1
|
Akpinar A, Cansev A. Choline supplementation reduces cadmium uptake and alleviates cadmium toxicity in Solanum lycopersicum seedlings. BMC PLANT BIOLOGY 2024; 24:977. [PMID: 39420267 PMCID: PMC11484230 DOI: 10.1186/s12870-024-05653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Sustainable plant production in soil polluted with heavy metals requires that novel strategies are developed for the benefit of humans and other living things. Cadmium (Cd) is a common heavy metal pollutant for plants, and there is limited information on the use of exogenous bio-regulators to reduce the accumulation and toxic effects of Cd pollution in plants. Choline is an endogenous quertarnary amine that is known to improve stress tolerance in plants, while its mechanism of action in certain conditions is yet to be determined. This study investigated the effects of foliar choline supplementation (10 mM) on Solanum lycopersicum seedlings exposed to Cd application (50 mg/L in soil). The seedlings were randomized to five groups: Control (E1), Cd stress (E2), Choline supplementation after Cd stress (E3), Choline (E4), and Choline supplementation before Cd stress (E5). Following the applications, the Cd content, growth and development parameters (chlorophyll content, fresh and dry weight), oxidative stress parameters (H2O2 and MDA contents), as well as antioxidative defense system (SOD, GSH, AsA, and TPC contents) were analyzed. Choline supplementation after Cd stress reduced the enhanced Cd content in roots by 38% but did not alter it in leaves (p > 0.05) compared to the Cd group. Choline supplementation before Cd stress decreased Cd content both in roots by 87.5% and in leaves by 50%. Choline supplementation after and before Cd stress increased fresh and dry weights in both roots and leaves. While the Cd group (E2) increased the H2O2 level and SOD activity, no remarkable change was observed in H2O2 levels in all choline supplementations (E3, E4, E5). Therefore, lipid peroxidation (MDA) was not observed in choline supplementation before Cd stress (E5), however, when the choline was applied after Cd stress (E3) MDA content was reduced by 40% compared with the Cd stress group (E2). Choline supplementations after and before Cd stress (E3, E5) increased AsA content by 30%, while the Cd group (E2) decreased it by 60% compared with the control group (E1). Choline supplementations before Cd stress (E5) increased TPC by 33%, while the Cd group (E2) decreased it by 18%, moreover, when choline was applied after Cd stress (E3), no change was observed compared to the control group. These data suggest that choline prevents inhibition of plant growth due to Cd toxicity by reducing Cd uptake. The results provided in the present study are likely to enhance the quality and efficiency of crop production in heavy metal-polluted areas.
Collapse
Affiliation(s)
- Ayşegül Akpinar
- Department of Park and Horticulture, Vocational School of Technical Sciences, Bursa Uludag University, Bursa, 16059, Turkey.
| | - Asuman Cansev
- Faculty of Agriculture, Horticulture Department, Bursa Uludag University, Bursa, 16059, Turkey
| |
Collapse
|
2
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Wang Y, Cui T, Niu K, Ma H. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134727. [PMID: 38824780 DOI: 10.1016/j.jhazmat.2024.134727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Kentucky bluegrass (Poa pratensis L., KB) demonstrates superior performance in both cadmium (Cd) accumulation and tolerance; however, the regulatory mechanisms and detoxification pathways in this species remain unclear. Therefore, phenotype, root ultrastructure, cell wall components, proteomics, transcriptomics, and metabolomics were analyzed under the hydroponic system to investigate the Cd tolerance and accumulation mechanisms in the Cd-tolerant KB variety 'Midnight (M)' and the Cd-sensitive variety 'Rugby II (R)' under Cd stress. The M variety exhibited higher levels of hydroxyl and carboxyl groups as revealed by Fourier transform infrared spectroscopy spectral analysis. Additionally, a reduced abundance of polysaccharide degradation proteins was observed in the M variety. The higher abundance of glutathione S-transferase and content of L-cysteine-glutathione disulfide and oxidized glutathione in the M variety may contribute to better performance of the M variety under Cd stress. Additionally, the R variety had an enhanced content of carboxylic acids and derivatives, increasing the Cd translocation capacity. Collectively, the down-regulation of cell wall polysaccharide degradation genes coupled with the up-regulation of glutathione metabolism genes enhances the tolerance to Cd stress in KB. Additionally, lignification of the endodermis and the increase in carboxylic acids and derivatives play crucial roles in the redistribution of Cd in KB.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China.
| |
Collapse
|
4
|
Zhou S, Wang W, Wang P, Ma H, Li W. The role of reactive oxygen species in regulation of the plasma membrane H+-ATPase activity in Masson pine (Pinus massoniana Lamb.) roots responding to acid stress. TREE PHYSIOLOGY 2024; 44:tpae083. [PMID: 38982738 DOI: 10.1093/treephys/tpae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
- Cooperative College, Jiangsu Vocational College of Business, Nantong 226011, P.R. China
| | - Wenxin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Ping Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Huiyan Ma
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Wenhui Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| |
Collapse
|
5
|
An Q, Zheng N, Ji Y, Sun S, Wang S, Li X, Chen C, Li N, Pan J. Exploration the interaction of cadmium and copper toxic effects in pakchoi (Brassica chinensis L) roots through combinatorial transcriptomic and weighted gene co-expression network analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120956. [PMID: 38669883 DOI: 10.1016/j.jenvman.2024.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The interaction between cadmium(Cd) and copper(Cu) during combined pollution can lead to more complex toxic effects on humans and plants.However, there is still a lack of sufficient understanding regarding the types of interactions at the plant molecular level and the response strategies of plants to combined pollution. To assess this, we investigated the phenotypic and transcriptomic patterns of pakchoi (Brassica chinensis L) roots in response to individual and combined pollution of Cd and Cu. The results showed that compared to single addition, the translocation factor of heavy metals in roots significantly decreased (p < 0.05) under the combined addition, resulting in higher accumulation of Cd and Cu in the roots. Transcriptomic analysis of pakchoi roots revealed that compared to single pollution, there were 312 and 1926 differentially expressed genes (DEGs) specifically regulated in the Cd2Cu20 and Cd2Cu100 combined treatments, respectively. By comparing the expression of these DEGs among different treatments, we found that the combined pollution of Cd and Cu mainly affected the transcriptome of the roots in an antagonistic manner. Enrichment analysis indicated that pakchoi roots upregulated the expression of genes involved in glucosetransferase activity, phospholipid homeostasis, proton transport, and the biosynthesis of phenylpropanoids and flavonoids to resist Cd and Cu combined pollution. Using weighted gene co-expression network analysis (WGCNA), we identified hub genes related to the accumulation of Cd and Cu in the roots, which mainly belonged to the LBD, thaumatin-like protein, ERF, MYB, WRKY, and TCP transcription factor families. This may reflect a transcription factor-driven trade-off strategy between heavy metal accumulation and growth in pakchoi roots. Additionally, compared to single metal pollution, the expression of genes related to Nramp, cation/H+ antiporters, and some belonging to the ABC transporter family in the pakchoi roots was significantly upregulated under combined pollution. This could lead to increased accumulation of Cd and Cu in the roots. These findings provide new insights into the interactions and toxic mechanisms of multiple metal combined pollution at the molecular level in plants.
Collapse
Affiliation(s)
- Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Ning Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|
6
|
Zhang Y, Yang C, Liu S, Xie Z, Chang H, Wu T. Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production. PLANT CELL REPORTS 2024; 43:99. [PMID: 38494540 DOI: 10.1007/s00299-024-03189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
KEY MESSAGE In this manuscript, authors reviewed and explore the information on beneficial role of phytohormones to mitigate adverse effects of heavy metals toxicity in plants. Global farming systems are seriously threatened by heavy metals (HMs) toxicity, which can result in decreased crop yields, impaired food safety, and negative environmental effects. A rise in curiosity has been shown recently in creating sustainable methods to reduce HMs toxicity in plants and improve agricultural productivity. To accomplish this, phytohormones, which play a crucial role in controlling plant development and adaptations to stress, have emerged as intriguing possibilities. With a particular focus on environmentally friendly farming methods, the current review provides an overview of phytohormone-mediated strategies for reducing HMs toxicity in plants. Several physiological and biochemical activities, including metal uptake, translocation, detoxification, and stress tolerance, are mediated by phytohormones, such as melatonin, auxin, gibberellin, cytokinin, ethylene, abscisic acid, salicylic acid, and jasmonates. The current review offers thorough explanations of the ways in which phytohormones respond to HMs to help plants detoxify and strengthen their resilience to metal stress. It is crucial to explore the potential uses of phytohormones as long-term solutions for reducing the harmful effects of HMs in plants. These include accelerating phytoextraction, decreasing metal redistribution to edible plant portions, increasing plant tolerance to HMs by hormonal manipulation, and boosting metal sequestration in roots. These methods seek to increase plant resistance to HMs stress while supporting environmentally friendly agricultural output. In conclusion, phytohormones present potential ways to reduce the toxicity of HMs in plants, thus promoting sustainable agriculture.
Collapse
Affiliation(s)
- Yumang Zhang
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Chunyuan Yang
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China.
| | - Shuxia Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhonglei Xie
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongyan Chang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Wu
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
| |
Collapse
|
7
|
Jiang W, He J, Babla M, Wu T, Tong T, Riaz A, Zeng F, Qin Y, Chen G, Deng F, Chen ZH. Molecular evolution and interaction of 14-3-3 proteins with H+-ATPases in plant abiotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:689-707. [PMID: 37864845 DOI: 10.1093/jxb/erad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Environmental stresses severely affect plant growth and crop productivity. Regulated by 14-3-3 proteins (14-3-3s), H+-ATPases (AHAs) are important proton pumps that can induce diverse secondary transport via channels and co-transporters for the abiotic stress response of plants. Many studies demonstrated the roles of 14-3-3s and AHAs in coordinating the processes of plant growth, phytohormone signaling, and stress responses. However, the molecular evolution of 14-3-3s and AHAs has not been summarized in parallel with evolutionary insights across multiple plant species. Here, we comprehensively review the roles of 14-3-3s and AHAs in cell signaling to enhance plant responses to diverse environmental stresses. We analyzed the molecular evolution of key proteins and functional domains that are associated with 14-3-3s and AHAs in plant growth and hormone signaling. The results revealed evolution, duplication, contraction, and expansion of 14-3-3s and AHAs in green plants. We also discussed the stress-specific expression of those 14-3-3and AHA genes in a eudicotyledon (Arabidopsis thaliana), a monocotyledon (Hordeum vulgare), and a moss (Physcomitrium patens) under abiotic stresses. We propose that 14-3-3s and AHAs respond to abiotic stresses through many important targets and signaling components of phytohormones, which could be promising to improve plant tolerance to single or multiple environmental stresses.
Collapse
Affiliation(s)
- Wei Jiang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jing He
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohammad Babla
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ting Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Tao Tong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Adeel Riaz
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
8
|
Xiao R, Youngjun O, Zhang X, Thi NN, Lu H, Hwang I. Osmotic stress-induced localisation switch of CBR1 from mitochondria to the endoplasmic reticulum triggers ATP production via β-oxidation to respond to osmotic shock. PLANT, CELL & ENVIRONMENT 2023; 46:3420-3432. [PMID: 37469026 DOI: 10.1111/pce.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Drought and high salinity are major environmental factors that reduce plant growth and development, leading to loss of plant productivity in agriculture. Under these stress conditions, photosynthesis is greatly suppressed despite the high cellular energy cost of stress response processes. Currently, the process that allows plants to secure the energy required for osmotic stress responses remains elusive. Here, we provide evidence that cytochrome b5 reductase 1 (CBR1), a cytochrome b5 reductase, plays an important role in ATP production in response to NaCl and dehydration stresses. Overexpression and loss of function of CBR1 led to enhanced resistance and sensitivity, respectively, to osmotic stress. Upon exposure to osmotic stress, CBR1 was localised to the endoplasmic reticulum (ER) instead of to mitochondria, where it was localised under normal conditions. Transgenic plants overexpressing ER-targeted CBR1 showed enhanced resistance to osmotic stress. Moreover, CBR1-ER and CBR1-OX plants, had higher levels of ATP and unsaturated fatty acids under osmotic stress. However, these effects were abrogated by thioridazine and 2-deoxy glucose, inhibitors of β-oxidation and glycolysis, respectively. Based on these results, we propose that ER-localised CBR1 triggers ATP production via the production and β-oxidation of polyunsaturated fatty acids under osmotic stress.
Collapse
Affiliation(s)
- Ruixue Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Oh Youngjun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Xiuxiu Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - NguyenThO Nguyen Thi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
9
|
The Early Oxidative Stress Induced by Mercury and Cadmium Is Modulated by Ethylene in Medicago sativa Seedlings. Antioxidants (Basel) 2023; 12:antiox12030551. [PMID: 36978799 PMCID: PMC10045221 DOI: 10.3390/antiox12030551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cadmium (Cd) and mercury (Hg) are ubiquitous soil pollutants that promote the accumulation of reactive oxygen species, causing oxidative stress. Tolerance depends on signalling processes that activate different defence barriers, such as accumulation of small heat sock proteins (sHSPs), activation of antioxidant enzymes, and the synthesis of phytochelatins (PCs) from the fundamental antioxidant peptide glutathione (GSH), which is probably modulated by ethylene. We studied the early responses of alfalfa seedlings after short exposure (3, 6, and 24 h) to moderate to severe concentration of Cd and Hg (ranging from 3 to 30 μM), to characterize in detail several oxidative stress parameters and biothiol (i.e., GSH and PCs) accumulation, in combination with the ethylene signalling blocker 1-methylcyclopropene (1-MCP). Most changes occurred in roots of alfalfa, with strong induction of cellular oxidative stress, H2O2 generation, and a quick accumulation of sHSPs 17.6 and 17.7. Mercury caused the specific inhibition of glutathione reductase activity, while both metals led to the accumulation of PCs. These responses were attenuated in seedlings incubated with 1-MCP. Interestingly, 1-MCP also decreased the amount of PCs and homophytochelatins generated under metal stress, implying that the overall early response to metals was controlled at least partially by ethylene.
Collapse
|
10
|
Feil SB, Zuluaga MYA, Cesco S, Pii Y. Copper toxicity compromises root acquisition of nitrate in the high affinity range. FRONTIERS IN PLANT SCIENCE 2023; 13:1034425. [PMID: 36743562 PMCID: PMC9895927 DOI: 10.3389/fpls.2022.1034425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The application of copper (Cu)-based fungicides for crop protection plans has led to a high accumulation of Cu in soils, especially in vineyards. Copper is indeed an essential micronutrient for plants, but relatively high concentrations in soil or other growth substrates may cause toxicity phenomena, such as alteration of the plant's growth and disturbance in the acquisition of mineral nutrients. This last aspect might be particularly relevant in the case of nitrate ( NO 3 - ) , whose acquisition in plants is finely regulated through the transcriptional regulation of NO 3 - transporters and plasma membrane H+-ATPase in response to the available concentration of the nutrient. In this study, cucumber plants were grown hydroponically and exposed to increasing concentrations of Cu (i.e., 0.2, 5, 20, 30, and 50 µM) to investigate their ability to respond to and acquire NO 3 - . To this end, the kinetics of substrate uptake and the transcriptional modulation of the molecular entities involved in the process have been assessed. Results showed that the inducibility of the high-affinity transport system was significantly affected by increasing Cu concentrations; at Cu levels higher than 20 µM, plants demonstrated either strongly reduced or abolished NO 3 - uptake activity. Nevertheless, the transcriptional modulation of both the nitrate transporter CsNRT2.1 and the accessory protein CsNRT3.1 was not coherent with the hindered NO 3 - uptake activity. On the contrary, CsHA2 was downregulated, thus suggesting that a possible impairment in the generation of the proton gradient across the root PM could be the cause of the abolishment of NO 3 - uptake.
Collapse
|
11
|
Soleimannejad Z, Sadeghipour HR, Abdolzadeh A, Golalipour M, Bakhtiarizadeh MR. Transcriptome alterations of radish shoots exposed to cadmium can be interpreted in the context of leaf senescence. PROTOPLASMA 2023; 260:35-62. [PMID: 35396977 DOI: 10.1007/s00709-022-01758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Till now few transcriptome studies have described shoot responses of heavy metal (HM)-sensitive plants to excess Cd and still a unifying model of Cd action is lacking. Using RNA-seq technique, the transcriptome responses of radish (Raphanus sativus L.) leaves to Cd stress were investigated in plants raised hydroponically under control and 5.0 mg L-1 Cd. The element was mainly accumulated in roots and led to declined biomass and photosynthetic pigments, increased H2O2 and lipid peroxidation, and the accumulation of sugars, protein thiols, and phytochelatins. Out of 524 differentially expressed genes (DEGs), 244 and 280 upregulated and downregulated ones were assigned to 82 and 115 GO terms, respectively. The upregulated DEGs were involved in osmotic regulation, protein metabolism, chelators, and carbohydrate metabolisms, whereas downregulated DEGs were related to photosynthesis, response to oxidative stress, glucosinolate, and secondary metabolite biosynthesis. Our transcriptome data suggest that Cd triggers ROS production and photosynthesis decline associated with increased proteolysis through ubiquitin-proteasome system (UPS)- and chloroplast-proteases and in this way brings about re-mobilization of N and C stores into amino acids and sugars. Meanwhile, declined glucosinolate metabolism in favor of chelator synthesis and upregulation of dehydrins as inferred from transcriptome analysis confers shoots some tolerance to the HM-derived ionic/osmotic imbalances. Thus, the induction of leaf senescence might be a major long-term response of HM-sensitive plants to Cd toxicity.
Collapse
Affiliation(s)
- Zahra Soleimannejad
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | | | - Ahmad Abdolzadeh
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | |
Collapse
|
12
|
Involvement of Diamine Oxidase in Modification of Plasma Membrane Proton Pump Activity in Cucumis sativus L. Seedlings under Cadmium Stress. Int J Mol Sci 2022; 24:ijms24010262. [PMID: 36613704 PMCID: PMC9820736 DOI: 10.3390/ijms24010262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is a crop plant being the third most-produced vegetable developed as a new model plant. Heavy metal pollution is a serious global problem that affects crop production. An industrial activity has led to high emissions of Cd into the environment. Plants realize adaptive strategies to diminish the toxic effects of Cd. They can remove excess toxic ions of heavy metals from the cytoplasm to the outside of cells using the metal/proton antiport. The proton gradient needed for the action of the antiporter is generated by the plasma membrane (PM) H+-ATPase (EC 3.6.3.14). We have shown that treatment of cucumber plants with Cd stimulated the diamine oxidase (DAO, EC 1.4.3.6) activity in roots. Under cadmium stress, the PM H+-ATPase activity also increased in cucumber seedlings. The stimulating effect of Cd on the PM H+-ATPase activity and expression of three genes encoding this enzyme (CsHA2, CsHA4, CsHA8) was reduced by aminoguanidine (AG, a DAO inhibitor). Moreover, we have observed that H2O2 produced by DAO promotes the formation of NO in the roots of seedlings. The results presented in this work showed that DAO may be an element of the signal transduction pathway, leading to enhanced PM H+-ATPase activity under cadmium stress.
Collapse
|
13
|
Michalak A, Wdowikowska A, Janicka M. Plant Plasma Membrane Proton Pump: One Protein with Multiple Functions. Cells 2022; 11:cells11244052. [PMID: 36552816 PMCID: PMC9777500 DOI: 10.3390/cells11244052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, the plasma membrane proton pump (PM H+-ATPase) regulates numerous transport-dependent processes such as growth, development, basic physiology, and adaptation to environmental conditions. This review explores the multifunctionality of this enzyme in plant cells. The abundance of several PM H+-ATPase isogenes and their pivotal role in energizing transport in plants have been connected to the phenomena of pleiotropy. The multifunctionality of PM H+-ATPase is a focal point of numerous studies unraveling the molecular mechanisms of plant adaptation to adverse environmental conditions. Furthermore, PM H+-ATPase is a key element in plant defense mechanisms against pathogen attack; however, it also functions as a target for pathogens that enable plant tissue invasion. Here, we provide an extensive review of the PM H+-ATPase as a multitasking protein in plants. We focus on the results of recent studies concerning PM H+-ATPase and its role in plant growth, physiology, and pathogenesis.
Collapse
|
14
|
Gu J, Hu C, Jia X, Ren Y, Su D, He J. Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:104-114. [PMID: 36081232 DOI: 10.1016/j.plaphy.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) pollution is a major environmental issue affecting plant production. Spermidine (Spd) is involved in plant response to abiotic stress. However, the role and associated mechanism of Spd under Cd + Pb combined stress are poorly understood. The potential protective role of Spd at different concentration on rice (Oryza sativa L.) seedlings exposed to Cd + Pb treatment was investigated by a hydroponic experiment in this study. The results showed that exogenous Spd enhanced the tolerance of rice seedlings to Cd + Pb stress, resulted in an increase in plant height, root length, fresh weight and dry weight of roots and shoots. Further, application of Spd decreased the contents of hydrogen peroxide, superoxide anion, malondialdehyde, and the accumulation of Cd and Pb, and increased the contents of mineral nutrient, carotenoids, chlorophyll, proline, soluble sugar, soluble protein, total phenol, flavonoid, anthocyanin, and antioxidant enzymes activities in roots and shoots of rice seedlings under Cd + Pb stress. Particularly, 0.5 mmol L-1 Spd was the most effective to alleviate the adverse impacts on growth and physiological metabolism of rice seedlings under Cd + Pb stress. Principal component analysis and heat map clustering established correlations between physio-biochemical parameters and further revealed Spd alleviated Cd + Pb damage in rice seedling was associated with inhibition of accumulation and translocation of Cd and Pb, increasing the contents of photosynthetic pigments and mineral nutrient and stimulation of antioxidative response and osmotic adjustment. Overall, our findings provide an important prospect for use of Spd in modulating Cd + Pb tolerance in rice plants. Spd could help to alleviate Cd + Pb damage through inhibition of accumulation and translocation of Cd and Pb and stimulation of oxidant-defense system and osmotic adjustment.
Collapse
Affiliation(s)
- Jinyu Gu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Chunmei Hu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Xiangwei Jia
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| | - Dongming Su
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| |
Collapse
|
15
|
Huang X, Tanveer M, Min Y, Shabala S. Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5886-5902. [PMID: 35640481 DOI: 10.1093/jxb/erac224] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Melatonin is a highly conserved and ubiquitous molecule that operates upstream of a broad array of receptors in animal systems. Since melatonin was discovered in plants in 1995, hundreds of papers have been published revealing its role in plant growth, development, and adaptive responses to the environment. This paper summarizes the current state of knowledge of melatonin's involvement in regulating plant ion homeostasis and abiotic stress tolerance. The major topics covered here are: (i) melatonin's control of H+-ATPase activity and its implication for plant adaptive responses to various abiotic stresses; (ii) regulation of the reactive oxygen species (ROS)-Ca2+ hub by melatonin and its role in stress signaling; and (iii) melatonin's regulation of ionic homeostasis via hormonal cross-talk. We also show that the properties of the melatonin molecule allow its direct scavenging of ROS, thus preventing negative effects of ROS-induced activation of ion channels. The above 'desensitization' may play a critical role in preventing stress-induced K+ loss from the cytosol as well as maintaining basic levels of cytosolic Ca2+ required for optimal cell operation. Future studies should focus on revealing the molecular identity of transporters that could be directly regulated by melatonin and providing a bioinformatic analysis of evolutionary aspects of melatonin sensing and signaling.
Collapse
Affiliation(s)
- Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
| | - Yu Min
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
16
|
Rahman SU, Nawaz MF, Gul S, Yasin G, Hussain B, Li Y, Cheng H. State-of-the-art OMICS strategies against toxic effects of heavy metals in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113952. [PMID: 35999767 DOI: 10.1016/j.ecoenv.2022.113952] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution of heavy metals (HMs), mainly due to anthropogenic activities, has received growing attention in recent decades. HMs, especially the non-essential carcinogenic ones, including chromium (Cr), cadmium (Cd), mercury (Hg), aluminum (Al), lead (Pb), and arsenic (As), have appeared as the most significant air, water, and soil pollutants, which adversely affect the quantity, quality, and security of plant-based food all over the world. Plants exposed to HMs could experience significant decline in growth and yield. To avoid or tolerate the toxic effects of HMs, plants have developed complicated defense mechanisms, including absorption and accumulation of HMs in cell organelles, immobilization by forming complexes with organic chelates, extraction by using numerous transporters, ion channels, signalling cascades, and transcription elements, among others. OMICS strategies have developed significantly to understand the mechanisms of plant transcriptomics, genomics, proteomics, metabolomics, and ionomics to counter HM-mediated stress stimuli. These strategies have been considered to be reliable and feasible for investigating the roles of genomics (genomes), transcriptomic (coding), mRNA transcripts (non-coding), metabolomics (metabolites), and ionomics (metal ions) to enhance stress resistance or tolerance in plants. The recent developments in the mechanistic understandings of the HMs-plant interaction in terms of their absorption, translocation, and toxicity invasions at the molecular and cellular levels, as well as plants' response and adaptation strategies against these stressors, are summarized in the present review. Transcriptomics, genomics, metabolomics, proteomics, and ionomics for plants against HMs toxicities are reviewed, while challenges and future recommendations are also discussed.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agricultureó, Faisalabad, Pakistan
| | - Sadaf Gul
- Department of Botany, University of Karachi, Karachi, Pakistan
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakariya University Multan, Pakistan
| | - Babar Hussain
- Department of Plant Science Karakoram International University (KIU), Gilgit 15100, Gilgit-Baltistan, Pakistan
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory of Water Pollution and Ecological Safety Regulation, Dongguan, Guangdong 523808, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Kabała K, Reda M, Wdowikowska A, Janicka M. Role of Plasma Membrane NADPH Oxidase in Response to Salt Stress in Cucumber Seedlings. Antioxidants (Basel) 2022; 11:antiox11081534. [PMID: 36009253 PMCID: PMC9404751 DOI: 10.3390/antiox11081534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane NADPH oxidases (RBOHs, EC 1.6.3.1) are known as the main ROS generators involved in plant adaptation to stress conditions. In the present work, regulation of NADPH oxidase was analyzed in cucumber (Cucumis sativus L. var. Krak) seedlings exposed to salinity. RBOH activity and gene expression, as well as H2O2 content, were determined in the roots of plants treated with 50 or 100 mM NaCl for 1 h, and 50 mM NaCl for 1 or 6 days. It was found that enzyme activity increased in parallel with an enhancement in the H2O2 level in roots exposed to 100 mM NaCl for 1 h, and to 50 mM NaCl for 1 day. The expression of some CsRboh genes was induced by salt. Moreover, an increase in the activity of G6PDH, providing the substrate for the NADPH oxidase, was observed. In seedlings subjected to salinity for a longer time, antioxidant enzymes-including superoxide dismutase, catalase, and ascorbate peroxidase-were activated, participating in maintaining a steady-state H2O2 content in the root cells. In conclusion, NADPH oxidase and endogenous H2O2 up-regulation seem to be early events in cucumber response to salinity.
Collapse
|
18
|
Barzin G, Safari F, Bishehkolaei R. Beneficial role of methyl jasmonate on morphological, physiological and phytochemical responses of Calendula officinalis L. under Chromium toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1453-1466. [PMID: 36051237 PMCID: PMC9424436 DOI: 10.1007/s12298-022-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Contamination of soil with chromium (Cr) is a rising problem in terms of agricultural sustainability and food safety. Here, the effects of methyl jasmonate (MJ; 0, 5, and 10 µM) on alleviating Cr stress (0, 100, and 200 µM) were surveyed in pot marigold (Calendula officinalis L.). The results showed that Cr stress significantly reduced photosynthetic pigments and leaf accumulation of total soluble sugars, total starch, and mineral nutrients and, consequently, lowered the height and biomass of pot marigold plants. Chromium toxicity also increased the leaf levels of oxidative stress markers and induced oxidative stress, which was associated with damage to bio-membranes and increased levels of malondialdehyde. However, MJ supplementation reduced the leaf accumulation of Cr, increased the content of photosynthetic pigments, and improved the performance of the photosynthetic machinery in Cr-stressed plants. MJ supplementation boosted the antioxidant defense system by upregulating antioxidant enzymes, glyoxalase enzymes, and the ascorbate-glutathione (AsA-GSH) pool redox, which significantly diminished Cr-induced oxidative stress. Hence, MJ supplementation might be a practicable approach for reducing Cr absorption and its negative impacts on pot marigold plants growing under Cr-contaminated conditions. Clinical trials registration Not applicable.
Collapse
Affiliation(s)
- Giti Barzin
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Fatemeh Safari
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Roya Bishehkolaei
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
19
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
20
|
Arbuscular Mycorrhizal Fungi Enhanced Drought Resistance of Populus cathayana by Regulating the 14-3-3 Family Protein Genes. Microbiol Spectr 2022; 10:e0245621. [PMID: 35612316 PMCID: PMC9241863 DOI: 10.1128/spectrum.02456-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plants can improve their resistance to a variety of stresses by forming mutualistic relationships with arbuscular mycorrhizal fungi (AMF). The 14-3-3 protein is a major regulator of the plant stress response. However, the regulation mechanism of 14-3-3 family protein genes (14-3-3s) of mycorrhizal plants coping with stress during AMF symbiosis remains unclear. Here, we analyzed the physiological changes and 14-3-3 expression profiles of Populus cathayana inoculated with AMF under different water conditions. The results showed that good colonization and symbiotic relationships with plants were formed under all water conditions (63.00% to 83.67%). Photosynthesis, peroxidase (POD) activity, and Mg and Ca content were significantly affected by drought and AMF. In addition, thirteen 14-3-3 protein genes (PcGRF1-PcGRF13) were identified by quantitative real-time PCR (qRT-PCR), of which the expression levels of PcGRF10 and PcGRF11 induced by AMF were significantly positively correlated with superoxide dismutase (SOD), POD, and sugar content, indicating that the 14-3-3s of mycorrhizal symbiotic plants may respond to drought through antioxidant and osmotic regulation. This is the first study on 14-3-3s in the symbiosis system of forest arbor plants and AMF, and it may help to further study the effects of 14-3-3s during AMF symbiosis on stresses and provide new ideas for improving mycorrhizal seedling cultivation under stress. IMPORTANCE The 14-3-3 protein may regulate many biochemical and physiological processes under abiotic stress. Studies have shown that the 14-3-3 protein gene of AMF is not only upregulated under drought stress, but also enhances the regulation of AMF on plant drought tolerance by regulating plant signal pathways and drought response genes; however, knowledge about the biological relevance of these interactions remains limited and controversial. The precise functions of Populus cathayana 14-3-3s under drought stress remain poorly resolved and the mechanisms of action of these genes in mycorrhizae-induced drought stress are still unknown. Thus, studying the drought-resistance mechanism of the AMF symbiotic plant 14-3-3 gene is of special significance to improving the drought tolerance of the plant. Further systematic study is needed to probe the mechanism by which AMF regulates different 14-3-3 genes and their subsequent physiological effects on drought.
Collapse
|
21
|
Singhal RK, Kumar M, Bose B, Mondal S, Srivastava S, Dhankher OP, Tripathi RD. Heavy metal (loid)s phytotoxicity in crops and its mitigation through seed priming technology. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:187-206. [PMID: 35549957 DOI: 10.1080/15226514.2022.2068502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unexpected bioaccumulation and biomagnification of heavy metal(loid)s (HMs) in the environment have become a predicament for all living organisms, including plants. The presence of these HMs in the plant system raised the level of reactive oxygen species (ROS) and remodeled several vital cellular biomolecules. These lead to several morphological, physiological, metabolic, and molecular aberrations in plants ranging from chlorosis of leaves to the lipid peroxidation of membranes, and degradation of proteins and nucleic acid including the modulation of the enzymatic system, which ultimately affects the plant growth and productivity. Plants are equipped with several mechanisms to counteract the HMs toxicity. Among them, seed priming (SP) technology has been widely tested with the use of several inorganic chemicals, plant growth regulators (PGRs), gasotransmitters, nanoparticles, living organisms, and plant leaf extracts. The use of these compounds has the potential to alleviate the HMs toxicity through the strengthening of the antioxidant defense system, generation of low molecular weight metallothionein's (MTs), and phytochelatins (PCs), and improving seedling vigor during early growth stages. This review presents an account of the sources, uptake and transport, and phytotoxic effects of HMs with special attention to different mechanism/s, occurring to mitigate the HMs toxicity in plants employing SP technology.Novelty statement: To the best of our knowledge, this review has delineated the consequences of HMs on the crucial plant processes, which ultimately affect plant growth and development. This review also compiled the up to dated information on phytotoxicity of HMs through the use of SP technology, this review discussed how different types of SP approaches help in diminishing the concentration HMs in plant systems. Also, we depicted mechanisms, represent how HMs transport and their actions on cellular levels, and emphasized, how diverse SP technology effectiveness in the mitigation of plants' phytotoxicity in unique ways.
Collapse
Affiliation(s)
| | - Mahesh Kumar
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Bandana Bose
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sananda Mondal
- Plant Physiology Section, Department of ASEPAN, Institute of Agriculture, Sriniketan, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge, MA, USA
| | | |
Collapse
|
22
|
Menhas S, Yang X, Hayat K, Aftab T, Bundschuh J, Arnao MB, Zhou Y, Zhou P. Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:922-935. [PMID: 0 DOI: 10.1007/s00344-021-10349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 05/20/2023]
|
23
|
Dridi N, Ferreira R, Bouslimi H, Brito P, Martins-Dias S, Caçador I, Sleimi N. Assessment of Tolerance to Lanthanum and Cerium in Helianthus Annuus Plant: Effect on Growth, Mineral Nutrition, and Secondary Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070988. [PMID: 35406967 PMCID: PMC9002919 DOI: 10.3390/plants11070988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Rare earth elements (REEs) present a group of nonessential metals for the growth and development of plants. At high concentrations, they can induce internal stress and disturb the physiological and biochemical mechanisms in plants. The potential uptake of lanthanum (La) and cerium (Ce) by the horticultural plant Helianthus annuus and the effect of these elements on its growth, its absorption of macroelements, and the contents of phenolic compounds and flavonoids were assessed. The plants were exposed to 0, 1, 2.5, 5, and 10 µM of La and Ce for 14 days. The results showed a remarkable accumulation of the two REEs, especially in the roots, which was found to be positively correlated with the total phenolic compound and flavonoid content in the plant shoots and roots. The plant's growth parameter patterns (such as dry weight and water content); the levels of potassium, calcium, and magnesium; and the tolerance index varied with the concentrations of the two studied elements. According to the tolerance index values, H. annuus had more affinity to La than to Ce. Although these metals were accumulated in H. annuus tissues, this Asteraceae plant cannot be considered as a hyperaccumulator species of these two REEs, since the obtained REE content in the plant's upper parts was less than 1000 mg·Kg-1 DW.
Collapse
Affiliation(s)
- Nesrine Dridi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| | - Renata Ferreira
- CERENA, Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Houda Bouslimi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| | - Pedro Brito
- IPMA, Division of Oceanography and Marine Environment, Instituto Português do Mar e da Atmosfera, 1495-165 Algés, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Susete Martins-Dias
- CERENA, Centro de Recursos Naturais e Ambiente, Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Isabel Caçador
- MARE-FCUL, Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Noomene Sleimi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| |
Collapse
|
24
|
Ding C, Zhao Y, Zhang Q, Lin Y, Xue R, Chen C, Zeng R, Chen D, Song Y. Cadmium transfer between maize and soybean plants via common mycorrhizal networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113273. [PMID: 35123184 DOI: 10.1016/j.ecoenv.2022.113273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
More than 80% terrestrial plants establish mutualistic symbiosis with soil-borne arbuscular mycorrhizal fungi (AMF). These fungi not only significantly improve plant nutrient acquisition and stress resistance, but also mitigate heavy metal phytotoxicity, Furthermore, the extraradical mycorrhizal mycelia can form common mycorrhizal networks (CMNs) that link roots of multiple plants in a community. Here we show that the networks mediate migration of heavy metal cadmium (Cd) from maize (Zea mays L.) to soybean (Glycine max (Linn.) Merr.) plants. CMNs between maize and soybean plants were established after inoculation of maize plants with AMF Funneliformis mosseae. Application of CdCl2 in maize plants led to 64.4% increase in the shoots and 48.2% increase in the roots in Cd content in CMNs-connected soybean plants compared to the control without Cd treatment in maize. Meanwhile, although the CMNs-connected soybean plants did not directly receive Cd supply, they upregulated transcriptional levels of Cd transport-related genes HATPase and RSTK 2.13- and 5.96-fold, respectively, induced activities of POD by 44.8% in the leaves, and increased MDA by 146.2% in the roots. Furthermore, Cd addition inhibited maize growth but mycorrhizal colonization improved plant performance in presence of Cd stress. This finding demonstrates that mycorrhizal networks mediate the transfer of Cd between plants of different species, suggesting a potential to use CMNs as a conduit to transfer toxic heavy metals from main food crops to heavy metal hyperaccumulators via intercropping.
Collapse
Affiliation(s)
- Chaohui Ding
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yi Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Qianrong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Fujian Key Laboratory of Vegetable Genetics and Breeding, Vegetable Research Center, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Chunyan Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
25
|
Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:794373. [PMID: 35058954 PMCID: PMC8764127 DOI: 10.3389/fpls.2021.794373] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 05/17/2023]
Abstract
Food safety has emerged as a high-urgency matter for sustainable agricultural production. Toxic metal contamination of soil and water significantly affects agricultural productivity, which is further aggravated by extreme anthropogenic activities and modern agricultural practices, leaving food safety and human health at risk. In addition to reducing crop production, increased metals/metalloids toxicity also disturbs plants' demand and supply equilibrium. Counterbalancing toxic metals/metalloids toxicity demands a better understanding of the complex mechanisms at physiological, biochemical, molecular, cellular, and plant level that may result in increased crop productivity. Consequently, plants have established different internal defense mechanisms to cope with the adverse effects of toxic metals/metalloids. Nevertheless, these internal defense mechanisms are not adequate to overwhelm the metals/metalloids toxicity. Plants produce several secondary messengers to trigger cell signaling, activating the numerous transcriptional responses correlated with plant defense. Therefore, the recent advances in omics approaches such as genomics, transcriptomics, proteomics, metabolomics, ionomics, miRNAomics, and phenomics have enabled the characterization of molecular regulators associated with toxic metal tolerance, which can be deployed for developing toxic metal tolerant plants. This review highlights various response strategies adopted by plants to tolerate toxic metals/metalloids toxicity, including physiological, biochemical, and molecular responses. A seven-(omics)-based design is summarized with scientific clues to reveal the stress-responsive genes, proteins, metabolites, miRNAs, trace elements, stress-inducible phenotypes, and metabolic pathways that could potentially help plants to cope up with metals/metalloids toxicity in the face of fluctuating environmental conditions. Finally, some bottlenecks and future directions have also been highlighted, which could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zainab Zahid
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shanza Bashir
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
26
|
Hassan M, Israr M, Mansoor S, Hussain SA, Basheer F, Azizullah A, Ur Rehman S. Acclimation of cadmium-induced genotoxicity and oxidative stress in mung bean seedlings by priming effect of phytohormones and proline. PLoS One 2021; 16:e0257924. [PMID: 34587203 PMCID: PMC8480768 DOI: 10.1371/journal.pone.0257924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 01/24/2023] Open
Abstract
In this research, eight local mung bean (Vigna radiata) varieties were analyzed for their performance against two levels of CdCl2 solution (0.3 and 0.5 mM) alone and priming with gibberellic acid (GA3) (100 μM), salicylic acid (SA) (50 μM) and proline (5 mM) solution prior to Cd exposure. Mung bean seedlings were analyzed for disturbance in cytological, morphological, biochemical and enzymatic parameters under cadmium stress. For cytological studies, 48 h grown mung bean seedlings root tips were used to prepare slides and studied for percent mitotic index (MI%) and to calculate percent C-mitosis, laggard, sticky and fragmented chromosomes, pictures were captured by a Nikon camera (DS-Fi 1 Japan) attached with a microscope. One-week grown mung seedlings were studied for growth traits, malondialdehyde (MDA), protein, proline and antioxidant enzymes. ANOVA and DMR test of this research revealed that all the tested mung bean varieties and treatments were significantly different regarding mitotic index and number of chromosomal aberrations. Both the Cd treatments exhibited increased total chromosomal aberrations with different types and a maximum decrease in MI%. In pretreated samples, GA3, SA and proline serve as mitigating agents that reduce mutagenic effects of Cd in mung bean by increasing MI% and decreasing chromosomal aberrations as compared to non-pretreated samples. Both the Cd treatments showed a decrease in all growth traits. Total proteins were also found to be significantly reduced in a dose-dependent manner in all genotypes. Cd treatment increased the activities of all antioxidant enzymes tested. Cd caused oxidative damage as indicated by elevated levels of MDA content in treated samples in comparison to control. Proline content levels were also high in Cd treated seedlings indicating stress. Results demonstrated that pretreatment with phytohormones and proline before Cd were found to improve all morphological parameters, by altering antioxidant enzymes activities along with a decrease in MDA and proline contents as well. It was further noticed that the performance of GA3 was better at 0.3 mM Cd treatment while SA was found to be a good mitigating agent at 0.5 mM Cd stress in all tested mung bean varieties. This research concluded less deleterious effects of Cd on AZRI-2006 while more sensitivity to NM-51 towards Cd. Priming with phytohormones and proline is a user-friendly, economical, and simple mitigation strategy to reduce Cd toxicity in plants and get better yield from contaminated lands.
Collapse
Affiliation(s)
- Meher Hassan
- Department of Genetics, University of Karachi, Sindh, Pakistan
| | - Muhammad Israr
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Simeen Mansoor
- Department of Genetics, University of Karachi, Sindh, Pakistan
| | - Syeda Amna Hussain
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Faiza Basheer
- Department of Zoology, Women University Mardan, Mardan, Khyber Pakhtunkhwa Pakistan
| | - Azizullah Azizullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Shafiq Ur Rehman
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
27
|
Noori A, Bharath LP, White JC. Type-specific impacts of silver on the protein profile of tomato ( Lycopersicon esculentum L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:12-24. [PMID: 34000928 DOI: 10.1080/15226514.2021.1919052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are particularly among the widely used nanomaterials in medicine, industry, and agriculture. The small size and large surface area of AgNPs and other nanomaterials result in their high reactivity in biological systems. To better understand the effects of AgNPs on plants at the molecular level, tomato (Lycopersicon esculentum L.) seedlings were exposed to 30 mg/L silver in the form of nanoparticle (AgNPs), ionic (AgNO3), or bulk (Ag0) in 50% Hoagland media for 7 days. The effects of silver on the expression of plant membrane transporters H+-ATPase, vacuolar type H+-ATPase (V-ATPase), and enzymes isocitrate dehydrogenase (IDH), and catalase in roots was assessed using RT-qPCR and immunofluorescence-confocal microscopy. We observed significantly higher expression of catalase in plants exposed to AgNPs (Fold of expression 1.1) and AgNO3 (Fold of expression 1.2) than the control group. The immunofluorescence imaging of the proteins confirmed the gene expression data; the expression of the enzyme catalase was upregulated 41, 216, and 770% higher than the control group in plants exposed to AgNPs, Ag0, and AgNO3, respectively. Exposure to AgnO3 resulted in the upregulation (fold of expression 1.2) of H+-ATPase and downregulation (fold of expression 0.7) of V-ATPase. A significant reduction in the expression of the redox-sensitive tricarboxylic cycle (TCA) enzyme mitochondrial IDH was observed in plants exposed to AgNPs (38%), AgNO3 (48%), or Ag0 (77%) compared to the control. This study shows that exposure to silver affects the expression of genes and protein involved in membrane transportation and oxidative response. The ionic form of silver had the most significant effect on the expression of genes and proteins compared to other forms of silver. The results from this study improve our understanding about the molecular effects of different forms of silver on important crop species. Novelty statementSilver nanoparticles released into the environment can be oxidized and be transformed into ionic form. Both the particulate and ionic forms of silver can be taken by plants and affect plants physiological and molecular responses. Despite the extensive research in this area, there is a scarce of information about the effects of silver nanoparticles on the expression of membrane transporters especially H+-ATPase involved in regulating cells' electrochemical charge, and the activity of enzymes involved in oxidative stress responses. This is a unique study that evaluates the expression of cellular proton transporters and enzymes of redox balance and energy metabolisms such as membrane transporters, H+-ATPase, and V-ATPases, and enzymes catalase and IDH. The results provide us valuable information about the impact of silver on plants at the molecular level by evaluating the expression of genes and proteins. Key MessageThe exposure of plants to silver as an environmental stressor affects the expression of genes and proteins involved in maintaining cell's electrochemical gradient (H+-ATPase, V-ATPase) and redox potential (IDH, catalase).
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|
28
|
Rawat N, Singla-Pareek SL, Pareek A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. PHYSIOLOGIA PLANTARUM 2021; 171:653-676. [PMID: 32949408 DOI: 10.1111/ppl.13217] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/13/2020] [Indexed: 05/15/2023]
Abstract
The plasma membrane (PM) is possibly the most diverse biological membrane of plant cells; it separates and guards the cell against its external environment. It has an extremely complex structure comprising a mosaic of lipids and proteins. The PM lipids are responsible for maintaining fluidity, permeability and integrity of the membrane and also influence the functioning of membrane proteins. However, the PM is the primary target of environmental stress, which affects its composition, conformation and properties, thereby disturbing the cellular homeostasis. Maintenance of integrity and fluidity of the PM is a prerequisite for ensuring the survival of plants during adverse environmental conditions. The ability of plants to remodel membrane lipid and protein composition plays a crucial role in adaptation towards varying abiotic environmental cues, including high or low temperature, drought, salinity and heavy metals stress. The dynamic changes in lipid composition affect the functioning of membrane transporters and ultimately regulate the physical properties of the membrane. Plant membrane-transport systems play a significant role in stress adaptation by cooperating with the membrane lipidome to maintain the membrane integrity under stressful conditions. The present review provides a holistic view of stress responses and adaptations in plants, especially the changes in the lipidome and proteome of PM under individual or combined abiotic stresses, which cause alterations in the activity of membrane transporters and modifies the fluidity of the PM. The tools to study the varying lipidome and proteome of the PM are also discussed.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
29
|
Su Y, Qin C, Begum N, Ashraf M, Zhang L. Acetylcholine ameliorates the adverse effects of cadmium stress through mediating growth, photosynthetic activity and subcellular distribution of cadmium in tobacco (Nicotiana benthamiana). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110671. [PMID: 32344264 DOI: 10.1016/j.ecoenv.2020.110671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Acetylcholine (ACh), a well-known major neurotransmitter, plays a potential role in response to abiotic stresses. However, the mechanism of ACh-mediated cadmium (Cd) toxicity in tobacco seedlings is largely uncharacterized. In this study, a hydroponics experiment was conducted under 100 μM Cd stress in the presence or absence of ACh (50 μM) to investigate the potential effects of ACh on Cd toxicity. The results revealed that ACh application effectively alleviated Cd-induced reductions in plant growth, photosynthetic pigments and gas exchange attributes and improved the photosystem II activity. Ultrastructural observation indicated that Cd exposure ruptured the internal structure of chloroplasts, and even caused the accumulation of osmiophilic granules in chloroplasts, whereas these phenomena were alleviated by the addition of ACh. Cd stress also caused a marked increase in oxidative stress, as evidenced by the accumulation of O2- and H2O2, which were efficiently minimized after ACh application by up-regulating antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR). Besides, Cd stress considerably increased the levels of glutathione (GSH), Non-protein thiols (NPTs) and phytochelatins (PCs), whereas ACh application to Cd-stressed seedlings further increased those contents, thereby enhancing the tolerance of Cd-stressed plants. Moreover, exogenously applied ACh declined the accumulation of Cd and minimized the damage from Cd toxicity by modulating the distribution of Cd in the vacuole and cell wall. Therefore, these results provide insights into the ameliorative effects of ACh on Cd-induced a series of physiological reactions.
Collapse
Affiliation(s)
- Yunyun Su
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Cheng Qin
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Ashraf
- International Centre for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
30
|
Sami A, Shah FA, Abdullah M, Zhou X, Yan Y, Zhu Z, Zhou K. Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:679-690. [PMID: 32003103 DOI: 10.1111/plb.13093] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/21/2020] [Indexed: 05/03/2023]
Abstract
Melatonin has emerged as an essential molecule in plants, due to its role in defence against metal toxicity. Aluminium (Al) and cadmium (Cd) toxicity inhibit rapeseed seedling growth. In this study, we applied different doses of melatonin (50 and 100 µm) to alleviate Al (25 µm) and Cd (25 µm) stress in rapeseed seedlings. Results show that Al and Cd caused toxicity in rapeseed seedling, as evidenced by a decrease in height, biomass and antioxidant enzyme activity. Melatonin increased the expression of melatonin biosynthesis-related Brassica napus genes for caffeic acid O-methyl transferase (BnCOMT) under Al and Cd stress. The genes BnCOMT-1, BnCOMT-5 and BnCOMT-8 showed up-regulated expression, while BnCOMT-4 and BnCOMT-6 were down-regulated during incubation in water. Melatonin application increased the germination rate, shoot length, root length, fresh and dry weight of seedlings. Melatonin supplementation under Al and Cd stress increased superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, proline, chlorophyll and anthocyanin content, as well as photosynthesis rate. Both Cd and Al treatments significantly increased hydrogen peroxide and malondialdehyde levels in rapeseed seedlings, which were strictly counterbalanced by melatonin. Analysis of Cd and Al in different subcellular compartments showed that melatonin enhanced cell wall and soluble fractions, but reduced the vacuolar and organelle fractions in Al- and Cd-treated seedlings. These results suggest that melatonin-induced improvements in antioxidant potential, biomass, photosynthesis rate and successive Cd and Al sequestration play a pivotal role in plant tolerance to Al and Cd stress. This mechanism may have potential implications in safe food production.
Collapse
Affiliation(s)
- A Sami
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - F A Shah
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - M Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - X Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Y Yan
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Z Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - K Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
31
|
Serre NBC, Sarthou M, Gigarel O, Figuet S, Corso M, Choulet J, Rofidal V, Alban C, Santoni V, Bourguignon J, Verbruggen N, Ravanel S. Protein lysine methylation contributes to modulating the response of sensitive and tolerant Arabidopsis species to cadmium stress. PLANT, CELL & ENVIRONMENT 2020; 43:760-774. [PMID: 31759334 DOI: 10.1111/pce.13692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 05/10/2023]
Abstract
The mechanisms underlying the response and adaptation of plants to excess of trace elements are not fully described. Here, we analysed the importance of protein lysine methylation for plants to cope with cadmium. We analysed the effect of cadmium on lysine-methylated proteins and protein lysine methyltransferases (KMTs) in two cadmium-sensitive species, Arabidopsis thaliana and A. lyrata, and in three populations of A. halleri with contrasting cadmium accumulation and tolerance traits. We showed that some proteins are differentially methylated at lysine residues in response to Cd and that a few genes coding KMTs are regulated by cadmium. Also, we showed that 9 out of 23 A. thaliana mutants disrupted in KMT genes have a tolerance to cadmium that is significantly different from that of wild-type seedlings. We further characterized two of these mutants, one was knocked out in the calmodulin lysine methyltransferase gene and displayed increased tolerance to cadmium, and the other was interrupted in a KMT gene of unknown function and showed a decreased capacity to cope with cadmium. Together, our results showed that lysine methylation of non-histone proteins is impacted by cadmium and that several methylation events are important for modulating the response of Arabidopsis plants to cadmium stress.
Collapse
Affiliation(s)
- Nelson B C Serre
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Manon Sarthou
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Océane Gigarel
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Sylvie Figuet
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Justine Choulet
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Valérie Rofidal
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, Montpellier, Cedex 2, France
| | - Claude Alban
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, Montpellier, Cedex 2, France
| | | | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Stéphane Ravanel
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| |
Collapse
|
32
|
Huang WL, Wu FL, Huang HY, Huang WT, Deng CL, Yang LT, Huang ZR, Chen LS. Excess Copper-Induced Alterations of Protein Profiles and Related Physiological Parameters in Citrus Leaves. PLANTS (BASEL, SWITZERLAND) 2020; 9:E291. [PMID: 32121140 PMCID: PMC7154894 DOI: 10.3390/plants9030291] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
This present study examined excess copper (Cu) effects on seedling growth, leaf Cu concentration, gas exchange, and protein profiles identified by a two-dimensional electrophoresis (2-DE) based mass spectrometry (MS) approach after Citrus sinensis and Citrus grandis seedlings were treated for six months with 0.5 (control), 200, 300, or 400 μM CuCl2. Forty-one and 37 differentially abundant protein (DAP) spots were identified in Cu-treated C. grandis and C. sinensis leaves, respectively, including some novel DAPs that were not reported in leaves and/or roots. Most of these DAPs were identified only in C. grandis or C. sinensis leaves. More DAPs increased in abundances than DAPs decreased in abundances were observed in Cu-treated C. grandis leaves, but the opposite was true in Cu-treated C. sinensis leaves. Over 50% of DAPs were associated with photosynthesis, carbohydrate, and energy metabolism. Cu-toxicity-induced reduction in leaf CO2 assimilation might be caused by decreased abundances of proteins related to photosynthetic electron transport chain (PETC) and CO2 assimilation. Cu-effects on PETC were more pronounced in C. sinensis leaves than in C. grandis leaves. DAPs related to antioxidation and detoxification, protein folding and assembly (viz., chaperones and folding catalysts), and signal transduction might be involved in Citrus Cu-toxicity and Cu-tolerance.
Collapse
Affiliation(s)
- Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Wei-Tao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Zeng-Rong Huang
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Marques JA, Abrantes DP, Marangoni LF, Bianchini A. Ecotoxicological responses of a reef calcifier exposed to copper, acidification and warming: A multiple biomarker approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113572. [PMID: 31753625 DOI: 10.1016/j.envpol.2019.113572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Multiple global and local stressors threat coral reefs worldwide, and symbiont-bearing foraminifera are bioindicators of reef health. The aim of this study was to investigate single and combined effects of copper (Cu) and climate change related stressors (ocean acidification and warming) on a symbiont-bearing foraminifer by means of an integrated biomarker analysis. Using a mesocosm approach, Amphistegina gibbosa were exposed for 25 days to acidification, warming and/or Cu contamination on a full orthogonal design (two levels each factor). Cu was the main factor increasing bleaching and respiration rates. Warming was the main cause of mortality and reduced growth. Calcification related enzymes were inhibited in response to Cu exposure and, in general, the inhibition was stronger under climate change. Multiple biological endpoints responded to realistic exposure scenarios in different ways, but evidenced general stress posed by climate change combined with Cu. These biological responses drove the high values found for the 'stress index' IBR (Integrated Biomarker Response) - indicating general organismal health impairment under the multiple stressor scenario. Our results provide insights for coral reef management by detecting potential monitoring tools. The ecotoxicological responses indicated that Cu reduces the tolerance of foraminifera to climate change (acidification + warming). Once the endpoints analysed have a high ecological relevance, and that responses were evaluated on a classical reef bioindicator species, these results highlight the high risk of climate change and metal pollution co-exposure to coral reefs. Integrated responses allowed a better effects comprehension and are pointed as a promising tool to monitor pollution effects on a changing ocean.
Collapse
Affiliation(s)
- Joseane A Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande (IO/FURG), Rio Grande, RS, Brazil; Instituto Coral Vivo, Santa Cruz Cabralia, BA, Brazil.
| | - Douglas P Abrantes
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Rio de Janeiro (MNRJ/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Laura Fb Marangoni
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande (IO/FURG), Rio Grande, RS, Brazil; Instituto Coral Vivo, Santa Cruz Cabralia, BA, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Santa Cruz Cabralia, BA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Rio Grande, RS, Brazil
| |
Collapse
|
34
|
Shah AA, Ahmed S, Yasin NA. 2-Hydroxymelatonin induced nutritional orchestration in Cucumis sativus under cadmium toxicity: modulation of non-enzymatic antioxidants and gene expression. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:497-507. [PMID: 31703532 DOI: 10.1080/15226514.2019.1683715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
2-Hydroxymelatonin (2-OHMT) is an important metabolite produced through melatonin interaction with oxygenated compounds. 2-OHMT pretreated seeds (50 µM, 100 µM, and 150 µM) were grown in soil contaminated with 50 mg kg-1 cadmium. Cadmium imposed stress reduced seed germination, growth, biomass production, and chlorophyll (Chl) content in Cucumis sativus seedlings. 2-OHMT application emphatically revamped germination, shoot length, root length, and plant biomass production. The 2-OHMT pretreatment modulated expression levels of plasma membrane H+-ATPase genes of C. sativus including CsHA2, CsHA3, CsHA4, CsHA8, and CsHA9. This biomolecule amplified the accumulation of antioxidants such as glutathione, proline, phenolics, and flavonoids. The reduced Cd-uptake in 2-OHMT treated C. sativus seedlings encouraged uptake of essential plant nutrients. Furthermore, conjugated increase of indole acetic acid contents and ethylene production rate were observed in 2-OHMT treated seedlings in a dose-dependent manner. The improved nutritional content in 2-OHMT applied seedlings was ascribed to enhanced expression of H+-ATPase regulating genes besides increased amount of non-enzymatic antioxidants in Cd-stressed plants. The present novel study elucidates the potential of 2-OHMT in improving nutritional content in cucumber plants by modulation of non-enzymatic antioxidants and gene expression.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
35
|
Sáenz-de la O D, Cedillo-Jimenez CA, García-Ortega LF, Martínez-Reséndiz M, Arné-Robles D, Cruz-Hernandez A, Guevara-Gonzalez RG. Response of transgenic tobacco overexpressing the CchGLP gene to cadmium and aluminium: phenotypic and microRNAs expression changes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:3-13. [PMID: 32158116 PMCID: PMC7036401 DOI: 10.1007/s12298-019-00716-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 05/24/2023]
Abstract
Transgenic tobacco (N. tabacum cv. Xanthi nc) expressing Capsicum chinense CchGLP gene that encodes an Mn-SOD, constitutively produces hydrogen peroxide that increase endogenous ROS levels. Previous studies using these plants against geminivirus infections as well as drought stress confirmed that CchGLP expression conferred resistance against biotic and abiotic stresses. Cadmium (Cd) and Aluminium (Al) contamination in soils are a major ecological concern since they are two of the most widespread toxic elements in terrestrial environments. Trying to explore additional possible tolerance to another stresses in these plants, the aim of this work was to analyse the response to cadmium and aluminium salts during germination and early stages of plantlet development and a differential transcriptome of microRNAs (miRNAs) expression in expressing CchGLP transgenic lines and an azygote non-CchGLP expressing line. Plants were grown in vitro with addition of CdCl2 and AlCl3 at three different concentrations: 100, 300 and 500 μM and 50, 150 and 300 μM, respectively. The results showed higher tolerance to Cd and Al salts evaluated in two CchGLP-expressing transgenic lines L8 and L26 in comparison with the azygous non-CchGLP expressing line L1. Interestingly, L8 under Al stress presented vigorous roots and development of radicular hairs in comparison with azygous control (L1). Differentially expressed miRNAs in the comparison between L8 and L1 were associated with up and down-regulation of target genes related with structural molecule activity and ribosome constituents, as well as down-regulation in proton-transporting V-type ATPase (Vacuolar ATPase or V-ATPase). Moreover, KEGG analysis of the target genes for the differentially expressed miRNAs, led to identification of genes related with metabolic pathways and biosynthesis of secondary metabolites. One possible explanation of the tolerance to Cd and Al displayed in the transgenic tobaccos evaluated, might involve the fact that several down-regulated miRNAs, were found associated with target genes expressing V-ATPase. Specifically, miR7904-5p was down regulated and related with the up-regulation of one V-ATPase. The expression levels of these genes was confirmed by qRT-PCR assays, thus suggesting that a cation transport activity driven by the V-ATPases-dependent proton motive force, might significantly contribute as one mechanism for Cd and Al detoxification by vacuolar compartmentation in these transgenic tobacco plants.
Collapse
Affiliation(s)
- Diana Sáenz-de la O
- Biosystems Engineering Group, School of Engineering, Autonomous University of Queretaro, 76010 Querétaro, Mexico
| | | | - Luis F. García-Ortega
- Present Address: Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), 36821 Irapuato, Guanajuato, Mexico
| | - Mariela Martínez-Reséndiz
- Biosystems Engineering Group, School of Engineering, Autonomous University of Queretaro, 76010 Querétaro, Mexico
| | - Diego Arné-Robles
- Biosystems Engineering Group, School of Engineering, Autonomous University of Queretaro, 76010 Querétaro, Mexico
| | | | | |
Collapse
|
36
|
He M, Ding NZ. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:562785. [PMID: 33013981 PMCID: PMC7500430 DOI: 10.3389/fpls.2020.562785] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 05/21/2023]
Abstract
Land plants are exposed to not only biotic stresses such as pathogen infection and herbivore wounding, but abiotic stresses such as cold, heat, drought, and salt. Elaborate strategies have been developed to avoid or abide the adverse effects, with unsaturated fatty acids (UFAs) emerging as general defenders. In higher plants, the most common UFAs are three 18-carbon species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds act as ingredients and modulators of cellular membranes in glycerolipids, reserve of carbon and energy in triacylglycerol, stocks of extracellular barrier constituents (e.g., cutin and suberin), precursors of various bioactive molecules (e.g., jasmonates and nitroalkenes), and regulators of stress signaling. Nevertheless, they are also potential inducers of oxidative stress. In this review, we will present an overview of these roles and then shed light on genetic engineering of FA synthetic genes for improving plant/crop stress tolerance.
Collapse
|
37
|
Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MDF, Khan MS. Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv 2020; 10:38379-38403. [PMID: 35693041 PMCID: PMC9121104 DOI: 10.1039/d0ra05610c] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. Due to these problems, soil biologists/agronomists in recent times have also raised concerns over heavy metal pollution, which indeed are unpleasantly affecting agro-ecosystems and crop production. The toxic heavy metals once deposited beyond certain permissible limits, obnoxiously affect the density, composition and physiological activities of microbiota, dynamics and fertility of soil leading eventually to reduction in wheat production and via food chain, human and animal health. Therefore, the metal induced phytotoxicity problems warrant urgent and immediate attention so that the physiological activities of microbes, nutrient pool of soils and concurrently the production of wheat are preserved and maintained in a constantly deteriorating environment. To mitigate the magnitude of metal induced changes, certain microorganisms have been identified, especially those belonging to the plant growth promoting rhizobacteria (PGPR) group endowed with the distinctive property of heavy metal tolerance and exhibiting unique plant growth promoting potentials. When applied, such metal-tolerant PGPR have shown variable positive impact on wheat production, even in soils contaminated with metals, by supplying macro and micro nutrients and secreting active biomolecules like EPS, melanins and metallothionein (MTs). Despite some reports here and there, the phytotoxicity of metals to wheat and how wheat production in metal-stressed soil can be enhanced is poorly explained. Thus, an attempt is made in this review to better understand the mechanistic basis of metal toxicity to wheat, and how such phytotoxicity can be mitigated by incorporating microbiological remediation strategies in wheat cultivation practices. The information provided here is likely to benefit wheat growers and consequently optimize wheat production inexpensively under stressed soils. Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety.![]()
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Almas Zaidi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Fuad Ameen
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Bilal Ahmed
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Muneera D. F. AlKahtani
- Department of Biology
- College of Science
- Princess Nourah Bint Abdulrahman University
- Riyadh
- Saudi Arabia
| | - Mohd. Saghir Khan
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
38
|
Dong X, Yang F, Yang S, Yan C. Subcellular distribution and tolerance of cadmium in Canna indica L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109692. [PMID: 31585391 DOI: 10.1016/j.ecoenv.2019.109692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Canna indica L. is a promising species for heavy metal phytoremediation due to its fast growth rate and large biomass. However, few studies have investigated cadmium (Cd) tolerance mechanisms. In the present study, Canna plants were cultivated under hydroponic conditions with increasing Cd concentrations (0, 5, 10, 15 mg/L). We found that the plants performed well under 5 mg/L Cd2+ stress, but damage was observed under higher Cd exposure, such as leaf chlorosis, growth inhibition, a decreased chlorophyll content, and destruction of the ultrastructure of leaf cells. Additionally, Canna alleviated Cd toxicity to a certain extent. After Canna was exposed to 5, 10 and 15 mg/L Cd2+ for 45 d, the highest Cd concentration was exhibited in roots, which was almost 17-47 times the Cd concentration in leaves and 8-20 times that in stems. At the subcellular level, cellular debris and heat-stable proteins (HSPs) were the main binding sites for Cd, and the proportion of Cd in the two subcellular fractions accounted for 71.4-94.2% of the total Cd. Furthermore, we found that granules could participate in the detoxification process when Cd stress was enhanced. Our results indicated that Canna indica L. can tolerate Cd toxicity by sequestering heavy metals in root tissues, fencing out by cell wall, and binding with biologically detoxified fractions (granules and HSPs).
Collapse
Affiliation(s)
- Xiaoxia Dong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; China Everbright International Limited, 26/F, Block A, Orientel Xintiandi Plaza, No.1003, Shennan Avenue, Futian District, Shenzhen, China
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuping Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
39
|
Javed MT, Habib N, Akram MS, Ali Q, Haider MZ, Tanwir K, Shauket A, Chaudhary HJ. The effect of lead pollution on nutrient solution pH and concomitant changes in plant physiology of two contrasting Solanum melongena L. cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34633-34644. [PMID: 31654306 DOI: 10.1007/s11356-019-06575-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is highly toxic to plants because it severely affects physiological processes by altering nutrient solution pH. The current study elucidated Pb-induced changes in nutrient solution pH and its effect on physiology of two Solanum melongena L. cultivars (cv. Chuttu and cv. VRIB-13). Plants were grown in black plastic containers having 0, 15, 20, and 25 mg L-1 PbCl2 in nutrient solutions with starting pH of 6.0. pH changes by roots of S. melongena were continuously monitored for 8 days, and harvested plants were analyzed for physiological and biochemical attributes. Time scale studies revealed that cv. Chuttu and cv. VRIB-13 responded to Pb stress by causing acidification and alkalinization of growth medium during the first 48 h, respectively. Both cultivars increased nutrient solution pH, and maximum pH rise of 1.21 units was culminated by cv. VRIB-13 at 15 mg L-1 Pb and 0.8 units by cv. Chuttu at 25 mg L-1 Pb treatment during the 8-day period. Plant biomass, photosynthetic pigments, ascorbic acid, total amino acid, and total protein contents were significantly reduced by Pb stress predominantly in cv. Chuttu than cv. VRIB-13. Interestingly, chlorophyll contents of cv. VRIB-13 increased with increasing Pb levels. Pb contents of roots and shoots of both cultivars increased with applied Pb levels while nutrient (Ca, Mg, K, and Fe) contents decreased predominately in cv. Chuttu. Negative correlations were identified among Pb contents of eggplant roots and shoots and plant biomasses, leaf area, and free anthocyanin. Taken together, growth medium alkalinization, lower root to shoot Pb translocation, and optimum balance of nutrients (Mg and Fe) conferred growth enhancement, ultimately making cv. VRIB-13 auspicious for tolerating Pb toxicity as compared with cv. Chuttu. The research outcomes are important for devising metallicolous plant-associated strategies based on plant pH modulation response and associated metal uptake to remediate Pb-polluted soil.
Collapse
Affiliation(s)
- Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Noman Habib
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sohail Akram
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Qasim Ali
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Zulqurnain Haider
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Asia Shauket
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | | |
Collapse
|
40
|
Wang M, Chen S, Chen L, Wang D. Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1609-1621. [PMID: 31284203 DOI: 10.1016/j.envpol.2019.06.082] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 05/25/2023]
Abstract
Land degradation by salinization and sodification changes soil function, destroys soil health, and promotes bioaccumulation of heavy metals in plants, but little is known about their fundamental mechanisms in shaping microbial communities and regulating microbial interactions. In this study, we explored the impact of saline-alkaline (SA) stress on soil bacterial and fungal community structures in different Cd-contaminated soils of Dezhou, Baoding, Xinxiang, Beijing and Shenyang cities from the North China Plain, China. Increased soil salinity and alkalinity enhanced Cd availability, indicated by significant increases in available Cd2+ in soil solution of 34.1%-49.7%, soil extractable Cd of 32.0-51.6% and wheat root Cd concentration of 24.5%-40.2%, as well as decreased activities of antioxidative enzymes of wheat root when compared with CK (no extra neutral or alkaline salts added). Soil bacteria were more active in response to the SA stress than fungi, as the significant structural reorganization of soil bacterial microbiota rather than fungal microbiota between SA and CK treatments was illustrated by principal component analysis. Adding neutral and alkaline salts enriched oligotrophic and haloalkaliphilic taxa in the Sphingobacteriaceae, Cellvibrionaceae, and Caulobacteraceae bacterial families, but decreased some Acidobacteria such as subgroup 6_norank, which was a sensitive biomarker that responded only to Cd contamination in CK-treated soils. Conversely, fungi were more sensitive to soil differences than bacteria: the composition of the fungal community was significantly different among different soil types. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the microbial community structure and network interactions were altered to strengthen the adaptability of microorganisms to SA stress; the changes in structure and network interactions were proposed to contribute to competitive interactions. Most of the keystone genera identified in SA-treated soils, such as Blastococcus, Gemmatimonas, RB41, or Candida, had relatively low abundances (<1%), indicating their disproportionate ecological roles in triggering resistance or tolerance to SA stress and Cd toxicity.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Li Chen
- Institute of Plant Protection and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, PR China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
41
|
Sytykiewicz H, Łukasik I, Goławska S, Chrzanowski G. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize ( Zea mays L.) Seedlings. Int J Mol Sci 2019; 20:ijms20153742. [PMID: 31370193 PMCID: PMC6696134 DOI: 10.3390/ijms20153742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Złota Karłowa and Waza cvs—susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2′-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland.
| | - Iwona Łukasik
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland
| | - Sylwia Goławska
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland
| | - Grzegorz Chrzanowski
- Department of Molecular Biotechnology, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszow, Poland
| |
Collapse
|
42
|
Wang M, Duan S, Zhou Z, Chen S, Wang D. Foliar spraying of melatonin confers cadmium tolerance in Nicotiana tabacum L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:68-76. [PMID: 30529622 DOI: 10.1016/j.ecoenv.2018.11.127] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 05/23/2023]
Abstract
Melatonin is a multifunctional signaling molecule that regulates broad aspects of responses to environmental stresses in plants. Cadmium (Cd) is a persistent soil contaminant that is toxic to all living organisms. Recent reports have uncovered the protective role of melatonin in alleviating Cd phytotoxicity, but little is known about its regulatory mechanisms in plants. In this study, we found that foliar application of melatonin (in particular 100 μmol L-1) remarkably enhanced Cd tolerance of tobacco (Nicotiana tabacum L.) leaves, as evidenced by less Cd accumulation and alleviation of growth inhibition and photoinhibition, compared with nontreated Cd-stressed plants. The addition of melatonin also controlled oxidative damage of Cd on tobacco through direct scavenging and by enhancing the activities of antioxidative enzymes. Melatonin application promoted Cd sequestration in the cell wall and vacuoles based on the analysis of subcellular distribution of Cd in tobacco cells. Structural equation modeling (SEM) analysis revealed that melatonin-induced Cd tolerance in tobacco leaves was modulated by the expression of Cd-transport genes. Molecular evidence illustrated that modulation of IRT1, Nramp1, HMA2, HMA4, and HMA3 genes caused by melatonin could be responsible for weakening Cd uptake, Cd transportation to xylem, and intensifying Cd sequestration into the root vacuoles.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shuhui Duan
- Hunan Tobacco Science Institute, Changsha 410010, PR China
| | - Zhicheng Zhou
- Hunan Tobacco Science Institute, Changsha 410010, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian 361102, PR China
| |
Collapse
|
43
|
Rudnicka M, Ludynia M, Karcz W. Effects of Naphthazarin (DHNQ) Combined with Lawsone (NQ-2-OH) or 1,4-Naphthoquinone (NQ) on the Auxin-Induced Growth of Zea mays L. Coleoptile Segments. Int J Mol Sci 2019; 20:E1788. [PMID: 30978914 PMCID: PMC6479706 DOI: 10.3390/ijms20071788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022] Open
Abstract
Naphthoquinones, plants secondary metabolites are known for their antibacterial, antifungal, anti-inflammatory, anti-cancer and anti-parasitic properties. The biological activity of naphthoquinones is connected with their ability to generate reactive oxygen species and to modify biological molecules at their nucleophilic sites. In our research, the effect of naphthazarin (DHNQ) combined with 2-hydroxy-1,4-naphthoquinone (NQ-2-OH) or 1,4-naphthoquinone (1,4-NQ) on the elongation growth, pH changes of the incubation medium, oxidative stress and redox activity of maize coleoptile cells were investigated. This paper describes experiments performed with maize (Zea mays L.) coleoptile segments, which is a classical model system to study plant cell elongation growth. The data presented clearly demonstrate that lawsone and 1,4-naphthoquinone combined with naphthazarin, at low concentrations (1 and 10 nM), reduced the endogenous and IAA-induced (Indole-3-Acetic Acid) elongation growth of maize coleoptile segments. Those changes in growth correlated with the proton concentration in the incubation medium, which suggests that the changes in the growth of maize coleoptile segments observed in the presence of naphthoquinones are mediated through the activity of PM H⁺-ATPase. The presence of naphthoquinones induced oxidative stress in the maize coleoptile tissue by producing hydrogen peroxide and causing changes in the redox activity. Moreover, the incubation of maize segments with both naphthoquinones combined with naphthazarin resulted in lipid peroxidation and membrane damage. The regulation of PM H⁺-ATPase activity, especially its inhibition, may result from two major types of reaction: first, a direct interaction between an enzyme and naphthoquinone, which leads to the covalent modification of the protein thiols and the generation of thioethers, which have been found to alter the activity of the PM H⁺-ATPases; second, naphthoquinones induce reactive oxygen species (ROS) production, which inhibits PM H⁺-ATPases by increasing cytosolic Ca2+. This harmful effect was stronger when naphthazarin and 1,4-naphthoquinone were added together. Taking these results into account, it can be suggested that by combining naphthoquinones in small quantities, an alternative to synthetic pesticides could be developed.
Collapse
Affiliation(s)
- Małgorzata Rudnicka
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| | - Michał Ludynia
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| |
Collapse
|
44
|
Dwivedi AD, Yoon H, Singh JP, Chae KH, Rho SC, Hwang DS, Chang YS. Uptake, Distribution, and Transformation of Zerovalent Iron Nanoparticles in the Edible Plant Cucumis sativus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10057-10066. [PMID: 30078317 DOI: 10.1021/acs.est.8b01960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we investigated the fate of nanoscale zerovalent iron (nZVI) on the Cucumis sativus under both hydroponic and soil conditions. Seedlings were exposed to 0, 250, and 1000 mg/L (or mg/kg soil) nZVI during 6-9 weeks of a growth period. Ionic controls were prepared using Fe-EDTA. None of the nZVI treatments affected the plant biomass. On the basis of the total iron contents and the superparamagnetic property of nZVI-exposed roots, there was no evidence of pristine nZVI translocation from the roots to shoots. Electron microscopy revealed that the transformed iron nanoparticles are stored in the root cell membrane and the vacuoles of the leaf parenchymal cells. X-ray absorption spectroscopy identified ferric citrate (41%) and iron (oxyhydr)oxides (59%) as the main transformed products in the roots. The shoot samples indicated a larger proportion of ferric citrate (60%) compared to iron (oxyhydr)oxides (40%). The 1.8-fold higher expression of the CsHA1 gene indicated that the plant-promoted transformation of nZVI was driven by protons released from the root layers. The current data provide a basis for two potential nZVI transformation pathways in Cucumis sativus: (1) interaction with low molecular weight organic acid ligands and (2) dissolution-precipitation of the mineral products.
Collapse
Affiliation(s)
- Amarendra Dhar Dwivedi
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
- Division of Integrative Bioscience and Biotechnology , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Hakwon Yoon
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Jitendra Pal Singh
- Advanced Analysis Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Sang-Chul Rho
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
- Division of Integrative Bioscience and Biotechnology , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
- Division of Integrative Bioscience and Biotechnology , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| |
Collapse
|
45
|
Hippler FWR, Mattos-Jr D, Boaretto RM, Williams LE. Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:158-165. [PMID: 29933138 PMCID: PMC6090090 DOI: 10.1016/j.jplph.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 05/09/2023]
Abstract
Nitrate uptake by plants is mediated by specific transport proteins in roots (NRTs), which are also dependent on the activity of proton pumps that energize the reaction. Nitrogen (N) metabolism in plants is sensitive to copper (Cu) toxicity conditions. To understand how Cu affects the uptake and assimilation processes, this study assesses the inhibitory effects of elevated Cu levels on the expression of genes related to N absorption, transport and assimilation in roots of Arabidopsis. Plants were grown hydroponically for 45 days, being exposed to a range of Cu concentrations in the last 72 h or alternatively exposed to 5.0 μM Cu for the last 15 days. High Cu levels decreased the uptake and accumulation of N in plants. It down-regulated the expression of genes encoding nitrate reductase (NR1), low-affinity nitrate transporters (NRT1 family) and bZIP transcription factors (TGA1 and TGA4) that regulate the expression of nitrate transporters. Cu toxicity also specifically down-regulated the plasma membrane proton pump, AHA2, whilst having little effect on AHA1 and AHA5. In contrast, there was an up-regulation of high-affinity nitrate transporters from the NRT2 family when exposed to medium level of Cu excess, but this was insufficient for restoring N absorption by roots to control levels. These results demonstrate that plants display specific responses to Cu toxicity, modulating the expression of particular genes related to nitrate uptake, such as low-affinity nitrate transporters and proton pumps.
Collapse
Affiliation(s)
- Franz W R Hippler
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, CEP 13490-970, Cordeirópolis, SP, Brazil; University of Southampton, Biological Sciences, Building 85, Highfield, Southampton SO17 1BJ, United Kingdom.
| | - Dirceu Mattos-Jr
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, CEP 13490-970, Cordeirópolis, SP, Brazil
| | - Rodrigo M Boaretto
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, CEP 13490-970, Cordeirópolis, SP, Brazil
| | - Lorraine E Williams
- University of Southampton, Biological Sciences, Building 85, Highfield, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
46
|
Liu S, Yang R, Tripathi DK, Li X, Jiang M, Lv B, Ma M, Chen Q. Signalling cross-talk between nitric oxide and active oxygen in Trifolium repens L. plants responses to cadmium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:53-68. [PMID: 29649760 DOI: 10.1016/j.envpol.2018.03.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The significant influence of •NO on the stress response is well established; however, the precise metabolic pathways of •NO and RNS under metal stresses remain unclear. Here, the key components of ROS and RNS metabolism under Cd stress were investigated with multi-level approaches using high-quality forage white clover (Trifolium repens L.) plants. For the studied plants, Cd disturbed the redox homeostasis, affected the absorption of minerals, and exacerbated the degree of lipid peroxidation, thus triggering oxidative stress. However, •NO was also involved in regulating mineral absorption, ROS-scavenger levels and mRNA expression in Cd-treated white clover plants. In addition, GSNOR activity was up-regulated by Cd with the simultaneous depletion of •NO generation and GSNO but was counteracted by the •NO donor sodium nitroprusside. Response to Cd-stressed SNOs was involved in generating ONOO- and NO2-Tyr in accordance with the regulation of •NO-mediated post-translational modifications in the ASC-GSH cycle, selected amino acids and NADPH-generating dehydrogenases, thereby provoking nitrosative stress. Taken together, our data provide comprehensive metabolite evidence that clearly confirms the relationships between ROS and RNS in Cd-stressed plants, supporting their regulatory roles in response to nitro-oxidative stress and providing an in-depth understanding of the interaction between two families subjected to metal stresses.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Durgesh Kumar Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bingyang Lv
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingdong Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
47
|
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for Crop Improvement: An Update Review. FRONTIERS IN PLANT SCIENCE 2018; 9:985. [PMID: 30065734 PMCID: PMC6056666 DOI: 10.3389/fpls.2018.00985] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 05/06/2023]
Abstract
The availability of genome sequences for several crops and advances in genome editing approaches has opened up possibilities to breed for almost any given desirable trait. Advancements in genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has made it possible for molecular biologists to more precisely target any gene of interest. However, these methodologies are expensive and time-consuming as they involve complicated steps that require protein engineering. Unlike first-generation genome editing tools, CRISPR/Cas9 genome editing involves simple designing and cloning methods, with the same Cas9 being potentially available for use with different guide RNAs targeting multiple sites in the genome. After proof-of-concept demonstrations in crop plants involving the primary CRISPR-Cas9 module, several modified Cas9 cassettes have been utilized in crop plants for improving target specificity and reducing off-target cleavage (e.g., Nmcas9, Sacas9, and Stcas9). Further, the availability of Cas9 enzymes from additional bacterial species has made available options to enhance specificity and efficiency of gene editing methodologies. This review summarizes the options available to plant biotechnologists to bring about crop improvement using CRISPR/Cas9 based genome editing tools and also presents studies where CRISPR/Cas9 has been used for enhancing biotic and abiotic stress tolerance. Application of these techniques will result in the development of non-genetically modified (Non-GMO) crops with the desired trait that can contribute to increased yield potential under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | | | | | | | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
48
|
Oxidative stress induced by Cu nutritional disorders in Citrus depends on nitrogen and calcium availability. Sci Rep 2018; 8:1641. [PMID: 29374264 PMCID: PMC5786063 DOI: 10.1038/s41598-018-19735-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022] Open
Abstract
Nutritional stress caused by copper (Cu) deficiency or toxicity affects fruit production of citrus orchards worldwide, but this could be minimised by fine-tuned fertilisation in the orchards. Two experiments were performed aiming to evaluate the photosynthetic capacity and the antioxidant enzyme activities of Swingle citrumelo seedlings, grown in nutrient solution (NS) with two levels of nitrogen (N) in the first experiment (adequate-N and high-N) and two levels of calcium (Ca) in the second (low-Ca and adequate-Ca). Plants were then exposed to various Cu levels (low, medium and high) for 15 days. Plants under Cu-toxicity exhibited specific effects on reactive oxygen species formation and root-to-shoot plant signalling. Copper absorption was greater with increased Cu concentration in the NS, which reduced plant biomass accumulation, gas exchange measurements, the activity of nitrate reductase and affected Cu partitioning between roots and shoots. Despite these effects, oxidative stress induced by excess-Cu was reduced at the highest N dose when compared to control and, on the contrary, increased with low-Ca supply. Therefore, a rational supply of N or Ca minimises Cu-induced stress damages to roots and leaves of plants, by directly enhancing the antioxidant system and protecting the associated antioxidative enzyme activities, whilst maintaining photosynthesis.
Collapse
|
49
|
Javed MT, Akram MS, Habib N, Tanwir K, Ali Q, Niazi NK, Gul H, Iqbal N. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2958-2971. [PMID: 29147985 DOI: 10.1007/s11356-017-0735-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Lead (Pb) stress adversely affects in planta nutrient homeostasis and metabolism when present at elevated concentration in the surrounding media. The present study was aimed at investigation of organic acid exudations, elemental contents, growth, and lipid peroxidation in two wild plants (Amaranthus viridis L. and Portulaca oleracea L.), exhibiting differential root to shoot Pb translocation, under Pb stress. Plants were placed in soil spiked with lead chloride (PbCl2) concentrations of 0, 15, 30, 45, or 60 mg Pb/kg soil, in rhizoboxes supplied with nylon nets around the roots. The plant mucilage taken from root surfaces, mirroring the rhizospheric solution, was analyzed for various organic acids. Lead stress resulted in a release of basified root exudates from both plants. Exudates of P. oleracea roots showed a higher pH. In both plants, the pH rising effect was diminished at the highest Pb treatment level. The exudation of citric acid, glutamic acid (in both plants), and fumaric acid (in P. oleracea only) was significantly increased with applied Pb levels. In both plant species, root and shoot Pb contents increased while nutrients (Ca, Mg, and K) decreased with increasing Pb treatment levels, predominantly in A. viridis. At 60 mg Pb/kg soil, shoot Na content of A. viridis was significantly higher as compared to untreated control. Higher Pb treatment levels decreased plant fresh and dry masses as well as the quantity of photosynthetic pigments due to enhanced levels of plant H2O2 and thiobarbituric acid reactive substances in both species. Photosynthetic, growth, and oxidative stress parameters were grouped into three distinct dendrogram sections depending on their similarities under Pb stress. A positive correlation was identified between Pb contents of studied plants and secretion of different organic acids. It is concluded that Pb stress significantly impaired the growth of A. viridis and P. oleracea as a result of nutritional ion imbalance, and the response was cultivar-specific and dependent on exogenous applied Pb levels. Differential lipid oxidation, uptake of nutrients (Ca, Mg, and K) and exudation of citric acid, fumaric acid, and glutamic acid could serve as suitable physiological indicators for adaptations of P. oleracea to Pb enriched environment. The findings may help in devising strategies for Pb stabilization to soil colloids.
Collapse
Affiliation(s)
- Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Sohail Akram
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Noman Habib
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Qasim Ali
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- MARUM and Department of Geosciences, University of Bremen, 28359, Bremen, Germany
| | - Huma Gul
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Naeem Iqbal
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
50
|
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for Crop Improvement: An Update Review. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30065734 DOI: 10.3389/fpls.2018.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The availability of genome sequences for several crops and advances in genome editing approaches has opened up possibilities to breed for almost any given desirable trait. Advancements in genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has made it possible for molecular biologists to more precisely target any gene of interest. However, these methodologies are expensive and time-consuming as they involve complicated steps that require protein engineering. Unlike first-generation genome editing tools, CRISPR/Cas9 genome editing involves simple designing and cloning methods, with the same Cas9 being potentially available for use with different guide RNAs targeting multiple sites in the genome. After proof-of-concept demonstrations in crop plants involving the primary CRISPR-Cas9 module, several modified Cas9 cassettes have been utilized in crop plants for improving target specificity and reducing off-target cleavage (e.g., Nmcas9, Sacas9, and Stcas9). Further, the availability of Cas9 enzymes from additional bacterial species has made available options to enhance specificity and efficiency of gene editing methodologies. This review summarizes the options available to plant biotechnologists to bring about crop improvement using CRISPR/Cas9 based genome editing tools and also presents studies where CRISPR/Cas9 has been used for enhancing biotic and abiotic stress tolerance. Application of these techniques will result in the development of non-genetically modified (Non-GMO) crops with the desired trait that can contribute to increased yield potential under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Karthikeyan Ramasamy
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|