1
|
Dong CM, Rolón BA, Sullivan JK, Tataru D, Deleon M, Dennis R, Dutton S, Machado Perez FJ, Montano L, Ferris KG. Short-term fluctuating and long-term divergent selection on sympatric Monkeyflowers: insights from decade-spanning reciprocal transplants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600870. [PMID: 38979251 PMCID: PMC11230446 DOI: 10.1101/2024.06.26.600870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sympatric species are often locally adapted to distinct microhabitats. However, temporal variation may cause local maladaptation and species boundary breakdown, especially during extreme climatic events leading to episodic selection. Repeated reciprocal transplants can reveal the interplay between short and long-term patterns of natural selection. To examine evolutionary trajectories of sympatric Monkeyflowers adapted to different niches, Mimulus guttatus and M. laciniatus, we performed three replicated transplants and combined them with previous experiments to leverage a dataset of five transplants spanning 10 years. We performed phenotypic selection analyses on parents and hybrids in parental habitats in Yosemite NP, CA during years of drastically differing snowpack. If there is ecological isolation, then we predicted divergent phenotypic selection between habitats in line with species' differences and local adaptation. We found interannual fluctuations in phenotypic selection, often in unpredicted directions. However, a combined-year analysis detected longer-term divergent selection on flowering time, a key temporally isolating and adaptative trait, suggesting that selection may reinforce species boundaries despite short-term fluctuations. Finally, we found temporal variation in local adaptation with M. laciniatus locally adapted in low snowpack years, while an extremely high snowpack year contributed to average local maladaptation of M. guttatus.
Collapse
Affiliation(s)
- Caroline M Dong
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
- Grinnell College, Department of Biology, Grinnell, IA
| | - Bolívar Aponte Rolón
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Juj K Sullivan
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Diana Tataru
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Max Deleon
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Rachael Dennis
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Spencer Dutton
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Fidel J Machado Perez
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
- University of California Merced, Life and Environmental Sciences Department, Merced, CA
| | - Lissette Montano
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Kathleen G Ferris
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| |
Collapse
|
2
|
Sinjushin A, Ploshinskaya M, Sytin A. Reproductive Morphology and Success in Annual versus Perennial Legumes: Evidence from Astragalus and the Fabeae (Papilionoideae). PLANTS (BASEL, SWITZERLAND) 2024; 13:2380. [PMID: 39273864 PMCID: PMC11397103 DOI: 10.3390/plants13172380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
The third largest angiosperm family, Leguminosae, displays a broad range of reproductive strategies and has an exceptional practical value. Whereas annual legume species are mostly planted as crops, there is a significant interest in breeding and cultivating perennials. It is therefore of importance to compare reproductive traits, their interactions and the resulting productivity between related annual and perennial species. Two highly variable taxa were chosen for this purpose, the Fabeae tribe, including numerous temperate crops, and the largest angiosperm 'megagenus' Astragalus. A dataset of quantitative reproductive traits was composed of both originally obtained and previously published data. As a result of statistical analysis, we found that perennials in both groups tend to produce more flowers per axillary racemose inflorescence as well as more ovules per carpel. Perennial Astragalus also have larger flowers. Only a part of the developing flowers and ovules gives rise to mature pods and seeds. This difference is especially pronounced in small populations of rare and threatened perennials. Numerous reasons underlie the gap between potential and real productivity, which may be potentially bridged in optimal growing conditions.
Collapse
Affiliation(s)
- Andrey Sinjushin
- Legumes Department, Institute of Field and Vegetable Crops, 21101 Novi Sad, Serbia
| | - Maria Ploshinskaya
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Andrey Sytin
- Herbarium of Higher Plants, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| |
Collapse
|
3
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
4
|
Guan Y, Zhang Q, Li M, Zhai J, Wu S, Ahmad S, Lan S, Peng D, Liu ZJ. Genome-Wide Identification and Expression Pattern Analysis of TIFY Family Genes Reveal Their Potential Roles in Phalaenopsis aphrodite Flower Opening. Int J Mol Sci 2024; 25:5422. [PMID: 38791460 PMCID: PMC11121579 DOI: 10.3390/ijms25105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The TIFY gene family (formerly known as the zinc finger proteins expressed in inflorescence meristem (ZIM) family) not only functions in plant defense responses but also are widely involved in regulating plant growth and development. However, the identification and functional analysis of TIFY proteins remain unexplored in Orchidaceae. Here, we identified 19 putative TIFY genes in the Phalaenopsis aphrodite genome. The phylogenetic tree classified them into four subfamilies: 14 members from JAZ, 3 members from ZML, and 1 each from PPD and TIFY. Sequence analysis revealed that all Phalaenopsis TIFY proteins contained a TIFY domain. Exon-intron analysis showed that the intron number and length of Phalaenopsis TIFY genes varied, whereas the same subfamily and subgroup genes had similar exon or intron numbers and distributions. The most abundant cis-elements in the promoter regions of the 19 TIFY genes were associated with light responsiveness, followed by MeJA and ABA, indicating their potential regulation by light and phytohormones. The 13 candidate TIFY genes screened from the transcriptome data exhibited two types of expression trends, suggesting their different roles in cell proliferation and cell expansion of floral organ growth during Phalaenopsis flower opening. Overall, this study serves as a background for investigating the underlying roles of TIFY genes in floral organ growth in Phalaenopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China; (Y.G.); (Q.Z.); (M.L.); (J.Z.); (S.W.); (S.A.); (S.L.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China; (Y.G.); (Q.Z.); (M.L.); (J.Z.); (S.W.); (S.A.); (S.L.)
| |
Collapse
|
5
|
Wang Y, Qin M, Zhang G, Lu J, Zhang C, Ma N, Sun X, Gao J. Transcription factor RhRAP2.4L orchestrates cell proliferation and expansion to control petal size in rose. PLANT PHYSIOLOGY 2024; 194:2338-2353. [PMID: 38084893 DOI: 10.1093/plphys/kiad657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 04/02/2024]
Abstract
Maintaining proper flower size is vital for plant reproduction and adaption to the environment. Petal size is determined by spatiotemporally regulated cell proliferation and expansion. However, the mechanisms underlying the orchestration of cell proliferation and expansion during petal growth remains elusive. Here, we determined that the transition from cell proliferation to expansion involves a series of distinct and overlapping processes during rose (Rosa hybrida) petal growth. Changes in cytokinin content were associated with the transition from cell proliferation to expansion during petal growth. RNA sequencing identified the AP2/ERF transcription factor gene RELATED TO AP2 4-LIKE (RhRAP2.4L), whose expression pattern positively associated with cytokinin levels during rose petal development. Silencing RhRAP2.4L promoted the transition from cell proliferation to expansion and decreased petal size. RhRAP2.4L regulates cell proliferation by directly repressing the expression of KIP RELATED PROTEIN 2 (RhKRP2), encoding a cell cycle inhibitor. In addition, we also identified BIG PETALub (RhBPEub) as another direct target gene of RhRAP2.4L. Silencing RhBPEub decreased cell size, leading to reduced petal size. Furthermore, the cytokinin signaling protein ARABIDOPSIS RESPONSE REGULATOR 14 (RhARR14) activated RhRAP2.4L expression to inhibit the transition from cell proliferation to expansion, thereby regulating petal size. Our results demonstrate that RhRAP2.4L performs dual functions in orchestrating cell proliferation and expansion during petal growth.
Collapse
Affiliation(s)
- Yaru Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Meizhu Qin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guifang Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingyun Lu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chengkun Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Wu X, Li J, Wen X, Zhang Q, Dai S. Genome-wide identification of the TCP gene family in Chrysanthemum lavandulifolium and its homologs expression patterns during flower development in different Chrysanthemum species. FRONTIERS IN PLANT SCIENCE 2023; 14:1276123. [PMID: 37841609 PMCID: PMC10570465 DOI: 10.3389/fpls.2023.1276123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
TCP proteins, part of the transcription factors specific to plants, are recognized for their involvement in various aspects of plant growth and development. Nevertheless, a thorough investigation of TCPs in Chrysanthemum lavandulifolium, a prominent ancestral species of cultivated chrysanthemum and an excellent model material for investigating ray floret (RF) and disc floret (DF) development in Chrysanthemum, remains unexplored yet. Herein, a comprehensive study was performed to analyze the genome-wide distribution of TCPs in C. lavandulifolium. In total, 39 TCPs in C. lavandulifolium were identified, showing uneven distribution on 8 chromosomes. Phylogenetic and gene structural analyses revealed that ClTCPs were grouped into classes I and II. The class II genes were subdivided into two subclades, the CIN and CYC/TB1 subclades, with members of each clade having similar conserved motifs and gene structures. Four CIN subclade genes (ClTCP24, ClTCP25, ClTCP26, and ClTCP27) contained the potential miR319 target sites. Promoter analysis revealed that ClTCPs had numerous cis-regulatory elements associated with phytohormone responses, stress responses, and plant growth/development. The expression patterns of ClTCPs during capitulum development and in two different florets were determined using RNA-seq and qRT-PCR. The expression levels of TCPs varied in six development stages of capitula; 25 out of the 36 TCPs genes were specifically expressed in flowers. Additionally, we identified six key ClCYC2 genes, which belong to the class II TCP subclade, with markedly upregulated expression in RFs compared with DFs, and these genes exhibited similar expression patterns in the two florets of Chrysanthemum species. It is speculated that they may be responsible for RFs and DFs development. Subcellular localization and transactivation activity analyses of six candidate genes demonstrated that all of them were localized in the nucleus, while three exhibited self-activation activities. This research provided a better understanding of TCPs in C. lavandulifolium and laid a foundation for unraveling the mechanism by which important TCPs involved in the capitulum development.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Chen C, Hussain N, Ma Y, Zuo L, Jiang Y, Sun X, Gao J. The ARF2-MYB6 module mediates auxin-regulated petal expansion in rose. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4489-4502. [PMID: 37158672 DOI: 10.1093/jxb/erad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
In cut rose (Rosa hybrida), the flower-opening process is closely associated with vase life. Auxin induces the expression of transcription factor genes that function in petal growth via cell expansion. However, the molecular mechanisms underlying the auxin effect during flower opening are not well understood. Here, we identified the auxin-inducible transcription factor gene RhMYB6, whose expression level is high during the early stages of flower opening. Silencing of RhMYB6 delayed flower opening by controlling petal cell expansion through down-regulation of cell expansion-related genes. Furthermore, we demonstrated that the auxin response factor RhARF2 directly interacts with the promoter of RhMYB6 and represses its transcription. Silencing of RhARF2 resulted in larger petal size and delayed petal movement. We also showed that the expression of genes related to ethylene and petal movement showed substantial differences in RhARF2-silenced petals. Our results indicate that auxin-regulated RhARF2 is a critical player that controls flower opening by governing RhMYB6 expression and mediating the crosstalk between auxin and ethylene signaling.
Collapse
Affiliation(s)
- Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nisar Hussain
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Zúñiga-Mayo VM, Durán-Medina Y, Marsch-Martínez N, de Folter S. Hormones and Flower Development in Arabidopsis. Methods Mol Biol 2023; 2686:111-127. [PMID: 37540356 DOI: 10.1007/978-1-0716-3299-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Sexual reproduction requires the participation of two gametes, female and male. In angiosperms, gametes develop in specialized organs, pollen (containing the male gametes) develops in the stamens, and the ovule (containing the female gamete) develops in the gynoecium. In Arabidopsis thaliana, the female and male sexual organs are found within the same structure called flower, surrounded by the perianth, which is composed of petals and sepals. During flower development, different organs emerge in an established order and throughout their development distinct tissues within each organ are differentiated. All this requires the coordination and synchronization of several biological processes. To achieve this, hormones and genes work together. These components can interact at different levels generating hormonal interplay and both positive and negative feedback loops, which in turn, gives robustness, stability, and flexibility to flower development. Here, we summarize the progress made on elucidating the role of different hormonal pathways during flower development in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Victor M Zúñiga-Mayo
- CONACyT - Postgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados, Campus Montecillo, Montecillo, Estado de México, Mexico
| | - Yolanda Durán-Medina
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico.
| |
Collapse
|
9
|
Camelo-Júnior AE, Ferreira AWC, Andrade IM, Mayo SJ, Nollet F, Silva JL, Barros MC, Fraga E, Pessoa EM. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: a multidisciplinary approach. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2099478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Antonio E. Camelo-Júnior
- Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Universidade Estadual do Maranhão, Campus Caxias, 65.604-380, Caxias, Maranhão, Brazil
| | | | - Ivanilza M. Andrade
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus de Parnaíba, Universidade Federal do Delta do Piauí, Parnaíba, Piauí, Brazil
| | - Simon J. Mayo
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, Surrey, UK
| | - Felipe Nollet
- Departamento de Biologia, Programa de Pós-Graduação em Botânica, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, 52171–900, Pernambuco, Brazil
| | - José L. Silva
- Departamento de Ciências Biológicas, Universidade Federal da Paraíba Centro de Ciências Agrárias, Campus II, Areia, 58397-000, Paraíba, Brazil
| | - Maria C. Barros
- Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Universidade Estadual do Maranhão, Campus Caxias, 65.604-380, Caxias, Maranhão, Brazil
| | - Elmary Fraga
- Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Universidade Estadual do Maranhão, Campus Caxias, 65.604-380, Caxias, Maranhão, Brazil
| | - Edlley M. Pessoa
- Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Universidade Estadual do Maranhão, Campus Caxias, 65.604-380, Caxias, Maranhão, Brazil
- Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Cuiabá, 78060-900, Mato Grosso, Brazil
| |
Collapse
|
10
|
Temperature-mediated flower size plasticity in Arabidopsis. iScience 2022; 25:105411. [PMID: 36388994 PMCID: PMC9646949 DOI: 10.1016/j.isci.2022.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Organisms can rapidly mitigate the effects of environmental changes by changing their phenotypes, known as phenotypic plasticity. Yet, little is known about the temperature-mediated plasticity of traits that are directly linked to plant fitness such as flower size. We discovered substantial genetic variation in flower size plasticity to temperature both among selfing Arabidopsis thaliana and outcrossing A. arenosa individuals collected from a natural growth habitat. Genetic analysis using a panel of 290 A. thaliana accession and mutant lines revealed that MADS AFFECTING FLOWERING (MAF) 2-5 gene cluster, previously shown to regulate temperature-mediated flowering time, was associated to the flower size plasticity to temperature. Furthermore, our findings pointed that the control of plasticity differs from control of the trait itself. Altogether, our study advances the understanding of genetic and molecular factors underlying plasticity on fundamental fitness traits, such as flower size, in response to future climate scenarios.
Collapse
|
11
|
Boyd JN, Anderson JT, Brzyski J, Baskauf C, Cruse-Sanders J. Eco-evolutionary causes and consequences of rarity in plants: a meta-analysis. THE NEW PHYTOLOGIST 2022; 235:1272-1286. [PMID: 35460282 DOI: 10.1111/nph.18172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Species differ dramatically in their prevalence in the natural world, with many species characterized as rare due to restricted geographic distribution, low local abundance and/or habitat specialization. We investigated the ecoevolutionary causes and consequences of rarity with phylogenetically controlled metaanalyses of population genetic diversity, fitness and functional traits in rare and common congeneric plant species. Our syntheses included 252 rare species and 267 common congeners reported in 153 peer-reviewed articles published from 1978 to 2020 and one manuscript in press. Rare species have reduced population genetic diversity, depressed fitness and smaller reproductive structures than common congeners. Rare species also could suffer from inbreeding depression and reduced fertilization efficiency. By limiting their capacity to adapt and migrate, these characteristics could influence contemporary patterns of rarity and increase the susceptibility of rare species to rapid environmental change. We recommend that future studies present more nuanced data on the extent of rarity in focal species, expose rare and common species to ecologically relevant treatments, including reciprocal transplants, and conduct quantitative genetic and population genomic analyses across a greater array of systems. This research could elucidate the processes that contribute to rarity and generate robust predictions of extinction risks under global change.
Collapse
Affiliation(s)
- Jennifer Nagel Boyd
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN, 37403, USA
| | - Jill T Anderson
- Department of Genetics, University of Georgia, 120 Green Street, Athens, GA, 30602, USA
| | - Jessica Brzyski
- Department of Biology, Seton Hill University, 1 Seton Hill Drive, Greensburg, PA, 15601, USA
| | - Carol Baskauf
- Department of Biology, Austin Peay State University, PO Box 4718, Clarksville, TN, 37044, USA
| | - Jennifer Cruse-Sanders
- State Botanical Garden of Georgia, University of Georgia, 2450 S. Milledge Avenue, Athens, GA, 30605, USA
| |
Collapse
|
12
|
Chen H, Xiao Z, Ding B, Diggle PK, Yuan YW. Modular regulation of floral traits by a PRE1 homolog in Mimulus verbenaceus: implications for the role of pleiotropy in floral integration. HORTICULTURE RESEARCH 2022; 9:uhac168. [PMID: 36204206 PMCID: PMC9531339 DOI: 10.1093/hr/uhac168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Floral traits often show correlated variation within and among species. For species with fused petals, strong correlations among corolla tube, stamen, and pistil length are particularly prevalent, and these three traits are considered an intra-floral functional module. Pleiotropy has long been implicated in such modular integration of floral traits, but empirical evidence based on actual gene function is scarce. We tested the role of pleiotropy in the expression of intra-floral modularity in the monkeyflower species Mimulus verbenaceus by transgenic manipulation of a homolog of Arabidopsis PRE1. Downregulation of MvPRE1 by RNA interference resulted in simultaneous decreases in the lengths of corolla tube, petal lobe, stamen, and pistil, but little change in calyx and leaf lengths or organ width. Overexpression of MvPRE1 caused increased corolla tube and stamen lengths, with little effect on other floral traits. Our results suggest that genes like MvPRE1 can indeed regulate multiple floral traits in a functional module but meanwhile have little effect on other modules, and that pleiotropic effects of these genes may have played an important role in the evolution of floral integration and intra-floral modularity.
Collapse
Affiliation(s)
| | | | - Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
13
|
Zhao ML, Zhou ZF, Chen MS, Xu CJ, Xu ZF. An ortholog of the MADS-box gene SEPALLATA3 regulates stamen development in the woody plant Jatropha curcas. PLANTA 2022; 255:111. [PMID: 35478059 DOI: 10.1007/s00425-022-03886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of JcSEP3 causes defective stamen development in Jatropha curcas, in which brassinosteroid and gibberellin signaling pathways may be involved. SEPALLATAs (SEPs), the class E genes of the ABCE model, are required for floral organ determination. In this study, we investigated the role of the JcSEP3 gene in floral organ development in the woody plant Jatropha curcas. Transgenic Jatropha plants overexpressing JcSEP3 displayed abnormal phenotypes such as deficient anthers and pollen, as well as free stamen filaments, whereas JcSEP3-RNA interference (RNAi) transgenic plants had no obvious phenotypic changes, suggesting that JcSEP3 is redundant with other JcSEP genes in Jatropha. Moreover, we compared the transcriptomes of wild-type plants, JcSEP3-overexpressing, and JcSEP3-RNAi transgenic plants. In the JcSEP3-overexpressing transgenic plants, we discovered 25 upregulated genes involved in anther and pollen development, as well as 12 induced genes in brassinosteroid (BR) and gibberellin (GA) signaling pathways. These results suggest that JcSEP3 directly or indirectly regulates stamen development, concomitant with the regulation of BR and GA signaling pathways. Our findings help to understand the roles of SEP genes in stamen development in perennial woody plants.
Collapse
Affiliation(s)
- Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zhi-Fang Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| | - Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
14
|
Jiang R, Yuan W, Yao W, Jin X, Wang X, Wang Y. A regulatory GhBPE-GhPRGL module maintains ray petal length in Gerbera hybrida. MOLECULAR HORTICULTURE 2022; 2:9. [PMID: 37789358 PMCID: PMC10515009 DOI: 10.1186/s43897-022-00030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/08/2022] [Indexed: 10/05/2023]
Abstract
The molecular mechanism regulating petal length in flowers is not well understood. Here we used transient transformation assays to confirm that GhPRGL (proline-rich and GASA-like)-a GASA (gibberellic acid [GA] stimulated in Arabidopsis) family gene-promotes the elongation of ray petals in gerbera (Gerbera hybrida). Yeast one-hybrid screening assay identified a bHLH transcription factor of the jasmonic acid (JA) signaling pathway, here named GhBPE (BIGPETAL), which binds to the GhPRGL promoter and represses its expression, resulting in a phenotype of shortened ray petal length when GhBPE is overexpressed. Further, the joint response to JA and GA of GhBPE and GhPRGL, together with their complementary expression profiles in the early stage of petal growth, suggests a novel GhBPE-GhPRGL module that controls the size of ray petals. GhPRGL promotes ray petal elongation in its early stage especially, while GhBPE inhibits ray petal elongation particularly in the late stage by inhibiting the expression of GhPRGL. JA and GA operate in concert to regulate the expression of GhBPE and GhPRGL genes, providing a regulatory mechanism by which ray petals could grow to a fixed length in gerbera species.
Collapse
Affiliation(s)
- Rui Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Weichao Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xuefeng Jin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Xu Y, Xing Y, Wei T, Wang P, Liang Y, Xu M, Ding H, Wang J, Feng L. Transcription Factor RrANT1 of Rosa rugosa Positively Regulates Flower Organ Size in Petunia hybrida. Int J Mol Sci 2022; 23:ijms23031236. [PMID: 35163160 PMCID: PMC8835453 DOI: 10.3390/ijms23031236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
The flower is the main organ that produces essential oils in many plants. The yield of raw flowers and the number of secretory epidermal cells are the main factors for essential oil production. The cultivated rose species “Pingyin 1” in China was used to study the effect of RrANT1 on floral organ development. Eighteen AP2 transcription factors with dual AP2 domains were identified from Rosa rugosa genome. RrANT1 belonged to euANT. The subcellular localization results showed that RrANT1 protein is localized in the nucleus. The relative expression level of RrANT1 in the receptacle is higher than that in petals in the developmental stages, and both decreased from the initial phase to senescence. Compared with the RrANT1 expression level in petals in the blooming stage, RrANT1 expression level was significant in petals (~48.8) and highest in the receptacle (~102.5) in the large bud stage. It was only highly expressed in the receptacle (~39.4) in the blooming period. RrANT1 overexpression significantly increased petunia flower and leaf sizes (~1.2), as well as flower fresh weight (~30%). The total number of epidermis cells in the petals of overexpressing plants significantly increased (>40%). This study concluded that RrANT1 overexpression can increase the size and weight of flowers by promoting cell proliferation, providing a basis for creating new rose germplasm to increase rose and essential oil yield.
Collapse
|
16
|
Brown KE, Kelly JK. Genome-wide association mapping of transcriptome variation in Mimulus guttatus indicates differing patterns of selection on cis- versus trans-acting mutations. Genetics 2022; 220:iyab189. [PMID: 34791192 PMCID: PMC8733635 DOI: 10.1093/genetics/iyab189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
We measured the floral bud transcriptome of 151 fully sequenced lines of Mimulus guttatus from one natural population. Thousands of single nucleotide polymorphisms (SNPs) are implicated as transcription regulators, but there is a striking difference in the allele frequency spectrum of cis-acting and trans-acting mutations. Cis-SNPs have intermediate frequencies (consistent with balancing selection) while trans-SNPs exhibit a rare-alleles model (consistent with purifying selection). This pattern only becomes clear when transcript variation is normalized on a gene-to-gene basis. If a global normalization is applied, as is typically in RNAseq experiments, asymmetric transcript distributions combined with "rarity disequilibrium" produce a superabundance of false positives for trans-acting SNPs. To explore the cause of purifying selection on trans-acting mutations, we identified gene expression modules as sets of coexpressed genes. The extent to which trans-acting mutations influence modules is a strong predictor of allele frequency. Mutations altering expression of genes with high "connectedness" (those that are highly predictive of the representative module expression value) have the lowest allele frequency. The expression modules can also predict whole-plant traits such as flower size. We find that a substantial portion of the genetic (co)variance among traits can be described as an emergent property of genetic effects on expression modules.
Collapse
Affiliation(s)
- Keely E Brown
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
17
|
Strelin MM, Zattara EE, Ullrich K, Schallenberg-Rüdinger M, Rensing S. Delayed differentiation of epidermal cells walls can underlie pedomorphosis in plants: the case of pedomorphic petals in the hummingbird-pollinated Caiophora hibiscifolia (Loasaceae, subfam. Loasoideae) species. EvoDevo 2022; 13:1. [PMID: 34980236 PMCID: PMC8725396 DOI: 10.1186/s13227-021-00186-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/12/2021] [Indexed: 01/11/2023] Open
Abstract
Background Understanding the relationship between macroevolutionary diversity and variation in organism development is an important goal of evolutionary biology. Variation in the morphology of several plant and animal lineages is attributed to pedomorphosis, a case of heterochrony, where an ancestral juvenile shape is retained in an adult descendant. Pedomorphosis facilitated morphological adaptation in different plant lineages, but its cellular and molecular basis needs further exploration. Plant development differs from animal development in that cells are enclosed by cell walls and do not migrate. Moreover, in many plant lineages, the differentiated epidermis of leaves, and leaf-derived structures, such as petals, limits organ growth. We, therefore, proposed that pedomorphosis in leaves, and in leaf-derived structures, results from delayed differentiation of epidermal cells with respect to reproductive maturity. This idea was explored for petal evolution, given the importance of corolla morphology for angiosperm reproductive success. Results By comparing cell morphology and transcriptional profiles between 5 mm flower buds and mature flowers of an entomophile and an ornitophile Loasoideae species (a lineage that experienced transitions from bee- to hummingbird-pollination), we show that evolution of pedomorphic petals of the ornithophile species likely involved delayed differentiation of epidermal cells with respect to flower maturity. We also found that developmental mechanisms other than pedomorphosis might have contributed to evolution of corolla morphology. Conclusions Our results highlight a need for considering alternatives to the flower-centric perspective when studying the origin of variation in flower morphology, as this can be generated by developmental processes that are also shared with leaves. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00186-x.
Collapse
Affiliation(s)
- Marina M Strelin
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET - Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina.
| | - Eduardo E Zattara
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET - Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina
| | - Kristian Ullrich
- Department of Evolutionary Biology, August Thienemann Str. 2, 24306, Plön, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Stefan Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
18
|
Zhou T, Ning K, Zhang W, Chen H, Lu X, Zhang D, El-Kassaby YA, Bian J. Phenotypic variation of floral organs in flowering crabapples and its taxonomic significance. BMC PLANT BIOLOGY 2021; 21:503. [PMID: 34717537 PMCID: PMC8557024 DOI: 10.1186/s12870-021-03227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In angiosperms, phenotypic variation of floral organs is often considered as the traditional basis for the evolutionary relationship of different taxonomic groups above the species level. However, little is known about that at or below the species level. Here, we experimentally tested the phenotypic variation of Malus floral organs using combined methods of intraspecific uniformity test, interspecific distinctness analysis, principal component analysis, Pearson correlation analysis, and Q-type cluster analysis. The ancestor-inclined distribution characteristic analysis of Malus species and cultivars floral attributes was also carried out, so as to explore its taxonomic significance. RESULTS 15/44 phenotypic traits (e.g., flower shape, flower type, flower diameter, ...) were highly consistent, distinguishable, and independent and could be used as the basis for Malus germplasm taxonomy. The studied 142 taxa were divided into two groups (A, B) and five sub-groups (A1, A2, B1, B2, B3), with significantly variable floral phenotypic attributes between groups and within sub-groups. Malus natural species were relatively clustered in the same section (series) while homologous cultivars showed evidence of ancestor-inclined distribution characteristics. However, no significant correlation between the evolutionary order of sections (Sect. Docyniopsis → Sect. Chloromeles → Sect. Sorbomalus → Sect. Eumalus) and group/sub-groups (B3 → B2 → B1 → A). CONCLUSIONS Phenotypic variation of floral organs could better explore the genetic relationship between Malus taxa. The findings improved our cognition of floral phenotypic variation taxonomic significance under the species level.
Collapse
Affiliation(s)
- Ting Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Kun Ning
- College of Horticulture, Jinling Institute of Technology, Nanjing City, Jiangsu Province, 210038, P.R. China
| | - Wangxiang Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xiaoqing Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Jian Bian
- Jiangsu Yufeng Tourism Development Co. Ltd., Yancheng, 224000, China
| |
Collapse
|
19
|
Muroya M, Oshima H, Kobayashi S, Miura A, Miyamura Y, Shiota H, Onai K, Ishiura M, Manabe K, Kutsuna S. Circadian Clock in Arabidopsis thaliana Determines Flower Opening Time Early in the Morning and Dominantly Closes Early in the Afternoon. PLANT & CELL PHYSIOLOGY 2021; 62:883-893. [PMID: 33822207 DOI: 10.1093/pcp/pcab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Many plant species exhibit diurnal flower opening and closing, which is an adaptation influenced by the lifestyle of pollinators and herbivores. However, it remains unclear how these temporal floral movements are modulated. To clarify the role of the circadian clock in flower movement, we examined temporal floral movements in Arabidopsis thaliana. Wild-type (accessions; Col-0, Ler-0 and Ws-4) flowers opened between 0.7 and 1.4 h in a 16-h light period and closed between 7.5 and 8.3 h in a diurnal light period. In the arrhythmic mutants pcl1-1 and prr975, the former flowers closed slowly and imperfectly and the latter ones never closed. Under continuous light conditions, new flowers emerged and opened within a 23-26 h window in the wild-type, but the flowers in pcl1-1 and prr975 developed straight petals, whose curvatures were extremely small. Anti-phasic circadian gene expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYLE (LHY) and TIMING OF CAB EXPRESSION 1 (TOC1) occurred in wild-type flowers, but non-rhythmic expression was observed in pcl1-1 and prr975 mutants. Focusing on excised petals, bioluminescence monitoring revealed rhythmic promoter activities of genes expressed (CCA1, LHY and PHYTOCLOCK 1/LUX ARRHYTHMO, PCL1/LUX) in the morning and evening. These results suggest that the clock induces flower opening redundantly with unknown light-sensing pathways. By contrast, flower closing is completely dependent on clock control. These findings will lead to further exploration of the molecular mechanisms and evolutionary diversity of timing in flower opening and closing.
Collapse
Affiliation(s)
- Mitsuhiko Muroya
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Haruka Oshima
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Shoko Kobayashi
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Aya Miura
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Yohei Miyamura
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Hajime Shiota
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Kiyoshi Onai
- Centre for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-kuKyoto 606-8502Japan
| | - Masahiro Ishiura
- Centre for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Katsushi Manabe
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Shinsuke Kutsuna
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| |
Collapse
|
20
|
Rifkin JL, Cao G, Rausher MD. Genetic architecture of divergence: the selfing syndrome in Ipomoea lacunosa. AMERICAN JOURNAL OF BOTANY 2021; 108:2038-2054. [PMID: 34648660 DOI: 10.1002/ajb2.1749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Highly selfing plant species frequently display a distinctive suite of traits termed the selfing syndrome. Here we tested the hypothesis that these traits are grouped into correlated evolutionary modules and determined the degree of independence between such modules. METHODS We evaluated phenotypic correlations and QTL overlaps in F2 offspring of a cross between the morning glories Ipomoea lacunosa and I. cordatotriloba and investigated how traits clustered into modules at both the phenotypic and genetic level. We then compared our findings to other QTL studies of the selfing syndrome. RESULTS In the I. lacunosa selfing syndrome, traits grouped into modules that displayed correlated evolution within but not between modules. QTL overlap predicted phenotypic correlations, and QTLs affecting the same trait module were significantly physically clustered in the genome. The genetic architecture of the selfing syndrome varied across systems, but the pattern of stronger within- than between-module correlation was widespread. CONCLUSIONS The genetic architecture we observe in the selfing syndrome is consistent with a growing understanding of floral morphological integration achieved via pleiotropy in clustered traits. This view of floral evolution is consistent with resource limitation or predation driving the evolution of the selfing syndrome, but invites further research into both the selective causes of the selfing syndrome and how genetic architecture itself evolves in response to changes in mating system.
Collapse
Affiliation(s)
- Joanna L Rifkin
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Gongyuan Cao
- Department of Biology, Duke University, 124 Science Drive, Durham, NC, 27701, USA
| | - Mark D Rausher
- Department of Biology, Duke University, 124 Science Drive, Durham, NC, 27701, USA
| |
Collapse
|
21
|
Zhang C, Wei L, Yu X, Li H, Wang W, Wu S, Duan F, Bao M, Chan Z, He Y. Functional conservation and divergence of SEPALLATA-like genes in the development of two-type florets in marigold. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110938. [PMID: 34134845 DOI: 10.1016/j.plantsci.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/06/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Marigold (Tagetes erecta), as one member of Asteraceae family, bears a typical capitulum with two morphologically distinct florets. The SEPALLATA genes are involved in regulating the floral meristem determinacy, organ identity, fruit maturation, seed formation, and plant architecture. Here, five SEP-like genes were cloned and identified from marigold. Sequence alignment and phylogenetic analysis demonstrated that TeSEP3-1, TeSEP3-2, and TeSEP3-3 proteins were grouped into SEP3 clade, and TeSEP1 and TeSEP4 proteins were clustered into SEP1/2/4 clade. Quantitative real-time PCR analysis revealed that TeSEP1 and TeSEP3-3 were broadly expressed in floral organs, and that TeSEP3-2 and TeSEP4 were mainly expressed in pappus and corollas, while TeSEP3-1 was mainly expressed in two inner whorls. Ectopic expression of TeSEP1, TeSEP3-2, TeSEP3-3, and TeSEP4 in arabidopsis and tobacco resulted in early flowering. However, overexpression of TeSEP3-1 in arabidopsis and tobacco caused no visible phenotypic changes. Notably, overexpression of TeSEP4 in tobacco decreased the number of petals and stamens. Overexpression of TeSEP1 in tobacco led to longer sepals and simpler inflorescence architecture. The comprehensive pairwise interaction analysis suggested that TeSEP proteins had a broad interaction with class A, C, D, E proteins to form dimers. The yeast three-hybrid analysis suggested that in ternary complexes, class B proteins interacted with TeSEP3 by forming heterodimer TePI-TeAP3-2. The regulatory network analysis of MADS-box genes in marigold further indicated that TeSEP proteins played a "glue" role in regulating floral organ development, implying functional conservation and divergence of MADS box genes in regulating two-type floret developments. This study provides an insight into the formation mechanism of floral organs of two-type florets, thus broadening our knowledge of the genetic basis of flower evolution.
Collapse
Affiliation(s)
- Chunling Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Ludan Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Xiaomin Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Hang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Wenjing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Shenzhong Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Feng Duan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Yanhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
22
|
Schulz D, Linde M, Debener T. Detection of Reproducible Major Effect QTL for Petal Traits in Garden Roses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050897. [PMID: 33946713 PMCID: PMC8145204 DOI: 10.3390/plants10050897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The detection of QTL by association genetics depends on the genetic architecture of the trait under study, the size and structure of the investigated population and the availability of phenotypic and marker data of sufficient quality and quantity. In roses, we previously demonstrated that major QTL could already be detected in small association panels. In this study, we analyzed petal number, petal size and fragrance in a small panel of 95 mostly tetraploid garden rose genotypes. After genotyping the panel with the 68 K Axiom WagRhSNP chip we detected major QTL for all three traits. Each trait was significantly influenced by several genomic regions. Some of the QTL span genomic regions that comprise several candidate genes. Selected markers from some of these regions were converted into KASP markers and were validated in independent populations of up to 282 garden rose genotypes. These markers demonstrate the robustness of the detected effects independent of the set of genotypes analyzed. Furthermore, the markers can serve as tools for marker-assisted breeding in garden roses. Over an extended timeframe, they may be used as a starting point for the isolation of the genes underlying the QTL.
Collapse
|
23
|
Essenberg CJ. Intraspecific relationships between floral signals and rewards with implications for plant fitness. AOB PLANTS 2021; 13:plab006. [PMID: 33708371 PMCID: PMC7937183 DOI: 10.1093/aobpla/plab006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Within-species variation in traits such as petal size or colour often provides reliable information to pollinators about the rewards offered to them by flowers. In spite of potential disadvantages of allowing pollinators to discriminate against less-rewarding flowers, examples of informative floral signals are diverse in form and widely distributed across plant taxa, apparently having evolved repeatedly in different lineages. Although hypotheses about the adaptive value of providing reward information have been proposed and tested in a few cases, a unified effort to understand the evolutionary mechanisms favouring informative floral signals has yet to emerge. This review describes the diversity of ways in which floral signals can be linked with floral rewards within plant species and discusses the constraints and selective pressures on floral signal-reward relationships. It focuses particularly on how information about floral rewards can influence pollinator behaviour and how those behavioural changes may, in turn, affect plant fitness, selecting either for providing or withholding reward information. Most of the hypotheses about the evolution of floral signal-reward relationships are, as yet, untested, and the review identifies promising research directions for addressing these considerable gaps in knowledge. The advantages and disadvantages of sharing floral reward information with pollinators likely play an important role in floral trait evolution, and opportunities abound to further our understanding of this neglected aspect of floral signalling.
Collapse
|
24
|
Braynen J, Yang Y, Yuan J, Xie Z, Cao G, Wei X, Shi G, Zhang X, Wei F, Tian B. Comparative transcriptome analysis revealed differential gene expression in multiple signaling pathways at flowering in polyploid Brassica rapa. Cell Biosci 2021; 11:17. [PMID: 33436051 PMCID: PMC7802129 DOI: 10.1186/s13578-021-00528-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Polyploidy is widespread in angiosperms and has a significant impact on plant evolution, diversity, and breeding program. However, the changes in the flower development regulatory mechanism in autotetraploid plants remains relatively limited. In this study, RNA-seq analysis was used to investigate changes in signaling pathways at flowering in autotetraploid Brassica rapa. RESULTS The study findings showed that the key genes such as CO, CRY2, and FT which promotes floral formation were down-regulated, whereas floral transition genes FPF1 and FD were up-regulated in autotetraploid B. rapa. The data also demonstrated that the positive regulators GA1 and ELA1 in the gibberellin's biosynthesis pathway were negatively regulated by polyploidy in B. rapa. Furthermore, transcriptional factors (TFs) associated with flower development were significantly differentially expressed including the up-regulated CIB1 and AGL18, and the down-regulated AGL15 genes, and by working together such genes affected the expression of the down-stream flowering regulator FLOWERING LOCUS T in polyploid B. rapa. Compared with that in diploids autotetrapoid plants consist of differential expression within the signaling transduction pathway, with 13 TIFY gens up-regulated and 17 genes related to auxin pathway down-regulated. CONCLUSION Therefore, polyploidy is more likely to integrate multiple signaling pathways to influence flowering in B. rapa after polyploidization. In general, the present results shed new light on our global understanding of flowering regulation in polyploid plants during breeding program.
Collapse
Affiliation(s)
- Janeen Braynen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiachen Yuan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Gangqiang Cao
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaochun Wei
- Institute of Horticultural Research, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Gongyao Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaowei Zhang
- Institute of Horticultural Research, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
25
|
Xu CJ, Zhao ML, Chen MS, Xu ZF. Silencing of the Ortholog of DEFECTIVE IN ANTHER DEHISCENCE 1 Gene in the Woody Perennial Jatropha curcas Alters Flower and Fruit Development. Int J Mol Sci 2020; 21:ijms21238923. [PMID: 33255510 PMCID: PMC7727821 DOI: 10.3390/ijms21238923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/12/2023] Open
Abstract
DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.
Collapse
Affiliation(s)
- Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: (M.-S.C.); (Z.-F.X.)
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: (M.-S.C.); (Z.-F.X.)
| |
Collapse
|
26
|
Wessinger CA, Hileman LC. Parallelism in Flower Evolution and Development. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flower evolution is characterized by widespread repetition, with adaptations to pollinator environment evolving in parallel. Recent studies have expanded our understanding of the developmental basis of adaptive floral novelties—petal fusion, bilateral symmetry, heterostyly, and floral dimensions. In this article, we describe patterns of trait evolution and review developmental genetic mechanisms underlying floral novelties. We discuss the diversity of mechanisms for parallel adaptation, the evidence for constraints on these mechanisms, and how constraints help explain observed macroevolutionary patterns. We describe parallel evolution resulting from similarities at multiple hierarchical levels—genetic, developmental, morphological, functional—which indicate general principles in floral evolution, including the central role of hormone signaling. An emerging pattern is mutational bias that may contribute to rapid patterns of parallel evolution, especially if the derived trait can result from simple degenerative mutations. We argue that such mutational bias may be less likely to govern the evolution of novelties patterned by complex developmental pathways.
Collapse
Affiliation(s)
- Carolyn A. Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Lena C. Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
27
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
28
|
Landis JB, Kurti A, Lawhorn AJ, Litt A, McCarthy EW. Differential Gene Expression with an Emphasis on Floral Organ Size Differences in Natural and Synthetic Polyploids of Nicotiana tabacum (Solanaceae). Genes (Basel) 2020; 11:E1097. [PMID: 32961813 PMCID: PMC7563459 DOI: 10.3390/genes11091097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Floral organ size, especially the size of the corolla, plays an important role in plant reproduction by facilitating pollination efficiency. Previous studies have outlined a hypothesized organ size pathway. However, the expression and function of many of the genes in the pathway have only been investigated in model diploid species; therefore, it is unknown how these genes interact in polyploid species. Although correlations between ploidy and cell size have been shown in many systems, it is unclear whether there is a difference in cell size between naturally occurring and synthetic polyploids. To address these questions comparing floral organ size and cell size across ploidy, we use natural and synthetic polyploids of Nicotiana tabacum (Solanaceae) as well as their known diploid progenitors. We employ a comparative transcriptomics approach to perform analyses of differential gene expression, focusing on candidate genes that may be involved in floral organ size, both across developmental stages and across accessions. We see differential expression of several known floral organ candidate genes including ARF2, BIG BROTHER, and GASA/GAST1. Results from linear models show that ploidy, cell width, and cell number positively influence corolla tube circumference; however, the effect of cell width varies by ploidy, and diploids have a significantly steeper slope than both natural and synthetic polyploids. These results demonstrate that polyploids have wider cells and that polyploidy significantly increases corolla tube circumference.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- Department of Biology, SUNY Cortland, Cortland, NY 13045, USA
| |
Collapse
|
29
|
Zhang S, Zhou Q, Chen F, Wu L, Liu B, Li F, Zhang J, Bao M, Liu G. Genome-Wide Identification, Characterization and Expression Analysis of TCP Transcription Factors in Petunia. Int J Mol Sci 2020; 21:ijms21186594. [PMID: 32916908 PMCID: PMC7554992 DOI: 10.3390/ijms21186594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
The plant-specific TCP transcription factors are well-characterized in both monocots and dicots, which have been implicated in multiple aspects of plant biological processes such as leaf morphogenesis and senescence, lateral branching, flower development and hormone crosstalk. However, no systematic analysis of the petunia TCP gene family has been described. In this work, a total of 66 petunia TCP genes (32 PaTCP genes in P. axillaris and 34 PiTCP genes in P. inflata) were identified. Subsequently, a systematic analysis of 32 PaTCP genes was performed. The phylogenetic analysis combined with structural analysis clearly distinguished the 32 PaTCP proteins into two classes—class Ι and class Ⅱ. Class Ⅱ was further divided into two subclades, namely, the CIN-TCP subclade and the CYC/TB1 subclade. Plenty of cis-acting elements responsible for plant growth and development, phytohormone and/or stress responses were identified in the promoter of PaTCPs. Distinct spatial expression patterns were determined among PaTCP genes, suggesting that these genes may have diverse regulatory roles in plant growth development. Furthermore, differential temporal expression patterns were observed between the large- and small-flowered petunia lines for most PaTCP genes, suggesting that these genes are likely to be related to petal development and/or petal size in petunia. The spatiotemporal expression profiles and promoter analysis of PaTCPs indicated that these genes play important roles in petunia diverse developmental processes that may work via multiple hormone pathways. Moreover, three PaTCP-YFP fusion proteins were detected in nuclei through subcellular localization analysis. This is the first comprehensive analysis of the petunia TCP gene family on a genome-wide scale, which provides the basis for further functional characterization of this gene family in petunia.
Collapse
Affiliation(s)
- Shuting Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Feng Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Lan Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Baojun Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Fei Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
- Correspondence: (M.B.); (G.L.)
| | - Guofeng Liu
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China
- Correspondence: (M.B.); (G.L.)
| |
Collapse
|
30
|
Fu J, Zhang C, Liu Y, Pang T, Dong B, Gao X, Zhu Y, Zhao H. Transcriptomic analysis of flower opening response to relatively low temperatures in Osmanthus fragrans. BMC PLANT BIOLOGY 2020; 20:337. [PMID: 32677959 PMCID: PMC7367400 DOI: 10.1186/s12870-020-02549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sweet osmanthus (Osmanthus fragrans Lour.) is one of the top ten traditional ornamental flowers in China. The flowering time of once-flowering cultivars in O. fragrans is greatly affected by the relatively low temperature, but there are few reports on its molecular mechanism to date. A hypothesis had been raised that genes related with flower opening might be up-regulated in response to relatively low temperature in O. fragrans. Thus, our work was aimed to explore the underlying molecular mechanism of flower opening regulated by relatively low temperature in O. fragrans. RESULTS The cell size of adaxial and abaxial petal epidermal cells and ultrastructural morphology of petal cells at different developmental stages were observed. The cell size of adaxial and abaxial petal epidermal cells increased gradually with the process of flower opening. Then the transcriptomic sequencing was employed to analyze the differentially expressed genes (DEGs) under different number of days' treatments with relatively low temperatures (19 °C) or 23 °C. Analysis of DEGs in Gene Ontology analysis showed that "metabolic process", "cellular process", "binding", "catalytic activity", "cell", "cell part", "membrane", "membrane part", "single-organism process", and "organelle" were highly enriched. In KEGG analysis, "metabolic pathways", "biosynthesis of secondary metabolites", "plant-pathogen interaction", "starch and sucrose metabolism", and "plant hormone signal transduction" were the top five pathways containing the greatest number of DEGs. The DEGs involved in cell wall metabolism, phytohormone signal transduction pathways, and eight kinds of transcription factors were analyzed in depth. CONCLUSIONS Several unigenes involved in cell wall metabolism, phytohormone signal transduction pathway, and transcription factors with highly variable expression levels between different temperature treatments may be involved in petal cell expansion during flower opening process in response to the relatively low temperature. These results could improve our understanding of the molecular mechanism of relatively-low-temperature-regulated flower opening of O. fragrans, provide practical information for the prediction and regulation of flowering time in O. fragrans, and ultimately pave the way for genetic modification in O. fragrans.
Collapse
Affiliation(s)
- Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Yucheng Liu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Tianhong Pang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Bin Dong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Xiaoyue Gao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Yimin Zhu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China.
| |
Collapse
|
31
|
Denney DA, Jameel MI, Bemmels JB, Rochford ME, Anderson JT. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AOB PLANTS 2020; 12:plaa005. [PMID: 32211145 PMCID: PMC7082537 DOI: 10.1093/aobpla/plaa005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/06/2020] [Indexed: 05/05/2023]
Abstract
Individuals within natural populations can experience very different abiotic and biotic conditions across small spatial scales owing to microtopography and other micro-environmental gradients. Ecological and evolutionary studies often ignore the effects of micro-environment on plant population and community dynamics. Here, we explore the extent to which fine-grained variation in abiotic and biotic conditions contributes to within-population variation in trait expression and genetic diversity in natural plant populations. Furthermore, we consider whether benign microhabitats could buffer local populations of some plant species from abiotic stresses imposed by rapid anthropogenic climate change. If microrefugia sustain local populations and communities in the short term, other eco-evolutionary processes, such as gene flow and adaptation, could enhance population stability in the longer term. We caution, however, that local populations may still decline in size as they contract into rare microhabitats and microrefugia. We encourage future research that explicitly examines the role of the micro-environment in maintaining genetic variation within local populations, favouring the evolution of phenotypic plasticity at local scales and enhancing population persistence under global change.
Collapse
Affiliation(s)
- Derek A Denney
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - M Inam Jameel
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Jordan B Bemmels
- Department of Genetics, University of Georgia, Athens, GA, USA
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Mia E Rochford
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
32
|
Peach K, Liu JW, Klitgaard KN, Mazer SJ. Sex-specific floral attraction traits in a sequentially hermaphroditic species. Ecol Evol 2020; 10:1856-1875. [PMID: 32128121 PMCID: PMC7042773 DOI: 10.1002/ece3.5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
●Many angiosperms are hermaphroditic and produce bisexual flowers in which male (pollen export) and female (stigma receptivity) functions are separated temporally. This sequential hermaphroditism may be associated with variation in flower size, color, or pattern, all of which may influence pollinator attraction. In this study, we describe variation in these traits across discrete functional sex stages within and between 225 greenhouse-grown individuals of Clarkia unguiculata (Onagraceae). In addition, to identify the effects of floral phenotype on pollinator attraction in this species, we examine the effects of these floral traits on pollen receipt in ~180 individuals in an experimental field array.●Petal area, ultraviolet (UV)-absorbing nectar guide area, and blue and green mean petal reflectance differ significantly across the functional sex stages of C. unguiculata. Male- and female-phase flowers display significantly different pollinator attraction traits. Petal and UV nectar guide area increase as flowers progress from male phase to female phase, while blue reflectance and green reflectance peak during anther maturation.●In field arrays of C. unguiculata, female-phase flowers with large UV nectar guides receive more pollen than those with small nectar guides, and female-phase flowers with high mean blue reflectance values are more likely to receive pollen than those with low blue reflectance. Female-phase flowers with green mean reflectance values that differ most from background foliage also receive more pollen than those that are more similar to foliage. These findings indicate that components of flower color and pattern influence pollen receipt, independent of other plant attributes that may covary with floral traits. We discuss these results in the context of hypotheses that have been proposed to explain sex-specific floral attraction traits, and we suggest future research that could improve our understanding of sexual dimorphism in sequentially hermaphroditic species and the evolution of features that promote outcrossing.
Collapse
Affiliation(s)
- Kristen Peach
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Jasen W. Liu
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Kristen N. Klitgaard
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Susan J. Mazer
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
33
|
Shan H, Cheng J, Zhang R, Yao X, Kong H. Developmental mechanisms involved in the diversification of flowers. NATURE PLANTS 2019; 5:917-923. [PMID: 31477891 DOI: 10.1038/s41477-019-0498-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/18/2019] [Indexed: 05/08/2023]
Abstract
We all appreciate the fantastic diversity of flowers. How flowers diversified, however, remains largely enigmatic. The mechanisms underlying the diversification of flowers are complex because the overall appearance of a flower is determined by many factors, such as the shape and size of its receptacle, and the arrangement, number, type, shape and colour of floral organs. Modifications of the developmental trajectories of a flower and its components, therefore, can lead to the generation of new floral types. In this Review, by summarizing the recent progress in studying the initiation, identity determination, morphogenesis and maturation of floral organs, we present our current understanding of the mechanisms underlying the diversification of flowers.
Collapse
Affiliation(s)
- Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Genome-wide analysis of spatiotemporal gene expression patterns during floral organ development in Brassica rapa. Mol Genet Genomics 2019; 294:1403-1420. [PMID: 31222475 DOI: 10.1007/s00438-019-01585-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Flowering is a key agronomic trait that directly influences crop yield and quality and serves as a model system for elucidating the molecular basis that controls successful reproduction, adaptation, and diversification of flowering plants. Adequate knowledge of continuous series of expression data from the floral transition to maturation is lacking in Brassica rapa. To unravel the genome expression associated with the development of early small floral buds (< 2 mm; FB2), early large floral buds (2-4 mm; FB4), stamens (STs) and carpels (CPs), transcriptome profiling was carried out with a Br300K oligo microarray. The results showed that at least 6848 known nonredundant genes (30% of the genes of the Br300K) were differentially expressed during the floral transition from vegetative tissues to maturation. Functional annotation of the differentially expressed genes (DEGs) (fold change ≥ 5) by comparison with a close relative, Arabidopsis thaliana, revealed 6552 unigenes (4579 upregulated; 1973 downregulated), including 131 Brassica-specific and 116 functionally known floral Arabidopsis homologs. Additionally, 1723, 236 and 232 DEGs were preferentially expressed in the tissues of STs, FB2, and CPs. These DEGs also included 43 transcription factors, mainly AP2/ERF-ERF, NAC, MADS-MIKC, C2H2, bHLH, and WRKY members. The differential gene expression during flower development induced dramatic changes in activities related to metabolic processes (23.7%), cellular (22.7%) processes, responses to the stimuli (7.5%) and reproduction (1%). A relatively large number of DEGs were observed in STs and were overrepresented by photosynthesis-related activities. Subsequent analysis via semiquantitative RT-PCR, histological analysis performed with in situ hybridization of BrLTP1 and transgenic reporter lines (BrLTP promoter::GUS) of B. rapa ssp. pekinensis supported the spatiotemporal expression patterns. Together, these results suggest that a temporally and spatially regulated process of the selective expression of distinct fractions of the same genome leads to the development of floral organs. Interestingly, most of the differentially expressed floral transcripts were located on chromosomes 3 and 9. This study generated a genome expression atlas of the early floral transition to maturation that represented the flowering regulatory elements of Brassica rapa.
Collapse
|
35
|
Mutation of ACX1, a Jasmonic Acid Biosynthetic Enzyme, Leads to Petal Degeneration in Chinese Cabbage ( Brassica campestris ssp. pekinensis). Int J Mol Sci 2019; 20:ijms20092310. [PMID: 31083282 PMCID: PMC6539522 DOI: 10.3390/ijms20092310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022] Open
Abstract
Petal color, size, and morphology play important roles in protecting other floral organs, attracting pollinators, and facilitating sexual reproduction in plants. In a previous study, we obtained a petal degeneration mutant (pdm) from the ‘FT’ doubled haploid line of Chinese cabbage and found that the candidate gene for pdm, Bra040093, encodes the enzyme acyl-CoA oxidase1. In this study, we sought to examine the gene networks regulating petal development in pdm plants. We show that the mRNA and protein expression of Bra040093, which is involved in the jasmonic acid (JA) biosynthetic pathway, were significantly lower in the petals of pdm plants than in those of ‘FT’ plants. Similarly, the JA and methyl jasmonate (MeJA) contents of petals were significantly lower in pdm plants than in ‘FT’ plants and we found that exogenous application of these hormones to the inflorescences of pdm plants restored the ‘FT’ phenotype. Comparative analyses of the transcriptomes of ‘FT’, pdm and pdm + JA (pJA) plants revealed 10,160 differentially expressed genes (DEGs) with consistent expression tendencies in ‘FT’ vs. pdm and pJA vs. pdm comparisons. Among these DEGs, we identified 69 DEGs related to floral organ development, 11 of which are involved in petal development regulated by JA. On the basis of qRT-PCR verification, we propose regulatory pathways whereby JA may mediate petal development in the pdm mutant. We demonstrate that mutation of Bra040093 in pdm plants leads to reduced JA levels and that this in turn promotes changes in the expression of genes that are expressed in response to JA, ultimately resulting in petal degeneration. These findings thus indicate that JA is associated with petal development in Chinese cabbage. These results enhance our knowledge on the molecular mechanisms underlying petal development and lay the foundations for further elucidation of the mechanisms associated with floral organ development in Chinese cabbage.
Collapse
|
36
|
Benitez‐Vieyra S, Pérez‐Alquicira J, Sazatornil FD, Domínguez CA, Boege K, Pérez‐Ishiwara R, Fornoni J. Evolutionary transition between bee pollination and hummingbird pollination in
Salvia
: Comparing means, variances and covariances of corolla traits. J Evol Biol 2019; 32:783-793. [DOI: 10.1111/jeb.13480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Santiago Benitez‐Vieyra
- Instituto Multidisciplinario de Biología Vegetal Universidad Nacional de Córdoba, CONICET Córdoba Argentina
| | - Jessica Pérez‐Alquicira
- Departamento de Botánica y Zoología CONACYT – Laboratorio Nacional de Identificación y Caracterización Vegetal Centro Universitario de Ciencias Biológicas y Agropecuarias Universidad de Guadalajara Zapopan Mexico
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| | - Federico D. Sazatornil
- Instituto Multidisciplinario de Biología Vegetal Universidad Nacional de Córdoba, CONICET Córdoba Argentina
| | - César A. Domínguez
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| | - Karina Boege
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| | - Rubén Pérez‐Ishiwara
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| | - Juan Fornoni
- Instituto Multidisciplinario de Biología Vegetal Universidad Nacional de Córdoba, CONICET Córdoba Argentina
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
37
|
Huang G, Han M, Jian L, Chen Y, Sun S, Wang X, Wang Y. An ETHYLENE INSENSITIVE3-LIKE1 Protein Directly Targets the GEG Promoter and Mediates Ethylene-Induced Ray Petal Elongation in Gerbera hybrida. FRONTIERS IN PLANT SCIENCE 2019; 10:1737. [PMID: 32038696 PMCID: PMC6993041 DOI: 10.3389/fpls.2019.01737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
Petal morphogenesis has a profound influence on the quality of ornamental flowers. Most current research on petal development focuses on the early developmental stage, and little is known about the late developmental stage. Previously, it was reported that the GEG gene [a gerbera homolog of the gibberellin-stimulated transcript 1 (GAST1) from tomato] negatively regulates ray petal growth during the late stage of development by inhibiting longitudinal cell expansion. To explore the molecular mechanisms of the role of GEG in petal growth inhibition, an ethylene insensitive 3-like 1 (EIL1) protein was identified from a Gerbera hybrida cDNA library by yeast one-hybrid screening. Direct binding between GhEIL1 and the GEG promoter was confirmed by electrophoretic mobility shift and dual-luciferase assays. The expression profiles of GhEIL1 and GEG were correlated during petal development, while a transient transformation assay suggested that GhEIL1 regulates GEG expression and may be involved in the inhibition of ray petal elongation and cell elongation. To study the effect of ethylene on ray petal growth, a hormone treatment assay was performed in detached ray petals. The results showed that petal elongation is limited and promoted by ACC and 1-MCP, respectively, and the expression of GhEIL1 and GEG is regulated and coordinated during this process. Taken together, our research suggests that GhEIL1 forms part of the ethylene signaling pathway and activates GEG to regulate ray petal growth during the late developmental stage in G. hybrida.
Collapse
|
38
|
Plus ça change, plus c'est la même chose: The developmental evolution of flowers. Curr Top Dev Biol 2019; 131:211-238. [DOI: 10.1016/bs.ctdb.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Smyth DR. Evolution and genetic control of the floral ground plan. THE NEW PHYTOLOGIST 2018; 220:70-86. [PMID: 29959892 DOI: 10.1111/nph.15282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 70 I. Introduction 70 II. What is the floral ground plan? 71 III. Diversity and evolution of the floral ground plan 72 IV. Genetic mechanisms 77 V. What's next? 82 Acknowledgements 83 References 83 SUMMARY: The floral ground plan is a map of where and when floral organ primordia arise. New results combining the defined phylogeny of flowering plants with extensive character mapping have predicted that the angiosperm ancestor had whorls rather than spirals of floral organs in large numbers, and was bisexual. More confidently, the monocot ancestor likely had three organs in each whorl, whereas the rosid and asterid ancestor (Pentapetalae) had five, with the perianth now divided into sepals and petals. Genetic mechanisms underlying the establishment of the floral ground plan are being deduced using model species, the rosid Arabidopsis, the asterid Antirrhinum, and in grasses such as rice. In this review, evolutionary and genetic conclusions are drawn together, especially considering how known genes may control individual processes in the development and evolution of ground plans. These components include organ phyllotaxis, boundary formation, organ identity, merism (the number or organs per whorl), variation in the form of primordia, organ fusion, intercalary growth, floral symmetry, determinacy and, finally, cases where the distinction between flowers and inflorescences is blurred. It seems likely that new pathways of ground plan evolution, and new signalling mechanisms, will soon be uncovered by integrating morphological and genetic approaches.
Collapse
Affiliation(s)
- David R Smyth
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
40
|
Aviña-Padilla K, Rivera-Bustamante R, Kovalskaya NY, Hammond RW. Pospiviroid Infection of Tomato Regulates the Expression of Genes Involved in Flower and Fruit Development. Viruses 2018; 10:v10100516. [PMID: 30241423 PMCID: PMC6213050 DOI: 10.3390/v10100516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
Viroids are unencapsidated, single-stranded, covalently-closed circular, highly structured, noncoding RNAs of 239–401 nucleotides that cause disease in several economically important crop plants. In tomato (Solanum lycopersicum cv. Rutgers), symptoms of pospiviroid infection include stunting, reduced vigor, flower abortion, and reduced size and number of fruits, resulting in significant crop losses. Dramatic alterations in plant development triggered by viroid infection are the result of differential gene expression; in our study, we focused on the effect of tomato planta macho viroid (TPMVd) and Mexican papita viroid (MPVd) infection on gene networks associated with the regulation of flower and fruit development. The expression of several of the genes were previously reported to be affected by viroid infection, but two genes not previously studied were included. Changes in gene expression of SlBIGPETAL1 (bHLH transcription factor) and SlOVA6 (proline-like tRNA synthetase) are involved in petal morphology and fertility, respectively. Expression of SlOVA6 was down-regulated in flowers of TPMVd- and MPVd-infected plants, while expression of SlBIGPETAL1 was up-regulated in flowers. Up-regulation of SlBIGPETAL1 and down-regulation of SlOVA6 were positively correlated with symptoms such as reduced petal size and flower abortion. Expression analysis of additional tomato genes and a prediction of a global network association of genes involved in flower and fruit development and impacted by viroid infection may further elucidate the pathways underlying viroid pathogenicity.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Campus Juriquilla, Universidad Nacional Autónoma de Mexico, Querátaro Qro 76300, Mexico.
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato 36821, Mexico.
| | - Rafael Rivera-Bustamante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato 36821, Mexico.
| | - Natalia Y Kovalskaya
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| | - Rosemarie W Hammond
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
41
|
Abstract
The angiosperm flower develops through a modular programme which, although ancient and conserved, provides the flexibility that has allowed an almost infinite variety of floral forms to emerge. In this review, we explore the evolution of floral diversity, focusing on our recent understanding of the mechanistic basis of evolutionary change. We discuss the various ways in which flower size and floral organ size can be modified, the means by which flower shape and symmetry can change, and the ways in which floral organ position can be varied. We conclude that many challenges remain before we fully understand the ecological and molecular processes that facilitate the diversification of flower structure.
Collapse
|
42
|
Wu M, Kostyun JL, Hahn MW, Moyle LC. Dissecting the basis of novel trait evolution in a radiation with widespread phylogenetic discordance. Mol Ecol 2018; 27:3301-3316. [PMID: 29953708 DOI: 10.1111/mec.14780] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 01/03/2023]
Abstract
Phylogenetic analyses of trait evolution can provide insight into the evolutionary processes that initiate and drive phenotypic diversification. However, recent phylogenomic studies have revealed extensive gene tree-species tree discordance, which can lead to incorrect inferences of trait evolution if only a single species tree is used for analysis. This phenomenon-dubbed "hemiplasy"-is particularly important to consider during analyses of character evolution in rapidly radiating groups, where discordance is widespread. Here, we generate whole-transcriptome data for a phylogenetic analysis of 14 species in the plant genus Jaltomata (the sister clade to Solanum), which has experienced rapid, recent trait evolution, including in fruit and nectar colour, and flower size and shape. Consistent with other radiations, we find evidence for rampant gene tree discordance due to incomplete lineage sorting (ILS) and to introgression events among the well-supported subclades. As both ILS and introgression increase the probability of hemiplasy, we perform several analyses that take discordance into account while identifying genes that might contribute to phenotypic evolution. Despite discordance, the history of fruit colour evolution in Jaltomata can be inferred with high confidence, and we find evidence of de novo adaptive evolution at individual genes associated with fruit colour variation. In contrast, hemiplasy appears to strongly affect inferences about floral character transitions in Jaltomata, and we identify candidate loci that could arise either from multiple lineage-specific substitutions or standing ancestral polymorphisms. Our analysis provides a generalizable example of how to manage discordance when identifying loci associated with trait evolution in a radiating lineage.
Collapse
Affiliation(s)
- Meng Wu
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Jamie L Kostyun
- Department of Biology, Indiana University, Bloomington, Indiana
- Department of Plant Biology, University of Vermont, Burlington, Vermont
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, Indiana
- Department of Computer Science, Indiana University, Bloomington, Indiana
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
43
|
Prasifka JR, Mallinger RE, Portlas ZM, Hulke BS, Fugate KK, Paradis T, Hampton ME, Carter CJ. Using Nectar-Related Traits to Enhance Crop-Pollinator Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:812. [PMID: 29967631 PMCID: PMC6015894 DOI: 10.3389/fpls.2018.00812] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/25/2018] [Indexed: 05/29/2023]
Abstract
Floral nectar and other reward facilitate crop pollination, and in so doing, increase the amount and breadth of food available for humans. Though abundance and diversity of pollinators (particularly bees) have declined over the past several decades, a concomitant increase in reliance on pollinators presents a challenge to food production. Development of crop varieties with specific nectar or nectar-related traits to attract and retain pollinating insects is an appealing strategy to help address needs of agriculture and pollinators for several reasons. First, many crops have specific traits which have been identified to enhance crop-pollinator interactions. Also, an improved understanding of mechanisms that govern nectar-related traits suggest simplified phenotyping and breeding are possible. Finally, the use of nectar-related traits to enhance crop pollination should complement other measures promoting pollinators and will not limit options for crop production or require any changes by growers (other than planting varieties that are more attractive or rewarding to pollinators). In this article, we review the rationale for improving crop-pollinator interactions, the effects of specific plant traits on pollinator species, and use cultivated sunflowers as a case study. Recent research in sunflower has (i) associated variation in bee visitation with specific floral traits, (ii) quantified benefits of pollinators to hybrid yields, and (iii) used genetic resources in sunflower and other plants to find markers associated with key floral traits. Forthcoming work to increase pollinator rewards should enable sunflower to act as a model for using nectar-related traits to enhance crop-pollinator interactions.
Collapse
Affiliation(s)
- Jarrad R. Prasifka
- Red River Valley Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND, United States
| | - Rachel E. Mallinger
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Zoe M. Portlas
- Red River Valley Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND, United States
| | - Brent S. Hulke
- Red River Valley Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND, United States
| | - Karen K. Fugate
- Red River Valley Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND, United States
| | - Travis Paradis
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Marshall E. Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, United States
| | - Clay J. Carter
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, Saint Paul, MN, United States
| |
Collapse
|
44
|
Heterochronic developmental shifts underlie floral diversity within Jaltomata (Solanaceae). EvoDevo 2017; 8:17. [PMID: 29075434 PMCID: PMC5651583 DOI: 10.1186/s13227-017-0080-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/07/2017] [Indexed: 12/26/2022] Open
Abstract
Background Heterochronic shifts during mid- to late stages of organismal development have been proposed as key mechanisms generating phenotypic diversity. To determine whether late heterochronic shifts underlie derived floral morphologies within Jaltomata (Solanaceae)—a genus whose species have extensive and recently evolved floral diversity—we compared floral development of four diverse species (including an ambiguously ancestral or secondarily derived rotate, two putatively independently evolved campanulate, and a tubular morph) to the ancestral rotate floral form, as well as to an outgroup that shares this ancestral floral morphology. Results We determined that early floral development (< 1 mm bud diameter, corresponding to completion of organ whorl initiation) is very similar among all species, but that different mature floral forms are distinguishable by mid-development (> 1 mm diameter) due to differential growth acceleration of corolla traits. Floral ontogeny among similar mature rotate forms remains comparable until late stages, while somewhat different patterns of organ growth are found between species with similar campanulate forms. Conclusions Our data suggest shared floral patterning during early-stage development, but that different heterochronic shifts during mid- and late-stage development contribute to divergent floral traits. Heterochrony thus appears to have been important in the rapid and repeated diversification of Jaltomata flowers. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0080-z) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Li W, He Z, Zhang L, Lu Z, Xu J, Cui J, Wang L, Jin B. miRNAs involved in the development and differentiation of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. BMC Genomics 2017; 18:783. [PMID: 29029607 PMCID: PMC5640959 DOI: 10.1186/s12864-017-4180-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/05/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Sterile and fertile flowers are important evolutionary developmental phenotypes in angiosperm flowers. The development of floral organs, critical in angiosperm reproduction, is regulated by microRNAs (miRNAs). However, the mechanisms underpinning the miRNA regulation of the differentiation and development of sterile and fertile flowers remain unclear. RESULTS Here, based on investigations of the morphological differences between fertile and sterile flowers, we used high-throughput sequencing to characterize the miRNAs in the differentiated floral organs of Viburnum macrocephalum f. keteleeri. We identified 49 known miRNAs and 67 novel miRNAs by small RNA (sRNA) sequencing and bioinformatics analysis, and 17 of these known and novel miRNA precursors were validated by polymerase chain reaction (PCR) and Sanger sequencing. Furthermore, by comparing the sequencing results of two sRNA libraries, we found that 30 known and 39 novel miRNA sequences were differentially expressed, and 35 were upregulated and 34 downregulated in sterile compared with fertile flowers. Combined with their predicted targets, the potential roles of miRNAs in V. macrocephalum f. keteleeri flowers include involvement in floral organogenesis, cell proliferation, hormonal pathways, and stress responses. miRNA precursors and targets were further validated by quantitative real-time PCR (qRT-PCR). Specifically, miR156a-5p, miR156g, and miR156j expression levels were significantly higher in fertile flowers than in sterile flowers, while SPL genes displayed the opposite expression pattern. Considering that the targets of miR156 are predicted to be SPL genes, we propose that miR156 may be involved in the regulation of stamen development in V. macrocephalum f. keteleeri. CONCLUSIONS We identified miRNAs differentially expressed between fertile and sterile flowers in V. macrocephalum f. keteleeri and provided new insights into the important regulatory roles of miRNAs in the differentiation and development of fertile and sterile flowers.
Collapse
Affiliation(s)
- Weixing Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhichong He
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jing Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
46
|
Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H, Ma M, Liu L, Zhou J, Nan C, Qin Y, Wang J, Cui L, Liu H, Liang C, Qiao Z. The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. MOLECULAR PLANT 2017; 10:1224-1237. [PMID: 28866080 DOI: 10.1016/j.molp.2017.08.013] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/20/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.
Collapse
Affiliation(s)
- Lijun Zhang
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Xiuxiu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanhuai Han
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China; College of Agronomy, Shanxi Agricultural University, Taiyuan 030801, China
| | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingchuan Ma
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Longlong Liu
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Jianping Zhou
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Chenghu Nan
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Yongjun Qin
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Lin Cui
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| | - Huimin Liu
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhijun Qiao
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| |
Collapse
|
47
|
Landis JB, Soltis DE, Soltis PS. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae). BMC Genomics 2017; 18:475. [PMID: 28645249 PMCID: PMC5481933 DOI: 10.1186/s12864-017-3868-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators. RESULTS Using targeted gene capture methods, we infer phylogenetic relationships among all members of Saltugilia to provide a framework for investigating the genetic control of flower size differences via RNA-Seq de novo assembly. Nuclear concatenation and species tree inference methods provide congruent topologies. The inferred evolutionary trajectory of flower size is from small flowers to larger flowers. We identified 4 to 10,368 transcripts that are differentially expressed during flower development, with many unigenes associated with cell wall modification and components of the auxin and gibberellin pathways. CONCLUSIONS Saltugilia is an excellent model for investigating covarying floral and pollinator evolution. Four candidate genes from model systems (BIG BROTHER, BIG PETAL, GASA, and LONGIFOLIA) show differential expression during development of flowers in Saltugilia, and four other genes (FLOWERING-PROMOTING FACTOR 1, PECTINESTERASE, POLYGALACTURONASE, and SUCROSE SYNTHASE) fit into hypothesized organ size pathways. Together, these gene sets provide a strong foundation for future functional studies to determine their roles in specifying interspecific differences in flower size.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Department of Botany and Plant Sciences, University of California Riverside, 4412 Boyce Hall, 3401 Watkins Drive, Riverside, CA 92521 USA
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
48
|
Ding B, Mou F, Sun W, Chen S, Peng F, Bradshaw HD, Yuan YW. A dominant-negative actin mutation alters corolla tube width and pollinator visitation in Mimulus lewisii. THE NEW PHYTOLOGIST 2017; 213:1936-1944. [PMID: 28164332 PMCID: PMC5300067 DOI: 10.1111/nph.14281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/16/2016] [Indexed: 05/05/2023]
Abstract
A third of all angiosperm species produce flowers with petals fused into a corolla tube. The various elaborations of corolla tube attributes, such as length, width and curvature, have enabled plants to exploit many specialized pollinator groups. These elaborations often differ dramatically among closely related species, contributing to pollinator shift and pollinator-mediated reproductive isolation and speciation. However, very little is known about the genetic and developmental control of these corolla tube attributes. Here we report the characterization of a semi-dominant mutant in the monkeyflower species Mimulus lewisii, with a substantial decrease in corolla tube width but no change in tube length. This morphological alteration leads to a ˜ 70% decrease in bumblebee visitation rate for the homozygous mutant compared to the wild-type. Through bulk segregant analysis and transgenic experiment, we show that the mutant phenotype is caused by a dominant-negative mutation in an actin gene. This mutation decreases epidermal cell width but not length, and probably also reduces the number of lateral cell divisions. These results suggest a surprising potential role for a 'housekeeping' gene in fine-tuning the development of an ecologically important floral trait.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs 06269, USA
| | - Fengjuan Mou
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs 06269, USA
- Faculty of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Foen Peng
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs 06269, USA
| |
Collapse
|
49
|
Liu N, Tu L, Wang L, Hu H, Xu J, Zhang X. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton. BMC PLANT BIOLOGY 2017; 17:7. [PMID: 28068913 PMCID: PMC5223427 DOI: 10.1186/s12870-016-0969-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/23/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND microRNAs (miRNAs) have been involved in regulation of diverse spectrum of plant development processes in many species. In cotton, few miRNAs have been well characterised in floral organ development. Floral organ, which should be finely tuned, is a crucial factor affecting the yield of cotton. Therefore, it is well worth revealing the function of miRNAs in regulation of floral organ development. Here, we report the role of miRNA156/157 in regulation of floral organ size in cotton. RESULTS Over-expression of the GhmiRNA157 precursor in cotton (Gossypium hirsutum) resulted in smaller floral organs, fewer ovules and decreased seed production due to suppression of cell proliferation and cell elongation. Five SQUAMOSA promoter-binding protein-like (SPL) genes were identified as targets of GhmiRNA157 using a RNA ligase-mediated rapid amplification of cDNA end approach, and the expression level of miR157-targeted GhSPLs decreased in the miR157 over-expression lines, indicating the presence of the miR157/SPL axis in cotton. Two MADS-box genes, orthologs of AtAGL6 and SITDR8, which are associated with floral organ development and reproductive production, were repressed in the miR157 over-expression lines. In addition, auxin-inducible genes were also down-regulated, and auxin signal visualized by a DR5::GUS reporter was attenuated in the miR157 over-expression lines. CONCLUSIONS Our results indicate that the miR157/SPL axis controls floral organ growth and ovule production by regulating MADS-box genes and auxin signal transduction. The work further elucidates the mechanism of floral organ development and provides helpful molecular basis for improvement of cotton yield.
Collapse
Affiliation(s)
- Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Lichen Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| |
Collapse
|
50
|
Huang S, Liu Z, Li C, Yao R, Li D, Hou L, Li X, Liu W, Feng H. Transcriptome Analysis of a Female-sterile Mutant ( fsm) in Chinese Cabbage ( Brassica campestris ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2017; 8:546. [PMID: 28443127 PMCID: PMC5385380 DOI: 10.3389/fpls.2017.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/27/2017] [Indexed: 05/03/2023]
Abstract
Female-sterile mutants are ideal materials for studying pistil development in plants. Here, we identified a female-sterile mutant fsm in Chinese cabbage. This mutant, which exhibited stable inheritance, was derived from Chinese cabbage DH line 'FT' using a combination of isolated microspore culture and ethyl methanesulfonate mutagenesis. Compared with the wild-type line 'FT,' the fsm plants exhibited pistil abortion, and floral organs were also relatively smaller. Genetic analysis indicated that the phenotype of fsm is controlled by a single recessive nuclear gene. Morphological observations revealed that the presence of abnormal ovules in fsm likely influenced normal fertilization process, ultimately leading to female sterility. Comparative transcriptome analysis on the flower buds of 'FT' and fsm using RNA-Seq revealed a total of 1,872 differentially expressed genes (DEGs). Of these, a number of genes involved in pistil development were identified, such as PRETTY FEW SEEDS 2 (PFS2), temperature-induced lipocalin (TIL), AGAMOUS-LIKE (AGL), and HECATE (HEC). Furthermore, GO and KEGG pathway enrichment analyses of the DEGs suggested that a variety of biological processes and metabolic pathways are significantly enriched during pistil development. In addition, the expression patterns of 16 DEGs, including four pistil development-related genes and 12 floral organ development-related genes, were analyzed using qRT-PCR. A total of 31,272 single nucleotide polymorphisms were specifically detected in fsm. These results contribute to shed light on the regulatory mechanisms underlying pistil development in Chinese cabbage.
Collapse
|