1
|
Malinowski R, Singh D, Kasprzewska A, Blicharz S, Basińska-Barczak A. Vascular tissue - boon or bane? How pathogens usurp long-distance transport in plants and the defence mechanisms deployed to counteract them. THE NEW PHYTOLOGIST 2024; 243:2075-2092. [PMID: 39101283 DOI: 10.1111/nph.20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024]
Abstract
Evolutionary emergence of specialised vascular tissues has enabled plants to coordinate their growth and adjust to unfavourable external conditions. Whilst holding a pivotal role in long-distance transport, both xylem and phloem can be encroached on by various biotic factors for systemic invasion and hijacking of nutrients. Therefore, a complete understanding of the strategies deployed by plants against such pathogens to restrict their entry and establishment within plant tissues, is of key importance for the future development of disease-tolerant crops. In this review, we aim to describe how microorganisms exploit the plant vascular system as a route for gaining access and control of different host tissues and metabolic pathways. Highlighting several biological examples, we detail the wide range of host responses triggered to prevent or hinder vascular colonisation and effectively minimise damage upon biotic invasions.
Collapse
Affiliation(s)
- Robert Malinowski
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Deeksha Singh
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Anna Kasprzewska
- Regulation of Gene Expression Team, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Sara Blicharz
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Aneta Basińska-Barczak
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| |
Collapse
|
2
|
Raha P, Khatua I, Saha G, Adhikari S, Gantait S, Bandyopadhyay TK. Morpho-histology of co-occurrence of somatic embryos, shoots, and inflorescences within a callus of Limonium 'Misty Blue'. PHYSIOLOGIA PLANTARUM 2024; 176:e14389. [PMID: 38887935 DOI: 10.1111/ppl.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
This is the first attempt to report the co-occurrence of somatic embryos, shoots, and inflorescences and their sequential development from stem cell niches of an individual callus mass through morpho-histological study of any angiosperm. In the presence of a proper auxin/cytokinin combination, precambial stem cells from the middle layer of a compact callus, which was derived from the thin cell layer of the inflorescence rachis of Limonium, expressed the highest level of totipotency and pluripotency and simultaneously developed somatic embryos, shoots, and inflorescences. This study also proposed the concept of programmed cell death during bipolar somatic embryo and unipolar shoot bud pattern formation. The unique feature of this research was the stepwise histological description of in vitro racemose inflorescence development. Remarkably, during the initiation of inflorescence development, either a unipolar structure with open vascular elements or an independent bipolar structure with closed vascular elements were observed. The protocol predicted the production of 6.6 ± 0.24 and 7.4 ± 0.24 somatic embryos and shoots, respectively, from 400 mg of callus, which again multiplied, rooted, and acclimatised. The plants' ploidy level and genetic fidelity were assessed randomly before acclimatisation by flow cytometry and inter simple sequence repeats (ISSR) marker analysis. Finally, the survivability and flower quality of the regenerated plants were evaluated in the field.
Collapse
Affiliation(s)
- Priyanka Raha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Ishita Khatua
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Gourab Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Sinchan Adhikari
- Department of Botany, University of Kalyani, Nadia, West Bengal, India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal, India
| | | |
Collapse
|
3
|
von der Mark C, Minne M, De Rybel B. Studying plant vascular development using single-cell approaches. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102526. [PMID: 38479078 DOI: 10.1016/j.pbi.2024.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
Vascular cells form a highly complex and heterogeneous tissue. Its composition, function, shape, and arrangement vary with the developmental stage and between organs and species. Understanding the transcriptional regulation underpinning this complexity thus requires a high-resolution technique that is capable of capturing rapid events during vascular cell formation. Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) approaches provide powerful tools to extract transcriptional information from these lowly abundant and dynamically changing cell types, which allows the reconstruction of developmental trajectories. Here, we summarize and reflect on recent studies using single-cell transcriptomics to study vascular cell types and discuss current and future implementations of sc/snRNA-seq approaches in the field of vascular development.
Collapse
Affiliation(s)
- Claudia von der Mark
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
4
|
Wang J, Bollier N, Buono RA, Vahldick H, Lin Z, Feng Q, Hudecek R, Jiang Q, Mylle E, Van Damme D, Nowack MK. A developmentally controlled cellular decompartmentalization process executes programmed cell death in the Arabidopsis root cap. THE PLANT CELL 2024; 36:941-962. [PMID: 38085063 PMCID: PMC7615778 DOI: 10.1093/plcell/koad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Programmed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here, we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD. We identify a succession of selective decompartmentalization events and ion fluxes as part of the terminal differentiation program that is orchestrated by the NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON (NAC) transcription factor SOMBRERO. Surprisingly, the breakdown of the large central vacuole is a relatively late and variable event, preceded by an increase of intracellular calcium levels and acidification, release of mitochondrial matrix proteins, leakage of nuclear and endoplasmic reticulum lumina, and release of fluorescent membrane reporters into the cytosol. In analogy to animal apoptosis, the plasma membrane remains impermeable for proteins during and after PCD execution. Elevated intracellular calcium levels and acidification are sufficient to trigger cell death execution specifically in terminally differentiated root cap cells, suggesting that these ion fluxes act as PCD-triggering signals. This detailed information on the cellular processes occurring during developmental PCD in plants is a pivotal prerequisite for future research into the molecular mechanisms of cell death execution.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Norbert Bollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
5
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Sun Y, Yang B, De Rybel B. Hormonal control of the molecular networks guiding vascular tissue development in the primary root meristem of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6964-6974. [PMID: 37343122 PMCID: PMC7615341 DOI: 10.1093/jxb/erad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Vascular tissues serve a dual function in plants, both providing physical support and controlling the transport of nutrients, water, hormones, and other small signaling molecules. Xylem tissues transport water from root to shoot; phloem tissues transfer photosynthates from shoot to root; while divisions of the (pro)cambium increase the number of xylem and phloem cells. Although vascular development constitutes a continuous process from primary growth in the early embryo and meristem regions to secondary growth in the mature plant organs, it can be artificially separated into distinct processes including cell type specification, proliferation, patterning, and differentiation. In this review, we focus on how hormonal signals orchestrate the molecular regulation of vascular development in the Arabidopsis primary root meristem. Although auxin and cytokinin have taken center stage in this aspect since their discovery, other hormones including brassinosteroids, abscisic acid, and jasmonic acid also take leading roles during vascular development. All these hormonal cues synergistically or antagonistically participate in the development of vascular tissues, forming a complex hormonal control network.
Collapse
Affiliation(s)
- Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
7
|
Wang H, Zhao P, He Y, Su Y, Zhou X, Guo H. Transcriptome and miRNAs Profiles Reveal Regulatory Network and Key Regulators of Secondary Xylem Formation in "84K" Poplar. Int J Mol Sci 2023; 24:16438. [PMID: 38003631 PMCID: PMC10671414 DOI: 10.3390/ijms242216438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Secondary xylem produced by stem secondary growth is the main source of tree biomass and possesses great economic and ecological value in papermaking, construction, biofuels, and the global carbon cycle. The secondary xylem formation is a complex developmental process, and the underlying regulatory networks and potential mechanisms are still under exploration. In this study, using hybrid poplar (Populus alba × Populus glandulosa clone 84K) as a model system, we first ascertained three representative stages of stem secondary growth and then investigated the regulatory network of secondary xylem formation by joint analysis of transcriptome and miRNAs. Notably, 7507 differentially expressed genes (DEGs) and 55 differentially expressed miRNAs (DEMs) were identified from stage 1 without initiating secondary growth to stage 2 with just initiating secondary growth, which was much more than those identified from stage 2 to stage 3 with obvious secondary growth. DEGs encoding transcription factors and lignin biosynthetic enzymes and those associated with plant hormones were found to participate in the secondary xylem formation. MiRNA-target analysis revealed that a total of 85 DEMs were predicted to have 2948 putative targets. Among them, PagmiR396d-PagGRFs, PagmiR395c-PagGA2ox1/PagLHW/PagSULTR2/PagPolyubiquitin 1, PagmiR482d-PagLAC4, PagmiR167e-PagbHLH62, and PagmiR167f/g/h-PagbHLH110 modules were involved in the regulating cambial activity and its differentiation into secondary xylem, cell expansion, secondary cell wall deposition, and programmed cell death. Our results give new insights into the regulatory network and mechanism of secondary xylem formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Huihong Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (H.W.); (P.Z.); (Y.H.); (Y.S.); (X.Z.)
| |
Collapse
|
8
|
Sobri ZM, Gallois P. Characterising the Gene Expression, Enzymatic Activity and Subcellular Localisation of Arabidopsis thaliana Metacaspase 5 ( AtMCA-IIb). BIOLOGY 2023; 12:1155. [PMID: 37759555 PMCID: PMC10525968 DOI: 10.3390/biology12091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Metacaspases are a class of proteases found in plants that have gained attention in recent years due to their involvement in programmed cell death (PCD) and other essential cellular processes. Although structurally homologous to caspases found in animals, metacaspases have distinct properties and functions. There are nine metacaspase genes in the Arabidopsis thaliana genome; these can be type I or type II, and working out the function of each member of the gene family is challenging. In this study, we report the characterisation of one Arabidopsis type II metacaspase, metacaspase-5 (AtMC5; AtMCA-IIb). We detected the expression of AtMC5 only under specific conditions with a strong upregulation by ER stress and oxidative stress at a narrow 6 h time point. Recombinant AtMC5 was successfully purified from E. coli, with the recombinant AtMC5 working optimally at pH 7, using an optimised reaction buffer containing 10 mM calcium chloride together with 15% sucrose. Like other metacaspases, AtMC5 cleaved after arginine residue and demonstrated a substrate preference towards VRPR. Additionally, AtMC5-RFP was shown to be localised in the cytosol and nucleus of transfected cells. We found no evidence of a strong link between AtMC5 and PCD, and the data provide additional insights into the function of metacaspases in plants and will aid in future research toward further understanding their mode of action.
Collapse
Affiliation(s)
- Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
9
|
Liu YL, Guo YH, Song XQ, Hu MX, Zhao ST. A method for analyzing programmed cell death in xylem development by flow cytometry. FRONTIERS IN PLANT SCIENCE 2023; 14:1196618. [PMID: 37360718 PMCID: PMC10288846 DOI: 10.3389/fpls.2023.1196618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Programmed cell death (PCD) is a genetically regulated developmental process leading to the death of specific types of plant cells, which plays important roles in plant development and growth such as wood formation. However, an efficient method needs to be established to study PCD in woody plants. Flow cytometry is widely utilized to evaluate apoptosis in mammalian cells, while it is rarely used to detect PCD in plants, especially in woody plants. Here, we reported that the xylem cell protoplasts from poplar stem were stained with a combination of fluorescein annexin V-FITC and propidium iodide (PI) and then sorted by flow cytometry. As expected, living cells (annexin V-FITC negative/PI negative), early PCD cells (annexin V-FITC positive/PI negative), and late PCD cells (annexin V-FITC positive/PI positive) could be finely distinguished through this method and then subjected for quantitative analysis. The expression of cell-type- and developmental stages-specific marker genes was consistent with the cell morphological observation. Therefore, the newly developed fluorescence-activated cell sorting (FACS) method can be used to study PCD in woody plants, which will be beneficial for studying the molecular mechanisms of wood formation.
Collapse
Affiliation(s)
- Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ying-Hua Guo
- National Center for Protein Sciences at Peking University, Beijing, China
| | - Xue-Qin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Meng-Xuan Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
10
|
Moshchenskaya YL, Galibina NA, Nikerova KM, Tarelkina TV, Korzhenevsky MA, Sofronova IN, Ershova MA, Semenova LI. Plant-Programmed Cell Death-Associated Genes Participation in Pinus sylvestris L. Trunk Tissue Formation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3438. [PMID: 36559551 PMCID: PMC9785643 DOI: 10.3390/plants11243438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles of serine and cysteine proteases (endopeptidases), endonucleases, and metacaspases families are often considered markers of the final xylogenesis stage. In the present study, we examined the gene expression profiles of the BFN (bifunctional endonuclease) family-BFN, BFN1, BFN2, BFN3, and peptidase (cysteine endopeptidase, CEP and metacaspase, MC5) in the radial row, in addition to the vascular phloem and cambium (F1), differentiating xylem (F2), sapwood (SW), and transition zone during the active cambial growth period of uneven-aged pine trees (25-, 63- and 164-cambial age (c.a.) years old). We have shown that the expression patterns of the PCD-related genes did not depend on the cambial age but were largely determined by plant tissue type. In the radial row F1-F2-SW, we studied the activities of enzymes, including sucrose in metabolism (sucrose synthase, three forms of invertase); antioxidant system (AOS) enzymes (superoxide dismutase, catalase); and peroxidase andpolyphenol oxidase, which belonged to AOS enzymes and were involved in the synthesis of phenolic components of cell walls. The activity of the enzymes indicated that the trunk tissues of pine trees had varying metabolic status. Molecular genetic PCD regulation mechanisms during xylem vascular and mechanical element formation and parenchyma cells' PCD during the formation of Scots pine heartwood were discussed.
Collapse
Affiliation(s)
- Yulia L. Moshchenskaya
- Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya st., 185910 Petrozavodsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
von der Mark C, Cruz TMD, Blanco‐Touriñan N, Rodriguez‐Villalon A. Bipartite phosphoinositide-dependent modulation of auxin signaling during xylem differentiation in Arabidopsis thaliana roots. THE NEW PHYTOLOGIST 2022; 236:1734-1747. [PMID: 36039703 PMCID: PMC9826227 DOI: 10.1111/nph.18448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Efficient root-to-shoot delivery of water and nutrients in plants relies on the correct differentiation of xylem cells into hollow elements. While auxin is integral to the formation of xylem cells, it remains poorly characterized how each subcellular pool of this hormone regulates this process. Combining genetic and cell biological approaches, we investigated the bipartite activity of nucleoplasmic vs plasma membrane-associated phosphatidylinositol 4-phosphate kinases PIP5K1 and its homolog PIP5K2 in Arabidopsis thaliana roots and uncovered a novel mechanism by which phosphoinositides integrate distinct aspects of the auxin signaling cascade and, in turn, regulate the onset of xylem differentiation. The appearance of undifferentiated cells in protoxylem strands of pip5k1 pip5k2 is phenomimicked in auxin transport and perception mutants and can be partially restored by the nuclear residence of PIP5K1. By contrast, exclusion of PIP5K1 from the nucleus hinders the auxin-mediated induction of the xylem master regulator VASCULAR RELATED NAC DOMAIN (VND) 7. A xylem-specific increase of auxin levels abolishes pip5k1 pip5k2 vascular defects, indicating that the establishment of auxin maxima is required to activate VND7-mediated xylem differentiation. Our results describe a new mechanism by which distinct subcellular pools of phosphoinositides integrate auxin transport and perception to initiate xylem differentiation in a spatiotemporal manner.
Collapse
Affiliation(s)
- Claudia von der Mark
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | - Tiago M. D. Cruz
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | - Noel Blanco‐Touriñan
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | | |
Collapse
|
12
|
Cao S, Guo M, Cheng J, Cheng H, Liu X, Ji H, Liu G, Cheng Y, Yang C. Aspartic proteases modulate programmed cell death and secondary cell wall synthesis during wood formation in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6876-6890. [PMID: 36040843 PMCID: PMC9629783 DOI: 10.1093/jxb/erac347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Programmed cell death (PCD) is essential for wood development in trees. However, the determination of crucial factors involved in xylem PCD of wood development is still lacking. Here, two Populus trichocarpa typical aspartic protease (AP) genes, AP17 and AP45, modulate xylem maturation, especially fibre PCD, during wood formation. AP17 and AP45 were dominantly expressed in the fibres of secondary xylem, as suggested by GUS expression in APpro::GUS transgenic plants. Cas9/gRNA-induced AP17 or AP45 mutants delayed secondary xylem fibre PCD, and ap17ap45 double mutants showed more serious defects. Conversely, AP17 overexpression caused premature PCD in secondary xylem fibres, indicating a positive modulation in wood fibre PCD. Loss of AP17 and AP45 did not alter wood fibre wall thickness, whereas the ap17ap45 mutants showed a low lignin content in wood. However, AP17 overexpression led to a significant decrease in wood fibre wall thickness and lignin content, revealing the involvement in secondary cell wall synthesis during wood formation. In addition, the ap17ap45 mutant and AP17 overexpression plants resulted in a significant increase in saccharification yield in wood. Overall, AP17 and AP45 are crucial modulators in xylem maturation during wood development, providing potential candidate genes for engineering lignocellulosic wood for biofuel utilization.
Collapse
Affiliation(s)
- Shenquan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiaomeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Huanhuan Ji
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | | |
Collapse
|
13
|
Dauphin BG, Ranocha P, Dunand C, Burlat V. Cell-wall microdomain remodeling controls crucial developmental processes. TRENDS IN PLANT SCIENCE 2022; 27:1033-1048. [PMID: 35710764 DOI: 10.1016/j.tplants.2022.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Plant cell walls display cellular and subcellular specificities. At the subcellular level, wall regional territories with specific compositions are necessary for macroscopic developmental processes. These regional specificities were named differently throughout the years, and are unified here under the term 'cell-wall microdomains' that define the local composition and organization of wall polymers underlying territories of wall loosening and/or softening or stiffening. We review the occurrence and developmental role of wall microdomains in different cell types. We primarily focus on the contribution of two categories of wall-remodeling molecular actors: fine-tuning of homogalacturonan (HG; pectin) demethylesterification patterns and two classes of oxidoreductases [class III peroxidases (CIII PRXs) and laccases (LACs)], but we also highlight two different molecular scaffolds recently identified for positioning specific CIII PRXs.
Collapse
Affiliation(s)
- Bastien G Dauphin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France.
| |
Collapse
|
14
|
Huai B, Liang MJ, Bai M, He HJ, Chen JZ, Wu H. Localization of CgVPE1 in secondary cell wall formation during tracheary element differentiation in the pericarp of Citrus grandis 'Tomentosa' fruits. PLANTA 2022; 256:89. [PMID: 36169724 DOI: 10.1007/s00425-022-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
CgVPE1 is important in the differentiation of TE cells in C. grandis 'Tomentosa' fruits as it may directly affects secondary cell wall construction while participating in PCD. The vacuolar processing enzyme (VPE) plays an important role in both developmental and environmentally inducible programmed cell death (PCD); it was originally identified as a cysteine protease localized in the vacuole to activate and mature vacuolar proteins in plants. Interestingly, we found a VPE called CgVPE1 to be associated with deposition of the secondary cell wall in tracheary element (TE) cells in the pericarp of Citrus grandis 'Tomentosa' fruits. We then used ultrathin sections and the TUNEL assay to verify that PCD is involved in TE development. Furthermore, CgVPE1 was found to be mainly expressed in secretory cavities and TEs in the pericarp of Citrus grandis 'Tomentosa' fruits. Immunolocalization of CgVPE1 in the pericarp indicated that CgVPE1 is mainly distributed in the central large vacuole, endoplasmic reticulum, Golgi vesicles, cytosol, and secondary wall before TE maturation. CgVPE1 appeared earlier in the endoplasmic reticulum and Golgi vesicles of TEs cells. The vesicles containing CgVPE1 near the large central vacuole and secondary wall were observed, respectively. CgVPE1 proteins content in the cytoplasm decreased sharply, while the CgVPE1 content in the secondary cell wall did not change significantly after vacuole rupture. CgVPE1 protein contents in the secondary cell wall were significantly reduced until the TE cells developed into hollow thick-walled cells. Furthermore, labeling of VPE homologues in Arabidopsis thaliana using immunoelectron microscopy with anti-CgVPE1 antibody revealed that VPE homologues were specifically distributed in the secondary cell wall of stem TEs. Overall, these results suggested that CgVPE1 is not only involved PCD during TE cell development; furthermore, it may directly participate in the construction of plant secondary cell walls.
Collapse
Affiliation(s)
- B Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M J Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - H J He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - J Z Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - H Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Akiyoshi N, Ihara A, Matsumoto T, Takebayashi A, Hiroyama R, Kikuchi J, Demura T, Ohtani M. Functional Analysis of Poplar Sombrero-Type NAC Transcription Factors Yields a Strategy to Modify Woody Cell Wall Properties. PLANT & CELL PHYSIOLOGY 2021; 62:1963-1974. [PMID: 34226939 DOI: 10.1093/pcp/pcab102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 05/22/2023]
Abstract
Woody cells generate lignocellulosic biomass, which is a promising sustainable bioresource for wide industrial applications. Woody cell differentiation in vascular plants, including the model plant poplar (Populus trichocarpa), is regulated by a set of NAC family transcription factors, the VASCULAR-RELATED NAC-DOMAIN (VND), NAC SECONDARY CELL WALL THICKENING PROMOTING FACTOR (NST)/SND, and SOMBRERO (SMB) (VNS)-related proteins, but the precise contributions of each VNS protein to wood quality are unknown. Here, we performed a detailed functional analysis of the poplar SMB-type VNS proteins PtVNS13-PtVNS16. PtVNS13-PtVNS16 were preferentially expressed in the roots of young poplar plantlets, similar to the Arabidopsis thalianaSMB gene. PtVNS13 and PtVNS14, as well as the NST-type PtVNS11, suppressed the abnormal root cap phenotype of the Arabidopsis sombrero-3 mutant, whereas the VND-type PtVNS07 gene did not, suggesting a functional gap between SMB- or NST-type VNS proteins and VND-type VNS proteins. Overexpressing PtVNS13-PtVNS16 in Arabidopsis seedlings and poplar leaves induced ectopic xylem-vessel-like cells with secondary wall deposition, and a transient expression assay showed that PtVNS13-16 transactivated woody-cell-related genes. Interestingly, although any VNS protein rescued the pendant stem phenotype of the Arabidopsis nst1-1 nst3-1 mutant, the resulting inflorescence stems exhibited distinct cell wall properties: poplar VNS genes generated woody cell walls with higher enzymatic saccharification efficiencies compared with Arabidopsis VNS genes. Together, our data reveal clear functional diversity among VNS proteins in woody cell differentiation and demonstrate a novel VNS-based strategy for modifying woody cell wall properties toward enhanced utilization of woody biomass.
Collapse
Affiliation(s)
- Nobuhiro Akiyoshi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Ayumi Ihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoko Matsumoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Arika Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryoko Hiroyama
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8915-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8915-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
16
|
Kamon E, Ohtani M. Xylem vessel cell differentiation: A best model for new integrative cell biology? CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102135. [PMID: 34768235 DOI: 10.1016/j.pbi.2021.102135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 05/22/2023]
Abstract
Xylem vessels transport water and essential low-molecular-weight compounds throughout vascular plants. To achieve maximum performance as conductive tissues, xylem vessel cells undergo secondary cell wall deposition and programmed cell death to produce a hollow tube-like structure with a rigid outer shell. This unique process has been explored in detail from a cell biology and molecular biology perspective, culminating in the identification of the master transcriptional switches of xylem vessel cell differentiation, the VASCULAR-RELATED NAC-DOMAIN (VND) proteins. High-resolution analyses of xylem vessel cell differentiation have since accelerated and are now moving toward single cell-level dissection from a variety of directions. In this review, we introduce the current model of xylem vessel cell differentiation and discuss possible future directions in this field.
Collapse
Affiliation(s)
- Eri Kamon
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Misato Ohtani
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
17
|
Zhang C, Zhang J, Liu Y, Liu X, Guo X, Li H, Liu D, Lu H. Integrated Transcriptomic and Proteomic Analysis in the Roadmap of the Xylem Development Stage in Populus tomentosa. FRONTIERS IN PLANT SCIENCE 2021; 12:724559. [PMID: 34804081 PMCID: PMC8600231 DOI: 10.3389/fpls.2021.724559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Xylem development plays an important role in the wood formation of plants. In this study, we found that xylem development was a rapid thickening process characterized by initially rapid increases in the number of tracheary elements and fiber cells and the thickness of the secondary walls that later plateaued. Transcriptome analysis showed that the xylan and lignin biosynthetic pathways, which are involved in the early rapid thickening of the xylem, were mainly upregulated in the second month. The expression of a total of 124 transcription factors (TFs), including 28 NAC TFs and 31 MYB TFs, peaked in 2- and 3-month-old plants compared with 1-month-old plants. Based on previous studies and the key cis-acting elements secondary wall NAC-binding elements, secondary wall MYB-responsive elements, W-box and TGTG[T/G/C], 10 TFs related to xylem development, 50 TFs with unknown function, 98 cell wall biosynthetic genes, and 47 programmed cell death (PCD) genes were used to construct a four-layer transcriptional regulatory network (TRN) with poplar NAC domain TFs to characterize the transcriptional regulation of cell wall biosynthesis and PCD in Populus tomentosa. The proteome revealed that post-transcriptional modification may be widely involved in lignification development. Overall, our results revealed that xylem development is a rapid thickening process in P. tomentosa, and expression patterns varied temporally from cell division to cell death.
Collapse
Affiliation(s)
- Chong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jiaxue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yadi Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiatong Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaorui Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Di Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Jiang C, Wang J, Leng HN, Wang X, Liu Y, Lu H, Lu MZ, Zhang J. Transcriptional Regulation and Signaling of Developmental Programmed Cell Death in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:702928. [PMID: 34394156 PMCID: PMC8358321 DOI: 10.3389/fpls.2021.702928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Developmental programmed cell death (dPCD) has multiple functions in plant growth and development, and is of great value for industrial production. Among them, wood formed by xylem dPCD is one of the most widely used natural materials. Therefore, it is crucial to explore the molecular mechanism of plant dPCD. The dPCD process is tightly regulated by genetic networks and is involved in the transduction of signaling molecules. Several key regulators have been identified in diverse organisms and individual PCD events. However, complex molecular networks controlling plant dPCD remain highly elusive, and the original triggers of this process are still unknown. This review summarizes the recent progress on the transcriptional regulation and signaling of dPCD during vegetative and reproductive development. It is hoped that this review will provide an overall view of the molecular regulation of dPCD in different developmental processes in plants and identify specific mechanisms for regulating these dPCD events. In addition, the application of plants in industrial production can be improved by manipulating dPCD in specific processes, such as xylogenesis.
Collapse
Affiliation(s)
- Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiawei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hua-Ni Leng
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yijing Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Haiwen Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
19
|
Wojciechowska N, Michalak KM, Bagniewska-Zadworna A. Autophagy-an underestimated coordinator of construction and destruction during plant root ontogeny. PLANTA 2021; 254:15. [PMID: 34184131 PMCID: PMC8238727 DOI: 10.1007/s00425-021-03668-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/20/2021] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
20
|
Reeger JE, Wheatley M, Yang Y, Brown KM. Targeted mutation of transcription factor genes alters metaxylem vessel size and number in rice roots. PLANT DIRECT 2021; 5:e00328. [PMID: 34142002 PMCID: PMC8204146 DOI: 10.1002/pld3.328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Root metaxylem vessels are responsible for axial water transport and contribute to hydraulic architecture. Variation in metaxylem vessel size and number can impact drought tolerance in crop plants, including rice, a crop that is particularly sensitive to drought. Identifying and validating candidate genes for metaxylem development would aid breeding efforts for improved varieties for drought tolerance. We identified three transcription factor candidate genes that potentially regulate metaxylem vessel size and number in rice based on orthologous annotations, published expression data, and available root and drought-related QTL data. Single gene knockout mutants were generated for each candidate using CRISPR-Cas9 genome editing. Root metaxylem vessel area and number were analyzed in 6-week-old knockout mutants and wild-type plants under well-watered and drought conditions in the greenhouse. Compared with wild type, LONESOME HIGHWAY (OsLHW) mutants had fewer, smaller metaxylem vessels in shallow roots and more, larger vessels in deep roots in drought conditions, indicating that OsLHW may be a repressor of drought-induced metaxylem plasticity. The AUXIN RESPONSE FACTOR 15 mutants showed fewer but larger metaxylem vessel area in well-watered conditions, but phenotypes were inconsistent under drought treatment. ORYZA SATIVA HOMEBOX 6 (OSH6) mutants had fewer, smaller metaxylem vessels in well-watered conditions with greater effects on xylem number than size. OSH6 mutants had larger shoots and more, deeper roots than the wild type in well-watered conditions, but there were no differences in performance under drought between mutants and wild type. Though these candidate gene mutants did not exhibit large phenotypic effects, the identification and investigation of candidate genes related to metaxylem traits in rice deepen our understanding of metaxylem development and are needed to facilitate incorporation of favorable alleles into breeding populations to improve drought stress tolerance.
Collapse
Affiliation(s)
- Jenna E. Reeger
- Intercollege Graduate Degree Program in Plant BiologyHuck Institutes of the Life SciencesPenn State UniversityUniversity ParkPAUSA
| | - Matthew Wheatley
- Department of Plant Pathology and Environmental MicrobiologyHuck Institute of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Yinong Yang
- Department of Plant Pathology and Environmental MicrobiologyHuck Institute of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Kathleen M. Brown
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
21
|
Xiao R, Zhang C, Guo X, Li H, Lu H. MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. Int J Mol Sci 2021; 22:3560. [PMID: 33808132 PMCID: PMC8037110 DOI: 10.3390/ijms22073560] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.
Collapse
Affiliation(s)
- Ruixue Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Xiaorui Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| |
Collapse
|
22
|
Canaveze Y, Scudeler EL, Rodrigues Machado S. Neem secretory cells: developmental cytology and indications of cell autotoxicity. PROTOPLASMA 2021; 258:415-429. [PMID: 33140195 DOI: 10.1007/s00709-020-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The neem tree (Azadirachta indica A.Juss.) contains a range of biologically active compounds-mainly triterpenoids produced in single secretory cells, which are distributed among all plant parts. Neem secretions are toxic to animal cells, triggering autolytic mechanisms that culminate in cell disruption. However, little is known about the self-toxicity of these secretions to the cells that produce them. We carried out an anatomical, histochemical, and ultrastructural investigation of neem's single secretory cells in the shoot apex and in young leaves. We evaluated the morphological changes as possible evidences of stress reactions to their own secretions. The subcellular apparatus involved in synthesis and compartmentation was consistent with hydrophilic and lipophilic secretions. Polymorphic plastids devoid of thylakoids and abundant smooth endoplasmic reticulum in the later stages of differentiation are comparable with previous reports on neem cotyledons with regard to terpenoid synthesis. However, secretions were compartmentalized within autophagic vacuoles and periplasmic spaces instead of in terpenoid vesicles. Cellular swelling, increased vesiculation, dilatation of endoplasmic reticulum cisternae, mitochondrial hypertrophy in the cristolysis process, autolytic vacuoles, and vacuolar degeneration culminating in protoplast autolysis are all consistent with early indications of autotoxicity. The signaling stress reaction mechanism was expressed as cytoplasmic deposits of calcium salt and by the expression of a 70-kDa heat-shock protein. The morphological and histochemical changes in the secreting cells are comparable with those described in animal cells exposed to neem oil. Our data provide evidence of cell damage and signaling reactions linked to these cells' own secretions before autolysis.
Collapse
Affiliation(s)
- Yve Canaveze
- IBB - Institute of Biosciences of Botucatu, Laboratory of Plant Anatomy, UNESP - São Paulo State University, PO Box 510, Botucatu, São Paulo State, 18618-970, Brazil
| | - Elton Luiz Scudeler
- IBB - Institute of Biosciences of Botucatu, Laboratory of Insects, UNESP - São Paulo State University, PO Box 510, Botucatu, São Paulo State, 18618-970, Brazil
| | - Silvia Rodrigues Machado
- IBB - Institute of Biosciences of Botucatu, Laboratory of Plant Anatomy, UNESP - São Paulo State University, PO Box 510, Botucatu, São Paulo State, 18618-970, Brazil.
| |
Collapse
|
23
|
Sychta K, Słomka A, Kuta E. Insights into Plant Programmed Cell Death Induced by Heavy Metals-Discovering a Terra Incognita. Cells 2021; 10:cells10010065. [PMID: 33406697 PMCID: PMC7823951 DOI: 10.3390/cells10010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death (PCD) is a process that plays a fundamental role in plant development and responses to biotic and abiotic stresses. Knowledge of plant PCD mechanisms is still very scarce and is incomparable to the large number of studies on PCD mechanisms in animals. Quick and accurate assays, e.g., the TUNEL assay, comet assay, and analysis of caspase-like enzyme activity, enable the differentiation of PCD from necrosis. Two main types of plant PCD, developmental (dPCD) regulated by internal factors, and environmental (ePCD) induced by external stimuli, are distinguished based on the differences in the expression of the conserved PCD-inducing genes. Abiotic stress factors, including heavy metals, induce necrosis or ePCD. Heavy metals induce PCD by triggering oxidative stress via reactive oxygen species (ROS) overproduction. ROS that are mainly produced by mitochondria modulate phytotoxicity mechanisms induced by heavy metals. Complex crosstalk between ROS, hormones (ethylene), nitric oxide (NO), and calcium ions evokes PCD, with proteases with caspase-like activity executing PCD in plant cells exposed to heavy metals. This pathway leads to very similar cytological hallmarks of heavy metal induced PCD to PCD induced by other abiotic factors. The forms, hallmarks, mechanisms, and genetic regulation of plant ePCD induced by abiotic stress are reviewed here in detail, with an emphasis on plant cell culture as a suitable model for PCD studies. The similarities and differences between plant and animal PCD are also discussed.
Collapse
|
24
|
Structure and Biomechanics during Xylem Vessel Transdifferentiation in Arabidopsis thaliana. PLANTS 2020; 9:plants9121715. [PMID: 33291397 PMCID: PMC7762020 DOI: 10.3390/plants9121715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system in three different osmotic conditions. Atomic force microscopy (AFM) nanoscale indentations in water allow us to isolate the cell wall response. We propose a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.
Collapse
|
25
|
Teper-Bamnolker P, Danieli R, Peled-Zehavi H, Belausov E, Abu-Abied M, Avin-Wittenberg T, Sadot E, Eshel D. Vacuolar processing enzyme translocates to the vacuole through the autophagy pathway to induce programmed cell death. Autophagy 2020; 17:3109-3123. [PMID: 33249982 DOI: 10.1080/15548627.2020.1856492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The caspase-like vacuolar processing enzyme (VPE) is a key factor in programmed cell death (PCD) associated with plant stress responses. Growth medium lacking a carbon source and dark conditions caused punctate labeling of 35S::VPE1-GFP (StVPE1-GFP) in potato leaves. Under conditions of carbon starvation, VPE activity and PCD symptoms strongly increased in BY-2 cells, but to a much lesser extent in VPE-RNAi BY-2 cells. During extended exposure to carbon starvation, VPE expression and activity levels peaked, with a gradual increase in BY-2 cell death. Histological analysis of StVPE1-GFP in BY-2 cells showed that carbon starvation induces its translocation from the endoplasmic reticulum to the central vacuole through tonoplast engulfment. Exposure of BY-2 culture to the macroautophagy/autophagy inhibitor concanamycin A led to, along with an accumulation of autophagic bodies, accumulation of StVPE1-GFP in the cell vacuole. This accumulation did not occur in the presence of 3-methyladenine, an inhibitor of early-stage autophagy. BY-2 cells constitutively expressing RFP-StATG8IL, an autophagosome marker, showed colocalization with the StVPE1-GFP protein in the cytoplasm and vacuole. RNAi silencing of the core autophagy component ATG4 in BY-2 cells reduced VPE activity and cell death. These results are the first to suggest that VPE translocates to the cell vacuole through the autophagy pathway, leading to PCD.Abbreviations: ATG: autophagy related; CLP: caspase-like protease; HR: hypersensitive response; PCD: programmed cell death; St: Solanum tuberosum; VPE: vacuolar processing enzyme.
Collapse
Affiliation(s)
| | - Raz Danieli
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel.,Institute of Plant Sciences and Genetics in Agriculture, the Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel
| | - Hadas Peled-Zehavi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot Israel
| | - Eduard Belausov
- Department of Ornamental Horticulture, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Mohamad Abu-Abied
- Department of Ornamental Horticulture, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Einat Sadot
- Department of Ornamental Horticulture, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
26
|
Smertenko T, Turner G, Fahy D, Brew-Appiah RAT, Alfaro-Aco R, de Almeida Engler J, Sanguinet KA, Smertenko A. Brachypodium distachyon MAP20 functions in metaxylem pit development and contributes to drought recovery. THE NEW PHYTOLOGIST 2020; 227:1681-1695. [PMID: 31863702 DOI: 10.1111/nph.16383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm-specific TPX2-like microtubule protein MAP20 in pit formation using Brachypodium distachyon as a model system. Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20-specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function of MAP20. MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ-tubulin ring complex in microtubule nucleation. Knockdown of MAP20 causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility. We conclude that MAP20 may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.
Collapse
Affiliation(s)
- Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Glenn Turner
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Janice de Almeida Engler
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Université Côte d'Azur, Centre National de la Recherche Scientifique, 06903, Sophia-Antipolis, France
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
27
|
Li JW, Zhang SB, Xi HP, Bradshaw CJA, Zhang JL. Processes controlling programmed cell death of root velamen radicum in an epiphytic orchid. ANNALS OF BOTANY 2020; 126:261-275. [PMID: 32318689 PMCID: PMC7380463 DOI: 10.1093/aob/mcaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/18/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Development of the velamen radicum on the outer surface of the root epidermis is an important characteristic for water uptake and retention in some plant families, particularly epiphytic orchids, for survival under water-limited environments. Velamen radicum cells derive from the primary root meristem; however, following this development, velamen radicum cells die by incompletely understood processes of programmed cell death (PCD). METHODS We combined the use of transmission electron microscopy, X-ray micro-tomography and transcriptome methods to characterize the major anatomical and molecular changes that occur during the development and death of velamen radicum cells of Cymbidium tracyanum, a typical epiphytic orchid, to determine how PCD occurs. KEY RESULTS Typical changes of PCD in anatomy and gene expression were observed in the development of velamen radicum cells. During the initiation of PCD, we found that both cell and vacuole size increased, and several genes involved in brassinosteroid and ethylene pathways were upregulated. In the stage of secondary cell wall formation, significant anatomical changes included DNA degradation, cytoplasm thinning, organelle decrease, vacuole rupture and cell wall thickening. Changes were found in the expression of genes related to the biosynthesis of cellulose and lignin, which are instrumental in the formation of secondary cell walls, and are regulated by cytoskeleton-related factors and phenylalanine ammonia-lyase. In the final stage of PCD, cell autolysis was terminated from the outside to the inside of the velamen radicum. The regulation of genes related to autophagy, vacuolar processing enzyme, cysteine proteases and metacaspase was involved in the final execution of cell death and autolysis. CONCLUSIONS Our results showed that the development of the root velamen radicum in an epiphytic orchid was controlled by the process of PCD, which included initiation of PCD, followed by formation of the secondary cell wall, and execution of autolysis following cell death.
Collapse
Affiliation(s)
- Jia-Wei Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- For correspondence. E-mail or
| | - Hui-Peng Xi
- Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Corey J A Bradshaw
- Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, Australia
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
- For correspondence. E-mail or
| |
Collapse
|
28
|
Hoang NV, Park C, Kamran M, Lee JY. Gene Regulatory Network Guided Investigations and Engineering of Storage Root Development in Root Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:762. [PMID: 32625220 PMCID: PMC7313660 DOI: 10.3389/fpls.2020.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
The plasticity of plant development relies on its ability to balance growth and stress resistance. To do this, plants have established highly coordinated gene regulatory networks (GRNs) of the transcription factors and signaling components involved in developmental processes and stress responses. In root crops, yields of storage roots are mainly determined by secondary growth driven by the vascular cambium. In relation to this, a dynamic yet intricate GRN should operate in the vascular cambium, in coordination with environmental changes. Despite the significance of root crops as food sources, GRNs wired to mediate secondary growth in the storage root have just begun to emerge, specifically with the study of the radish. Gene expression data available with regard to other important root crops are not detailed enough for us directly to infer underlying molecular mechanisms. Thus, in this review, we provide a general overview of the regulatory programs governing the development and functions of the vascular cambium in model systems, and the role of the vascular cambium on the growth and yield potential of the storage roots in root crops. We then undertake a reanalysis of recent gene expression data generated for major root crops and discuss common GRNs involved in the vascular cambium-driven secondary growth in storage roots using the wealth of information available in Arabidopsis. Finally, we propose future engineering schemes for improving root crop yields by modifying potential key nodes in GRNs.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chulmin Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Kamran
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
29
|
Zhang L, Liu B, Zhang J, Hu J. Insights of Molecular Mechanism of Xylem Development in Five Black Poplar Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:620. [PMID: 32547574 PMCID: PMC7271880 DOI: 10.3389/fpls.2020.00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Black poplar (Populus deltoides, P. nigra, and their hybrids) is the main poplar cultivars in China. It offers interesting options of large-scale biomass production for bioenergy due to its rapid growth and high yield. Poplar wood properties were associated with chemical components and physical structures during wood formation. In this study, five poplar cultivars, P. euramericana 'Zhonglin46' (Pe1), P. euramericana 'Guariento' (Pe2), P. nigra 'N179' (Pn1), P. deltoides 'Danhong' (Pd1), and P. deltoides 'Nanyang' (Pd2), were used to explore the molecular mechanism of xylem development. We analyzed the structural differences of developing xylem in the five cultivars and profiled the transcriptome-wide gene expression patterns through RNA sequencing. The cross sections of the developing xylem showed that the cell wall thickness of developed fiber in Pd1 was thickest and the number of xylem vessels of Pn1 was the least. A total of 10,331 differentially expressed genes were identified among 10 pairwise comparisons of the five cultivars, most of them were related to programmed cell death and secondary cell wall thickening. K-means cluster analysis and Gene Ontology enrichment analysis showed that the genes highly expressed in Pd1 were related to nucleotide decomposition, metabolic process, transferase, and microtubule cytoskeleton; whereas the genes highly expressed in Pn1 were involved in cell wall macromolecule decomposition and polysaccharide binding processes. Based on a weighted gene co-expression network analysis, a large number of candidate regulators for xylem development were identified. And their potential regulatory roles to cell wall biosynthesis genes were validated by a transient overexpression system. This study provides a set of promising candidate regulators for genetic engineering to improve feedstock and enhance biofuel conversion in the bioenergy crop Populus.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bobin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
30
|
Gong X, Xie Z, Qi K, Zhao L, Yuan Y, Xu J, Rui W, Shiratake K, Bao J, Khanizadeh S, Zhang S, Tao S. PbMC1a/1b regulates lignification during stone cell development in pear ( Pyrus bretschneideri) fruit. HORTICULTURE RESEARCH 2020; 7:59. [PMID: 32377350 PMCID: PMC7193627 DOI: 10.1038/s41438-020-0280-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 05/16/2023]
Abstract
Programmed cell death (PCD) and secondary cell wall (SCW) thickening in pear fruit are accompanied by the deposition of cellulose and lignin to form stone cells. Metacaspase is an important protease for development, tissue renewal and PCD. The understanding of the molecular mechanism whereby pear (Pyrus) metacaspase promotes PCD and cell wall lignification is still limited. In this study, the Metacaspases gene family (PbMCs) from P. bretschneideri was identified. PbMC1a/1b was associated with lignin deposition and stone cell formation by physiological data, semiquantitative real-time polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR). Relative to wild-type (WT) Arabidopsis, the overexpression of PbMC1a/1b increased lignin deposition and delayed growth, thickened the cell walls of vessels, xylary fibers and interfascicular fibers, and increased the expression of lignin biosynthetic genes. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC) and GST pull-down assays indicated that the PbMC1a/1b protein physically interacted with PbRD21. Simultaneously, the transient expression of PbMC1a/1b and PbRD21 led to significant changes in the expression of genes and lignin contents in pear fruits and flesh calli. These results indicate that PbMC1a/1b plays an important role in cell wall lignification, possibly by interacting with PbRD21 to increase the mRNA levels of some lignin synthesis-associated genes and promote the formation of stone cells in pear fruit.
Collapse
Affiliation(s)
- Xin Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Xie
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangyi Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yazhou Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weikang Rui
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | - Jianping Bao
- College of Plant Science, Tarim University, Ala’er City, China
| | - Shahrokh Khanizadeh
- ELM Consulting Inc., St-Lazare, Canada
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Escamez S, André D, Sztojka B, Bollhöner B, Hall H, Berthet B, Voß U, Lers A, Maizel A, Andersson M, Bennett M, Tuominen H. Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Curr Biol 2020; 30:455-464.e7. [PMID: 31956028 DOI: 10.1016/j.cub.2019.11.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Plant organ growth is widely accepted to be determined by cell division and cell expansion, but, unlike that in animals, the contribution of cell elimination has rarely been recognized. We investigated this paradigm during Arabidopsis lateral root formation, when the lateral root primordia (LRP) must traverse three overlying cell layers within the parent root. A subset of LRP-overlying cells displayed the induction of marker genes for cell types undergoing developmental cell death, and their cell death was detected by electron, confocal, and light sheet microscopy techniques. LRP growth was delayed in cell-death-deficient mutants lacking the positive cell death regulator ORESARA1/ANAC092 (ORE1). LRP growth was restored in ore1-2 knockout plants by genetically inducing cell elimination in cells overlying the LRP or by physically killing LRP-overlying cells by ablation with optical tweezers. Our results support that, in addition to previously discovered mechanisms, cell elimination contributes to regulating lateral root emergence.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Domenique André
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Bernadette Sztojka
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Hardy Hall
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Béatrice Berthet
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ute Voß
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 SRD, UK
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | - Malcolm Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 SRD, UK
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
32
|
Wojciechowska N, Smugarzewska I, Marzec-Schmidt K, Zarzyńska-Nowak A, Bagniewska-Zadworna A. Occurrence of autophagy during pioneer root and stem development in Populus trichocarpa. PLANTA 2019; 250:1789-1801. [PMID: 31451904 DOI: 10.1007/s00425-019-03265-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/19/2019] [Indexed: 05/26/2023]
Abstract
Autophagy is involved in developmentally programmed cell death and is identified during the early development of phloem, as well as xylem with a dual role, as both an inducer and executioner of cell death. The regulation of primary and secondary development of roots and stems is important for the establishment of root systems and for the overall survival of trees. The molecular and cellular basis of the autophagic processes, which are used at distinct moments during the growth of both organs, is crucial to understand the regulation of their development. To address this, we use Populus trichocarpa seedlings grown in a rhizotron system to examine the autophagy processes involved in root and stem development. To monitor the visual aspects of autophagy, transmission electron microscopy (TEM) and immunolocalization of AuTophaGy-related protein (ATG8) enabled observations of the phenomenon at a structural level. To gain further insight into the autophagy process at the protein and molecular level, we evaluated the expression of ATG gene transcripts and ATG protein levels. Alternations in the expression level of specific ATG genes and localization of ATG8 proteins were observed during the course of root or stem primary and secondary development. Specifically, ATG8 was present in the cells exhibiting autophagy, during the differentiation and early development of xylem and phloem tissues, including both xylary and extraxylary fibers. Ultrastructural observations revealed tonoplast invagination with the formation of autophagic-like bodies. Additionally, the accumulation of autophagosomes was identifiable during the differentiation of xylem in both organs, long before the commencement of cell death. Taken together, these results provide evidence in support of the dual role of autophagy in developmental PCD. A specific role of the controller of cell death, which is a committed step with the release of hydrolytic enzymes from the vacuole and final digestion of protoplast, from which there is no return once initiated, is only attributed to mega-autophagy.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Iga Smugarzewska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Katarzyna Marzec-Schmidt
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Aleksandra Zarzyńska-Nowak
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Wł. Węgorka 20, 60-318, Poznań, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
33
|
Cheng Z, Zhang J, Yin B, Liu Y, Wang B, Li H, Lu H. γVPE plays an important role in programmed cell death for xylem fiber cells by activating protease CEP1 maturation in Arabidopsis thaliana. Int J Biol Macromol 2019; 137:703-711. [PMID: 31279878 DOI: 10.1016/j.ijbiomac.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/28/2022]
Abstract
The vacuolar processing enzyme (VPE) plays an important role in PCD and was originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants. We found that γVPE is involved in PCD of xylem fiber cells through the activation of CEP1 proproteases into mature protease in Arabidopsis. The γVPE protein was expressed specifically in cambium cells cambium, the primary phloem and the primary xylem during stem development. The recombinant γVPE appearing as a proenzyme at pH 7.0, and then transforming into a 40-kD mature enzyme at pH 5.5 in vitro by self-cleaving. The mature γVPE protein activated CEP1 maturation in vitro, whereas this activity was inhibited in the γvpe mutant. Transmission electron microscopy showed delayed PCD in fiber cells and thickening of secondary fiber cell walls in the γvpe mutant. Transcriptome analysis showed that the expression of 2001 genes was significantly altered expression in the γvpe mutants, and most of them are important for secondary cell wall formation and PCD. Our results demonstrate that γVPE is a crucial processing enzyme for xylem fiber cells PCD during stem development.
Collapse
Affiliation(s)
- Ziyi Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bin Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Escamez S, Stael S, Vainonen JP, Willems P, Jin H, Kimura S, Van Breusegem F, Gevaert K, Wrzaczek M, Tuominen H. Extracellular peptide Kratos restricts cell death during vascular development and stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2199-2210. [PMID: 30753577 PMCID: PMC6460963 DOI: 10.1093/jxb/erz021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/29/2019] [Indexed: 05/04/2023]
Abstract
During plant vascular development, xylem tracheary elements (TEs) form water-conducting, empty pipes by genetically regulated cell death. Cell death is prevented from spreading to non-TEs by unidentified intercellular mechanisms, downstream of METACASPASE9 (MC9)-mediated regulation of autophagy in TEs. Here, we identified differentially abundant extracellular peptides in vascular-differentiating wild-type and MC9-down-regulated Arabidopsis cell suspensions. A peptide named Kratos rescued the abnormally high ectopic non-TE death resulting from either MC9 knockout or TE-specific overexpression of the ATG5 autophagy protein during experimentally induced vascular differentiation in Arabidopsis cotyledons. Kratos also reduced cell death following mechanical damage and extracellular ROS production in Arabidopsis leaves. Stress-induced but not vascular non-TE cell death was enhanced by another identified peptide, named Bia. Bia is therefore reminiscent of several known plant cell death-inducing peptides acting as damage-associated molecular patterns. In contrast, Kratos plays a novel extracellular cell survival role in the context of development and during stress response.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Correspondence:
| | - Simon Stael
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patrick Willems
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Huiting Jin
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Buono RA, Hudecek R, Nowack MK. Plant proteases during developmental programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2097-2112. [PMID: 30793182 PMCID: PMC7612330 DOI: 10.1093/jxb/erz072] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Proteases are among the key regulators of most forms of programmed cell death (PCD) in animals. Many PCD processes have also been associated with protease expression or activation in plants, However, functional evidence for the roles and actual modes of action of plant proteases in PCD remains surprisingly limited. In this review, we provide an update on protease involvement in the context of developmentally regulated plant PCD. To illustrate the diversity of protease functions, we focus on several prominent developmental PCD processes, including xylem and tapetum maturation, suspensor elimination, endosperm degradation, and seed coat formation, as well as plant senescence processes. Despite the substantial advances in the field, protease functions are often only correlatively linked to developmental PCD, and the specific molecular roles of proteases in many developmental PCD processes remain to be elucidated.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
36
|
Li D, Wu D, Li S, Guo N, Gao J, Sun X, Cai Y. Transcriptomic profiling identifies differentially expressed genes associated with programmed cell death of nucellar cells in Ginkgo biloba L. BMC PLANT BIOLOGY 2019; 19:91. [PMID: 30819114 PMCID: PMC6396491 DOI: 10.1186/s12870-019-1671-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/01/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Previously, we demonstrated that pollen chamber formation (PCF) in G. biloba ovules was a process of programmed cell death (PCD) within the nucellar cells at the micropylar end. However, the signal triggering the cascades of the programmed events in these nucellar cells remains unexplored. RESULTS A transcriptomic strategy was employed to unravel the mechanism underlying the nucellar PCD via the comparative profiles of RNA-seq between pre-PCF and post-PCF ovules. A total of 5599 differentially expressed genes (DEGs) with significance was identified from G. biloba ovules and classified into three main categories of GO annotation, including 17 biological processes, 15 cellular components and 17 molecular functions. KEGG analysis showed that 72 DEGs were enriched in "Plant hormone signal transduction". Furthermore, 99 DEGs were found to be associated with the PCD process, including the genes involved in ethylene signaling pathway, PCD initiation, and PCD execution. Moreover, calcium-cytochemical localization indicated that calcium could play a role in regulating PCD events within the nucellar cells during pollen chamber formation in G. biloba ovules. CONCLUSIONS A putative working model, consisting of three overlapping processes, is proposed for the nucellar PCD: at the stage of PCD preparation, ethylene signaling pathway is activated for transcriptional regulation of the downstream targets; subsequently, at the stage of PCD initiation, the upregulated expression of several transcription factors, i.e., NAC, bHLH, MADS-box, and MYB, further promotes the corresponding transcript levels of CYTOCHROME C and CALMODULINs, thereby, leads to the PCD initiation via the calcium-dependent signaling cascade; finally, at the stage of PCD execution, some proteases like metacaspases and vacuolar processing enzyme for hydrolysis, together with the process of autophagy, play roles in the clearance of cellular components. Afterwards, a pollen chamber is generated from the removal of specific nucellar cells in the developing ovule.
Collapse
Affiliation(s)
- Dahui Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Di Wu
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Shizhou Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Ning Guo
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Junshan Gao
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Xu Sun
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Yongping Cai
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
37
|
Cubría-Radío M, Nowack MK. Transcriptional networks orchestrating programmed cell death during plant development. Curr Top Dev Biol 2018; 131:161-184. [PMID: 30612616 PMCID: PMC7116394 DOI: 10.1016/bs.ctdb.2018.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Transcriptional gene regulation is a fundamental biological principle in the development of eukaryotes. It does control not only cell proliferation, specification, and differentiation, but also cell death processes as an integral feature of an organism's developmental program. As in animals, developmentally regulated cell death in plants occurs in numerous contexts and is of vital importance for plant vegetative and reproductive development. In comparison with the information available on the molecular regulation of programmed cell death (PCD) in animals, however, our knowledge on plant PCD still remains scarce. Here, we discuss the functions of different classes of transcription factors that have been implicated in the control of developmentally regulated cell death. Though doubtlessly representing but a first layer of PCD regulation, information on PCD-regulating transcription factors and their targets represents a promising strategy to understand the complex machinery that ensures the precise and failsafe execution of PCD processes in plant development.
Collapse
Affiliation(s)
- Marta Cubría-Radío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
38
|
Casto AL, McKinley BA, Yu KMJ, Rooney WL, Mullet JE. Sorghum stem aerenchyma formation is regulated by SbNAC_D during internode development. PLANT DIRECT 2018; 2:e00085. [PMID: 31245693 PMCID: PMC6508845 DOI: 10.1002/pld3.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 05/10/2023]
Abstract
Sorghum bicolor is a drought-resilient C4 grass used for production of grain, forage, sugar, and biomass. Sorghum genotypes capable of accumulating high levels of stem sucrose have solid stems that contain low levels of aerenchyma. The D-locus on SBI06 modulates the extent of aerenchyma formation in sorghum stems and leaf midribs. A QTL aligned with this locus was identified and fine-mapped in populations derived from BTx623*IS320c, BTx623*R07007, and BTx623*Standard broomcorn. Analysis of coding polymorphisms in the fine-mapped D-locus showed that genotypes that accumulate low levels of aerenchyma encode a truncated NAC transcription factor (Sobic.006G147400, SbNAC_d1), whereas parental lines that accumulate higher levels of stem aerenchyma encode full-length NAC TFs (SbNAC-D). During vegetative stem development, aerenchyma levels are low in nonelongated stem internodes, internode growing zones, and nodes. Aerenchyma levels increase in recently elongated internodes starting at the top of the internode near the center of the stem. SbNAC_D was expressed at low levels in nonelongated internodes and internode growing zones and at higher levels in regions of stem internodes that form aerenchyma. SbXCP1, a gene encoding a cysteine protease involved in programmed cell death, was induced in SbNAC_D genotypes in parallel with aerenchyma formation in sorghum stems but not in SbNAC_d1 genotypes. Several sweet sorghum genotypes encode the recessive SbNAC_d1 allele and have low levels of stem aerenchyma. Based on these results, we propose that SbNAC_D is the D-gene identified by Hilton (1916) and that allelic variation in SbNAC_D modulates the extent of aerenchyma formation in sorghum stems.
Collapse
Affiliation(s)
- Anna L. Casto
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
- Molecular and Environmental Plant Sciences Graduate ProgramTexas A&M UniversityCollege StationTexas
| | - Brian A. McKinley
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| | - Ka Man Jasmine Yu
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
- Biochemistry and Biophysics Graduate ProgramTexas A&M UniversityCollege StationTexas
| | - William L. Rooney
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexas
| | - John E. Mullet
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| |
Collapse
|
39
|
Laubscher M, Brown K, Tonfack LB, Myburg AA, Mizrachi E, Hussey SG. Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development. Sci Rep 2018; 8:10983. [PMID: 30030488 PMCID: PMC6054625 DOI: 10.1038/s41598-018-29278-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 07/09/2018] [Indexed: 11/12/2022] Open
Abstract
Secondary cell wall (SCW) deposition in Arabidopsis is regulated among others by NAC transcription factors, where SND1 chiefly initiates xylem fibre differentiation while VND6 controls metaxylem vessel SCW development, especially programmed cell death and wall patterning. The translational relevance of Arabidopsis SCW regulation theory and the utility of characterized transcription factors as modular synthetic biology tools for improving commercial fibre crops is unclear. We investigated inter-lineage gene activation dynamics for potential fibre and vessel differentiation regulators from the widely grown hardwood Eucalyptus grandis (Myrtales). EgrNAC26, a VND6 homolog, and EgrNAC61, an SND1 homolog, were transiently expressed in Arabidopsis mesophyll protoplasts in parallel to determine early and late (i.e. 7 and 14 hours post-transfection) gene targets. Surprisingly, across the time series EgrNAC26 activated only a subset of SCW-related transcription factors and biosynthetic genes activated by EgrNAC61, specializing instead in targeting vessel-specific wall pit and programmed cell death markers. Promoters of EgrNAC26 and EgrNAC61 both induced reporter gene expression in vessels of young Arabidopsis plants, with EgrNAC61 also conferring xylem- and cork cambium-preferential expression in Populus. Our results demonstrate partial conservation, with notable exceptions, of SND1 and VND6 homologs in Eucalyptus and a first report of cork cambium expression for EgrNAC61.
Collapse
Affiliation(s)
- M Laubscher
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - K Brown
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - L B Tonfack
- Plant Physiology and Improvement Unit, Laboratory of Biotechnology and Environment, Department of Plant Biology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - A A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - E Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - S G Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa.
| |
Collapse
|
40
|
Ratke C, Terebieniec BK, Winestrand S, Derba-Maceluch M, Grahn T, Schiffthaler B, Ulvcrona T, Özparpucu M, Rüggeberg M, Lundqvist SO, Street NR, Jönsson LJ, Mellerowicz EJ. Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome. THE NEW PHYTOLOGIST 2018; 219:230-245. [PMID: 29708593 DOI: 10.1111/nph.15160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/02/2018] [Indexed: 05/23/2023]
Abstract
Xylan is one of the main compounds determining wood properties in hardwood species. The xylan backbone is thought to be synthesized by a synthase complex comprising two members of the GT43 family. We downregulated all GT43 genes in hybrid aspen (Populus tremula × tremuloides) to understand their involvement in xylan biosynthesis. All three clades of the GT43 family were targeted for downregulation using RNA interference individually or in different combinations, either constitutively or specifically in developing wood. Simultaneous downregulation in developing wood of the B (IRX9) and C (IRX14) clades resulted in reduced xylan Xyl content relative to reducing end sequence, supporting their role in xylan backbone biosynthesis. This was accompanied by a higher lignocellulose saccharification efficiency. Unexpectedly, GT43 suppression in developing wood led to an overall growth stimulation, xylem cell wall thinning and a shift in cellulose orientation. Transcriptome profiling of these transgenic lines indicated that cell cycling was stimulated and secondary wall biosynthesis was repressed. We suggest that the reduced xylan elongation is sensed by the cell wall integrity surveying mechanism in developing wood. Our results show that wood-specific suppression of xylan-biosynthetic GT43 genes activates signaling responses, leading to increased growth and improved lignocellulose saccharification.
Collapse
Affiliation(s)
- Christine Ratke
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | - Barbara K Terebieniec
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | | | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | - Thomas Grahn
- Material Processes, RISE Innventia AB, SE-114-86, Stockholm, Sweden
| | | | - Thomas Ulvcrona
- Department of Forest Resource Management, SLU, S-901-83, Umeå, Sweden
| | - Merve Özparpucu
- Institute for Building Materials, Swiss Federal Institute of Technology (ETH Zürich), CH-8093, Zürich, Switzerland
| | - Markus Rüggeberg
- Institute for Building Materials, Swiss Federal Institute of Technology (ETH Zürich), CH-8093, Zürich, Switzerland
| | | | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, S-901-87, Umeå, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| |
Collapse
|
41
|
Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:28-46. [PMID: 32291019 DOI: 10.1071/fp16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 05/26/2023]
Abstract
Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.
Collapse
Affiliation(s)
- Vadim Demidchik
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| |
Collapse
|
42
|
Abstract
Programmed cell death (PCD) is a controlled mechanism that eliminates specific cells under developmental or environmental stimuli. All organisms-from bacteria to multicellular eukaryotes-have the ability to induce PCD in selected cells. Although this process was first identified in plants, the interest in deciphering the signaling pathways leading to PCD strongly increased when evidence came to light that PCD may be involved in several human diseases. In plants, PCD activation ensures the correct occurrence of growth and developmental processes, among which embryogenesis and differentiation of tracheary elements. PCD is also part of the defense responses activated by plants against environmental stresses, both abiotic and biotic.This chapter gives an overview of the roles of PCD in plants as well as the problems arising in classifying different kinds of PCD according to defined biochemical and cellular markers, and in comparison with the various types of PCD occurring in mammal cells. The importance of understanding PCD signaling pathways, with their elicitors and effectors, in order to improve plant productivity and resistance to environmental stresses is also taken into consideration.
Collapse
Affiliation(s)
- Vittoria Locato
- Food Sciences and Human Nutrition Unit, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Laura De Gara
- Food Sciences and Human Nutrition Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
43
|
Kawabe H, Ohtani M, Kurata T, Sakamoto T, Demura T. Protein S-Nitrosylation Regulates Xylem Vessel Cell Differentiation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:17-29. [PMID: 29040725 DOI: 10.1093/pcp/pcx151] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 05/07/2023]
Abstract
Post-translational modifications of proteins have important roles in the regulation of protein activity. One such modification, S-nitrosylation, involves the covalent binding of nitric oxide (NO)-related species to a cysteine residue. Recent work showed that protein S-nitrosylation has crucial functions in plant development and environmental responses. In the present study, we investigated the importance of protein S-nitrosylation for xylem vessel cell differentiation using a forward genetics approach. We performed ethyl methanesulfonate mutagenesis of a transgenic Arabidopsis 35S::VND7-VP16-GR line in which the activity of VASCULAR-RELATED NAC-DOMAIN7 (VND7), a key transcription factor involved in xylem vessel cell differentiation, can be induced post-translationally by glucocorticoid treatment, with the goal of obtaining suppressor mutants that failed to differentiate ectopic xylem vessel cells; we named these mutants suppressor of ectopic vessel cell differentiation induced by VND7 (seiv) mutants. We found the seiv1 mutant to be a recessive mutant in which ectopic xylem cell differentiation was inhibited, especially in aboveground organs. In seiv1 mutants, a single nucleic acid substitution (G to A) leading to an amino acid substitution (E36K) was present in the gene encoding S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1), which regulates the turnover of the natural NO donor, S-nitrosoglutathione. An in vitro S-nitrosylation assay revealed that VND7 can be S-nitrosylated at Cys264 and Cys320 located near the transactivation activity-related domains, which were shown to be important for transactivation activity of VND7 by transient reporter assay. Our results suggest crucial roles for GSNOR1-regulated protein S-nitrosylation in xylem vessel cell differentiation, partly through the post-translational modification of VND7.
Collapse
Affiliation(s)
- Harunori Kawabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Tomoaki Sakamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| |
Collapse
|
44
|
Gujas B, Cruz TMD, Kastanaki E, Vermeer JEM, Munnik T, Rodriguez-Villalon A. Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots. Development 2017; 144:3578-3589. [PMID: 28851711 PMCID: PMC5665488 DOI: 10.1242/dev.155788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 01/16/2023]
Abstract
The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.
Collapse
Affiliation(s)
- Bojan Gujas
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Tiago M D Cruz
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Elizabeth Kastanaki
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Joop E M Vermeer
- Department of Plant and Microbial Biology, University of Zurich, CH-8008, Zurich, Switzerland
| | - Teun Munnik
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
| | - Antia Rodriguez-Villalon
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
45
|
Golstein P. Conserved nucleolar stress at the onset of cell death. FEBS J 2017; 284:3791-3800. [DOI: 10.1111/febs.14095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Pierre Golstein
- Centre d'Immunologie de Marseille‐Luminy Aix Marseille Université Inserm, CNRS France
| |
Collapse
|
46
|
Iakimova ET, Woltering EJ. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. PLANTA 2017; 245:681-705. [PMID: 28194564 PMCID: PMC5357506 DOI: 10.1007/s00425-017-2656-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.
Collapse
Affiliation(s)
| | - Ernst J Woltering
- Wageningen University and Research, Food and Biobased Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
- Wageningen University, Horticulture and Product Physiology, P.O. Box 630, 6700 AP, Wageningen, The Netherlands.
| |
Collapse
|
47
|
Sueldo DJ, van der Hoorn RAL. Plant life needs cell death, but does plant cell death need Cys proteases? FEBS J 2017; 284:1577-1585. [PMID: 28165668 DOI: 10.1111/febs.14034] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/14/2017] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
Caspases are key regulators of apoptosis in animals. This correlation has driven plant researchers for decades to look for caspases regulating programmed cell death (PCD) in plants. These studies revealed caspase-like activities, caspase-related proteases, and cysteine (Cys) proteases regulating PCD in plants, but identified no caspases and no conserved, apoptosis-like death pathway. Here, we critically review the evidence for Cys proteases implicated in PCD in plants. We discuss the role of papain-like Cys proteases, vacuolar processing enzymes, and metacaspases in PCD during the development of tracheary elements, seed coat, suspensor, and tapetum, and during the hypersensitive response. There are several convincing cases where these Cys proteases are required for PCD, but this requirement is often not conserved across different plant species. There are also cases where Cys proteases contribute to the speed, but not the timing of PCD, while other Cys proteases are nonessential for PCD, but have other roles, e.g., in the clearance of cell remains after PCD. These data illustrate the need for caution when generalizing the role of Cys proteases in regulating PCD in plants, and call for studies that further investigate plant Cys proteases and other PCD regulators.
Collapse
Affiliation(s)
- Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, UK
| | | |
Collapse
|
48
|
Heo JO, Blob B, Helariutta Y. Differentiation of conductive cells: a matter of life and death. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:23-29. [PMID: 27794261 DOI: 10.1016/j.pbi.2016.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 05/26/2023]
Abstract
Two major conducting tissues in plants, phloem and xylem, are composed of highly specialized cell types adapted to long distance transport. Sieve elements (SEs) in the phloem display a thick cell wall, callose-rich sieve plates and low cytoplasmic density. SE differentiation is driven by selective autolysis combined with enucleation, after which the plasma membrane and some organelles are retained. By contrast, differentiation of xylem tracheary elements (TEs) involves complete clearance of the cellular components by programmed cell death followed by autolysis of the protoplast; this is accompanied by extensive deposition of lignin and cellulose in the cell wall. Emerging molecular data on TE and SE differentiation indicate a central role for NAC and MYB type transcription factors in both processes.
Collapse
Affiliation(s)
- Jung-Ok Heo
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Bernhard Blob
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Ykä Helariutta
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
49
|
Escamez S, Tuominen H. Contribution of cellular autolysis to tissular functions during plant development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:124-130. [PMID: 27936412 DOI: 10.1016/j.pbi.2016.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 05/26/2023]
Abstract
Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it appears biologically meaningful to distinguish between the modules of PCD and autolysis during plant development.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
50
|
Huysmans M, Lema A S, Coll NS, Nowack MK. Dying two deaths - programmed cell death regulation in development and disease. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:37-44. [PMID: 27865098 DOI: 10.1016/j.pbi.2016.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is a fundamental cellular process that has adopted a plethora of vital functions in multicellular organisms. In plants, PCD processes are elicited as an inherent part of regular development in specific cell types or tissues, but can also be triggered by biotic and abiotic stresses. Although over the last years we have seen progress in our understanding of the molecular regulation of different plant PCD processes, it is still unclear whether a common core machinery exists that controls cell death in development and disease. In this review, we discuss recent advances in the field, comparing some aspects of the molecular regulation controlling developmental and pathogen-triggered PCD in plants.
Collapse
Affiliation(s)
- Marlies Huysmans
- VIB Department of Plant Systems Biology, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Saul Lema A
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles 08193, Catalonia, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles 08193, Catalonia, Spain.
| | - Moritz K Nowack
- VIB Department of Plant Systems Biology, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|