1
|
Deng Q, Zhang X, Chen H, Hao M, Li R, Lou Y, Lu J. The jasmonate pathway and water loss in rice leaves induced by a stem-borer inhibit leaf-feeder growth. PLANT, CELL & ENVIRONMENT 2024; 47:4416-4431. [PMID: 39007434 DOI: 10.1111/pce.15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Plant-mediated interactions between herbivores play an important role in regulating the composition of herbivore community. The fall armyworm (FAW), Spodoptera frugiperda, which has become one of the most serious pests on corn in China since it invaded in 2018, has been found feeding rice in the field. However, how FAW interacts with native rice insect pests remains largely unknown. Here, we investigated the interaction between FAW and a resident herbivore, striped stem borer (SSB, Chilo suppressalis) on rice. The infestation of rice leaf sheaths (LSs) by SSB larvae systemically enhanced the level of jasmonic acid (JA), abscisic acid (ABA), and trypsin proteinase inhibitors (TPIs), reduced relative water content (RWC) in leaf blades (LBs), and suppressed the growth of FAW larvae. In contrast, because FAW larvae infested LBs and did not affect defence responses in LSs, they did not influence the performance of SSB larvae. Using different mutants, together with bioassays and chemical analysis, we revealed that SSB-induced suppression of FAW larvae growth depended on both the SSB-activated JA pathway and RWC in LBs, whereas the ABA pathway activated by SSB larvae promoted the growth of FAW larvae by impeding water loss. These results provide new insights into mechanisms underlying plant-mediated interactions between herbivores.
Collapse
Affiliation(s)
- Qinyu Deng
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohan Zhang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Chen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengqi Hao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute, Zhejiang University, Sanya, Hainan, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Liang X, Liao G, Li J, Fan W, Liu Y, Wang S, Chen L, Wang Y, Liu J. Exogenous ABA promotes resistance to Sitobion avenae (Fabricius) in rice seedlings. PEST MANAGEMENT SCIENCE 2024; 80:3389-3400. [PMID: 38391141 DOI: 10.1002/ps.8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Over the course of evolution, plants have developed various sophisticated defense mechanisms to resist pests and diseases. The phytohormone abscisic acid (ABA) has an important role in the growth and development of plants and confers tolerance to selected abiotic stressors, such as drought. Previous studies have shown that ABA promotes the deposit of callose in response to piercing/sucking insect pests. The English grain aphid, Sitobion avenae Fabricius, causes huge losses in rice and is especially harmful to rice seedlings. RESULTS Exogenous ABA promoted growth and reduced the feeding behavior of S. avenae nymphs in rice. Our results suggested that enhanced trichome density and increased expression of related genes may be associated with rice resistance to aphids. An analysis of volatiles revealed the production of seven compounds associated with pest resistance. CONCLUSION These results indicate that ABA reduces aphid feeding in rice. Our findings provide a basis for understanding ABA-mediated defense responses in rice and provide insights on more environmentally-friendly approaches to control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyan Liang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Guangrong Liao
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jitong Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenyang Fan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuang Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yiping Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jinglan Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Shi H, Zhong J, Liang Y, Zhang P, Guo L, Wang C, Tang Y, Lu Y, Sun M. Aphid Resistance Evaluation and Constitutive Resistance Analysis of Eighteen Lilies. INSECTS 2023; 14:936. [PMID: 38132609 PMCID: PMC10743574 DOI: 10.3390/insects14120936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Lilies (Lilium spp.) are famous bulb flowers worldwide, with high ornamental value. Aphid damage has seriously constrained the development of the lily industry. In this study, the aphid resistance of 16 lily cultivars and 2 wild lily species was characterized in the field and greenhouse. Leaf color parameters, stomatal density and size, thickness of leaf layers, leaf waxy content, and leaf water content were determined to explore the constitutive resistance of lilies. The results show that there was a significant positive correlation between the number of aphids in the field and in the greenhouse (p ≤ 0.05, r = 0.47). This indicated that the level of aphid infestation in both the field and the greenhouse is generally consistent across different types of lily plants. Among these 18 lilies, 'Palazzo', 'Nymph', 'Cameleon' and L. lancifolium were resistant to A. gossypii, while 'Black Beauty' and 'Magnefique' had poor resistance. The correlation analysis results showed that the number of aphids was negatively correlated with leaf abaxial surface a*, stomatal size, water content, and thickness of leaf palisade tissue and positively correlated with leaf distal axial surface b*, C*, and waxy content. Among them, the correlation between the number of aphids and the thickness of leaf palisade tissue reached a significant level (p ≤ 0.05, r = -0.521). This indicated that the thickness of the palisade tissue of lily leaves might be an important factor influencing the proliferation of aphids. This study not only screened out aphid-resistant lilies but also established a crucial research foundation for the targeted breeding and molecular breeding of lilies with aphid resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.S.); (J.Z.); (Y.L.); (P.Z.); (L.G.); (C.W.); (Y.T.); (Y.L.)
| |
Collapse
|
4
|
Liu J, Wang C, Li H, Gao Y, Yang Y, Lu Y. Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis gossypii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2886. [PMID: 37571039 PMCID: PMC10420646 DOI: 10.3390/plants12152886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Drought, a major stress for crop plants, is expected to increase in frequency due to climate change. Drought can alter crop growth and levels of secondary plant metabolites, which in turn can affect herbivores, but this latter point is still controversial. This study used three different polyethylene glycol (PEG-6000) levels (0%, 1%, and 3%) to simulate drought stress and evaluated their effects on cotton plants and the impacts on the performance of the cotton aphid Aphis gossypii. Cotton plants under drought stress showed decreased water content, above-ground biomass, and nitrogen content and increased soluble protein, soluble sugar, and tannin contents. Based on analysis of the developmental time and fecundity data from individuals and at the population level, a significantly lower fecundity and population abundance of A. gossypii were detected on cotton plants with drought stress, which supports the "plant vigor hypothesis". The poor development of A. gossypii is possibly related to lower xylem sap and phloem ingestion under drought stress. In addition, the increased tannin content of cotton plants induced by drought and lower detoxification enzyme activities of A. gossypii may have affected the responses of aphids to drought-stressed plants. Overall, the results showed that drought stress altered the physiological characteristics of the cotton plants, resulting in adverse bottom-up effects on cotton aphid performances. This implies that the adoption of drip irrigation under plastic film that can help alleviate drought stress may favor the population growth of cotton aphids.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Chen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
- College of Plant Protection, Yangzhou University, Yangzhou 225007, China
| | - Huatong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Yizhong Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225007, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| |
Collapse
|
5
|
Yang J, Ma C, Jia R, Zhang H, Zhao Y, Yue H, Li H, Jiang X. Different responses of two maize cultivars to Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae infestation provide insights into their differences in resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1065891. [PMID: 36844097 PMCID: PMC9950569 DOI: 10.3389/fpls.2023.1065891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae), a pest with an amazing appetite, damages many crops and causes great losses, especially maize. Understanding the differences in different maize cultivars' responses to S. frugiperda infestation is very important for revealing the mechanisms involved in the resistance of maize plants to S. frugiperda. In this study, a comparative analysis of two maize cultivars, the common cultivar 'ZD958' and the sweet cultivar 'JG218', was used to investigate their physico-biochemical responses to S. frugiperda infestation by a pot experiment. The results showed that the enzymatic and non-enzymatic defense responses of maize seedlings were rapidly induced by S. frugiperda. Frist, the hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of infested maize leaves were significantly increased and then decreased to the level of the control. Furthermore, compared with the control leaves, the puncture force values and the total phenolics, total flavonoids, and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one contents of infested leaves were significantly increased within a certain time. The superoxide dismutase and peroxidase activities of infested leaves were significantly increased in a certain period of time, while the catalase activities decreased significantly and then increased to the control level. The jasmonic acid (JA) levels of infested leaves were significantly improved, whereas the salicylic acid and abscisic acid levels changed less. Signaling genes associated with phytohormones and defensive substances including PAL4, CHS6, BX12, LOX1, and NCED9 were significantly induced at certain time points, especially LOX1. Most of these parameters changed greater in JG218 than in ZD958. Moreover, the larvae bioassay showed that S. frugiperda larvae weighed more on JG218 leaves than those on ZD958 leaves. These results suggested that JG218 was more susceptible to S. frugiperda than ZD958. Our findings will make it easier to develop strategies for controlling S. frugiperda for sustainable maize production and breeding of new maize cultivars with increased resistance to herbivores.
Collapse
Affiliation(s)
- Jinwen Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Changlu Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ru Jia
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yanming Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiwang Yue
- Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Heqin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
- Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
6
|
Wang Y, Li Y, Tian Z, Duan T. Arbuscular Mycorrhizal Fungus Alters Alfalfa ( Medicago sativa) Defense Enzyme Activities and Volatile Organic Compound Contents in Response to Pea Aphid ( Acyrthosiphon pisum) Infestation. J Fungi (Basel) 2022; 8:jof8121308. [PMID: 36547641 PMCID: PMC9787922 DOI: 10.3390/jof8121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pea aphid (Acyrthosiphon pisum) infestation leads to withering, reduced yield, and lower quality of the host plant. Arbuscular mycorrhizal (AM) fungi have been found to enhance their host plants’ nutrient uptake, growth, and resistance to biotic stresses, including pathogen infection and insect pest infestation. Therefore, we evaluated the effects of AM fungus Rhizophagus intraradices on alfalfa defense responses to pea aphid infestation. Aphid infestation did not affect the colonization of AM fungus. The inoculation of AM fungus, on average, enhanced alfalfa catalase and the contents of salicylic acid and trypsin inhibitor by 101, 9.05, and 7.89% compared with non-mycorrhizal alfalfa, respectively. In addition, polyphenol oxidase activities significantly increased by six-fold after aphid infestation in mycorrhizal alfalfa. Moreover, the fungus significantly (p < 0.05) improved alfalfa shoot N content, net photosynthetic and transpiration rates, and shoot dry weight in aphid infected treatment. The aphid infestation changed the total volatile organic compounds (VOCs) in alfalfa, while AM fungus enhanced the contents of methyl salicylate (MeSA). The co-expression network analysis of differentially expressed genes (DEGs) and differentially expressed VOCs analysis showed that three DEGs, namely MS.gene23894, MS.gene003889, and MS.gene012415, positively correlated with MeSA both in aphid and AM fungus groups. In conclusion, AM fungus increased alfalfa’s growth, defense enzyme activities, hormones, and VOCs content and up-regulated VOC-related genes to enhance the alfalfa’s resistance following aphid infestation.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou Unviersity, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou Unviersity, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou Unviersity, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou Unviersity, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Correspondence: ; Tel.: +86-152-1409-5029
| |
Collapse
|
7
|
Cahyo AN, Murti RH, Putra ETS, Oktavia F, Ismawanto S, Montoro P. Rubber Genotypes with Contrasting Drought Factor Index Revealed Different Mechanisms for Drought Resistance in Hevea brasiliensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3563. [PMID: 36559675 PMCID: PMC9781094 DOI: 10.3390/plants11243563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
It is predicted that drought will be more frequent and sustained in the future, which may affect the decline of rubber tree production. Therefore, it is critical to research some of the variables related to the drought-resistance mechanism of the rubber tree. As a result, it can be used to guide the selection of new rubber drought-resistance clones. The goal of this study was to identify drought-resistance mechanisms in rubber clones from the high drought factor index (DFI) group using ecophysiological and biochemical variables. The treatments consist of two factors, namely water deficit and contrasting clones based on the DFI variable. The first factor consisted of three levels, namely normal (fraction of transpirable soil water (FTSW) > 0.75), severe water deficit (0.1 < FTSW < 0.20), and recovery condition (FTSW > 0.75 after rewatering). The second factor consisted of seven clones, namely clones G239, GT1 (low DFI), G127, SP 217, PB 260 (moderate DFI), as well as G206 and RRIM 600 (high DFI). RRIM 600 had the highest DFI among the other clones as a drought-tolerance mechanism characteristic. Furthermore, clones RRIM 600, GT1, and G127 had lower stomatal conductance and transpiration rate than drought-sensitive clone PB 260. As a result, as drought avoidance mechanisms, clones RRIM 600, GT1, and G127 consume less water than clone PB 260. These findings indicated that clone RRIM 600 was a drought-resistant clone with drought tolerance and avoidance mechanisms.
Collapse
Affiliation(s)
- Andi Nur Cahyo
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rudi Hari Murti
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Eka Tarwaca Susila Putra
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fetrina Oktavia
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
| | - Sigit Ismawanto
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
| | - Pascal Montoro
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- CIRAD, INRAE, UMR AGAP Institut, Institut Agro, University Montpellier, F-34398 Montpellier, France
| |
Collapse
|
8
|
Cohen A, Basu S, Crowder DW. Drought stress affects interactions between potato plants, psyllid vectors, and a bacterial pathogen. FEMS Microbiol Ecol 2022; 99:6843574. [PMID: 36416808 DOI: 10.1093/femsec/fiac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Transmission of insect-borne pathogens is mediated by interactions between insects and plants across variable environments. Water stress, for example, affects the physiology, defense, chemistry, and nutritional balance of plants in ways that alter their tolerance to herbivores and pathogens. However, few studies have explored interactions between water stress and insect-borne pathogens as well as the molecular mechanisms mediating these interactions. Here, we address these knowledge gaps by assessing effects of plant water stress on the transmission of a bacterial pathogen, Candidatus Liberibacter solanacearum (CLs), by the vector Bactericera cockerelli Šulc (potato psyllid). We hypothesized that plant water stress would promote pathogen transmission by inducing plant gene transcripts and phytohormones involved in defense. Our results showed water stress was associated with decreased CLs titer with two psyllid haplotypes. Our analysis of plant gene transcripts suggested water stress affected phytohormone pathways in ways that altered plant tolerance to the CLs pathogen. Our study shows that abiotic stressors like drought may mediate the spread of plant pathogens by altering plant signaling pathways in ways that affect pathogen transmission.
Collapse
Affiliation(s)
- Abigail Cohen
- Department of Entomology, Washington State University, 166 FSHN Building , Pullman, WA, 99164-6382, United States
| | - Saumik Basu
- Department of Entomology, Washington State University, 166 FSHN Building , Pullman, WA, 99164-6382, United States
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building , Pullman, WA, 99164-6382, United States
| |
Collapse
|
9
|
Quandahor P, Gou Y, Lin C, Liu C. Potato ( Solanum tuberosum L.) Leaf Extract Concentration Affects Performance and Oxidative Stress in Green Peach Aphids (Myzus persicae (Sulzer). PLANTS (BASEL, SWITZERLAND) 2022; 11:2757. [PMID: 36297780 PMCID: PMC9610024 DOI: 10.3390/plants11202757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
This study was conducted to determine the aphicidal effect of a leaf extract of the Atlantic potato cultivar on the performance of green peach aphids. Three concentrations of the leaf extract (100, 75, and 50% potato extract), synthetic pesticide (Beta cypermethrin 4.5%), and distilled water (control) treatments were applied in a greenhouse experiment. The results showed that the synthetic pesticide, which was used as a standard check, caused the maximum aphid mortality, followed by the 100% potato leaf extract. Compared with the other botanical treatments, the 100% extract produced low mean rates of survival, aphids' average daily reproduction, the number of nymphs per plant, and the number of nymphs per adult. This treatment also increased the accumulation of hydrogen Peroxide (H2O2) and malondialdehyde (MDA), glutathione-s-transferase, mixed-function oxidase, and carboxylesterase content in the green peach aphid. Moreover, the 100% extract also protected the host plants against green peach aphid attacks by demonstrating higher chlorophyll content, net photosynthesis, above-ground fresh weight, and above-ground dry weight of the host plant. This study demonstrates that the highest concentration of potato (Atlantic cultivar) leaf extract (100% extract) could be used as the appropriate dosage for the control of green peach aphids on potatoes, which could greatly reduce the use of synthetic insecticides and promote ecosystem sustainability.
Collapse
Affiliation(s)
- Peter Quandahor
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
- CSIR-Savanna Agricultural Research Institute, Tamale P.O. Box 52, Ghana
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| | - Chunyan Lin
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
10
|
Peng P, Li R, Chen ZH, Wang Y. Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1031891. [PMID: 36311113 PMCID: PMC9614343 DOI: 10.3389/fpls.2022.1031891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Increasing global food production is threatened by harsh environmental conditions along with biotic stresses, requiring massive new research into integrated stress resistance in plants. Stomata play a pivotal role in response to many biotic and abiotic stresses, but their orchestrated interactions at the molecular, physiological, and biochemical levels were less investigated. Here, we reviewed the influence of drought, pathogen, and insect herbivory on stomata to provide a comprehensive overview in the context of stomatal regulation. We also summarized the molecular mechanisms of stomatal response triggered by these stresses. To further investigate the effect of stomata-herbivore interaction at a transcriptional level, integrated transcriptome studies from different plant species attacked by different pests revealed evidence of the crosstalk between abiotic and biotic stress. Comprehensive understanding of the involvement of stomata in some plant-herbivore interactions may be an essential step towards herbivores' manipulation of plants, which provides insights for the development of integrated pest management strategies. Moreover, we proposed that stomata can function as important modulators of plant response to stress combination, representing an exciting frontier of plant science with a broad and precise view of plant biotic interactions.
Collapse
Affiliation(s)
- Pengshuai Peng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Godinho DP, Serrano HC, Magalhães S, Branquinho C. Concurrent herbivory and metal accumulation: The outcome for plants and herbivores. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:170-178. [PMID: 37283609 PMCID: PMC10168039 DOI: 10.1002/pei3.10088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/08/2023]
Abstract
The effects of metals on plants and herbivores, as well as the interaction among the latter, are well documented. However, the effects of simultaneous herbivory and metal accumulation remain poorly studied. Here, we shed light on this topic by infesting cadmium-accumulating tomato plants (Solanum lycopersicum), either exposed to cadmium or not, with herbivorous spider mites, Tetranychus urticae or T. evansi during 14 days. Whereas on plants without cadmium T. evansi had higher growth rate than T. urticae, on plants with cadmium both mite species had similar growth rates, which were lower than on plants without metal. Plants were affected by both cadmium toxicity and by herbivory, as shown by leaf reflectance, but not on the same wavelengths. Moreover, changes in leaf reflectance on the wavelength affected by herbivores were similar on plants with and without cadmium, and vice versa. Long-term effects of cadmium and herbivory did not affect H2O2 concentrations in the plant. Finally, plants infested with spider mites did not accumulate more cadmium, suggesting that metal accumulation is not induced by herbivory. We thus conclude that cadmium accumulation affects two congeneric herbivore species differently and that the effects of herbivory and cadmium toxicity on plants may be disentangled, via leaf reflectance, even during simultaneous exposure.
Collapse
Affiliation(s)
- Diogo P. Godinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Helena C. Serrano
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
- Departamento de Biologia AnimalFaculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
- Departamento de Biologia VegetalFaculdade de Ciências da Universidade de LisboaLisbonPortugal
| |
Collapse
|
12
|
Li J, Chen L, Ding X, Fan W, Liu J. Transcriptome Analysis Reveals Crosstalk between the Abscisic Acid and Jasmonic Acid Signaling Pathways in Rice-Mediated Defense against Nilaparvata lugens. Int J Mol Sci 2022; 23:6319. [PMID: 35682997 PMCID: PMC9181446 DOI: 10.3390/ijms23116319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The brown planthopper (BPH) impacts both rice yield and quality. The exogenous application of abscisic acid (ABA) and jasmonic acid (JA) has been previously shown to induce rice resistance to BPH; however, the regulation of rice-mediated defense by these plant growth regulators is unclear. We applied exogenous JA and ABA to rice and analyzed molecular responses to BPH infestation. Nine RNA libraries were sequenced, and 6218 differentially expressed genes (DEGs) were generated and annotated. After ABA + BPH and JA + BPH treatments, 3491 and 2727 DEGs, respectively, were identified when compared with the control (BPH alone). GO enrichment and KEGG pathway analysis showed that the expression of several JA pathway genes (OsAOS2, encoding allene oxide synthase; OsOPR, 12-oxo-phytodienoic acid reductase; and OsACOX, acy1-CoA oxidase) were significantly up-regulated after ABA + BPH treatment. Furthermore, exogenous JA increased the expression of genes involved in ABA synthesis. Meanwhile, the expression levels of genes encoding WRKY transcription factors, myelocytomatosis protein 2 (MYC2) and basic leucine zippers (bZIPs) were up-regulated significantly, indicating that ABA and JA might function together to increase the expression of transcription factors during the rice defense response. The DEGs identified in this study provide vital insights into the synergism between ABA and JA and further contribute to the mechanistic basis of rice resistance to BPH.
Collapse
Affiliation(s)
- Jitong Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
| | - Lin Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
| | - Xu Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
| | - Wenyan Fan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
| | - Jinglan Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Xie H, Shi F, Li J, Yu M, Yang X, Li Y, Fan J. The Reciprocal Effect of Elevated CO 2 and Drought on Wheat-Aphid Interaction System. FRONTIERS IN PLANT SCIENCE 2022; 13:853220. [PMID: 35909776 PMCID: PMC9330134 DOI: 10.3389/fpls.2022.853220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/08/2022] [Indexed: 05/13/2023]
Abstract
Due to the rising concentration of atmospheric CO2, climate change is predicted to intensify episodes of drought. However, our understanding of how combined environmental conditions, such as elevated CO2 and drought together, will influence crop-insect interactions is limited. In the present study, the direct effects of combined elevated CO2 and drought stress on wheat (Triticum aestivum) nutritional quality and insect resistance, and the indirect effects on the grain aphid (Sitobion miscanthi) performance were investigated. The results showed that, in wheat, elevated CO2 alleviated low water content caused by drought stress. Both elevated CO2 and drought promoted soluble sugar accumulation. However, opposite effects were found on amino acid content-it was decreased by elevated CO2 and increased by drought. Further, elevated CO2 down-regulated the jasmonic acid (JA) -dependent defense, but up-regulated the salicylic acid (SA)-dependent defense. Meanwhile, drought enhanced abscisic acid accumulation that promoted the JA-dependent defense. For aphids, their feeding always induced phytohormone resistance in wheat under either elevated CO2 or drought conditions. Similar aphid performance between the control and the combined two factors were observed. We concluded that the aphid damage suffered by wheat in the future under combined elevated CO2 and drier conditions tends to maintain the status quo. We further revealed the mechanism by which it happened from the aspects of wheat water content, nutrition, and resistance to aphids.
Collapse
Affiliation(s)
- Haicui Xie
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Fengyu Shi
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jingshi Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Miaomiao Yu
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuetao Yang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jia Fan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jia Fan
| |
Collapse
|
14
|
Sobreiro MB, Collevatti RG, Dos Santos YLA, Bandeira LF, Lopes FJF, Novaes E. RNA-Seq reveals different responses to drought in Neotropical trees from savannas and seasonally dry forests. BMC PLANT BIOLOGY 2021; 21:463. [PMID: 34641780 PMCID: PMC8507309 DOI: 10.1186/s12870-021-03244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Water is one of the main limiting factors for plant growth and crop productivity. Plants constantly monitor water availability and can rapidly adjust their metabolism by altering gene expression. This leads to phenotypic plasticity, which aids rapid adaptation to climate changes. Here, we address phenotypic plasticity under drought stress by analyzing differentially expressed genes (DEG) in four phylogenetically related neotropical Bignoniaceae tree species: two from savanna, Handroanthus ochraceus and Tabebuia aurea, and two from seasonally dry tropical forests (SDTF), Handroanthus impetiginosus and Handroanthus serratifolius. To the best of our knowledge, this is the first report of an RNA-Seq study comparing tree species from seasonally dry tropical forest and savanna ecosystems. RESULTS Using a completely randomized block design with 4 species × 2 treatments (drought and wet) × 3 blocks (24 plants) and an RNA-seq approach, we detected a higher number of DEGs between treatments for the SDTF species H. serratifolius (3153 up-regulated and 2821 down-regulated under drought) and H. impetiginosus (332 and 207), than for the savanna species. H. ochraceus showed the lowest number of DEGs, with only five up and nine down-regulated genes, while T. aurea exhibited 242 up- and 96 down-regulated genes. The number of shared DEGs among species was not related to habitat of origin or phylogenetic relationship, since both T. aurea and H impetiginosus shared a similar number of DEGs with H. serratifolius. All four species shared a low number of enriched gene ontology (GO) terms and, in general, exhibited different mechanisms of response to water deficit. We also found 175 down-regulated and 255 up-regulated transcription factors from several families, indicating the importance of these master regulators in drought response. CONCLUSION Our findings show that phylogenetically related species may respond differently at gene expression level to drought stress. Savanna species seem to be less responsive to drought at the transcriptional level, likely due to morphological and anatomical adaptations to seasonal drought. The species with the largest geographic range and widest edaphic-climatic niche, H. serratifolius, was the most responsive, exhibiting the highest number of DEG and up- and down-regulated transcription factors (TF).
Collapse
Affiliation(s)
- Mariane B Sobreiro
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Yuri L A Dos Santos
- Laboratório de Genética e Genômica de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Ludmila F Bandeira
- Laboratório de Genética e Genômica de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Francis J F Lopes
- Laboratório de Fisiologia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Evandro Novaes
- Laboratório de Genética Molecular, Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| |
Collapse
|
15
|
Leybourne DJ, Preedy KF, Valentine TA, Bos JIB, Karley AJ. Drought has negative consequences on aphid fitness and plant vigor: Insights from a meta-analysis. Ecol Evol 2021; 11:11915-11929. [PMID: 34522350 PMCID: PMC8427572 DOI: 10.1002/ece3.7957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022] Open
Abstract
Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear.Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group and to characterize any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to (a) aphid biology, (b) geographical region, and (c) host plant biology.Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigor and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigor and increased chemical defense in drought-stressed plants.We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigor and defense to stimulate further research.
Collapse
Affiliation(s)
- Daniel J. Leybourne
- Division of Plant SciencesSchool of Life ScienceDundee UniversityDundeeUK
- Ecological Sciences DepartmentThe James Hutton InstituteDundeeUK
- Cell and Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | | | | | - Jorunn I. B. Bos
- Division of Plant SciencesSchool of Life ScienceDundee UniversityDundeeUK
- Cell and Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Alison J. Karley
- Ecological Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
16
|
Lin YY, Liu WC, Hsu YT, Hsu CH, Hu CC, Saska P, Skuhrovec J, Tuan SJ. Direct and Knock-on Effects of Water Stress on the Nutrient Contents of Triticum aestivum (Poales: Poaceae) and Population Growth of Rhopalosiphum padi (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1496-1508. [PMID: 33885757 DOI: 10.1093/jee/toab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 06/12/2023]
Abstract
To ascertain the direct effects of water stress upon wheat plants (Triticum aestivum L.) and how these effects, in turn, influence the population growth of the bird cherry-oat aphid (Rhopalosiphum padi L.), we conducted a physiological analysis of wheat seedlings grown under three different watering regimes and subsequently determined the population parameters of the aphid using the age-stage, two-sex life table. A significantly higher content of free amino acids and soluble sugars were observed in wheat seedlings exposed to drought stress compared to seedlings that were well-watered and those that were grown under waterlogged conditions. Extended phloem salivation and stylet penetration with shorter duration of sustained ingestion from phloem was observed in an electrical penetration graph (EPG) of R. padi on drought-stressed wheat seedlings. This suggested that the aphid's feeding activity, as well as nutrient intake, were impeded. The significantly higher percentage of essential amino acids found in wheat seedlings grown under waterlogged conditions promoted significantly higher fecundity and intrinsic rate of increase in R. padi populations compared to aphids fed on drought-treated or well-watered wheat seedlings. Our findings suggest that wheat seedling responses to water stress involve changes in sap composition that are responsible for altering the aphids' nutrient intake and consequently affect their population growth. From a grower's perspective, extending wheat cultivation in a rice-wheat rotation paddy field during the winter season may not be economically profitable if the fields are chronically waterlogged, since this may potentially lead to a higher infestation of cereal aphids.
Collapse
Affiliation(s)
- Ya-Ying Lin
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wei-Cheng Liu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Yi-Ting Hsu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ching-Hsin Hsu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chi-Chieh Hu
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, Taiwan, Republic of China
| | - Pavel Saska
- Crop Research Institute, Group Functional Diversity of Invertebrates and Plants in Agro-Ecosystems, Drnovská, Prague 6 - Ruzyně, Czech Republic
| | - Jiří Skuhrovec
- Crop Research Institute, Group Functional Diversity of Invertebrates and Plants in Agro-Ecosystems, Drnovská, Prague 6 - Ruzyně, Czech Republic
| | - Shu-Jen Tuan
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
17
|
Liu J, Wang C, Desneux N, Lu Y. Impact of Temperature on Survival Rate, Fecundity, and Feeding Behavior of Two Aphids, Aphis gossypii and Acyrthosiphon gossypii, When Reared on Cotton. INSECTS 2021; 12:insects12060565. [PMID: 34205528 PMCID: PMC8235302 DOI: 10.3390/insects12060565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/30/2023]
Abstract
Aphid performance is sensitive to temperature changes. Previous studies found that Acyrthosiphon gossypii (Mordviiko) was more sensitive to high temperature than Aphis gossypii (Glover). However, the effects of high temperatures on the survival, fecundity, and feeding behavior of these two aphid adults are not clear. This study examined the effect of different temperatures (29 °C, 32 °C, and 35 °C) on the adult survival rate, fecundity, and feeding behavior of these two aphid species. Our results showed that the adverse effects of high temperatures (32 °C and 35 °C) on aphid adult survival and fecundity were greater for Ac. gossypii than Ap. gossypii. The electrical penetration graph (EPG) data showed that Ac. gossypii spent more time feeding on xylem than phloem under all temperature treatments, which contrasted with Ap. gossypii. The time of phloem ingestion by Ap. gossypii at 32 °C was significantly higher than at 29 °C, while for Ac. gossypii, this value significantly decreased when temperature increased. These feeding patterns indicate that Ac. gossypii obtains less nutrition from phloem in support of its development and fecundity. Data generated in this study will serve as the basis for predicting the effects of increased temperature on these two cotton aphids.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.)
| | - Chen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.)
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France;
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.)
- Correspondence:
| |
Collapse
|
18
|
Nalam V, Isaacs T, Moh S, Kansman J, Finke D, Albrecht T, Nachappa P. Diurnal feeding as a potential mechanism of osmoregulation in aphids. INSECT SCIENCE 2021; 28:521-532. [PMID: 32240579 DOI: 10.1111/1744-7917.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 05/26/2023]
Abstract
Diurnal variation in phloem sap composition has a strong influence on aphid performance. The sugar-rich phloem sap serves as the sole diet for aphids and a suite of physiological mechanisms and behaviors allow them to tolerate the high osmotic stress. Here, we tested the hypothesis that night-time feeding by aphids is a behavior that takes advantage of the low sugar diet in the night to compensate for osmotic stress incurred while feeding on high sugar diet during the day. Using the electrical penetration graph (EPG) technique, we examined the effects of diurnal rhythm on feeding behaviors of bird cherry-oat aphid (Rhopalosiphum padi L.) on wheat. A strong diurnal rhythm in aphids as indicated by the presence of a cyclical pattern of expression in a core clock gene did not impact aphid feeding and similar feeding behaviors were observed during day and night. The major difference observed between day and night feeding was that aphids spent significantly longer time in phloem salivation during the night compared to the day. In contrast, aphid hydration was reduced at the end of the day-time feeding compared to end of the night-time feeding. Gene expression analysis of R. padi osmoregulatory genes indicated that sugar breakdown and water transport into the aphid gut was reduced at night. These data suggest that while diurnal variation occurs in phloem sap composition, aphids use night-time feeding to overcome the high osmotic stress incurred while feeding on sugar-rich phloem sap during the day.
Collapse
Affiliation(s)
- Vamsi Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Travis Isaacs
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Sarah Moh
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Jessica Kansman
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Deborah Finke
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Tessa Albrecht
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
19
|
Quais MK, Munawar A, Ansari NA, Zhou WW, Zhu ZR. Interactions between brown planthopper (Nilaparvata lugens) and salinity stressed rice (Oryza sativa) plant are cultivar-specific. Sci Rep 2020; 10:8051. [PMID: 32415213 PMCID: PMC7229203 DOI: 10.1038/s41598-020-64925-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Salinity stress triggers changes in plant morphology, physiology and molecular responses which can subsequently influence plant-insect interactions; however, these consequences remain poorly understood. We analyzed plant biomass, insect population growth rates, feeding behaviors and plant gene expression to characterize the mechanisms of the underlying interactions between the rice plant and brown planthopper (BPH) under salinity stress. Plant bioassays showed that plant growth and vigor losses were higher in control and low salinity conditions compared to high salinity stressed TN1 (salt-planthopper susceptible cultivar) in response to BPH feeding. In contrast, the losses were higher in the high salinity treated TPX (salt-planthopper resistant cultivar). BPH population growth was reduced on TN1, but increased on TPX under high salinity condition compared to the control. This cultivar-specific effect was reflected in BPH feeding behaviors on the corresponding plants. Quantification of abscisic acid (ABA) and salicylic acid (SA) signaling transcripts indicated that salinity-induced down-regulation of ABA signaling increased SA-dependent defense in TN1. While, up-regulation of ABA related genes in salinity stressed TPX resulted in the decrease in SA-signaling genes. Thus, ABA and SA antagonism might be a key element in the interaction between BPH and salinity stress. Taken together, we concluded that plant-planthopper interactions are markedly shaped by salinity and might be cultivar specific.
Collapse
Affiliation(s)
- Md Khairul Quais
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Senior Scientific Officer, Rice Farming Systems Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Asim Munawar
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Naved Ahmad Ansari
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Xie H, Shi J, Shi F, Xu H, He K, Wang Z. Aphid fecundity and defenses in wheat exposed to a combination of heat and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2713-2722. [PMID: 31943041 PMCID: PMC7210778 DOI: 10.1093/jxb/eraa017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 05/10/2023]
Abstract
Plants are routinely subjected simultaneously to different abiotic and biotic stresses, such as heat, drought, and insect infestation. Plant-insect interactions in such complex stress situations are poorly understood. We evaluated the performance of the grain aphid (Sitobion avenae) in wheat (Triticum aestivum L.) exposed to a combination of heat and drought stresses. We also performed assays of the relative water content, nutritional quality, and responses of phytohormone signaling pathways. Lower relative water content and accumulation of soluble sugars and amino acids were observed in plants exposed to combined heat and drought stress. These conditions increased abscisic acid levels in the absence of aphids, as well as leading to higher levels of jasmonate-dependent transcripts. The grain aphid infestation further increased abscisic acid levels and the abundance of jasmonic acid- and salicylic acid-dependent defenses under the combined stress conditions. Aphids reared on plants grown under drought stress alone showed lower net reproductive rates, intrinsic rates of increase, and finite rates of increase compared with aphids reared on plants in the absence of stress. The heat-treated plants also showed a decreased aphid net reproductive rate. These findings demonstrate that exposure to a combination of stresses enhances plant defense responses against aphids as well as altering nutritional quality.
Collapse
Affiliation(s)
- Haicui Xie
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Jianqin Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Fengyu Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Haiyun Xu
- College of Life Science, Hebei University, Baoding City, Hebei Province, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Guo H, Cui YN, Pan YQ, Wang SM, Bao AK. Sodium chloride facilitates the secretohalophyte Atriplex canescens adaptation to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:99-108. [PMID: 32135478 DOI: 10.1016/j.plaphy.2020.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Atriplex canescens is a C4 shrub with excellent adaptation to saline and arid environments. Our previous study showed that the secretion of excessive Na+ into leaf salt bladders is a primary strategy in salt tolerance of A. canescens and external 100 mM NaCl can substantially stimulate its growth. To investigate whether NaCl could facilitate Atriplex canescens response to drought stress, five-week-old seedlings were subjected to drought stress (30% of field water capacity) in the presence or absence of additional 100 mM NaCl. The results showed that, under drought stress, the addition of NaCl could substantially improve the growth of A. canescens by increasing leaf relative water content, enhancing photosynthetic activity and inducing a significant declined leaf osmotic potential (Ψs). The addition of NaCl significantly increased Na+ concentration in leaf salt bladders and the Na+ contribution to leaf Ψs, while had no adverse effects on K+ accumulation in leaf laminae. Therefore, the large accumulation of Na+ in salt bladders for enhancing osmotic adjustment (OA) ability is a vital strategy in A. canescens responding to drought stress. In addition, the concentration of free proline, bataine and soluble sugars exhibited a significant increase in the presence of NaCl under drought stress, and the betaine contribution to leaf Ψs was significantly increased by additional NaCl compared with that under drought treatment alone, suggesting that compatible solutes are also involved in OA in addition to functioning as protectants to alleviate water deficit injury.
Collapse
Affiliation(s)
- Huan Guo
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China.
| | - Yan-Nong Cui
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China.
| | - Ya-Qing Pan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China; School of Agriculture, Ningxia University, Yinchuan, 750021, PR China.
| | - Suo-Min Wang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China.
| | - Ai-Ke Bao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China.
| |
Collapse
|
22
|
Guo H, Sun Y, Yan H, Li C, Ge F. O 3-Induced Priming Defense Associated With the Abscisic Acid Signaling Pathway Enhances Plant Resistance to Bemisia tabaci. FRONTIERS IN PLANT SCIENCE 2020; 11:93. [PMID: 32210979 PMCID: PMC7069499 DOI: 10.3389/fpls.2020.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Elevated ozone (O3) modulates phytohormone signals, which subsequently alters the interaction between plants and herbivorous insects. It has been reported that elevated O3 activates the plant abscisic acid (ABA) signaling pathway, but its cascading effect on the performance of herbivorous insects remains unclear. Here, we used the ABA-deficient tomato mutant notabilis (not) and its wild type, Ailsa Craig (AC), to determine the role of ABA signaling in mediating the effects of elevated O3 on Bemisia tabaci in field open-top chambers (OTCs). Our results showed that the population abundance and the total phloem-feeding duration of B. tabaci were decreased by O3 exposure in AC plants compared with not plants. Moreover, elevated O3 and B. tabaci infestation activated the ABA signaling pathway and enhanced callose deposition in AC plants but had little effect on those in not plants. The exogenous application of a callose synthesis inhibitor (2-DDG) neutralized O3-induced resistance to B. tabaci, and the application of ABA enhanced callose deposition and exacerbated the negative effects of elevated O3 on B. tabaci. However, the application of 2-DDG counteracted the negative effects of O3 exposure on B. tabaci in ABA-treated AC plants. Collectively, this study revealed that callose deposition, which relied on the ABA signaling pathway, was an effective O3-induced priming defense of tomato plants against B. tabaci infestation.
Collapse
Affiliation(s)
- Honggang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
van Munster M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020; 12:E216. [PMID: 32075208 PMCID: PMC7077179 DOI: 10.3390/v12020216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter abiotic constraints, and plant response to stress has been a focus of research for decades. Given increasing global temperatures and elevated atmospheric CO2 levels and the occurrence of water stress episodes driven by climate change, plant biochemistry, in particular, plant defence responses, may be altered significantly. Environmental factors also have a wider impact, shaping viral transmission processes that rely on a complex set of interactions between, at least, the pathogen, the vector, and the host plant. This review considers how abiotic stresses influence the transmission and spread of plant viruses by aphid vectors, mainly through changes in host physiology status, and summarizes the latest findings in this research field. The direct effects of climate change and severe weather events that impact the feeding behaviour of insect vectors as well as the major traits (e.g., within-host accumulation, disease severity and transmission) of viral plant pathogens are discussed. Finally, the intrinsic capacity of viruses to react to environmental cues in planta and how this may influence viral transmission efficiency is summarized. The clear interaction between biotic (virus) and abiotic stresses is a risk that must be accounted for when modelling virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Manuella van Munster
- INRA, UMR385, CIRAD TA-A54K, Campus International de Baillarguet, CEDEX 05, 34398 Montpellier, France
| |
Collapse
|
24
|
Quandahor P, Lin C, Gou Y, A. Coulter J, Liu C. Leaf Morphological and Biochemical Responses of Three Potato ( Solanum tuberosum L.) Cultivars to Drought Stress and Aphid ( Myzus persicae Sulzer) Infestation. INSECTS 2019; 10:E435. [PMID: 31817160 PMCID: PMC6956135 DOI: 10.3390/insects10120435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023]
Abstract
Drought stress on plants can cause cellular water deficits and influence the physiology of host plants, which alter the performance of insect pests. This study was conducted to determine the effect of drought and aphid (Myzus persicae Sulzer) infestation on three potato (Solanum tuberosum L) genotypes under greenhouse conditions. A factorial experiment involving three potato genotypes, two levels of drought, and two levels of aphid infestation was conducted. The potato genotypes possessed different levels of tolerance to drought and are described as tolerant (Qingshu 9), moderately tolerant (Longshu 3), and sensitive (Atlantic). Sixty-day-old potato plants were infested with aphid nymphs and monitored for 20 d. There was a significant variety × drought × aphid interaction effect on the parameters measured. The genotype Atlantic, which is sensitive to drought, exhibited greater tolerance to aphid infestation under drought or no drought conditions than the other genotypes. This genotype also exhibited poor host acceptance and the aphid survival rate, colonization success, and average daily reproduction were low. Qingshu 9, which is tolerant to drought, was highly susceptible to aphid infestation and exhibited high host acceptance and greater aphid survival rate, colonization success, and average daily reproduction compared to the other genotypes. This study demonstrates that the biochemical and morphological traits that confer drought tolerance in potato do not necessarily confer aphid tolerance.
Collapse
Affiliation(s)
- Peter Quandahor
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (P.Q.); (C.L.); (Y.G.)
| | - Chunyan Lin
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (P.Q.); (C.L.); (Y.G.)
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (P.Q.); (C.L.); (Y.G.)
| | - Jeffrey A. Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA;
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (P.Q.); (C.L.); (Y.G.)
| |
Collapse
|
25
|
Cui H, Sun Y, Zhao Z, Zhang Y. The Combined Effect of Elevated O3 Levels and TYLCV Infection Increases the Fitness of Bemisia tabaci Mediterranean on Tomato Plants. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1425-1433. [PMID: 31586399 PMCID: PMC6885742 DOI: 10.1093/ee/nvz113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 05/12/2023]
Abstract
Global change and biotic stress, such as tropospheric contamination and virus infection, can individually modify the quality of host plants, thereby altering the palatability of the plant for herbivorous insects. The bottom-up effects of elevated O3 and tomato yellow leaf curl virus (TYLCV) infection on tomato plants and the associated performance of Bemisia tabaci Mediterranean (MED) were determined in open-top chambers. Elevated O3 decreased eight amino acid levels and increased the salicylic acid (SA) and jasmonic acid (JA) content and the gene expression of pathogenesis-related protein (PR1) and proteinase inhibitor (PI1) in both wild-type (CM) and JA defense-deficient tomato genotype (spr2). TYLCV infection and the combination of elevated O3 and TYLCV infection increased eight amino acids levels, SA content and PR1 expression, and decreased JA content and PI1 expression in both tomato genotypes. In uninfected tomato, elevated O3 increased developmental time and decreased fecundity by 6.1 and 18.8% in the CM, respectively, and by 6.8 and 18.9% in the spr2, respectively. In TYLCV-infected tomato, elevated O3 decreased developmental time and increased fecundity by 4.6 and 14.2%, respectively, in the CM and by 4.3 and 16.8%, respectively, in the spr2. These results showed that the interactive effects of elevated O3 and TYLCV infection partially increased the amino acid content and weakened the JA-dependent defense, resulting in increased population fitness of MED on tomato plants. This study suggests that whiteflies would be more successful at TYLCV-infected plants than at uninfected plants in elevated O3 levels.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
26
|
Kim TY, Lee SH, Ku H, Lee SY. Enhancement of Drought Tolerance in Cucumber Plants by Natural Carbon Materials. PLANTS 2019; 8:plants8110446. [PMID: 31652995 PMCID: PMC6918154 DOI: 10.3390/plants8110446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/13/2023]
Abstract
Stress induced by climate change is a widespread and global phenomenon. Unexpected drought stress has a substantial effect on the growth and productivity of valuable crops. The effects of carbon materials on living organisms in response to abiotic stresses remain poorly understood. In this study, we proposed a new method for enhancing drought tolerance in cucumber (Cucumis sativus L.) using carbon nanotubes and natural carbon materials called shungite, which can be easily mixed into any soil. We analyzed the phenotype and physiological changes in cucumber plants grown under conditions of drought stress. Shungite-treated cucumber plants were healthier, with dark green leaves, than control plants when watering was withheld for 21 days. Furthermore, compared with the control cucumber group, in the shungite-treated plants, the monodehydroascorbate content of the leaf, which is a representative marker of oxidative damage, was 66% lower. In addition, major scavenger units of reactive oxygen species and related drought stress marker genes were significantly upregulated. These results indicate that successive pretreatment of soil with low-cost natural carbon material improved the tolerance of cucumber plants to drought stress.
Collapse
Affiliation(s)
- Tae Yoon Kim
- Department of Biomedical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Korea.
| | - Sang-Hyo Lee
- Department of Biomedical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Korea.
| | - Hara Ku
- Department of Biomedical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Korea.
| | - Seung-Yop Lee
- Department of Biomedical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Korea.
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Korea.
| |
Collapse
|
27
|
Leybourne DJ, Valentine TA, Robertson JAH, Pérez-Fernández E, Main AM, Karley AJ, Bos JIB. Defence gene expression and phloem quality contribute to mesophyll and phloem resistance to aphids in wild barley. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4011-4026. [PMID: 31173098 DOI: 10.1093/jxb/erz163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/26/2019] [Indexed: 05/26/2023]
Abstract
Aphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5), has been described to be partially resistant to R. padi, with this resistance proposed to involve higher thionin and lipoxygenase gene expression. However, the specificity of this resistance to aphids and its underlying mechanistic processes are unknown. In this study, we assessed the specificity of Hsp5 resistance to aphids and analysed differences in aphid probing and feeding behaviour on Hsp5 and a susceptible barley cultivar (Concerto). We found that partial resistance in Hsp5 to R. padi extends to two other aphid pests of grasses. Using the electrical penetration graph technique, we show that partial resistance is mediated by phloem- and mesophyll-based resistance factors that limit aphid phloem ingestion. To gain insight into plant traits responsible for partial resistance, we compared non-glandular trichome density, defence gene expression, and phloem composition of Hsp5 with those of the susceptible barley cultivar Concerto. We show that Hsp5 partial resistance involves elevated basal expression of thionin and phytohormone signalling genes, and a reduction in phloem quality. This study highlights plant traits that may contribute to broad-spectrum partial resistance to aphids in barley.
Collapse
Affiliation(s)
- Daniel J Leybourne
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Tracy A Valentine
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Jean A H Robertson
- Environmental and Biochemical Sciences, the James Hutton Institute, Cragiebuckler, Aberdeen, UK
| | | | - Angela M Main
- Environmental and Biochemical Sciences, the James Hutton Institute, Cragiebuckler, Aberdeen, UK
| | - Alison J Karley
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
28
|
Szczepaniec A, Finke D. Plant-Vector-Pathogen Interactions in the Context of Drought Stress. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
29
|
Sańko-Sawczenko I, Łotocka B, Mielecki J, Rekosz-Burlaga H, Czarnocka W. Transcriptomic Changes in Medicago truncatula and Lotus japonicus Root Nodules during Drought Stress. Int J Mol Sci 2019; 20:E1204. [PMID: 30857310 PMCID: PMC6429210 DOI: 10.3390/ijms20051204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Drought is one of the major environmental factors limiting biomass and seed yield production in agriculture. In this research, we focused on plants from the Fabaceae family, which has a unique ability for the establishment of symbiosis with nitrogen-fixing bacteria, and are relatively susceptible to water limitation. We have presented the changes in nitrogenase activity and global gene expression occurring in Medicago truncatula and Lotus japonicus root nodules during water deficit. Our results proved a decrease in the efficiency of nitrogen fixation, as well as extensive changes in plant and bacterial transcriptomes, shortly after watering cessation. We showed for the first time that not only symbiotic plant components but also Sinorhizobium meliloti and Mesorhizobium loti bacteria residing in the root nodules of M. truncatula and L. japonicus, respectively, adjust their gene expression in response to water shortage. Although our results demonstrated that both M. truncatula and L. japonicus root nodules were susceptible to water deprivation, they indicated significant differences in plant and bacterial response to drought between the tested species, which might be related to the various types of root nodules formed by these species.
Collapse
Affiliation(s)
- Izabela Sańko-Sawczenko
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Barbara Łotocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Hanna Rekosz-Burlaga
- Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
30
|
Li P, Yang H, Wang L, Liu H, Huo H, Zhang C, Liu A, Zhu A, Hu J, Lin Y, Liu L. Physiological and Transcriptome Analyses Reveal Short-Term Responses and Formation of Memory Under Drought Stress in Rice. Front Genet 2019; 10:55. [PMID: 30800142 PMCID: PMC6375884 DOI: 10.3389/fgene.2019.00055] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 12/30/2022] Open
Abstract
In some plants, exposure to stress can induce a memory response, which appears to play an important role in adaptation to recurrent stress environments. However, whether rice exhibits drought stress memory and the molecular mechanisms that might underlie this process have remained unclear. Here, we ensured that rice drought memory was established after cycles of mild drought and re-watering treatment, and studied gene expression by whole-transcriptome strand-specific RNA sequencing (ssRNA-seq). We detected 6,885 transcripts and 238 lncRNAs involved in the drought memory response, grouped into 16 distinct patterns. Notably, the identified genes of dosage memory generally did not respond to the initial drought treatment. Our results demonstrate that stress memory can be developed in rice under appropriate water deficient stress, and lncRNA, DNA methylation and endogenous phytohormones (especially abscisic acid) participate in rice short-term drought memory, possibly acting as memory factors to activate drought-related memory transcripts in pathways such as photosynthesis and proline biosynthesis, to respond to the subsequent stresses.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Yang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Haoju Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Department of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, Gainesville, FL, United States
| | - Chengjun Zhang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Aizhong Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Andan Zhu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Jinyong Hu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Li Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| |
Collapse
|
31
|
De Domenico S, Taurino M, Gallo A, Poltronieri P, Pastor V, Flors V, Santino A. Oxylipin dynamics in Medicago truncatula in response to salt and wounding stresses. PHYSIOLOGIA PLANTARUM 2019; 165:198-208. [PMID: 30051613 DOI: 10.1111/ppl.12810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Multiple stresses are becoming common challenges in modern agriculture due to environmental changes. A large set of phytochemicals collectively known as oxylipins play a key role in responses to several stresses. Understanding the fine-tuned plant responses to multiple and simultaneous stresses could open new perspectives for developing more tolerant varieties. We carried out the molecular and biochemical profiling of genes, proteins and active compounds involved in oxylipin metabolism in response to single/combined salt and wounding stresses on Medicago truncatula. Two new members belonging to the CYP74 gene family were identified. Gene expression profiling of each of the six CYP74 members indicated a tissue- and time-specific expression pattern for each member in response to single/combined salt and wounding stresses. Notably, hormonal profiling pointed to an attenuated systemic response upon combined salt and leaf wounding stresses. Combined, these results confirm the important role of jasmonates in legume adaptation to abiotic stresses and point to the existence of a complex molecular cross-talk among signals generated by multiple stresses.
Collapse
Affiliation(s)
- Stefania De Domenico
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| | - Marco Taurino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| | - Palmiro Poltronieri
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| | - Victoria Pastor
- Department de Ciènces Agràries I del Medi Natural, Universitat Jaume I, Castellon, Spain
| | - Victor Flors
- Department de Ciènces Agràries I del Medi Natural, Universitat Jaume I, Castellon, Spain
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| |
Collapse
|
32
|
Guo H, Sun Y, Yan H, Li C, Ge F. O 3-Induced Leaf Senescence in Tomato Plants Is Ethylene Signaling-Dependent and Enhances the Population Abundance of Bemisia tabaci. FRONTIERS IN PLANT SCIENCE 2018; 9:764. [PMID: 29946327 PMCID: PMC6005859 DOI: 10.3389/fpls.2018.00764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 05/27/2023]
Abstract
Elevated ozone (O3) can alter the phenotypes of host plants particularly in induction of leaf senescence, but few reports examine the involvement of phytohormone in O3-induced changes in host phenotypes that influence the foraging quality for insects. Here, we used an ethylene (ET) receptor mutant Nr and its wild-type to determine the function of the ET signaling pathway in O3-induced leaf senescence, and bottom-up effects on the performance of Bemisia tabaci in field open-top chambers (OTCs). Our results showed that elevated O3 reduced photosynthetic efficiency and chlorophyll content and induced leaf senescence of plant regardless of plant genotype. Leaf senescence in Nr plants was alleviated relative to wild-type under elevated O3. Further analyses of foliar quality showed that elevated O3 had little effect on phytohormone-mediated defenses, but significantly increased the concentration of amino acids in two plant genotypes. Furthermore, Nr plants had lower amino acid content relative to wild-type under elevated O3. These results provided an explanation of O3-induced increase in abundance of B. tabaci. We concluded that O3-induced senescence of plant was ET signal-dependent, and positive effects of O3-induced leaf senescence on the performance of B. tabaci largely resulted from changes of nutritional quality of host plants.
Collapse
Affiliation(s)
- Honggang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Dubey NK, Mishra DK, Idris A, Nigam D, Singh PK, Sawant SV. Whitefly and aphid inducible promoters of Arabidopsis thaliana L. J Genet 2018; 97:109-119. [PMID: 29666330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lack of regulated expression and tissue specificity are the major drawbacks of plant and virus-derived constitutive promoters. A precise tissue or site-specific expression, facilitate regulated expression of proteins at the targeted time and site. Publically available microarray data on whitefly and aphid infested Arabidopsis thaliana L. was used to identify whitefly and aphid-inducible genes. The qRT-PCR further validated the inducible behaviour of these genes under artificial infestation. Promoter sequences of genes were retrieved from the Arabidopsis Information Resources database with their corresponding 5'UTR and cloned from the A. thaliana genome. Promoter reporter transcriptional fusions were developed with the beta-glucuronidase (GUS) gusA gene in a binary expression vector to validate the inducible behaviour of these promoters in eight independent transgenic Nicotiana tabaccum lines. Histochemical analysis of the reporter gene in T2 transgenic tobacco lines confirmed promoter driven expression at the sites of aphid and whitefly infestation. The qRT-PCR and GUS expression analysis of transgenic lines revealed that abscisic acid largely influenced the expression of both aphid and whitefly inducible promoters. Further, whitefly-specific promoter respond to salicylic acid and jasmonic acid (JA), whereas aphid-specific promoters to JA and 1-aminocyclopropane carboxylic acid. The response of promoters to phytohormones correlated to the presence of corresponding conserved cis-regulatory elements.
Collapse
Affiliation(s)
- Neeraj Kumar Dubey
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India.
| | | | | | | | | | | |
Collapse
|
34
|
Dubey NK, Mishra DK, Idris A, Nigam D, Singh PK, Sawant SV. Whitefly and aphid inducible promoters of Arabidopsis thaliana L. J Genet 2018. [DOI: 10.1007/s12041-018-0887-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Guo H, Peng X, Gu L, Wu J, Ge F, Sun Y. Up-regulation of MPK4 increases the feeding efficiency of the green peach aphid under elevated CO2 in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5923-5935. [PMID: 29140446 DOI: 10.1093/jxb/erx394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous research has shown that elevated CO2 reduces plant resistance against insects and enhances the water use efficiency of C3 plants, which improves the feeding efficiency of aphids. Although plant mitogen-activated protein kinases (MAPKs) are known to regulate water relations and phytohormone-mediated resistance, little is known about the effect of elevated CO2 on MAPKs and the cascading effects on aphids. By using stably transformed Nicotiana attenuata plants silenced in MPK4, wound-induced protein kinase (WIPK), or salicylic acid-induced protein kinase (SIPK), we determined the functions of MAPKs in plant-aphid interactions and their responses to elevated CO2. The results showed that among all plant genotypes, inverted repeat MPK4 plants had the largest stomatal apertures, the lowest water content, the strongest jasmonic acid (JA)-dependent resistance, and the lowest aphid numbers, suggesting that MPK4 affects plant responses to aphids by regulating stomatal aperture and JA-dependent resistance. Regardless of aphid infestation, elevated CO2 up-regulated MPK4, but not WIPK or SIPK, in wild-type plants. Elevated CO2 increased the number, mean relative growth rate, and feeding efficiency of aphids on all plant genotypes except inverted repeat MPK4. We conclude that MPK4 is a CO2-responsive plant determinant that regulates the molecular interaction between plants and aphids.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhong Peng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyuan Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Ahmed SS, Liu D, Simon JC. Impact of water-deficit stress on tritrophic interactions in a wheat-aphid-parasitoid system. PLoS One 2017; 12:e0186599. [PMID: 29053722 PMCID: PMC5650152 DOI: 10.1371/journal.pone.0186599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
Increasing temperature and CO2 concentrations can alter tritrophic interactions in ecosystems, but the impact of increasingly severe drought on such interactions is not well understood. We examined the response of a wheat-aphid-parasitoid system to variation in water-deficit stress levels. Our results showed that arid area clones of the aphid, Sitobion avenae (Fabricius), tended to have longer developmental times compared to semiarid and moist area clones, and the development of S. avenae clones tended to be slower with increasing levels of water-deficit. Body sizes of S. avenae clones from all areas decreased with increasing water-deficit levels, indicating their declining adaptation potential under drought. Compared to arid area clones, moist area clones of S. avenae had a higher frequency of backing under severe water stress only, but a higher frequency of kicking under well-watered conditions only, suggesting a water-deficit level dependent pattern of resistance against the parasitoid, Aphidius gifuensis (Ashmead). The number of S. avenae individuals attacked by the parasitoid in 10 min showed a tendency to decrease with increasing water-deficit levels. Clones of S. avenae tended to have lower parasitism rates under treatments with higher water-deficit levels. The development of the parasitoid tended to be slower under higher levels of water-deficit stress. Thus, the bottom-up effects of water-deficit stressed plants were negative on S. avenae. However, the top-down effects via parasitoids were compromised by water-deficit, which could favor the growth of aphid populations. Overall, the first trophic level under water-deficit stress was shown to have an indirect and negative impact on the third trophic level parasitoid, suggesting that parasitoids could be increasingly vulnerable in future warming scenarios.
Collapse
Affiliation(s)
- Syed Suhail Ahmed
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jean-Christophe Simon
- Institut National de la Recherche Agronomique (INRA), unité mixte de recherche (UMR) 1349, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, Le Rheu, France
| |
Collapse
|
37
|
Drought reduces transmission of Turnip yellows virus, an insect-vectored circulative virus. Virus Res 2017; 241:131-136. [PMID: 28756104 DOI: 10.1016/j.virusres.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Application of a severe water deficit to Arabidopsis thaliana plants infected with a mutant of Turnip yellows virus (TuYV, Family Luteoviridae) triggers a significant alteration of several plant phenology traits and strongly reduces the transmission efficiency of the virus by aphids. Although virus accumulation in water-stressed plants was similar to that in plants grown under well-watered conditions, virus accumulation was reduced in aphids fed on plants under water deficit. These results suggest alteration of the aphid feeding behavior on plants under water deficit.
Collapse
|
38
|
CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis. Int J Mol Sci 2017; 18:ijms18030619. [PMID: 28287502 PMCID: PMC5372634 DOI: 10.3390/ijms18030619] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog) transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the nucleus. CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni) infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1), CmC4H (cinnamate4 hydroxylase), Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1), CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase), CmC3H1 (coumarate3 hydroxylase1), CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1) and CmCCR1 (cinnamyl CoA reductase1) were all upregulated, in agreement with an increase in lignin content in CmMYB19 over-expressing plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin.
Collapse
|
39
|
Sanchez-Arcos C, Reichelt M, Gershenzon J, Kunert G. Modulation of Legume Defense Signaling Pathways by Native and Non-native Pea Aphid Clones. FRONTIERS IN PLANT SCIENCE 2016; 7:1872. [PMID: 28018405 PMCID: PMC5156717 DOI: 10.3389/fpls.2016.01872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/28/2016] [Indexed: 05/25/2023]
Abstract
The pea aphid (Acyrthosiphon pisum) is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research, it is still unclear why pea aphid host races (biotypes) are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA), the jasmonic acid-isoleucine conjugate (JA-Ile), other jasmonate precursors and derivatives, and abscisic acid (ABA) in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba) after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results suggest that A. pisum clones manipulate plant-defense signaling to their own advantage, and perform better on their native hosts due to their ability to modulate the SA- and JA-defense signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical EcologyJena, Germany
| |
Collapse
|
40
|
Kroes A, Broekgaarden C, Castellanos Uribe M, May S, van Loon JJA, Dicke M. Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia 2016; 183:107-120. [PMID: 27771762 PMCID: PMC5239811 DOI: 10.1007/s00442-016-3758-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/16/2016] [Indexed: 01/09/2023]
Abstract
Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density-dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory.
Collapse
Affiliation(s)
- Anneke Kroes
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Colette Broekgaarden
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Marcos Castellanos Uribe
- Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Sean May
- Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
41
|
Errard A, Ulrichs C, Kühne S, Mewis I, Mishig N, Maul R, Drungowski M, Parolin P, Schreiner M, Baldermann S. Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae. FRONTIERS IN PLANT SCIENCE 2016; 7:1256. [PMID: 27610113 PMCID: PMC4997045 DOI: 10.3389/fpls.2016.01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/08/2016] [Indexed: 05/31/2023]
Abstract
The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanum lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry.
Collapse
Affiliation(s)
- Audrey Errard
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| | - Christian Ulrichs
- Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu BerlinBerlin, Germany
| | - Stefan Kühne
- Julius Kühn-Institut, Federal Research Center for Cultivated Plants, Institute for Strategies and Technology AssessmentKleinmachnow, Germany
| | - Inga Mewis
- Julius Kühn-Institut, Federal Research Center for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionBerlin, Germany
| | - Narantuya Mishig
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| | - Ronald Maul
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Hamburg School of Food Science, Institute of Food Chemistry, University of HamburgHamburg, Germany
| | - Mario Drungowski
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Pia Parolin
- Institut Sophia Agrobiotech, UMR 1355-7254, Institut National de la Recherche Agronomique-Center National de la Recherche Scientifique-Université de Nice Sophia AntipolisSophia Antipolis, France
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| |
Collapse
|
42
|
Nguyen D, Rieu I, Mariani C, van Dam NM. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. PLANT MOLECULAR BIOLOGY 2016; 91:727-40. [PMID: 27095445 PMCID: PMC4932144 DOI: 10.1007/s11103-016-0481-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 04/09/2016] [Indexed: 05/18/2023]
Abstract
Adaptive plant responses to specific abiotic stresses or biotic agents are fine-tuned by a network of hormonal signaling cascades, including abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid. Moreover, hormonal cross-talk modulates plant responses to abiotic stresses and defenses against insect herbivores when they occur simultaneously. How such interactions affect plant responses under multiple stresses, however, is less understood, even though this may frequently occur in natural environments. Here, we review our current knowledge on how hormonal signaling regulates abiotic stress responses and defenses against insects, and discuss the few recent studies that attempted to dissect hormonal interactions occurring under simultaneous abiotic stress and herbivory. Based on this we hypothesize that drought stress enhances insect resistance due to synergistic interactions between JA and ABA signaling. Responses to flooding or waterlogging involve ethylene signaling, which likely reduces plant resistance to chewing herbivores due to its negative cross-talk with JA. However, the outcome of interactions between biotic and abiotic stress signaling is often plant and/or insect species-dependent and cannot simply be predicted based on general knowledge on the involvement of signaling pathways in single stress responses. More experimental data on non-model plant and insect species are needed to reveal general patterns and better understand the molecular mechanisms allowing plants to optimize their responses in complex environments.
Collapse
Affiliation(s)
- Duy Nguyen
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Ivo Rieu
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Celestina Mariani
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Nicole M van Dam
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany.
| |
Collapse
|
43
|
Nachappa P, Culkin CT, Saya PM, Han J, Nalam VJ. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean. FRONTIERS IN PLANT SCIENCE 2016; 7:552. [PMID: 27200027 PMCID: PMC4847208 DOI: 10.3389/fpls.2016.00552] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/11/2016] [Indexed: 05/21/2023]
Abstract
Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid densities under drought and their decrease under saturation. Taken together, our findings suggests that plant responses to water stress is complex involving changes in phloem amino acid composition and signaling pathways, which can impact aphid populations and virus transmission.
Collapse
Affiliation(s)
- Punya Nachappa
- Department of Biology, Indiana University-Purdue University Fort WayneFort Wayne, IN, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity.
Collapse
Affiliation(s)
- R A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, WA, Australia; Department of Agriculture and Food Western Australia, South Perth, WA, Australia.
| |
Collapse
|