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2612. [PMID: 37514227 PMCID: PMC10385319 DOI: 10.3390/plants12142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
The agronomic potential of glutamate dehydrogenase 2 (GDH2) in maize kernel production was investigated by examining the impact of a mutation on the corresponding gene. Mu-insertion homozygous and heterozygous mutant lines lacking GDH2 activity were isolated and characterized at the biochemical, physiological and agronomic levels. In comparison to the wild type and to the homozygous ghd2 mutants, the heterozygous gdh2 mutant plants were characterized by a decrease in the root amino acid content, whereas in the leaves an increase of a number of phenolic compounds was observed. On average, a 30 to 40% increase in kernel yield was obtained only in the heterozygous gdh2 mutant lines when plants were grown in the field over two years. The importance of GDH2 in the control of plant productivity is discussed in relation to the physiological impact of the mutation on amino acid content, with primary carbon metabolism mostly occurring in the roots and secondary metabolism occurring in the leaves.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique et de L'Environnement (INRAE), CEDEX, 78026 Versailles, France
| | - Jérémy Lothier
- Univ Angers, Institut National de Recherche Pour L'Agriculture et L'Environnement (INRAE), Institut de Recherche en Horticulture et Semence (IRHS), 49007 Angers, France
| | - Anis M Limami
- Univ Angers, Institut National de Recherche Pour L'Agriculture et L'Environnement (INRAE), Institut de Recherche en Horticulture et Semence (IRHS), 49007 Angers, France
| | - Jacques Rouster
- BIOGEMMA-LIMAGRAIN, Site de la Garenne, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique et de L'Environnement (INRAE), CEDEX, 78026 Versailles, France
| |
Collapse
|
9
|
Bruscalupi G, Di Micco P, Failla CM, Pascarella G, Morea V, Saliola M, De Paolis A, Venditti S, Mauro ML. Arabidopsis thaliana sirtuins control proliferation and glutamate dehydrogenase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:236-245. [PMID: 36436414 DOI: 10.1016/j.plaphy.2022.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Sirtuins are part of a gene family of NAD-dependent deacylases that act on histone and non-histone proteins and control a variety of activities in all living organisms. Their roles are mainly related to energy metabolism and include lifetime regulation, DNA repair, stress resistance, and proliferation. A large amount of knowledge concerning animal sirtuins is available, but data about their plant counterparts are scarce. Plants possess few sirtuins that have, like in animals, a recognized role in stress defense and metabolism regulation. However, engagement in proliferation control, which has been demonstrated for mammalian sirtuins, has not been reported for plant sirtuins so far. In this work, srt1 and srt2 Arabidopsis mutant seedlings have been used to evaluate in vivo the role of sirtuins in cell proliferation and regulation of glutamate dehydrogenase, an enzyme demonstrated to be involved in the control of cell cycle in SIRT4-defective human cells. Moreover, bioinformatic analyses have been performed to elucidate sequence, structure, and function relationships between Arabidopsis sirtuins and between each of them and the closest mammalian homolog. We found that cell proliferation and GDH activity are higher in mutant seedlings, suggesting that both sirtuins exert a physiological inhibitory role in these processes. In addition, mutant seedlings show plant growth and root system improvement, in line with metabolic data. Our data also indicate that utilization of an easy to manipulate organism, such as Arabidopsis plant, can help to shed light on the molecular mechanisms underlying the function of genes present in interkingdom species.
Collapse
Affiliation(s)
- Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Patrizio Di Micco
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Cristina Maria Failla
- IDI-IRCCS, Laboratory of Experimental Immunology, Via dei Monti di Creta 104, 00167, Rome, Italy.
| | - Gianmarco Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy; National Research Council of Italy, Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Veronica Morea
- National Research Council of Italy, Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Michele Saliola
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Angelo De Paolis
- Institute of Sciences of Food Production (ISPA-CNR), Via Monteroni, Lecce, 73100, Italy.
| | - Sabrina Venditti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Mauro
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Xiong H, Ma H, Zhao H, Yang L, Hu B, Wang J, Shi X, Zhang Y, Rennenberg H. Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. TREE PHYSIOLOGY 2022; 42:1628-1645. [PMID: 35225347 DOI: 10.1093/treephys/tpac024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we quantified the potential of N remobilization from senescing leaves of spring shoots to mature leaves of autumn shoots of citrus trees under different soil N availabilities and further explored the underlying N metabolism characteristics by physiological, proteome and gene expression analyses. Citrus exposed to low N had an approximately 38% N remobilization efficiency (NRE), whereas citrus exposed to high N had an NRE efficiency of only 4.8%. Integrated physiological, proteomic and gene expression analyses showed that photosynthesis, N and carbohydrate metabolism interact with N remobilization. The improvement of N metabolism and photosynthesis, the accumulation of proline and arginine, and delayed degradation of storage protein in senescing leaves are the result of sufficient N supply and low N remobilization. Proteome further showed that energy generation proteins and glutamate synthase were hub proteins affecting N remobilization. In addition, N requirement of mature leaves is likely met by soil supply at high N nutrition, thereby resulting in low N remobilization. These results provide insight into N remobilization mechanisms of citrus that are of significance for N fertilizer management in orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Haotian Ma
- Health Science Center, Xi' an Jiaotong University, Xi'an 710061, China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Linsheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
11
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
12
|
Kominami S, Mizuta H, Uji T. Transcriptome Profiling in the Marine Red Alga Neopyropia yezoensis Under Light/Dark Cycle. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:393-407. [PMID: 35377066 DOI: 10.1007/s10126-022-10121-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Many organisms are subjected to a daily cycle of light and darkness, which significantly influences metabolic and physiological processes. In the present study, Neopyropia yezoensis, one of the major cultivated seaweeds used in "nori," was harvested in the morning and evening during light/dark treatments to investigate daily changes in gene expression using RNA-sequencing. A high abundance of transcripts in the morning includes the genes associated with carbon-nitrogen assimilations, polyunsaturated fatty acid, and starch synthesis. In contrast, the upregulation of a subset of the genes associated with the pentose phosphate pathway, cell cycle, and DNA replication at evening is necessary for the tight control of light-sensitive processes, such as DNA replication. Additionally, a high abundance of transcripts at dusk encoding asparaginase and glutamate dehydrogenase imply that regulation of asparagine catabolism and tricarboxylic acid cycle possibly contributes to supply nitrogen and carbon, respectively, for growth during the dark. In addition, genes encoding cryptochrome/photolyase family and histone modification proteins were identified as potential key players for regulating diurnal rhythmic genes.
Collapse
Affiliation(s)
- Sayaka Kominami
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Hiroyuki Mizuta
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Toshiki Uji
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| |
Collapse
|
13
|
Iqbal A, Jing N, Qiang D, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Physiological Characteristics of Cotton Subtending Leaf Are Associated With Yield in Contrasting Nitrogen-Efficient Cotton Genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:825116. [PMID: 35197997 PMCID: PMC8859460 DOI: 10.3389/fpls.2022.825116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) plays an important role in various plant physiological processes, but studies on the photosynthetic efficiency and enzymatic activities in the cotton subtending leaves and their contribution to yield are still lacking. This study explored the influence of low, moderate, and high N levels on the growth, photosynthesis, carbon (C) and N metabolizing enzymes, and their contribution to yield in CCRI-69 (N-efficient) and XLZ-30 (N-inefficient). The results showed that moderate to high N levels had significantly improved growth, photosynthesis, and sucrose content of CCRI-69 as compared to XLZ-30. The seed cotton yield and lint yield of CCRI-69 were similar under moderate and high N levels but higher than XLZ-30. Similarly, moderate to high N levels improved the C/N metabolizing enzymatic activities in the subtending leaf of CCRI-69 than XLZ-30. A strong correlation was found between subtending leaf N concentration with C/N metabolizing enzymes, photosynthesis, sucrose contents, boll weight, and seed cotton yield of N-efficient cotton genotype. These findings suggest that subtending leaf N concentration regulates the enzymatic activities and has a key role in improving the yield. These parameters may be considered for breeding N-efficient cotton genotypes, which might help to reduce fertilizer loss and improve crop productivity.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Niu Jing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics 2021; 49:394-404. [PMID: 34973427 DOI: 10.1016/j.jgg.2021.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Nitrogen (N) is the driving force for crop yields, however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoylphosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops, rice, maize, wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed.
Collapse
|
15
|
Eprintsev AT, Anokhina GB, Fedorin DN. Regulation of Glutamate Dehydrogenase Activity in Maize Leaves (Zea mays L.) with Change in the Light Сonditions. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Tang D, Jiao Z, Zhang Q, Liu MY, Ruan J. Glutamate dehydrogenase isogenes CsGDHs cooperate with glutamine synthetase isogenes CsGSs to assimilate ammonium in tea plant (Camellia sinensis L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111031. [PMID: 34620435 DOI: 10.1016/j.plantsci.2021.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Glutamate dehydrogenase (GDH) is a central enzyme in nitrogen metabolism, assimilating ammonia into glutamine or deaminating glutamate into α-oxoglutarate. Tea (Camellia sinensis L.) plants assimilate ammonium efficiently, but the role of CsGDH in ammonium assimilation remains unclear. We confirmed that tea has three GDH isogenes: CsGDH1-3. Bioinformatic analysis showed that CsGDH1 encodes the β-GDH subunit, CsGDH2/3 encode the α-GDH subunit, and their proteins all feature an NADH-specific motif. CsGDH1 is mainly expressed in mature leaves and roots, CsGDH3 is mainly expressed in new shoots and roots, and CsGDH2 has the highest expression level in flowers compared to the other five tissues. Expression patterns of CsGDHs and glutamine synthetase isogenes (CsGSs) under different ammonium concentrations suggested that CsGDHs cooperate with CsGSs to assimilate ammonium, especially under high ammonium conditions. Inhibition of GS and its isogenes resulted in significant induction of CsGDH3 in roots and CsGDH2 in leaves, indicating their potential roles in ammonium assimilation. Moreover, CsGDHs transcripts were highly abundant in chlorotic tea leaves, in constrast to those of CsGSs, suggesting that CsGDHs play a vital role in ammonium assimilation in chlorotic tea mutant. Altogether, our circumstantial evidence that CsGDHs cooperate with CsGSs in ammonium assimilation provides a basis for unveiling their functions in tea plants.
Collapse
Affiliation(s)
- Dandan Tang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture and Rural Affairs), Hangzhou, 310008, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zixin Jiao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture and Rural Affairs), Hangzhou, 310008, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture and Rural Affairs), Hangzhou, 310008, China.
| | - Mei-Ya Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture and Rural Affairs), Hangzhou, 310008, China.
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture and Rural Affairs), Hangzhou, 310008, China.
| |
Collapse
|
17
|
Kambhampati S, Pajak A, Marsolais F. Evidence that class I glutamine amidotransferase, GAT1_2.1, acts as a glutaminase in roots of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111033. [PMID: 34620437 DOI: 10.1016/j.plantsci.2021.111033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The glutamine amidotransferase gene GAT1_2.1 is a marker of N status in Arabidopsis root, linked to a shoot branching phenotype. The protein has an N-terminal glutamine amidotransferase domain and a C-terminal extension with no recognizable protein domain. A purified, recombinant version of the glutamine amidotransferase domain was catalytically active as a glutaminase, with apparent Km value of 0.66 mM and Vmax value of 2.6 μkatal per mg. This form complemented an E. coli glutaminase mutant, ΔYneH. Spiking of root metabolite extracts with either the N-terminal or full length form purified from transformed tobacco leaves led to reciprocal changes in glutamine and ammonia concentration. No product derived from amido-15N-labeled glutamine was identified. Visualization of GAT1_2.1-YPF transiently expressed in tobacco leaves confirmed its mitochondrial localization. gat1_2.1 exhibited reduced growth as compared with wild-type seedlings on media with glutamine as sole nitrogen source. Results of targeted metabolite profiling pointed to a possible activation of the GABA shunt in the mutant following glutamine treatments, with reduced levels of glutamic acid, 2-oxoglutarate and γ-aminobutyric acid and increased levels of succinic acid. GAT1_2.1 may act as a glutaminase, in concert with Glutamate Dehydrogenase 2, to hydrolyze glutamine and channel 2-oxoglutarate to the TCA cycle under high nitrogen conditions.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada; Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| | - Aga Pajak
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada; Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
18
|
Tokizawa M, Enomoto T, Ito H, Wu L, Kobayashi Y, Mora-Macías J, Armenta-Medina D, Iuchi S, Kobayashi M, Nomoto M, Tada Y, Fujita M, Shinozaki K, Yamamoto YY, Kochian LV, Koyama H. High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes GDH1 and GDH2 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2769-2789. [PMID: 33481007 DOI: 10.1093/jxb/erab031] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 05/28/2023]
Abstract
Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.
Collapse
Affiliation(s)
- Mutsutomo Tokizawa
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada
| | - Takuo Enomoto
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hiroki Ito
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Liujie Wu
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- University of Warwick, UK
| | - Yuriko Kobayashi
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Javier Mora-Macías
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada
| | - Dagoberto Armenta-Medina
- CONACyT Consejo Nacional de Ciencia y Tecnología, Dirección de Cátedras, Insurgentes Sur 1582, Crédito Constructor, 03940 Ciudad de México, México
- INFOTEC Centro de Investigación e Innovación en Tecnologías de la Informacion y Comunicación, Circuito Tecnopolo Sur No 112, Fracc. Tecnopolo Pocitos II, 20313 Aguascalientes, México
| | - Satoshi Iuchi
- RIKEN Bioresource Research Center, Ibaraki 305-0074, Japan
| | | | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Miki Fujita
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yoshiharu Y Yamamoto
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
19
|
Jiang L, Yoshida T, Stiegert S, Jing Y, Alseekh S, Lenhard M, Pérez-Alfocea F, Fernie AR. Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. PLANT PHYSIOLOGY 2021; 185:352-368. [PMID: 33721894 PMCID: PMC8133585 DOI: 10.1093/plphys/kiaa034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important-albeit unknown-mobile signal that is distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate. However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrating transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overexpressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism. Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively, our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to improve plant fitness.
Collapse
Affiliation(s)
- Liang Jiang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sofia Stiegert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Yue Jing
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Michael Lenhard
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Francisco Pérez-Alfocea
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
- Author for communication:
| |
Collapse
|
20
|
Marchi L, Degola F, Baruffini E, Restivo FM. How to easily detect plant NADH-glutamate dehydrogenase (GDH) activity? A simple and reliable in planta procedure suitable for tissues, extracts and heterologous microbial systems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110714. [PMID: 33568313 DOI: 10.1016/j.plantsci.2020.110714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Plant NADH glutamate dehydrogenase (GDH) is an intriguing enzyme, since it is involved in different metabolic processes owing to its reversible (anabolic/catabolic) activity and due to the oligomeric nature of the enzyme, that gives rise to several isoforms. The complexity of GDH isoenzymes pattern and the variability of the spatial and temporal localization of the different isoforms have limited our comprehension of the physiological role of GDH in plants. Genetics, immunological, and biochemical approaches have been used until now in order to shed light on the regulatory mechanism that control GDH expression in different plant systems and environmental conditions. We describe here the validation of a simple in planta GDH activity staining procedure, providing evidence that it might be used, with different purposes, to determine GDH expression in plant organs, tissues, extracts and also heterologous systems.
Collapse
Affiliation(s)
- L Marchi
- Department of Medicine and Surgery, University of Parma, Italy.
| | - F Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| | - E Baruffini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| | - F M Restivo
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| |
Collapse
|
21
|
Shan T, Zhou L, Li B, Chen X, Guo S, Wang A, Tian L, Liu J. The Plant Growth-Promoting Fungus MF23 ( Mycena sp.) Increases Production of Dendrobium officinale (Orchidaceae) by Affecting Nitrogen Uptake and NH 4 + Assimilation. FRONTIERS IN PLANT SCIENCE 2021; 12:693561. [PMID: 34552603 PMCID: PMC8451717 DOI: 10.3389/fpls.2021.693561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 05/21/2023]
Abstract
Dendrobium officinale Kimura et Migo is a traditional and scarce medicinal orchid in China. Mycorrhizal fungi could supply nitrogen (N) to orchids for seed germination and seedling recruitment. However, the N transport mechanism between orchids and the fungus is poorly understand. Early studies found that the fungus MF23 (Mycena sp.) could promote the growth of D. officinale. To better dissect the molecular interactions involved in N transport between D. officinale and MF23, transcriptome and metabolome analyses were conducted on conventional and mycorrhizal cultivations of D. officinale. Moreover, validation tests were carried out in the greenhouse to measure net fluxes of N O 3 - and N H 4 + of roots by a non-invasive micro-test technology (NMT), determine N assimilation enzyme activity by the ELISA, and analyze the expression level of differentially expressed genes (DEGs) of N transporters and DEGs involved in N metabolism by RT-qPCR. Combined transcriptome and metabolome analyses showed that MF23 may influence N metabolism in D. officinale. The expression of DoNAR2.1 (nitrate transporter-activating protein), DoAMT11 (ammonium transporter), DoATFs (amino acid transporters), DoOPTs (oligopeptide transporters), and DoGDHs (glutamate dehydrogenases) in symbiotic D. officinale was upregulated. NMT results showed a preference for N H 4 + in D. officinale and indicated that MF23 could promote the uptake of N O 3 - and N H 4 + , especially for N H 4 + . ELISA results showed that MF23 could increase the activity of glutamine synthetase (GS) and glutamate dehydrogenase. This study suggested that MF23 increases the production of D. officinale by affecting N uptake and N H 4 + assimilation capacity.
Collapse
|
22
|
Zhang JY, Cun Z, Wu HM, Chen JW. Integrated analysis on biochemical profiling and transcriptome revealed nitrogen-driven difference in accumulation of saponins in a medicinal plant Panax notoginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:564-580. [PMID: 32912490 DOI: 10.1016/j.plaphy.2020.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The medicinal plant Panax notoginseng is considered a promising source of secondary metabolites due to its saponins. However, there are relatively few studies on the response of saponins to nitrogen (N) availability and the mechanisms underlying the N-driven regulation of saponins. Saponins content and saponins -related genes were analyzed in roots of P. notoginseng grown under low N (LN), moderate N (MN) and high N (HN). Saponins was obviously increased in LN individuals with a reduction in β-glucosidase activity. LN facilitated root architecture and N uptake rate. Compared with the LN individuals, 2872 and 1122 genes were incorporated into as differently expressed genes (DEGs) in the MN and HN individuals. Clustering and enrichment showed that DEGs related to "carbohydrate biosynthesis", "plant hormone signal transduction", "terpenoid backbone biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis" were enriched. The up-regulation of some saponins-related genes and microelement transporters was found in LN plants. Whereas the expression of IPT3, AHK4 and GS2 in LN plants fell far short of that in HN ones. Anyways, LN-induced accumulation of C-based metabolites as saponins might derive from the interaction between N and phytohormones in processing of N acquisition, and HN-induced reduction of saponins might be result from an increase in the form of β-glucosidase activity and N-dependent cytokinins (CKs) biosynthesis.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China
| | - Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
23
|
Xian L, Zhang Y, Cao Y, Wan T, Gong Y, Dai C, Ochieng WA, Nasimiyu AT, Li W, Liu F. Glutamate dehydrogenase plays an important role in ammonium detoxification by submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137859. [PMID: 32182513 DOI: 10.1016/j.scitotenv.2020.137859] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Ammonium is a paradoxical chemical because it is a nutrient but also damages ecosystems at high concentration. As the most eco-friendly method of water restoration, phytoremediation technology still faces great challenges. To provide more theoretical support, we exploited six common submerged macrophytes and selected the most ammonium-tolerant and -sensitive species; then further explored and compared the mechanisms underlying ammonium detoxification. Our results showed the activity of glutamate dehydrogenase (GDH) in the ammonium-tolerant species Myriophyllum spicatum leaves performed a dose-response curve (increased 169% for NADH-dependent GDH and 103% for NADPH-dependent GDH) with the [NH4+-N] increasing from 0 to 100 mg/L while glutamine synthetase (GS) activity slightly changed. But for the ammonium-sensitive species, Potamogeton lucens, the activity of GDH recorded no major changes, while the GS increased slightly (17%). Based on this, we conclude that the alternative pathway of GDH is more important than the pathway catalyzed by GS in determining the tolerance of submerged macrophytes to high ammonium concentration (up to 100 mg N/L). Our present study identifies submerged macrophytes that are tolerant of high concentrations of ammonium and provides mechanistic support for practical water restoration by aquatic plants.
Collapse
Affiliation(s)
- Ling Xian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, Beijing, PR China
| | - Yizhi Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, PR China.
| | - Yu Cao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China
| | - Tao Wan
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, PR China; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, PR China
| | - Yanbing Gong
- State Key Laboratory of Hybrid Rice, Department of Ecology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Wyckliffe Ayoma Ochieng
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, Beijing, PR China
| | - Annah Timinah Nasimiyu
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, Beijing, PR China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China
| | - Fan Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, PR China.
| |
Collapse
|
24
|
Grzechowiak M, Sliwiak J, Jaskolski M, Ruszkowski M. Structural Studies of Glutamate Dehydrogenase (Isoform 1) From Arabidopsis thaliana, an Important Enzyme at the Branch-Point Between Carbon and Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:754. [PMID: 32655590 PMCID: PMC7326016 DOI: 10.3389/fpls.2020.00754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 05/24/2023]
Abstract
Glutamate dehydrogenase (GDH) releases ammonia in a reversible NAD(P)+-dependent oxidative deamination of glutamate that yields 2-oxoglutarate (2OG). In current perception, GDH contributes to Glu homeostasis and plays a significant role at the junction of carbon and nitrogen assimilation pathways. GDHs are members of a superfamily of ELFV (Glu/Leu/Phe/Val) amino acid dehydrogenases and are subdivided into three subclasses, based on coenzyme specificity: NAD+-specific, NAD+/NADP+ dual-specific, and NADP+-specific. We determined in this work that the mitochondrial AtGDH1 isozyme from A. thaliana is NAD+-specific. Altogether, A. thaliana expresses three GDH isozymes (AtGDH1-3) targeted to mitochondria, of which AtGDH2 has an extra EF-hand motif and is stimulated by calcium. Our enzymatic assays of AtGDH1 established that its sensitivity to calcium is negligible. In vivo the AtGDH1-3 enzymes form homo- and heterohexamers of varied composition. We solved the crystal structure of recombinant AtGDH1 in the apo-form and in complex with NAD+ at 2.59 and 2.03 Å resolution, respectively. We demonstrate also that both in the apo form and in 1:1 complex with NAD+, it forms D 3-symmetric homohexamers. A subunit of AtGDH1 consists of domain I, which is involved in hexamer formation and substrate binding, and of domain II which binds coenzyme. Most of the subunits in our crystal structures, including those in NAD+ complex, are in open conformation, with domain II forming a large (albeit variable) angle with domain I. One of the subunits of the AtGDH1-NAD+ hexamer contains a serendipitous 2OG molecule in the active site, causing a dramatic (∼25°) closure of the domains. We provide convincing evidence that the N-terminal peptide preceding domain I is a mitochondrial targeting signal, with a predicted cleavage site for mitochondrial processing peptidase (MPP) at Leu17-Leu18 that is followed by an unexpected potassium coordination site (Ser27, Ile30). We also identified several MPD [(+/-)-2-methyl-2,4-pentanediol] binding sites with conserved sequence. Although AtGDH1 is insensitive to MPD in our assays, the observation of druggable sites opens a potential for non-competitive herbicide design.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Sliwiak
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Milosz Ruszkowski
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
25
|
Iqbal A, Qiang D, Alamzeb M, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:904-914. [PMID: 31612486 DOI: 10.1002/jsfa.10085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 05/19/2023]
Abstract
A huge amount of nitrogenous fertilizer is used to increase crop production. This leads to an increase in the cost of production, and to human and environmental problems. It is therefore necessary to improve nitrogen use efficiency (NUE) and to design agronomic, biotechnological and breeding strategies for better fertilizer use. Nitrogen use efficiency relies primarily on how plants extract, uptake, transport, assimilate, and remobilize nitrogen. Many plants use nitrate as a preferred nitrogen source. It acts as a signaling molecule in the various important physiological processes required for growth and development. As nitrate is the main source of nitrogen in the soil, root nitrate transporters are important subjects for study. The latest reports have also discussed how nitrate transporter and assimilation genes can be used as molecular tools to improve NUE in crops. The purpose of this review is to describe the mechanisms and functions of nitrate as a specific factor that can be addressed to increase NUE. Improving factors such as nitrate uptake, transport, assimilation, and remobilization through activation by signaling, sensing, and regulatory processes will improve plant growth and NUE. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Madeeha Alamzeb
- Standardization of cotton planting technology, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| |
Collapse
|
26
|
Dellero Y. Manipulating Amino Acid Metabolism to Improve Crop Nitrogen Use Efficiency for a Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:602548. [PMID: 33329673 PMCID: PMC7733991 DOI: 10.3389/fpls.2020.602548] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/06/2023]
Abstract
In a context of a growing worldwide food demand coupled to the need to develop a sustainable agriculture, it is crucial to improve crop nitrogen use efficiency (NUE) while reducing field N inputs. Classical genetic approaches based on natural allelic variations existing within crops have led to the discovery of quantitative trait loci controlling NUE under low nitrogen conditions; however, the identification of candidate genes from mapping studies is still challenging. Amino acid metabolism is the cornerstone of plant N management, which involves N uptake, assimilation, and remobilization efficiencies, and it is finely regulated during acclimation to low N conditions and other abiotic stresses. Over the last two decades, biotechnological engineering of amino acid metabolism has led to promising results for the improvement of crop NUE, and more recently under low N conditions. This review summarizes current work carried out in crops and provides perspectives on the identification of new candidate genes and future strategies for crop improvement.
Collapse
|
27
|
Abstract
Nitrogen (N) is a macro-nutrient that is essential for growth development and resistance against biotic and abiotic stresses of plants. Nitrogen is a constituent of amino acids, proteins, nucleic acids, chlorophyll, and various primary and secondary metabolites. The atmosphere contains huge amounts of nitrogen but it cannot be taken up directly by plants. Plants can take up nitrogen in the form of nitrate, ammonium, urea, nitrite, or a combination of all these forms. In addition, in various leguminous rhizobia, bacteria can convert atmospheric nitrogen to ammonia and supply it to the plants. The form of nitrogen nutrition is also important in plant growth and resistance against pathogens. Nitrogen content has an important function in crop yield. Nitrogen deficiency can cause reduced root growth, change in root architecture, reduced plant biomass, and reduced photosynthesis. Hence, understanding the function and regulation of N metabolism is important. Several enzymes and intermediates are involved in nitrogen assimilation. Here we provide an overview of the important enzymes such as nitrate reductase, nitrite reductase, glutamine synthase, GOGAT, glutamate dehydrogenase, and alanine aminotransferase that are involved in nitrogen metabolism.
Collapse
|
28
|
Magadlela A, Morcillo RJL, Kleinert A, Venter M, Steenkamp E, Valentine A. Glutamate dehydrogenase is essential in the acclimation of Virgilia divaricata, a legume indigenous to the nutrient-poor Mediterranean-type ecosystems of the Cape Fynbos. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153053. [PMID: 31644998 DOI: 10.1016/j.jplph.2019.153053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Glutamate dehydrogenase (NAD(H)- GDH, EC 1.4.1.2) is an important enzyme in nitrogen (N) metabolism. It serves as a link between C and N metabolism, in its role of assimilating ammonia into glutamine or deaminating glutamate into 2-oxoglutarate and ammonia. GDH may also have a key in the N assimilation of legumes growing in P-poor soils. Virgilia divaricata is such a legume, growing in the nutrient limited soils of the mediterranean-type Cape fynbos ecosystem. In order to understand the role of GDH in the nitrogen nutrition of V. divaricata, the aim of this study was to identify the GDH gene transcripts, their relative expressions and enzyme activity in P-stressed roots and nodules during N metabolism. During P deficiency there was a reduction in total plant biomass as well as total plant P concentration. The analysis of the GDH cDNA sequences in V. divaricata revealed the presence of GHD1 and GHD2 subunits, these corresponding to the GDH1, GDH-B and GDH3 genes of legumes and non-legume plants. The relative expression of GDH1 and GDH2 genes in the roots and nodules, indicates that two the subunits were differently regulated depending on the organ type, rather than P supply. Although both transcripts appeared to be ubiquitously expressed in the roots and nodules, the GDH2 transcript evidently predominated over those of GDH1. Furthermore, the higher expression of both GDH transcripts in the roots than nodules, suggests that roots are more reliant on on GDH in P-poor soils, than nodules. With regards to GHD activity, both aminating and deaminating GDH activities were differently affected by P deficiency in roots and nodules. This may function to assimilate N and regulate internal C and N in the roots and nodules. The variation in GDH1 and GDH2 transcript expression and GDH enzyme activities, indicate that the enzyme may be regulated by post-translational modification, instead of by gene expression during P deficiency in V. divaricata.
Collapse
Affiliation(s)
- Anathi Magadlela
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X 01, Scottsville 3209, South Africa
| | - Rafael Jorge Leon Morcillo
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, People's Republic of China
| | - Aleysia Kleinert
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Mauritz Venter
- AzarGen Biotechnologies, Launchlab, Hammandshand Road, Stellenbosch 7600, South Africa
| | - Emma Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alex Valentine
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
29
|
Liu X, Wen J, Chen W, Du H. Physiological effects of nitrogen deficiency and recovery on the macroalga Gracilariopsis lemaneiformis (Rhodophyta). JOURNAL OF PHYCOLOGY 2019; 55:830-839. [PMID: 30916786 DOI: 10.1111/jpy.12862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/05/2019] [Indexed: 05/07/2023]
Abstract
Algal metabolites are the most promising feedstocks for bio-energy production. Gracilariopsis lemaneiformis seems to be a good candidate red alga for polysaccharide production, especially relating to the agar production industry. Nitrogen deficiency is an efficient environmental pressure used to increase the accumulation of metabolites in algae. However, there are no studies on the physiological effects of G. lemaneiformis in response to nitrogen deficiency and its subsequent recovery. Here we integrated physiological data with molecular studies to explore the response strategy of G. lemaneiformis under nitrogen deficiency and recovery. Physiological measurements indicated that amino acids and protein biosynthesis were decreased, while endogenous NH4+ and soluble polysaccharides levels were increased under nitrogen stress. The expression of key genes involved in these pathways further suggested that G. lemaneiformis responded to nitrogen stress through up-regulation or down-regulation of genes related to nitrogen metabolism, and increased levels of endogenous NH4+ to complement the deficiency of exogenous nitrogen. Consistent with the highest accumulation of soluble polysaccharides, the gene encoding UDP-glucose pyrophosphorylase, a molecular marker used to evaluate agar content, was dramatically up-regulated more than 4-fold compared to the relative expression of actin after 4 d of nitrogen recovery. The present data provide important information on the mechanisms of nutrient balance in macroalgae.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, Guangdong, 515063, China
| | - Jinyan Wen
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, Guangdong, 515063, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, Guangdong, 515063, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, Guangdong, 515063, China
| |
Collapse
|
30
|
Vega-Mas I, Rossi MT, Gupta KJ, González-Murua C, Ratcliffe RG, Estavillo JM, González-Moro MB. Tomato roots exhibit in vivo glutamate dehydrogenase aminating capacity in response to excess ammonium supply. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:83-91. [PMID: 31229903 DOI: 10.1016/j.jplph.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/24/2019] [Accepted: 03/27/2019] [Indexed: 05/24/2023]
Abstract
In higher plants ammonium (NH4+) assimilation occurs mainly through the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway. Nevertheless, when plants are exposed to stress conditions, such as excess of ammonium, the contribution of alternative routes of ammonium assimilation such as glutamate dehydrogenase (GDH) and asparagine synthetase (AS) activities might serve as detoxification mechanisms. In this work, the in vivo functions of these pathways were studied after supplying an excess of ammonium to tomato (Solanum lycopersicum L. cv. Agora Hybrid F1) roots previously adapted to grow under either nitrate or ammonium nutrition. The short-term incorporation of labelled ammonium (15NH4+) into the main amino acids was determined by GC-MS in the presence or absence of methionine sulphoximine (MSX) and azaserine (AZA), inhibitors of GS and GOGAT activities, respectively. Tomato roots were able to respond rapidly to excess ammonium by enhancing ammonium assimilation regardless of the previous nutritional regime to which the plant was adapted to grow. The assimilation of 15NH4+ could take place through pathways other than GS/GOGAT, since the inhibition of GS and GOGAT did not completely impede the incorporation of the labelled nitrogen into major amino acids. The in vivo formation of Asn by AS was shown to be exclusively Gln-dependent since the root was unable to incorporate 15NH4+ directly into Asn. On the other hand, an in vivo aminating capacity was revealed for GDH, since newly labelled Glu synthesis occurred even when GS and/or GOGAT activities were inhibited. The aminating GDH activity in tomato roots responded to an excess ammonium supply independently of the previous nutritional regime to which the plant had been subjected.
Collapse
Affiliation(s)
- I Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - M T Rossi
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - K J Gupta
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - C González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - R G Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - J M Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - M B González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| |
Collapse
|
31
|
Tang J, Sun Z, Chen Q, Damaris RN, Lu B, Hu Z. Nitrogen Fertilizer Induced Alterations in The Root Proteome of Two Rice Cultivars. Int J Mol Sci 2019; 20:ijms20153674. [PMID: 31357526 PMCID: PMC6695714 DOI: 10.3390/ijms20153674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plants and a key limiting factor of crop production. However, excessive application of N fertilizers and the low nitrogen use efficiency (NUE) have brought in severe damage to the environment. Therefore, improving NUE is urgent and critical for the reductions of N fertilizer pollution and production cost. In the present study, we investigated the effects of N nutrition on the growth and yield of the two rice (Oryza sativa L.) cultivars, conventional rice Huanghuazhan and indica hybrid rice Quanliangyou 681, which were grown at three levels of N fertilizer (including 135, 180 and 225 kg/hm2, labeled as N9, N12, N15, respectively). Then, a proteomic approach was employed in the roots of the two rice cultivars treated with N fertilizer at the level of N15. A total of 6728 proteins were identified, among which 6093 proteins were quantified, and 511 differentially expressed proteins were found in the two rice cultivars after N fertilizer treatment. These differentially expressed proteins were mainly involved in ammonium assimilation, amino acid metabolism, carbohydrate metabolism, lipid metabolism, signal transduction, energy production/regulation, material transport, and stress/defense response. Together, this study provides new insights into the regulatory mechanism of nitrogen fertilization in cereal crops.
Collapse
Affiliation(s)
- Jichao Tang
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Zhigui Sun
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Qinghua Chen
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Bilin Lu
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China.
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
32
|
Yu XZ, Lei SY, Lin YJ, Zhang Q. Interaction of cyanate uptake by rice seedlings with nitrate assimilation: gene expression analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20208-20218. [PMID: 31098903 DOI: 10.1007/s11356-019-05407-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Cyanate (CNO-) has been produced in the environment through either natural or anthropogenic sources. However, due to industrialization, it has been led more over-loads. In this study, interaction of CNO- uptake by rice seedlings with nitrate assimilation was investigated using gene expression analysis after an acute phytotoxicity assay. Our results showed that CNO- exposure caused inhibition on relative growth rates of plants. CNO- analysis demonstrated that rice seedlings had higher potential for CNO- uptake and the removal rates showed a zero-order kinetic. PCR analysis exposed that OsCYN transcript was not significantly induced by CNO- treatments in rice tissues and CNO- exposure also repressed gene expression of the collaborative enzyme carbonic anhydrase (CA), suggesting that assimilation of CNO- initiated by the enzyme cyanase (CYN) in rice seedlings was an enzyme-limitation reaction. Gene expression of other enzymes involved in nitrate metabolism was tissue-specific under CNO- exposure, suggesting that rice seedlings were able to trigger its intrinsic regulative and responsive mechanisms to cope up with uneven N conditions. Significant upregulation of three OsGDH isogenes, except for OsGDH1 in roots, was detected in both rice materials with enhancing CNO- concentrations, suggesting that GDH may play a primary role to maintain the balance of C and N in plants under CNO- exposure. In conclusion, because the innate pool of CYN activity was non-sufficient to degrade exogenous CNO- by rice seedlings, CNO-derived ammonium only can serve as a supporting N source to support growth of rice seedling under non-effective doses of CNO- exposure.
Collapse
Affiliation(s)
- Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | - Sheng-Yu Lei
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Qing Zhang
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| |
Collapse
|
33
|
Vega-Mas I, Cukier C, Coleto I, González-Murua C, Limami AM, González-Moro MB, Marino D. Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition. Sci Rep 2019; 9:8925. [PMID: 31222161 PMCID: PMC6586781 DOI: 10.1038/s41598-019-45393-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/06/2019] [Indexed: 11/25/2022] Open
Abstract
Proper carbon (C) supply is essential for nitrogen (N) assimilation especially when plants are grown under ammonium (NH4+) nutrition. However, how C and N metabolic fluxes adapt to achieve so remains uncertain. In this work, roots of wheat (Triticum aestivum L.) plants grown under exclusive NH4+ or nitrate (NO3-) supply were incubated with isotope-labelled substrates (15NH4+, 15NO3-, or [13C]Pyruvate) to follow the incorporation of 15N or 13C into amino acids and organic acids. Roots of plants adapted to ammonium nutrition presented higher capacity to incorporate both 15NH4+ and 15NO3- into amino acids, thanks to the previous induction of the NH4+ assimilative machinery. The 15N label was firstly incorporated into [15N]Gln vía glutamine synthetase; ultimately leading to [15N]Asn accumulation as an optimal NH4+ storage. The provision of [13C]Pyruvate led to [13C]Citrate and [13C]Malate accumulation and to rapid [13C]2-OG consumption for amino acid synthesis and highlighted the importance of the anaplerotic routes associated to tricarboxylic acid (TCA) cycle. Taken together, our results indicate that root adaptation to ammonium nutrition allowed efficient assimilation of N thanks to the promotion of TCA cycle open flux modes in order to sustain C skeleton availability for effective NH4+ detoxification into amino acids.
Collapse
Affiliation(s)
- Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Caroline Cukier
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045, Angers, France
| | - Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Anis M Limami
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045, Angers, France
| | - M Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain.
| |
Collapse
|
34
|
Wu X, Ding C, Baerson SR, Lian F, Lin X, Zhang L, Wu C, Hwang SY, Zeng R, Song Y. The roles of jasmonate signalling in nitrogen uptake and allocation in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2019; 42:659-672. [PMID: 30251262 DOI: 10.1111/pce.13451] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/18/2018] [Indexed: 05/14/2023]
Abstract
Herbivore damage by chewing insects activates jasmonate (JA) signalling that can elicit systemic defense responses in rice. Few details are known, however, concerning the mechanism, whereby JA signalling modulates nutrient status in rice in response to herbivory. (15 NH4 )2 SO4 labelling experiments, proteomic surveys, and RT-qPCR analyses were used to identify the roles of JA signalling in nitrogen (N) uptake and allocation in rice plants. Exogenous applications of methyl jasmonate (MeJA) to rice seedlings led to significantly reduced N uptake in roots and reduced translocation of recently-absorbed 15 N from roots to leaves, likely occurring as a result of down-regulation of glutamine synthetase cytosolic isozyme 1-2 and ferredoxin-nitrite reductase. Shoot MeJA treatment resulted in a remobilization of endogenous unlabelled 14 N from leaves to roots, and root MeJA treatment also increased 14 N accumulation in roots but did not affect 14 N accumulation in leaves of rice. Additionally, proteomic and RT-qPCR experiments showed that JA-mediated plastid disassembly and dehydrogenases GDH2 up-regulation contribute to N release in leaves to support production of defensive proteins/compounds under N-limited condition. Collectively, our results indicate that JA signalling mediates large-scale systemic changes in N uptake and allocation in rice plants.
Collapse
Affiliation(s)
- Xiaoying Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohui Ding
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Scott R Baerson
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, Oxford, Mississippi
| | - Fazhuo Lian
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianhui Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Shaw-Yhi Hwang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K, Kapali G, Havko NE, Benning C, Howe GA. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E10768-E10777. [PMID: 30348775 PMCID: PMC6233084 DOI: 10.1073/pnas.1811828115] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plant immune responses mediated by the hormone jasmonoyl-l-isoleucine (JA-Ile) are metabolically costly and often linked to reduced growth. Although it is known that JA-Ile activates defense responses by triggering the degradation of JASMONATE ZIM DOMAIN (JAZ) transcriptional repressor proteins, expansion of the JAZ gene family in vascular plants has hampered efforts to understand how this hormone impacts growth and other physiological tasks over the course of ontogeny. Here, we combined mutations within the 13-member Arabidopsis JAZ gene family to investigate the effects of chronic JAZ deficiency on growth, defense, and reproductive output. A higher-order mutant (jaz decuple, jazD) defective in 10 JAZ genes (JAZ1-7, -9, -10, and -13) exhibited robust resistance to insect herbivores and fungal pathogens, which was accompanied by slow vegetative growth and poor reproductive performance. Metabolic phenotypes of jazD discerned from global transcript and protein profiling were indicative of elevated carbon partitioning to amino acid-, protein-, and endoplasmic reticulum body-based defenses controlled by the JA-Ile and ethylene branches of immunity. Resource allocation to a strong defense sink in jazD leaves was associated with increased respiration and hallmarks of carbon starvation but no overt changes in photosynthetic rate. Depletion of the remaining JAZ repressors in jazD further exaggerated growth stunting, nearly abolished seed production and, under extreme conditions, caused spreading necrotic lesions and tissue death. Our results demonstrate that JAZ proteins promote growth and reproductive success at least in part by preventing catastrophic metabolic effects of an unrestrained immune response.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Yuki Yoshida
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Ian T Major
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Kun Wang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Koichi Sugimoto
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - George Kapali
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Nathan E Havko
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Christoph Benning
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
36
|
Functional and structural insights into candidate genes associated with nitrogen and phosphorus nutrition in wheat (Triticum aestivum L.). Int J Biol Macromol 2018; 118:76-91. [DOI: 10.1016/j.ijbiomac.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/17/2022]
|
37
|
Kudapa H, Garg V, Chitikineni A, Varshney RK. The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. PLANT, CELL & ENVIRONMENT 2018; 41:2209-2225. [PMID: 29637575 DOI: 10.1111/pce.13210] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 05/20/2023]
Abstract
Chickpea is one of the world's largest cultivated food legumes and is an excellent source of high-quality protein to the human diet. Plant growth and development are controlled by programmed expression of a suite of genes at the given time, stage, and tissue. Understanding how the underlying genome sequence translates into specific plant phenotypes at key developmental stages, information on gene expression patterns is crucial. Here, we present a comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) across different plant developmental stages and organs covering the entire life cycle of chickpea. One of the widely used drought tolerant cultivars, ICC 4958 has been used to generate RNA-Seq data from 27 samples at 5 major developmental stages of the plant. A total of 816 million raw reads were generated and of these, 794 million filtered reads after quality control (QC) were subjected to downstream analysis. A total of 15,947 unique number of differentially expressed genes across different pairwise tissue combinations were identified. Significant differences in gene expression patterns contributing in the process of flowering, nodulation, and seed and root development were inferred in this study. Furthermore, differentially expressed candidate genes from "QTL-hotspot" region associated with drought stress response in chickpea were validated.
Collapse
Affiliation(s)
- Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Vanika Garg
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| |
Collapse
|
38
|
Latimer S, Li Y, Nguyen TTH, Soubeyrand E, Fatihi A, Elowsky CG, Block A, Pichersky E, Basset GJ. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:358-370. [PMID: 29742810 DOI: 10.1111/tpj.13955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.
Collapse
Affiliation(s)
- Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Yubing Li
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Thuong T H Nguyen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Abdelhak Fatihi
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Christian G Elowsky
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Anna Block
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, Florida, 32608, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
39
|
Hu L, Xie Y, Fan S, Wang Z, Wang F, Zhang B, Li H, Song J, Kong L. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:276-293. [PMID: 29807601 DOI: 10.1016/j.plantsci.2018.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 05/13/2023]
Abstract
Water deficit is one of the major factors limiting crop productivity worldwide. Plant roots play a key role in uptaking water, perceiving and transducing of water deficit signals to shoot. Although the mechanisms of drought-tolerance have been reported recently, the transcriptional regulatory network of wheat root response to water stress has not been fully understood. In this study, drought-tolerant cultivar JM-262 and susceptible cultivar LM-2 are planted to characterize the root transcriptional changes and physiological responses to water deficit. A total of 8197 drought tolerance-associated differentially expressed genes (DEGs) are identified, these genes are mainly mapped to carbon metabolism, flavonoid biosynthesis, and phytohormone signal transduction. The number and expression level of DEGs involved in antioxidative and antiosmotic stresses are more enhanced in JM-262 under water stress. Furthermore, we find the DEGs related to root development are much more induced in JM-262 in phytohormone signal transduction and carbon metabolism pathway. In conclusion, JM-262 may alleviate the damage of drought by producing more osmoprotectants, ROS scavengers, biomass and energy. Interestingly, hormone signaling and cross-talk probably play an important role in promoting JM-262 greater root systems to take up more water, higher capabilities to induce more drought-related DEGs and higher resisitance to oxidative stresse.
Collapse
Affiliation(s)
- Ling Hu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yan Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fahong Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jie Song
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
40
|
Babst BA, Coleman GD. Seasonal nitrogen cycling in temperate trees: Transport and regulatory mechanisms are key missing links. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:268-277. [PMID: 29576080 DOI: 10.1016/j.plantsci.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 05/08/2023]
Abstract
Nutrient accumulation, one of the major ecosystem services provided by forests, is largely due to the accumulation and retention of nutrients in trees. This review focuses on seasonal cycling of nitrogen (N), often the most limiting nutrient in terrestrial ecosystems. When leaves are shed during autumn, much of the N may be resorbed and stored in the stem over winter, and then used for new stem and leaf growth in spring. A framework exists for understanding the metabolism and transport of N in leaves and stems during winter dormancy, but many of the underlying genes remain to be identified and/or verified. Transport of N during seasonal N cycling is a particularly weak link, since the physical pathways for loading and unloading of amino N to and from the phloem are poorly understood. Short-day photoperiod followed by decreasing temperatures are the environmental cues that stimulate dormancy induction, and nutrient remobilization and storage. However, beyond the involvement of phytochrome, very little is known about the signal transduction mechanisms that link environmental cues to nutrient remobilization and storage. We propose a model whereby nutrient transport and sensing plays a major role in source-sink transitions of leaves and stems during seasonal N cycling.
Collapse
Affiliation(s)
- Benjamin A Babst
- Arkansas Forest Resources Center, Division of Agriculture, University of Arkansas System, Monticello, AR 71656, USA; School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, AR 71656, USA.
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
41
|
Lee S, Jeong H, Lee S, Lee J, Kim SJ, Park JW, Woo HR, Lim PO, An G, Nam HG, Hwang D. Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice. Sci Rep 2017; 7:8792. [PMID: 28821707 PMCID: PMC5562787 DOI: 10.1038/s41598-017-07035-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/21/2017] [Indexed: 01/31/2023] Open
Abstract
Flag leaves (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs between FL and SL is important for grain yield and quality. However, the molecular bases for differential aging programs between FL and SL have not been systematically explored in rice. Here, we performed mRNA-sequencing of FL and SL at six time points during grain-filling and identified four molecular bases for differential aging programs between FL and SL: phenylpropanoid biosynthesis, photosynthesis, amino acid (AA) transport, and hormone response. Of them, photosynthesis (carbon assimilation) and AA transport (nitrogen remobilization) predominantly occurred in FL and SL, respectively, during grain-filling. Unlike other molecular bases, AA transport showed consistent differential expression patterns between FL and SL in independent samples. Moreover, long-distance AA transporters showed invariant differential expression patterns between FL and SL after panicle removal, which was consistent to invariant differential nitrogen contents between FL and SL after panicle removal. Therefore, our results suggest that the supplies of carbon and nitrogen to seeds is functionally segregated between FL and SL and that long-distance AA transport is an invariant core program for high nitrogen remobilization in SL.
Collapse
Affiliation(s)
- Shinyoung Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hyobin Jeong
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sichul Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Jinwon Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sun-Ji Kim
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Ji-Won Park
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| | - Daehee Hwang
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| |
Collapse
|
42
|
Seol B, Shin HI, Kim JY, Jeon BY, Kang YJ, Pak JH, Kim TS, Lee HW. Sequence conservation of Plasmodium vivax glutamate dehydrogenase among Korean isolates and its application in seroepidemiology. Malar J 2017; 16:3. [PMID: 28049479 PMCID: PMC5209832 DOI: 10.1186/s12936-016-1653-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamate dehydrogenase of malaria parasites (pGDH) is widely used in rapid diagnostic tests for malaria. Variation in the pGDH gene among Korean isolates of Plasmodium vivax was analysed, and a recombinant pGDH protein was evaluated for use as antigens for the serodiagnosis of vivax malaria. METHODS Genomic DNA was purified from blood samples of 20 patients and the pGDH gene of P. vivax was sequenced. Recombinant protein was prepared to determine the antigenicity of pGDH by enzyme-linked immunosorbent assay (ELISA). RESULTS Partial sequence analysis of the P. vivax pGDH gene from the 20 Korean isolates showed that an open reading frame (ORF) of 1410 nucleotides encoded a deduced protein of 470 amino acids. The amino acid and nucleotide sequences were conserved among all the Korean isolates. This ORF showed 100% homology with P. vivax strain Sal-I (GenBank accession No. XP_001616617.1). The full ORF (amino acids 39-503), excluding the region before the intron, was cloned from isolate P. vivax Bucheon 3 (KJ726751) and subcloned into the expression vector pET28b for transformation into Escherichia coli BL21(DE3)pLysS. The expressed recombinant protein had a molecular mass of approximately 55 kDa and showed 84.8% sensitivity (39/46 cases) and 97.2% specificity (35/36 cases) in an ELISA. The efficacy of recombinant pGDH protein in seroepidemiological studies was also evaluated by ELISA using serum samples collected from 876 inhabitants of Gyodong-myeon, Ganghwa County, Incheon Metropolitan City. Of these samples, 91 (10.39%) showed a positive reaction with recombinant pGDH protein. Among the antibody-positive individuals, 13 (14.29%) had experienced malaria infection during the last 10 years. CONCLUSION The pGDH genes of P. vivax isolates from representative epidemic-prone areas of South Korea are highly conserved. Therefore, pGDH is expected to be a useful antigen in seroepidemiological studies. It was difficult to identify the foci of malaria transmission in Gyodong-myeon based on the patient distribution because of the very low parasitaemia of Korean vivax malaria. However, seroepidemiology with recombinant pGDH protein easily identified regions with the highest incidence of malaria within the study area. Therefore, recombinant pGDH protein may have a useful role in serodiagnosis.
Collapse
Affiliation(s)
- Bomin Seol
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, 22212, South Korea
| | - Hyun-Il Shin
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, 363-951, South Korea
| | - Jung-Yeon Kim
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, 363-951, South Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, School of Public Health, College of Health Sciences, Yonsei University, Wonju, 26493, South Korea
| | - Yoon-Joong Kang
- Department of Biomedical Science, Jungwon University, Goesan, Chungbuk, 367-805, South Korea
| | - Jhang-Ho Pak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, 05505, South Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, 22212, South Korea.
| | - Hyeong-Woo Lee
- Department of Biomedical Laboratory Science, School of Public Health, College of Health Sciences, Yonsei University, Wonju, 26493, South Korea.
| |
Collapse
|
43
|
Hashida SN, Itami T, Takahara K, Hirabayashi T, Uchimiya H, Kawai-Yamada M. Increased Rate of NAD Metabolism Shortens Plant Longevity by Accelerating Developmental Senescence in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:2427-2439. [PMID: 27590711 DOI: 10.1093/pcp/pcw155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/28/2016] [Indexed: 05/21/2023]
Abstract
NAD is a well-known co-enzyme that mediates hundreds of redox reactions and is the basis of various processes regulating cell responses to different environmental and developmental cues. The regulatory mechanism that determines the amount of cellular NAD and the rate of NAD metabolism remains unclear. We created Arabidopsis thaliana plants overexpressing the NAD synthase (NADS) gene that participates in the final step of NAD biosynthesis. NADS overexpression enhanced the activity of NAD biosynthesis but not the amounts of NAD+, NADH, NADP+ or NADPH. However, the amounts of some intermediates were elevated, suggesting that NAD metabolism increased. The NAD redox state was greatly facilitated by an imbalance between NAD generation and degradation in response to bolting. Metabolite profiling and transcriptional analysis revealed that the drastic modulation of NAD redox homeostasis increased tricarboxylic acid flux, causing the ectopic generation of reactive oxygen species. Vascular bundles suffered from oxidative stress, leading to a malfunction in amino acid and organic acid transportation that caused early wilting of the flower stalk and shortened plant longevity, probably due to malnutrition. We concluded that the mechanism regulating the balance between NAD synthesis and degradation is important in the systemic plant response to developmental cues during the growth-phase transition.
Collapse
Affiliation(s)
- Shin-Nosuke Hashida
- Institute of Molecular and Cellular Biosciences (IMCB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Taketo Itami
- Institute of Molecular and Cellular Biosciences (IMCB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kentaro Takahara
- Institute of Molecular and Cellular Biosciences (IMCB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takayuki Hirabayashi
- Institute of Molecular and Cellular Biosciences (IMCB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hirofumi Uchimiya
- Institute for Environmental Science and Technology (IEST), Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Maki Kawai-Yamada
- Department of Environmental Science and Human Engineering, Saitama University, Sakura-ku, Saitama 338-0825, Japan
| |
Collapse
|
44
|
Zerche S, Haensch KT, Druege U, Hajirezaei MR. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida. BMC PLANT BIOLOGY 2016; 16:219. [PMID: 27724871 PMCID: PMC5056478 DOI: 10.1186/s12870-016-0901-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/16/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (Nt), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated Nt contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. RESULTS Enhanced Nt contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial Nt and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high Nt contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two Nt levels. After 168 h, an enhanced Nt accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low Nt. However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low Nt to such an extent so that the benefit of the enhanced Nt was almost compensated. Combined dark exposure and low Nt of cuttings strongly reduced shoot growth during AR formation. CONCLUSIONS The results indicate that both enhanced Nt content and dark exposure of cuttings reinforced N signals and mobile N resources in the stem base facilitated by senescence-related proteolysis in leaves. Based on our results, a model of N mobilisation concomitant with carbohydrate depletion and its significance for AR formation is postulated.
Collapse
Affiliation(s)
- Siegfried Zerche
- Department of Plant Nutrition, Leibniz Institute of Vegetable & Ornamental Crops (IGZ), Kuehnhaeuser Str. 101, 99090 Erfurt, Germany
| | - Klaus-Thomas Haensch
- Department of Plant Propagation, Leibniz Institute of Vegetable & Ornamental Crops (IGZ), Kuehnhaeuser Str. 101, 99090 Erfurt, Germany
| | - Uwe Druege
- Department of Plant Propagation, Leibniz Institute of Vegetable & Ornamental Crops (IGZ), Kuehnhaeuser Str. 101, 99090 Erfurt, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Molecular Plant Nutrition, Corrensstr. 3, 06466 Gatersleben, Germany
| |
Collapse
|
45
|
Abstract
Glutamate provides a large intracellular pool of carbon and nitrogen. Coloff et al. (2016) find that proliferating cells shift from a nitrogen-wasting to a nitrogen-sparing mode of glutamate catabolism, highlighting the exquisite tethering of proliferative signals to metabolism.
Collapse
Affiliation(s)
- Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-8502, USA.
| |
Collapse
|
46
|
Diab H, Limami AM. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH). PLANTS (BASEL, SWITZERLAND) 2016; 5:E25. [PMID: 27258319 PMCID: PMC4931405 DOI: 10.3390/plants5020025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants' growth and yield-even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD⁺ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function.
Collapse
Affiliation(s)
- Houssein Diab
- University of Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France.
| | - Anis M Limami
- University of Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France.
| |
Collapse
|
47
|
Hao Q, Shang W, Zhang C, Chen H, Chen L, Yuan S, Chen S, Zhang X, Zhou X. Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max) and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress. Int J Mol Sci 2016; 17:E620. [PMID: 27128900 PMCID: PMC4881446 DOI: 10.3390/ijms17050620] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/03/2022] Open
Abstract
Nitrogen is an important macronutrient required for plant growth, and is a limiting factor for crop productivity. Improving the nitrogen use efficiency (NUE) is therefore crucial. At present, the NUE mechanism is unclear and information on the genes associated with NUE in soybeans is lacking. cystathionine beta synthase (CBS) domain-containing proteins (CDCPs) may be implicated in abiotic stress tolerance in plants. We identified and classified a CBS domain-containing protein superfamily in soybean. A candidate gene for NUE, GmCBS21, was identified. GmCBS21 gene characteristics, the temporal expression pattern of the GmCBS21 gene, and the phenotype of GmCBS21 overexpression in transgenic Arabidopsis thaliana under low nitrogen stress were analyzed. The phenotypes suggested that the transgenic Arabidopsis thaliana seedlings performed better under the nitrogen-deficient condition. GmCBS21-overexpressing transgenic plants exhibit higher low nitrogen stress tolerance than WT plants, and this suggests its role in low nitrogen stress tolerance in plants. We conclude that GmCBS21 may serve as an excellent candidate for breeding crops with enhanced NUE and better yield.
Collapse
Affiliation(s)
- Qingnan Hao
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| | - Weijuan Shang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| | - Chanjuan Zhang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| | - Haifeng Chen
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| | - Limiao Chen
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| | - Songli Yuan
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| | - Shuilian Chen
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| | - Xiaojuan Zhang
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| | - Xinan Zhou
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
48
|
Gaufichon L, Rothstein SJ, Suzuki A. Asparagine Metabolic Pathways in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:675-89. [PMID: 26628609 DOI: 10.1093/pcp/pcv184] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 05/03/2023]
Abstract
Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.
Collapse
Affiliation(s)
- Laure Gaufichon
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Steven J Rothstein
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, Ontario, Canada N1G 2W1
| | - Akira Suzuki
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| |
Collapse
|
49
|
Magadlela A, Vardien W, Kleinert A, Steenkamp ET, Valentine AJ. Variable P supply affects N metabolism in a legume tree, Virgilia divaricata, from nutrient-poor Mediterranean-type ecosystems. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:287-297. [PMID: 32480461 DOI: 10.1071/fp15262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/11/2015] [Indexed: 06/11/2023]
Abstract
Virgilia divaricata Adamson is a forest margin legume that is known to invade the N- and P-poor soils of the mature fynbos, implying that it tolerates variable soil N and P levels. It is not known how the legume uses inorganic N from soil and atmospheric sources under variable P supply. Little is known about how P deficiency affects the root nodule metabolic functioning of V. divaricata and the associated energy costs of N assimilation. This study aimed to determine whether P deficiency affects the metabolic status of roots and nodules, and the impact on the routes of N assimilation in V. divaricata.V. divaricata had reduced biomass, plant P concentration and biological nitrogen fixation during P deficiency. Based on adenylate data, P-stressed nodules maintained their P status better than P-stressed roots. V. divaricata was able to alter C and N metabolism differently in roots and nodules under P stress. This was achieved via internal P cycling by possible replacement of membrane phospholipids with sulfolipids and galactolipids, and increased reliance on the pyrophosphate (PPi)-dependent metabolism of sucrose via UDP-glucose (UDPG) and to fructose-6-phosphate (Fru-6-P). P-stressed roots mostly exported ureides as organic N and recycled amino acids via deaminating glutamate dehydrogenase. In contrast, P-stressed nodules largely exported amino acids. Compared with roots, nodules showed more P conservation during low P supply. The roots and nodules of V. divaricata metabolised N differently during P stress, meaning that these organs may contribute differently to the success of this plant in soils from forest to fynbos.
Collapse
Affiliation(s)
- Anathi Magadlela
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Waafeka Vardien
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Aleysia Kleinert
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Alexander J Valentine
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
50
|
Habib D, Zia M, Bibi Y, Abbasi BH, Chaudhary MF. Response of nitrogen assimilating enzymes during in vitro culture of Argyrolobium roseum. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|