1
|
Rey P, Rouhier N, Carassus C, de Groot A, Blanchard L. Participation of a cysteine tetrad in the recycling mechanism of methionine sulfoxide reductase A from radiation-tolerant Deinococcus bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141063. [PMID: 39929330 DOI: 10.1016/j.bbapap.2025.141063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 03/25/2025]
Abstract
Methionine oxidation leads to the formation of methionine sulfoxide (MetO), which is reduced back to Met by methionine sulfoxide reductases (Msrs). The catalytic mechanism used by A-type Msr (MsrA) for MetO reduction requires a catalytic cysteine (Cys), which is converted to a sulfenic acid. In general, two resolving Cys are required for the regeneration of the catalytic Cys forming two consecutive disulfide bridges, the last one being efficiently reduced by thioredoxin (Trx). Here, we performed the biochemical characterization of MsrA from Deinococcus deserti. It possesses four Cys, two present in the active site motif (18 and 21) and two distal ones (53 and 163). We produced MsrA variants mutated for these cysteines and analyzed their capacity to reduce MetO in the presence of the NADPH-Trx reductase/Trx system, their ability to form heterodimers with Trxs, and their redox status after incubation with MetO. We show that all four Cys are involved in the regeneration process of enzyme activity by Trx. After MetO reduction by Cys18, a first disulfide bridge is formed with Cys21. A second disulfide involving Cys21 with either Cys53 or Cys163 is reduced by Trx, and a third Cys53-Cys163 disulfide can be formed and also reduced by Trx. These findings highlighting for the first time the involvement of a Cys tetrad in the catalytic and regeneration mechanisms for a MsrA are placed in a structural context by performing 3D modelling and discussed in relation to the known recycling mechanisms involving a Cys triad.
Collapse
Affiliation(s)
- Pascal Rey
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul-Lez-Durance F-13115, France
| | | | - Chloé Carassus
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul-Lez-Durance F-13115, France; Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul-Lez-Durance F-13115, France
| | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul-Lez-Durance F-13115, France.
| | - Laurence Blanchard
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul-Lez-Durance F-13115, France.
| |
Collapse
|
2
|
Navarro MA, Navarro C, Hernández LE, Garnica M, Franco-Zorrilla JM, Burko Y, González-Serrano S, García-Mina JM, Pruneda-Paz J, Chory J, Leyva A. GLABRA2 transcription factor integrates arsenic tolerance with epidermal cell fate determination. THE NEW PHYTOLOGIST 2024; 244:1882-1900. [PMID: 39238145 DOI: 10.1111/nph.20099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Arsenic poses a global threat to living organisms, compromising crop security and yield. Limited understanding of the transcriptional network integrating arsenic-tolerance mechanisms with plant developmental responses hinders the development of strategies against this toxic metalloid. Here, we conducted a high-throughput yeast one-hybrid assay using as baits the promoter region from the arsenic-inducible genes ARQ1 and ASK18 from Arabidopsis thaliana, coupled with a transcriptomic analysis, to uncover novel transcriptional regulators of the arsenic response. We identified the GLABRA2 (GL2) transcription factor as a novel regulator of arsenic tolerance, revealing a wider regulatory role beyond its established function as a repressor of root hair formation. Furthermore, we found that ANTHOCYANINLESS2 (ANL2), a GL2 subfamily member, acts redundantly with this transcription factor in the regulation of arsenic signaling. Both transcription factors act as repressors of arsenic response. gl2 and anl2 mutants exhibit enhanced tolerance and reduced arsenic accumulation. Transcriptional analysis in the gl2 mutant unveils potential regulators of arsenic tolerance. These findings highlight GL2 and ANL2 as novel integrators of the arsenic response with developmental outcomes, offering insights for developing safer crops with reduced arsenic content and increased tolerance to this hazardous metalloid.
Collapse
Affiliation(s)
- Micaela Andrea Navarro
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| | - Cristina Navarro
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Garnica
- Department of Environmental Biology, University of Navarra, 31008, Navarra, Spain
| | - José Manuel Franco-Zorrilla
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| | - Yogev Burko
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion, 7505101, Israel
| | - Sara González-Serrano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| | - José M García-Mina
- Department of Environmental Biology, University of Navarra, 31008, Navarra, Spain
| | - José Pruneda-Paz
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Antonio Leyva
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| |
Collapse
|
3
|
Gong Y, Wang Q, Wei L, Liang W, Wang L, Lv N, Du X, Zhang J, Shen C, Xin Y, Sun L, Xu J. Genome-wide adenine N6-methylation map reveals epigenomic regulation of lipid accumulation in Nannochloropsis. PLANT COMMUNICATIONS 2024; 5:100773. [PMID: 38007614 PMCID: PMC10943562 DOI: 10.1016/j.xplc.2023.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 11/23/2023] [Indexed: 11/27/2023]
Abstract
Epigenetic marks on histones and DNA, such as DNA methylation at N6-adenine (6mA), play crucial roles in gene expression and genome maintenance, but their deposition and function in microalgae remain largely uncharacterized. Here, we report a genome-wide 6mA map for the model industrial oleaginous microalga Nannochloropsis oceanica produced by single-molecule real-time sequencing. Found in 0.1% of adenines, 6mA sites are mostly enriched at the AGGYV motif, more abundant in transposons and 3' untranslated regions, and associated with active transcription. Moreover, 6mA gradually increases in abundance along the direction of gene transcription and shows special positional enrichment near splicing donor and transcription termination sites. Highly expressed genes tend to show greater 6mA abundance in the gene body than do poorly expressed genes, indicating a positive interaction between 6mA and general transcription factors. Furthermore, knockout of the putative 6mA methylase NO08G00280 by genome editing leads to changes in methylation patterns that are correlated with changes in the expression of molybdenum cofactor, sulfate transporter, glycosyl transferase, and lipase genes that underlie reductions in biomass and oil productivity. By contrast, knockout of the candidate demethylase NO06G02500 results in increased 6mA levels and reduced growth. Unraveling the epigenomic players and their roles in biomass productivity and lipid metabolism lays a foundation for epigenetic engineering of industrial microalgae.
Collapse
Affiliation(s)
- Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wensi Liang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lianhong Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Nana Lv
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xuefeng Du
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiashun Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Luyang Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
4
|
Kisgeropoulos E, Bharadwaj VS, Ledinina A, Lubner CE, Mulder DW, Smolinski SL, Boehm M, Gutekunst K, King PW, Svedruzic D. Structural and biophysical properties of a [4Fe4S] ferredoxin-like protein from Synechocystis sp. PCC 6803 with a unique two domain structure. J Inorg Biochem 2024; 251:112428. [PMID: 38008043 DOI: 10.1016/j.jinorgbio.2023.112428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023]
Abstract
Electron carrier proteins (ECPs), binding iron-sulfur clusters, are vital components within the intricate network of metabolic and photosynthetic reactions. They play a crucial role in the distribution of reducing equivalents. In Synechocystis sp. PCC 6803, the ECP network includes at least nine ferredoxins. Previous research, including global expression analyses and protein binding studies, has offered initial insights into the functional roles of individual ferredoxins within this network. This study primarily focuses on Ferredoxin 9 (slr2059). Through sequence analysis and computational modeling, Ferredoxin 9 emerges as a unique ECP with a distinctive two-domain architecture. It consists of a C-terminal iron‑sulfur binding domain and an N-terminal domain with homology to Nil-domain proteins, connected by a structurally rigid 4-amino acid linker. Notably, in contrast to canonical [2Fe2S] ferredoxins exemplified by PetF (ssl0020), which feature highly acidic surfaces facilitating electron transfer with photosystem I reaction centers, models of Ferredoxin 9 reveal a more neutral to basic protein surface. Using a combination of electron paramagnetic resonance spectroscopy and square-wave voltammetry on heterologously produced Ferredoxin 9, this study demonstrates that the protein coordinates 2×[4Fe4S]2+/1+ redox-active and magnetically interacting clusters, with measured redox potentials of -420 ± 9 mV and - 516 ± 10 mV vs SHE. A more in-depth analysis of Fdx9's unique structure and protein sequence suggests that this type of Nil-2[4Fe4S] multi-domain ferredoxin is well conserved in cyanobacteria, bearing structural similarities to proteins involved in homocysteine synthesis in methanogens.
Collapse
Affiliation(s)
- Effie Kisgeropoulos
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anastasia Ledinina
- Department of Molecular and Structural Biochemistry, North Carolina State University, USA
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sharon L Smolinski
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Marko Boehm
- Department of Biology, Botanical Institute, Christian-Albrechts-University, Kiel, Germany; Department of Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Kirstin Gutekunst
- Department of Biology, Botanical Institute, Christian-Albrechts-University, Kiel, Germany; Department of Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Drazenka Svedruzic
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
5
|
Ma M, Zhuang Y, Chang L, Xiao L, Lin Q, Qiu Q, Chen D, Egan S, Wang G. Naturally occurring beneficial bacteria Vibrio alginolyticus X-2 protects seaweed from bleaching disease. mBio 2023; 14:e0006523. [PMID: 37310733 PMCID: PMC10470739 DOI: 10.1128/mbio.00065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
Microbiome manipulation is gaining fresh attention as a way to mitigate diseases in aquaculture. The commercially farmed seaweed Saccharina japonica suffers from a bacterial-induced bleaching disease, which has major implications for the reliable supply of healthy sporelings. Here, we identify a beneficial bacterium, Vibrio alginolyticus X-2 that significantly reduces the risk of bleaching disease. By combining infection assays and multi-omic analyses, we provide evidence to suggest that the underlying protective mechanisms of V. alginolyticus X-2 involve maintaining epibacterial communities, increasing the gene expression of S. japonica related to immune and stress protection pathways, and stimulating betaine concentrations in S. japonica holobionts. Thus, V. alginolyticus X-2 can elicit a suite of microbial and host responses to mitigate the bleaching disease. Our study provides insights into disease control in farmed S. japonica through the application of beneficial bacteria. IMPORTANCE Beneficial bacteria can elicit a suite of microbial and host responses to enhance the resistance to bleaching disease.
Collapse
Affiliation(s)
- Mingyu Ma
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yingrui Zhuang
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lirong Chang
- Weihai Changqing Ocean Science & Technology Co., Ltd, Rongcheng, China
| | - Luyang Xiao
- Weihai Changqing Ocean Science & Technology Co., Ltd, Rongcheng, China
| | - Qin Lin
- Fujian Lianjiang Guanwu Seafood Developing Product Co., Ltd, Guanwu, China
| | - Qiying Qiu
- Fujian Lianjiang Guanwu Seafood Developing Product Co., Ltd, Guanwu, China
| | - Defu Chen
- Fujian Lianjiang Guanwu Seafood Developing Product Co., Ltd, Guanwu, China
| | - Suhelen Egan
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Gaoge Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Min D, Li F, Ali M, Liu J, Fu X, Song Y, Ding J, Li X, Ji N, Zhang X. Interaction of methionine sulfoxide reductase B5 with SlMYC2 stimulates the transcription of MeJA-mediated autophagy-related genes in tomato fruit. HORTICULTURE RESEARCH 2023; 10:uhad012. [PMID: 36968182 PMCID: PMC10031729 DOI: 10.1093/hr/uhad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Methyl jasmonate (MeJA) has been shown to induce autophagy in various plant stress responses and metabolic pathways. MYC2 is involved in MeJA-mediated postharvest fruit biological metabolism, but it is unclear how it affects MeJA-induced fruit autophagy. In this study, we noticed that silencing SlMYC2 significantly reduced the increase in autophagy-related genes (SlATGs) expression induced by MeJA. SlMYC2 could also bind to the promoters of several SlATGs, including SlATG13a, SlATG13b, SlATG18a, and SlATG18h, and activate their transcript levels. Moreover, SlMsrB5, a methionine sulfoxide reductase, could interact with SlMYC2. Methionine oxidation in SlMYC2 and mimicking sulfoxidation in SlMYC2 by mutation of methionine-542 to glutamine reduced the DNA-binding ability and transcriptional activity of SlMYC2, respectively. SlMsrB5 partially repaired oxidized SlMYC2 and restored its DNA-binding ability. On the other hand, silencing SlMsrB5 inhibited the transcript levels of SlMYC2-targeted genes (SlATG13a, SlATG13b, SlATG18a, and SlATG18h). Similarly, dual-luciferase reporter (DLR) analysis revealed that SlMsrB5-SlMYC2 interaction significantly increased the ability of SlMYC2-mediated transcriptional activation of SlATG13a, SlATG13b, SlATG18a, and SlATG18h. These findings demonstrate that SlMsrB5-mediated cyclic oxidation/reduction of methionine in SlMYC2 influences SlATGs expression. Collectively, these findings reveal the mechanism of SlMYC2 in SlATGs transcriptional regulation, providing insight into the mechanism of MeJA-mediated postharvest fruit quality regulation.
Collapse
Affiliation(s)
| | | | - Maratab Ali
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Jiong Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaodong Fu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yanan Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jun Ding
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Nana Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | | |
Collapse
|
7
|
Xiao Z, Huang C, Ge H, Wang Y, Duan X, Wang G, Zheng L, Dong J, Huang X, Zhang Y, An H, Xu W, Wang Y. Proximity Labeling Facilitates Defining the Proteome Neighborhood of Photosystem II Oxygen Evolution Complex in a Model Cyanobacterium. Mol Cell Proteomics 2022; 21:100440. [PMID: 36356940 PMCID: PMC9764255 DOI: 10.1016/j.mcpro.2022.100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.
Collapse
Affiliation(s)
- Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Hazra A, Varshney V, Verma P, Kamble NU, Ghosh S, Achary RK, Gautam S, Majee M. Methionine sulfoxide reductase B5 plays a key role in preserving seed vigor and longevity in rice (Oryza sativa). THE NEW PHYTOLOGIST 2022; 236:1042-1060. [PMID: 35909309 DOI: 10.1111/nph.18412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Oxidation of methionine leads to the formation of methionine S-sulfoxide and methionine R-sulfoxide, which can be reverted by two types of methionine sulfoxide reductase (MSR): MSRA and MSRB. Though the role of MSR enzymes has been elucidated in various physiological processes, the regulation and role of MSR in seeds remains poorly understood. In this study, through molecular, biochemical, and genetic studies using seed-specific overexpression and RNAi lines of OsMSRB5 in Oryza sativa, we demonstrate the role of OsMSRB5 in maintaining seed vigor and longevity. We show that an age-induced reduction in the vigor and viability of seeds is correlated with reduced MSR activity and increased methionine sulfoxide (MetSO) formation. OsMSRB5 expression increases during seed maturation and is predominantly localized to the embryo. Further analyses on transgenic lines reveal the role of OsMSRB5 in modulating reactive oxygen species (ROS) homeostasis to preserve seed vigor and longevity. We show that ascorbate peroxidase and PROTEIN l-ISOASPARTYL METHYLTRANSFERASE undergo MetSO modification in seeds that affects their functional competence. OsMSRB5 physically interacts with these proteins and reverts this modification to facilitate their functions and preserve seed vigor and longevity. Our results thus illustrate the role of OsMSRB5 in preserving seed vigor and longevity by modulating ROS homeostasis in seeds.
Collapse
Affiliation(s)
- Abhijit Hazra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vishal Varshney
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shraboni Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rakesh Kumar Achary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shikha Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
9
|
Abdirad S, Wu Y, Ghorbanzadeh Z, Tazangi SE, Amirkhani A, Fitzhenry MJ, Kazemi M, Ghaffari MR, Koobaz P, Zeinalabedini M, Habibpourmehraban F, Masoomi-Aladizgeh F, Atwell BJ, Mirzaei M, Salekdeh GH, Haynes PA. Proteomic analysis of the meristematic root zone in contrasting genotypes reveals new insights in drought tolerance in rice. Proteomics 2022; 22:e2200100. [PMID: 35920597 DOI: 10.1002/pmic.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
Drought is responsible for major losses in rice production. Root tips contain meristematic and elongation zones that play major roles in determination of root traits and adaptive strategies to drought. In this study we analysed two contrasting genotypes of rice: IR64, a lowland, drought-susceptible, and shallow-rooting genotype; and Azucena, an upland, drought-tolerant, and deep-rooting genotype. Samples were collected of root tips of plants grown under control and water deficit stress conditions. Quantitative proteomics analysis resulted in the identification of 7294 proteins from the root tips of IR64 and 6307 proteins from Azucena. Data are available via ProteomeXchange with identifier PXD033343. Using a Partial Least Square Discriminant Analysis on 4170 differentially abundant proteins, 1138 statistically significant proteins across genotypes and conditions were detected. Twenty two enriched biological processes showing contrasting patterns between two genotypes in response to stress were detected through gene ontology enrichment analysis. This included identification of novel proteins involved in root elongation with specific expression patterns in Azucena, including four Expansins and seven Class III Peroxidases. We also detected an antioxidant network and a metallo-sulfur cluster assembly machinery in Azucena, with roles in reactive oxygen species and iron homeostasis, and positive effects on root cell cycle, growth and elongation.
Collapse
Affiliation(s)
- Somayeh Abdirad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Sara Esmaeili Tazangi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Mehrbano Kazemi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia.,School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.,School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
10
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
11
|
Tarrago L, Kaya A, Kim HY, Manta B, Lee BC, Gladyshev VN. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic Biol Med 2022; 191:228-240. [PMID: 36084791 DOI: 10.1016/j.freeradbiomed.2022.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Methionine (Met) can be oxidized to methionine sulfoxide (MetO), which exist as R- and S-diastereomers. Present in all three domains of life, methionine sulfoxide reductases (MSR) are the enzymes that reduce MetO back to Met. Most characterized among them are MSRA and MSRB, which are strictly stereospecific for the S- and R-diastereomers of MetO, respectively. While the majority of MSRs use a catalytic Cys to reduce their substrates, some employ selenocysteine. This is the case of mammalian MSRB1, which was initially discovered as selenoprotein SELR or SELX and later was found to exhibit an MSRB activity. Genomic analyses demonstrated its occurrence in most animal lineages, and biochemical and structural analyses uncovered its catalytic mechanism. The use of transgenic mice and mammalian cell culture revealed its physiological importance in the protection against oxidative stress, maintenance of neuronal cells, cognition, cancer cell proliferation, and the immune response. Coincident with the discovery of Met oxidizing MICAL enzymes, recent findings of MSRB1 regulating the innate immunity response through reversible stereospecific Met-R-oxidation of cytoskeletal actin opened up new avenues for biological importance of MSRB1 and its role in disease. In this review, we discuss the current state of research on MSRB1, compare it with other animal Msrs, and offer a perspective on further understanding of biological functions of this selenoprotein.
Collapse
Affiliation(s)
- Lionel Tarrago
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France.
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Bruno Manta
- Laboratorio de Genomica Microbiana, Institut Pasteur de Montevideo, Mataojo 2020, 11440, Montevideo, Uruguay; Catedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Las Heras 1925, 11600, Montevideo, Uruguay
| | - Byung-Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
12
|
Zheng Y, Wang Z, Xue D, Tao M, Jiang F, Jia B, Li Y, Huang G, Hu Z. Characterization of a new selenoprotein methionine sulfoxide reductase from Haematococcus pluvialis and its antioxidant activity in response to high light intensity, hydrogen peroxide, glyphosate, and cadmium exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113903. [PMID: 35870349 DOI: 10.1016/j.ecoenv.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Selenium incorporates into selenocysteine (Sec) which is a key component of selenoproteins implicated in antioxidant defense and redox homeostasis. Methionine sulfoxide reductases (Msr) play crucial roles in cellular defense against environmental stress. Whereas mammals have the MsrB selenoprotein form, unicellular organisms have MsrA. The Sec residue at the conserved catalytic sites of selenoprotein MsrA confers a metabolic advantage over the non-selenoprotein type MsrA. In the present study, the novel selenoprotein HpMsrA from Haematococcus pluvialis was cloned by the rapid amplification of cDNA ends and transformed into the model green alga Chlamydomonas reinhardtii. Alignment of homologs revealed the presence of the conserved catalytic domain GUFW and showed that the HpMsrA protein comprises Sec (U) at the N-terminus but no recycled Cys at the C-terminus. We studied the response of HpMsrA expression to selenite, high light intensity, hydrogen peroxide, cadmium nitrate, and glyphosate exposure via real-time quantitative PCR and enzyme activity analysis. The results demonstrated that HpMsrA protects cellular proteins against oxidative and environmental stressors. Compared with wild type C. reinhardtii, the transformant exhibited a superior antioxidant ability. The discoveries made herein shed light on the antioxidant physiology and environmental stress resistance mechanisms of the selenoproteins in microalgae. This information may aid in conducting environmental risk assessments of aquatic ecosystems involving microalgae known to respond rapidly and quantitatively to abiotic stress factors promoting excessive reactive oxygen species generation.
Collapse
Affiliation(s)
- Yihong Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ziyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Dengfeng Xue
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ming Tao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Jia
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Youhao Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Guanqin Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
13
|
Cui L, Zheng F, Zhang D, Li C, Li M, Ye J, Zhang Y, Wang T, Ouyang B, Hong Z, Ye Z, Zhang J. Tomato methionine sulfoxide reductase B2 functions in drought tolerance by promoting ROS scavenging and chlorophyll accumulation through interaction with Catalase 2 and RBCS3B. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111206. [PMID: 35351297 DOI: 10.1016/j.plantsci.2022.111206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) are inevitably generated in aerobic organisms as by-products of common metabolism and as the result of defense and development. ROS readily oxidizes methionine (Met) residues of proteins to form Met-R-sulfoxide or Met-S-sulfoxide (MetSO), resulting in protein inactivation or malfunction. Although it is known that MetSO can be reverted to Met by methionine sulfoxide reductase (Msr), the mechanism how Msr interacts with its target proteins is poorly understood. In this study, two target proteins of tomato MsrB2 (SlMsrB2), catalase 2 (CAT2) and the Rubisco small subunit RBCS3B, were identified. Silencing of SlMsrB2 by RNA interference (RNAi) in tomato led to decreased drought tolerance, accompanied by increased ROS accumulation and chlorophyll degradation. By contrast, overexpression of SlMsrB2 in tomato significantly reduced ROS accumulation and enhanced drought tolerance. Protein interaction analysis showed that SlMsrB2 interacts with CAT2 and RBCS3B in vitro and in planta. Silencing of CAT2 by RNAi and RBCS3B by virus-induced gene silencing (VIGS) resulted in development of pale green leaves and enhanced ROS accumulation in tomato plants. These results demonstrate that SlMsrB2 functions in drought tolerance and promotes chlorophyll accumulation by modulating ROS accumulation.
Collapse
Affiliation(s)
- Long Cui
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangyan Zheng
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Dedi Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxing Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Miao Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
15
|
Matamoros MA, Becana M. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5876-5892. [PMID: 33453107 PMCID: PMC8355754 DOI: 10.1093/jxb/erab008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Legumes include several major crops that can fix atmospheric nitrogen in symbiotic root nodules, thus reducing the demand for nitrogen fertilizers and contributing to sustainable agriculture. Global change models predict increases in temperature and extreme weather conditions. This scenario might increase plant exposure to abiotic stresses and negatively affect crop production. Regulation of whole plant physiology and nitrogen fixation in legumes during abiotic stress is complex, and only a few mechanisms have been elucidated. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are key players in the acclimation and stress tolerance mechanisms of plants. However, the specific redox-dependent signaling pathways are far from understood. One mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification (PTM) of proteins. Redox-based PTMs occur in the cysteine thiol group (oxidation, S-nitrosylation, S-glutathionylation, persulfidation), and also in methionine (oxidation), tyrosine (nitration), and lysine and arginine (carbonylation/glycation) residues. Unraveling PTM patterns under different types of stress and establishing the functional implications may give insight into the underlying mechanisms by which the plant and nodule respond to adverse conditions. Here, we review current knowledge on redox-based PTMs and their possible consequences in legume and nodule biology.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
16
|
Yadav A, Maertens L, Meese T, Van Nieuwerburgh F, Mysara M, Leys N, Cuypers A, Janssen PJ. Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle. Microorganisms 2021; 9:1626. [PMID: 34442705 PMCID: PMC8400943 DOI: 10.3390/microorganisms9081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h-1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.
Collapse
Affiliation(s)
- Anu Yadav
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Laurens Maertens
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Mohamed Mysara
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Natalie Leys
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Paul Jaak Janssen
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| |
Collapse
|
17
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
18
|
Montillet JL, Rondet D, Brugière S, Henri P, Rumeau D, Reichheld JP, Couté Y, Leonhardt N, Rey P. Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning. PLANT, CELL & ENVIRONMENT 2021; 44:1417-1435. [PMID: 33537988 DOI: 10.1111/pce.14013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Stomatal movements via the control of gas exchanges determine plant growth in relation to environmental stimuli through a complex signalling network involving reactive oxygen species that lead to post-translational modifications of Cys and Met residues, and alter protein activity and/or conformation. Thiol-reductases (TRs), which include thioredoxins, glutaredoxins (GRXs) and peroxiredoxins (PRXs), participate in signalling pathways through the control of Cys redox status in client proteins. Their involvement in stomatal functioning remains poorly characterized. By performing a mass spectrometry-based proteomic analysis, we show that numerous thiol reductases, like PRXs, are highly abundant in guard cells. When investigating various Arabidopsis mutants impaired in the expression of TR genes, no change in stomatal density and index was noticed. In optimal growth conditions, a line deficient in cytosolic NADPH-thioredoxin reductases displayed higher stomatal conductance and lower leaf temperature evaluated by thermal infrared imaging. In contrast, lines deficient in plastidial 2-CysPRXs or type-II GRXs exhibited compared to WT reduced conductance and warmer leaves in optimal conditions, and enhanced stomatal closure in epidermal peels treated with abscisic acid or hydrogen peroxide. Altogether, these data strongly support the contribution of thiol redox switches within the signalling network regulating guard cell movements and stomatal functioning.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Damien Rondet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Laboratoire Nixe, Sophia-Antipolis, Valbonne, France
| | - Sabine Brugière
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Patricia Henri
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Dominique Rumeau
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, Perpignan, France
| | - Yohann Couté
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Nathalie Leonhardt
- SAVE Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
19
|
Identification of a major-effect QTL associated with pre-harvest sprouting in cucumber (Cucumis sativus L.) using the QTL-seq method. BMC Genomics 2021; 22:249. [PMID: 33827431 PMCID: PMC8028694 DOI: 10.1186/s12864-021-07548-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cucumber (Cucumis sativus L.) is cultivated worldwide, and it is essential to produce enough high-quality seeds to meet demand. Pre-harvest sprouting (PHS) in cucumber is a critical problem and causes serious damage to seed production and quality. Nevertheless, the genetic basis and molecular mechanisms underlying cucumber PHS remain unclear. QTL-seq is an efficient approach for rapid quantitative trait loci (QTL) identification that simultaneously takes advantage of bulked-segregant analysis (BSA) and whole-genome resequencing. In the present research, QTL-seq analysis was performed to identify QTLs associated with PHS in cucumber using an F2 segregating population. Results Two QTLs that spanned 7.3 Mb on Chromosome 4 and 0.15 Mb on Chromosome 5 were identified by QTL-seq and named qPHS4.1 and qPHS5.1, respectively. Subsequently, SNP and InDel markers selected from the candidate regions were used to refine the intervals using the extended F2 populations grown in the 2016 and 2017 seasons. Finally, qPHS4.1 was narrowed to 0.53 Mb on chromosome 4 flanked by the markers SNP-16 and SNP-24 and was found to explain 19–22% of the phenotypic variation in cucumber PHS. These results reveal that qPHS4.1 is a major-effect QTL associated with PHS in cucumber. Based on gene annotations and qRT-PCR expression analyses, Csa4G622760 and Csa4G622800 were proposed as the candidate genes. Conclusions These results provide novel insights into the genetic mechanism controlling PHS in cucumber and highlight the potential for marker-assisted selection of PHS resistance breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07548-8.
Collapse
|
20
|
Methionine Sulfoxide Reductase B Regulates the Activity of Ascorbate Peroxidase of Banana Fruit. Antioxidants (Basel) 2021; 10:antiox10020310. [PMID: 33670705 PMCID: PMC7922979 DOI: 10.3390/antiox10020310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ascorbate peroxidase (APX) is a key antioxidant enzyme that is involved in diverse developmental and physiological process and stress responses by scavenging H2O2 in plants. APX itself is also subjected to multiple posttranslational modifications (PTMs). However, redox-mediated PTM of APX in plants remains poorly understood. Here, we identified and confirmed that MaAPX1 interacts with methionine sulfoxide reductase B2 (MsrB2) in bananas. Ectopic overexpression of MaAPX1 delays the detached leaf senescence induced by darkness in Arabidopsis. Sulfoxidation of MaAPX1, i.e., methionine oxidation, leads to loss of the activity, which is repaired partially by MaMsrB2. Moreover, mimicking sulfoxidation by mutating Met36 to Gln also decreases its activity in vitro and in vivo, whereas substitution of Met36 with Val36 to mimic the blocking of sulfoxidation has little effect on APX activity. Spectral analysis showed that mimicking sulfoxidation of Met36 hinders the formation of compound I, the first intermediate between APX and H2O2. Our findings demonstrate that the redox state of methionine in MaAPX1 is critical to its activity, and MaMsrB2 can regulate the redox state and activity of MaAPX1. Our results revealed a novel post-translational redox modification of APX.
Collapse
|
21
|
Deschoenmaeker F, Mihara S, Niwa T, Taguchi H, Wakabayashi KI, Toyoshima M, Shimizu H, Hisabori T. Thioredoxin pathway in anabaena sp. PCC 7120: activity of NADPH-thioredoxin reductase C. J Biochem 2021; 169:709-719. [PMID: 33537746 DOI: 10.1093/jb/mvab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
To understand the physiological role of NADPH-thioredoxin reductase C (NTRC) in cyanobacteria, we investigated an NTRC-deficient mutant strain of Anabaena sp., PCC 7120, cultivated under different regimes of nitrogen supplementation and light exposure. The deletion of ntrC did not induce a change in the cell structure and metabolic pathways. However, time-dependent changes in the abundance of specific proteins and metabolites were observed. A decrease in chlorophyll a was correlated with a decrease in chlorophyll a biosynthesis enzymes and PSI subunits. The deletion of ntrC led to a deregulation of nitrogen metabolism, including the NtcA accumulation and heterocyst-specific proteins while nitrate ions were available in the culture medium. Interestingly, this deletion resulted in a redox imbalance, indicated by higher peroxide levels, higher catalase activity, and the induction of chaperones such as MsrA. Surprisingly, the antioxidant protein 2-Cys Prx was down-regulated. The deficiency in ntrC also resulted in the accumulation of metabolites such as 6-phosphogluconate, ADP, and ATP. Higher levels of NADP+ and NADPH partly correlated with higher G6PDH activity. Rather than impacting protein expression levels, NTRC appears to be involved in the direct regulation of enzymes, especially during the dark to light transition period.
Collapse
Affiliation(s)
- Frédéric Deschoenmaeker
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Shoko Mihara
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-S2-19, Midori-ku, Yokohama, 226-8503 Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-S2-19, Midori-ku, Yokohama, 226-8503 Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Masakazu Toyoshima
- Department of Bioinformatic Engeneering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engeneering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
22
|
Wojciechowska N, Bagniewska-Zadworna A, Minicka J, Michalak KM, Kalemba EM. Localization and Dynamics of the Methionine Sulfoxide Reductases MsrB1 and MsrB2 in Beech Seeds. Int J Mol Sci 2021; 22:E402. [PMID: 33401671 PMCID: PMC7795007 DOI: 10.3390/ijms22010402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
Beech seeds are produced irregularly, and there is a need for long-term storage of these seeds for forest management practices. Accumulated reactive oxygen species broadly oxidize molecules, including amino acids, such as methionine, thereby contributing to decreased seed viability. Methionine oxidation can be reversed by the activity of methionine sulfoxide reductases (Msrs), which are enzymes involved in the regulation of many developmental processes and stress responses. Two types of Msrs, MsrB1 and MsrB2, were investigated in beech seeds to determine their abundance and localization. MsrB1 and MsrB2 were detected in the cortical cells and the outer area of the vascular cylinder of the embryonic axes as well as in the epidermis and parenchyma cells of cotyledons. The abundances of MsrB1 and MsrB2 decreased during long-term storage. Ultrastructural analyses have demonstrated the accumulation of these proteins in protein storage vacuoles and in the cytoplasm, especially in close proximity to the cell membrane. In silico predictions of possible Msr interactions supported our findings. In this study, we investigate the contribution of MsrB1 and MsrB2 locations in the regulation of seed viability and suggest that MsrB2 is linked with the longevity of beech seeds via association with proper utilization of storage material.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.B.-Z.); (K.M.M.)
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.B.-Z.); (K.M.M.)
| | - Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection, Władysława Węgorka 20, 60-318 Poznań, Poland;
| | - Kornel M. Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.B.-Z.); (K.M.M.)
| | - Ewa M. Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
23
|
Integration of MsrB1 and MsrB2 in the Redox Network during the Development of Orthodox and Recalcitrant Acer Seeds. Antioxidants (Basel) 2020; 9:antiox9121250. [PMID: 33316974 PMCID: PMC7763665 DOI: 10.3390/antiox9121250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Two related tree species, Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. We compared the seeds of these two species to characterize the developmentally driven changes in the levels of peptide-bound methionine sulfoxide (MetO) and the abundance of methionine sulfoxide reductases (Msrs) B1 and B2, with respect to the cellular redox environment. Protein oxidation at the Met level was dynamic only in Norway maple seeds, and the reduced MsrB2 form was detected only in this species. Cell redox status, characterized by the levels of reduced and oxidized ascorbate, glutathione, and nicotinamide adenine dinucleotide (NAD)/phosphate (NADP), was clearly more reduced in the Norway maple seeds than in the sycamore seeds. Clear correlations between MetO levels, changes in water content and redox status were reported in orthodox Acer seeds. The abundance of Msrs was correlated in both species with redox determinants, mainly ascorbate and glutathione. Our data suggest that MsrB2 is associated with the acquisition of desiccation tolerance and that ascorbate might be involved in the redox pathway enabling the regeneration of Msr via intermediates that are not known yet.
Collapse
|
24
|
Wojciechowska N, Alipour S, Stolarska E, Bilska K, Rey P, Kalemba EM. Involvement of the MetO/Msr System in Two Acer Species That Display Contrasting Characteristics during Germination. Int J Mol Sci 2020; 21:E9197. [PMID: 33276642 PMCID: PMC7730483 DOI: 10.3390/ijms21239197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
The levels of methionine sulfoxide (MetO) and the abundances of methionine sulfoxide reductases (Msrs) were reported as important for the desiccation tolerance of Acer seeds. To determine whether the MetO/Msrs system is related to reactive oxygen species (ROS) and involved in the regulation of germination in orthodox and recalcitrant seeds, Norway maple and sycamore were investigated. Changes in water content, MetO content, the abundance of MsrB1 and MsrB2 in relation to ROS content and the activity of reductases depending on nicotinamide adenine dinucleotides were monitored. Acer seeds differed in germination speed-substantially higher in sycamore-hydration dynamics, levels of hydrogen peroxide, superoxide anion radicals (O2•-) and hydroxyl radicals (•OH), which exhibited peaks at different stages of germination. The MetO level dynamically changed, particularly in sycamore embryonic axes, where it was positively correlated with the levels of O2•- and the abundance of MsrB1 and negatively with the levels of •OH and the abundance of MsrB2. The MsrB2 abundance increased upon sycamore germination; in contrast, it markedly decreased in Norway maple. We propose that the ROS-MetO-Msr redox system, allowing balanced Met redox homeostasis, participates in the germination process in sycamore, which is characterized by a much higher speed compared to Norway maple.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Ewelina Stolarska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Pascal Rey
- Plant Protective Proteins (PPV) Team, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), Aix Marseille University (AMU), 13108 Saint Paul-Lez-Durance, France;
| | - Ewa M. Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| |
Collapse
|
25
|
Wojciechowska N, Alipour S, Stolarska E, Bilska K, Rey P, Kalemba EM. Peptide-Bound Methionine Sulfoxide (MetO) Levels and MsrB2 Abundance Are Differentially Regulated during the Desiccation Phase in Contrasted Acer Seeds. Antioxidants (Basel) 2020; 9:E391. [PMID: 32392756 PMCID: PMC7278694 DOI: 10.3390/antiox9050391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
Norway maple and sycamore produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. Drying affects reduction and oxidation (redox) status in seeds. Oxidation of methionine to methionine sulfoxide (MetO) and reduction via methionine sulfoxide reductases (Msrs) have never been investigated in relation to seed desiccation tolerance. MetO levels and the abundance of Msrs were investigated in relation to levels of reactive oxygen species (ROS) such as hydrogen peroxide, superoxide anion radical and hydroxyl radical (•OH), and the levels of ascorbate and glutathione redox couples in gradually dried seeds. Peptide-bound MetO levels were positively correlated with ROS concentrations in the orthodox seeds. In particular, •OH affected MetO levels as well as the abundance of MsrB2 solely in the embryonic axes of Norway maple seeds. In this species, MsrB2 was present in oxidized and reduced forms, and the latter was favored by reduced glutathione and ascorbic acid. In contrast, sycamore seeds accumulated higher ROS levels. Additionally, MsrB2 was oxidized in sycamore throughout dehydration. In this context, the three elements •OH level, MetO content and MsrB2 abundance, linked together uniquely to Norway maple seeds, might be considered important players of the redox network associated with desiccation tolerance.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
- Department of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Ewelina Stolarska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Pascal Rey
- Aix Marseille University (AMU), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), Plant Protective Proteins (PPV) Team, 13108 Saint Paul-Lez-Durance, France;
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| |
Collapse
|
26
|
de Alvarenga LV, Lucius S, Vaz MGMV, Araújo WL, Hagemann M. The novel strain Desmonostoc salinum CCM-UFV059 shows higher salt and desiccation resistance compared to the model strain Nostoc sp. PCC7120. JOURNAL OF PHYCOLOGY 2020; 56:496-506. [PMID: 31925964 DOI: 10.1111/jpy.12968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Desmonostoc salinum CCM-UFV059 (Desmonostoc) is a novel cyanobacterial strain of the order Nostocales isolated from a saline-alkaline lake. The acclimation towards salt and desiccation stress of Desmonostoc was compared to the related and well-characterized model strain Nostoc sp. PCC7120 (Nostoc). Salt-stressed cells of Desmonostoc maintained low cellular Na+ concentrations and accumulated high amounts of compatible solutes, mainly sucrose and to a lower extent trehalose. These features permitted Desmonostoc to grow and maintain photosynthesis at 2-fold higher salinities than Nostoc. Moreover, Desmonostoc also induced sucrose over-accumulation under desiccation, which allowed this strain to recover from this stress in contrast to Nostoc. Additional mechanisms such as the presence of highly unsaturated lipids in the membrane and an efficient ion transport system could also explain, at least partially, how Desmonostoc is able to acclimate to high salinities and to resist longer desiccation periods. Collectively, our results provide first insights into the physiological and metabolic adaptations explaining the remarkable high salt and desiccation tolerance, which qualify Desmonostoc as an attractive model for further analysis of stress acclimation among heterocystous N2 -fixing cyanobacteria.
Collapse
Affiliation(s)
- Luna Viggiano de Alvarenga
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| | - Stefan Lucius
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| | - Marcelo Gomes Marçal Vieira Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Martin Hagemann
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| |
Collapse
|
27
|
Camejo D, Guzmán-Cedeño A, Vera-Macias L, Jiménez A. Oxidative post-translational modifications controlling plant-pathogen interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:110-117. [PMID: 31563091 DOI: 10.1016/j.plaphy.2019.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 05/27/2023]
Abstract
Pathogen recognition is linked to the perception of microbe/pathogen-associated molecular patterns triggering a specific and transient accumulation of reactive oxygen species (ROS) at the pathogen attack site. The apoplastic oxidative "burst" generated at the pathogen attack site depends on the ROS-generator systems including enzymes such as plasma membrane NADP (H) oxidases, cell wall peroxidases and lipoxygenase. ROS are cytotoxic molecules that inhibit invading pathogens or signalling molecules that control the local and systemic induction of defence genes. Post-translational modifications induced by ROS are considered as a potential signalling mechanism that can modify protein structure and/or function, localisation and cellular stability. Thus, this review focuses on how ROS are essential molecules regulating the function of proteins involved in the plant response to a pathogen attack through post-translational modifications.
Collapse
Affiliation(s)
- D Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Spain; Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador.
| | - A Guzmán-Cedeño
- Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador; University, School of Agriculture and Livestock, ULEAM-MES, Ecuador.
| | - L Vera-Macias
- Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador.
| | - A Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Spain.
| |
Collapse
|
28
|
Kappler U, Nasreen M, McEwan A. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol 2019; 75:1-51. [PMID: 31655735 DOI: 10.1016/bs.ampbs.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sulfoxides occur in biology as products of the S-oxygenation of small molecules as well as in peptides and proteins and their formation is often associated with oxidative stress and can affect biological function. In bacteria, sulfoxide damage can be reversed by different types of enzymes. Thioredoxin-dependent peptide methionine sulfoxide reductases (MSR proteins) repair oxidized methionine residues and are found in all Domains of life. In bacteria MSR proteins are often found in the cytoplasm but in some bacteria, including pathogenic Neisseria, Streptococci, and Haemophilus they are extracytoplasmic. Mutants lacking MSR proteins are often sensitive to oxidative stress and in pathogens exhibit decreased virulence as indicated by reduced survival in host cell or animal model systems. Molybdenum enzymes are also known to reduce S-oxides and traditionally their physiological role was considered to be in anaerobic respiration using dimethylsulfoxide (DMSO) as an electron acceptor. However, it now appears that some enzymes (MtsZ) of the DMSO reductase family of Mo enzymes use methionine sulfoxide as preferred physiological substrate and thus may be involved in scavenging/recycling of this amino acid. Similarly, an enzyme (MsrP/YedY) of the sulfite oxidase family of Mo enzymes has been shown to be involved in repair of methionine sulfoxides in periplasmic proteins. Again, some mutants deficient in Mo-dependent sulfoxide reductases exhibit reduced virulence, and there is evidence that these Mo enzymes and some MSR systems are induced by hypochlorite produced by the innate immune system. This review describes recent advances in the understanding of the molecular microbiology of MSR systems and the broadening of the role of Mo-dependent sulfoxide reductase to encompass functions beyond anaerobic respiration.
Collapse
Affiliation(s)
- Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Kalemba EM, Stolarska E. Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants. Int J Mol Sci 2019; 20:ijms20061309. [PMID: 30875880 PMCID: PMC6471524 DOI: 10.3390/ijms20061309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidation of methionine to methionine sulfoxide is a type of posttranslational modification reversed by methionine sulfoxide reductases (Msrs), which present an exceptionally high number of gene copies in plants. The side-form general antioxidant function-specific role of each Msr isoform has not been fully studied. Thirty homologous genes of Msr type A (MsrA) and type B (MsrB) that originate from the genomes of Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa were analyzed in silico. From 109 to 201 transcription factors and responsive elements were predicted for each gene. Among the species, 220 and 190 common transcription factors and responsive elements were detected for the MsrA and MsrB isoforms, respectively. In a comparison of 14 MsrA and 16 MsrB genes, 424 transcription factors and responsive elements were reported in both types of genes, with almost ten times fewer unique elements. The transcription factors mainly comprised plant growth and development regulators, transcription factors important in stress responses with significant overrepresentation of the myeloblastosis viral oncogene homolog (MYB) and no apical meristem, Arabidopsis transcription activation factor and cup-shaped cotyledon (NAC) families and responsive elements sensitive to ethylene, jasmonate, sugar, and prolamine. Gene Ontology term-based functional classification revealed that cellular, metabolic, and developmental process terms and the response to stimulus term dominated in the biological process category. Available experimental transcriptomic and proteomic data, in combination with a set of predictions, gave coherent results validating this research. Thus, new manners Msr gene expression regulation, as well as new putative roles of Msrs, are proposed.
Collapse
Affiliation(s)
- Ewa M Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Ewelina Stolarska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| |
Collapse
|
30
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018; 9:1434. [PMID: 30364181 PMCID: PMC6192434 DOI: 10.3389/fpls.2018.01434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 05/10/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
31
|
Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling. Antioxidants (Basel) 2018; 7:antiox7090114. [PMID: 30158486 PMCID: PMC6162775 DOI: 10.3390/antiox7090114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/09/2023] Open
Abstract
Oxidation of methionine (Met) leads to the formation of two S- and R-diastereoisomers of Met sulfoxide (MetO) that are reduced back to Met by methionine sulfoxide reductases (MSRs), A and B, respectively. Here, we review the current knowledge about the physiological functions of plant MSRs in relation with subcellular and tissue distribution, expression patterns, mutant phenotypes, and possible targets. The data gained from modified lines of plant models and crop species indicate that MSRs play protective roles upon abiotic and biotic environmental constraints. They also participate in the control of the ageing process, as shown in seeds subjected to adverse conditions. Significant advances were achieved towards understanding how MSRs could fulfil these functions via the identification of partners among Met-rich or MetO-containing proteins, notably by using redox proteomic approaches. In addition to a global protective role against oxidative damage in proteins, plant MSRs could specifically preserve the activity of stress responsive effectors such as glutathione-S-transferases and chaperones. Moreover, several lines of evidence indicate that MSRs fulfil key signaling roles via interplays with Ca2+- and phosphorylation-dependent cascades, thus transmitting ROS-related information in transduction pathways.
Collapse
|
32
|
Otsubo M, Ikoma C, Ueda M, Ishii Y, Tamura N. Functional Role of Fibrillin5 in Acclimation to Photooxidative Stress. PLANT & CELL PHYSIOLOGY 2018; 59:1670-1682. [PMID: 29741733 DOI: 10.1093/pcp/pcy093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 05/13/2023]
Abstract
The functional role of a lipid-associated soluble protein, fibrillin5 (FBN5), was determined with the Arabidopsis thaliana homozygous fbn5-knockout mutant line (SALK_064597) that carries a T-DNA insertion within the FBN5 gene. The fbn5 mutant remained alive, displaying a slow growth and a severe dwarf phenotype. The mutant grown even under growth light conditions at 80 µmol m-2 s-1 showed a drastic decrease in electron transfer activities around PSII, with little change in electron transfer activities around PSI, a phenomenon which was exaggerated under high light stress. The accumulation of plastoquinone-9 (PQ-9) was suppressed in the mutant, and >90% of the PQ-9 pool was reduced under growth light conditions. Non-photochemical quenching (NPQ) in the mutant functioned less efficiently, resulting from little contribution by energy-dependent quenching (qE). The ultrastructure of thylakoids in the mutant revealed that their grana were unstacked and transformed into loose and disordered structures. Light-harvesting complex (LHC)-containing large photosystem complexes and photosystem core complexes in the mutant were less abundant than those in wild-type plants. These results suggest that the lack of FBN5 causes a decrease in PQ-9 and imbalance of the redox state of PQ-9, resulting in misconducting both short-term and long-term control of the input of light energy to photosynthetic reaction centers. Furthermore, in the fbn5 mutant, the expression of genes involved in jasmonic acid biosynthesis was suppressed to ≤10% of that in the wild type under both growth-light and high-light conditions, suggesting that FBN5 functions as a transmitter of 1O2 in the stroma.
Collapse
Affiliation(s)
- Mayuko Otsubo
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Chikako Ikoma
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Mariko Ueda
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Yumi Ishii
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Noriaki Tamura
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
33
|
Jiang G, Wu F, Li Z, Li T, Gupta VK, Duan X, Jiang Y. Sulfoxidation Regulation of Musa acuminata Calmodulin (MaCaM) Influences the Functions of MaCaM-Binding Proteins. PLANT & CELL PHYSIOLOGY 2018; 59:1214-1224. [PMID: 29566226 DOI: 10.1093/pcp/pcy057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 05/25/2023]
Abstract
Sulfoxidation of methionine in proteins by reactive oxygen species can cause conformational alteration or functional impairment, and can be reversed by methionine sulfoxide reductase (Msr). Currently, only a few potential Msr substrates have been confirmed in higher plants. Here, we investigated Msr-mediated sulfoxidation regulation of calmodulin (CaM) and its underlying biological significance in relation to banana fruit ripening and senescence. Expression of MaCaM1 and MaMsrA7 was up-regulated with increased ripening and senescence. We verified that MaCaM1 interacts with MaMsrA7 in vitro and in vivo, and sulfoxidated MaCaM1 could be partly repaired by MaMsrA7 (MaMsrA7 reduces oxidized residues Met77 and Met110 in MaCaM1). Furthermore, we investigated two known CaM-binding proteins, catalase (MaCAT1) and MaHY5-1. MaHY5-1 acts as a transcriptional repressor of carotenoid biosynthesis-related genes (MaPSY1, MaPSY2 and MaPSY3) in banana fruit. MaCaM1 could enhance the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1 toward MaPSY2. Mimicked sulfoxidation in MaCaM1 did not affect the physical interactions of the protein with MaHY5-1 and MaCAT1, but reduced the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1. Our data suggest that sulfoxidation modification in MaCaM1 by MaMsrA7 regulates antioxidant response and gene transcription, thereby being involved in regulation of ripening and senescence of banana fruit.
Collapse
Affiliation(s)
- Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fuwang Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhiwei Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
34
|
Abstract
As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
35
|
Su T, Si M, Zhao Y, Liu Y, Yao S, Che C, Chen C. A thioredoxin-dependent peroxiredoxin Q from Corynebacterium glutamicum plays an important role in defense against oxidative stress. PLoS One 2018; 13:e0192674. [PMID: 29438446 PMCID: PMC5811025 DOI: 10.1371/journal.pone.0192674] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxin Q (PrxQ) that belonged to the cysteine-based peroxidases has long been identified in numerous bacteria, but the information on the physiological and biochemical functions of PrxQ remain largely lacking in Corynebacterium glutamicum. To better systematically understand PrxQ, we reported that PrxQ from model and important industrial organism C. glutamicum, encoded by the gene ncgl2403 annotated as a putative PrxQ, played important roles in adverse stress resistance. The lack of C. glutamicum prxQ gene resulted in enhanced cell sensitivity, increased ROS accumulation, and elevated protein carbonylation levels under adverse stress conditions. Accordingly, PrxQ-mediated resistance to adverse stresses mainly relied on the degradation of ROS. The physiological roles of PrxQ in resistance to adverse stresses were corroborated by its induced expression under adverse stresses, regulated directly by the stress-responsive ECF-sigma factor SigH. Through catalytical kinetic activity, heterodimer formation, and bacterial two-hybrid analysis, we proved that C. glutamicum PrxQ catalytically eliminated peroxides by exclusively receiving electrons from thioredoxin (Trx)/thioredoxin reductase (TrxR) system and had a broad range of oxidizing substrates, but a better efficiency for peroxynitrite and cumene hydroperoxide (CHP). Site-directed mutagenesis confirmed that the conserved Cys49 and Cys54 are the peroxide oxidation site and the resolving Cys residue, respectively. It was also discovered that C. glutamicum PrxQ mainly existed in monomer whether under its native state or functional state. Based on these results, a catalytic model of PrxQ is being proposed. Moreover, our result that C. glutamicum PrxQ can prevent the damaging effects of adverse stresses by acting as thioredoxin-dependent monomeric peroxidase could be further applied to improve the survival ability and robustness of the important bacterium during fermentation process.
Collapse
Affiliation(s)
- Tao Su
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yunfeng Zhao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yan Liu
- School of Geography And Tourism, Qufu Normal University, Rizhao, Shandong, China
| | - Shumin Yao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Chengchuan Che
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Can Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- * E-mail:
| |
Collapse
|
36
|
Shen W, Han J, Yan P, Zheng J, Zhang L, Li X, Tuo D, Zhou P. Soluble expression of biologically active methionine sulfoxide reductase B1 (PaMsrB1) from Carica papaya in Escherichia coli and isolation of its protein targets. Protein Expr Purif 2018; 146:17-22. [PMID: 29373846 DOI: 10.1016/j.pep.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
Abstract
Plant methionine sulfoxide reductase B1 (MsrB1) protects the photosynthetic apparatus from oxidative damage by scavenging reactive oxygen species to repair Met-oxidized proteins in response to abiotic stresses and biotic attack. Papaya MsrB1 (PaMsrB1) was identified previously to interact with papaya ringspot virus NIa-Pro, and this interaction inhibits the import of PaMsrB1 into the chloroplast. Further functional characterization of PaMsrB1 requires the production of a biologically active purified recombinant protein. In this report, PaMsrB1 as a fusion protein containing an N-terminal maltose-binding protein (MBP) was expressed in Escherichia coli Rosetta (DE3) cells and purified. Production of soluble fusion protein was greater when the cells were cultured at 16 °C than at 37 °C. The Factor Xa protease digested MBP-PaMsrB1 fusion protein and subsequently purified recombinant PaMsrB1 specifically reduced the R-diastereomer of methionine sulfoxide (MetSO) and Dabsyl-MetSO to Met in the presence of dithiothreitol. Eight chloroplast-localized and five non-chloroplast-localized candidate proteins that interact with PaMsrB1 were isolated by affinity chromatography and liquid chromatography coupled to tandem mass spectrometry. The results provide a platform to further understand the anti-oxidative defense mechanism of PaMsrB1.
Collapse
Affiliation(s)
- Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jie Han
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiping Zheng
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lie Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
37
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30364181 DOI: 10.3389/fpls.2018:01434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
38
|
Noh MR, Kim KY, Han SJ, Kim JI, Kim HY, Park KM. Methionine Sulfoxide Reductase A Deficiency Exacerbates Cisplatin-Induced Nephrotoxicity via Increased Mitochondrial Damage and Renal Cell Death. Antioxid Redox Signal 2017; 27:727-741. [PMID: 28158949 DOI: 10.1089/ars.2016.6874] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AIMS Methionine sulfoxide reductase A (MsrA), which is abundantly localized in the mitochondria, reduces methionine-S-sulfoxide, scavenging reactive oxygen species (ROS). Cisplatin, an anticancer drug, accumulates at high levels in the mitochondria of renal cells, causing mitochondrial impairment that ultimately leads to nephrotoxicity. Here, we investigated the role of MsrA in cisplatin-induced mitochondrial damage and kidney cell death using MsrA gene-deleted (MsrA-/-) mice. RESULTS Cisplatin injection resulted in increases of ROS production, methionine oxidation, and oxidative damage in the kidneys. This oxidative stress was greater in MsrA-/- mouse kidneys than in wild-type (MsrA+/+) mouse kidneys. MsrA gene deletion exacerbated cisplatin-induced reductions in the expression and activity of MsrA and MsrBs, and the expression of thioredoxin 1, glutathione peroxidase 1 and 4, mitochondrial superoxide dismutase, cystathionine-β-synthase, and cystathionine-γ-lyase. Cisplatin induced swelling, cristae loss, and fragmentation of mitochondria with increased lipid peroxidation, more so in MsrA-/- than in MsrA+/+ kidneys. The ratio of mitochondrial fission regulator (Fis1) to fusion regulator (Opa1) was higher in MsrA-/- than MsrA+/+ mice. MsrA deletion exacerbated cisplatin-induced increases in Bax to Bcl-2 ratio, cleaved caspase-3 level, and apoptosis, whereas MsrA overexpression attenuated cisplatin-induced oxidative stress and apoptosis. INNOVATION MsrA gene deletion in mice exacerbates cisplatin-induced renal injury through increases of mitochondrial susceptibility, whereas MsrA overexpression protects cells against cisplatin. CONCLUSION This study demonstrates that MsrA protects kidney cells against cisplatin-induced methionine oxidation, oxidative stress, mitochondrial damage, and apoptosis, suggesting that MsrA could be a useful target protein for the treatment of cisplatin-induced nephrotoxicity. Antioxid. Redox Signal. 27, 727-741.
Collapse
Affiliation(s)
- Mi Ra Noh
- 1 Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine , Junggu, Daegu, Republic of Korea
| | - Ki Young Kim
- 2 Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine , Namgu, Daegu, Republic of Korea
| | - Sang Jun Han
- 1 Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine , Junggu, Daegu, Republic of Korea
| | - Jee In Kim
- 3 Department of Molecular Medicine and MRC, Keimyung University School of Medicine , Dalseogu, Daegu, Republic of Korea
| | - Hwa-Young Kim
- 2 Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine , Namgu, Daegu, Republic of Korea
| | - Kwon Moo Park
- 1 Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine , Junggu, Daegu, Republic of Korea
| |
Collapse
|
39
|
Si M, Feng Y, Chen K, Kang Y, Chen C, Wang Y, Shen X. Functional comparison of methionine sulphoxide reductase A and B in Corynebacterium glutamicum. J GEN APPL MICROBIOL 2017; 63:280-286. [PMID: 28904252 DOI: 10.2323/jgam.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Methionine sulphoxide reductases (Msr) are able to reduce methionine sulfoxide to methionine and protect bacteria against reactive oxygen species (ROS). Many organisms express both methionine sulphoxide reductase A (MsrA), specific for methionine-S-sulfoxide and methionine sulphoxide reductase B (MsrB), active against methionine-R-sulfoxide. Corynebacterium glutamicum expresses MsrA, the function of which has been well defined; however, the function of MsrB has not been studied. Whether MsrB and MsrA play an equally important role in the antioxidant process is also poorly understood. In this study, we identified MsrB encoded by ncgl1823 in C. glutamicum, investigated its function and made a comparison with MsrA. The msrB gene showed a slight effect on utilizing methionine sulfoxide (MetO) as the sole Met source; however, the survival rates showed no sensitivity to oxidants. MsrB showed catalytic activity using thioredoxin/thioredoxin reductase (Trx/TrxR) reducing system as electron donors, but independent from the mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) system. Therefore, MsrB plays a limited role in resisting oxidative stress and it could reduce MetO to Met by the Trx/TrxR reducing system, which is useful for expanding the understanding of the functions of Msr in this important industrial microbe.
Collapse
Affiliation(s)
- Meiru Si
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University.,College of Life Sciences, Qufu Normal University
| | - Yanyan Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Keqi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Yiwen Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Can Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University.,College of Life Science and Agronomy, Zhoukou Normal University
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| |
Collapse
|
40
|
The Brachypodium distachyon methionine sulfoxide reductase gene family. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. THE NEW PHYTOLOGIST 2017; 215:937-951. [PMID: 28675536 DOI: 10.1111/nph.14670] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Contents 937 I. 937 II. 938 III. 939 IV. 943 V. 947 VI. 948 948 References 949 SUMMARY: The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO , to a red form, OCPR . Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO ; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1 O2 ) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1 O2 quenching.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
42
|
Ricci F, Lauro FM, Grzymski JJ, Read R, Bakiu R, Santovito G, Luporini P, Vallesi A. The Anti-Oxidant Defense System of the Marine Polar Ciliate Euplotes nobilii: Characterization of the MsrB Gene Family. BIOLOGY 2017; 6:biology6010004. [PMID: 28106766 PMCID: PMC5371997 DOI: 10.3390/biology6010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 01/16/2023]
Abstract
Organisms living in polar waters must cope with an extremely stressful environment dominated by freezing temperatures, high oxygen concentrations and UV radiation. To shed light on the genetic mechanisms on which the polar marine ciliate, Euplotes nobilii, relies to effectively cope with the oxidative stress, attention was focused on methionine sulfoxide reductases which repair proteins with oxidized methionines. A family of four structurally distinct MsrB genes, encoding enzymes specific for the reduction of the methionine-sulfoxide R-forms, were identified from a draft of the E. nobilii transcriptionally active (macronuclear) genome. The En-MsrB genes are constitutively expressed to synthesize proteins markedly different in amino acid sequence, number of CXXC motifs for zinc-ion binding, and presence/absence of a cysteine residue specific for the mechanism of enzyme regeneration. The En-MsrB proteins take different localizations in the nucleus, mitochondria, cytosol and endoplasmic reticulum, ensuring a pervasive protection of all the major subcellular compartments from the oxidative damage. These observations have suggested to regard the En-MsrB gene activity as playing a central role in the genetic mechanism that enables E. nobilii and ciliates in general to live in the polar environment.
Collapse
Affiliation(s)
- Francesca Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Federico M Lauro
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore.
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA.
| | - Robert Read
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA.
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Tirana 1019, Albania.
| | - Gianfranco Santovito
- Department of Biology, University of Padova, via U. Bassi 58/B, Padua 35100, Italy.
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| |
Collapse
|
43
|
Péterfi Z, Tarrago L, Gladyshev VN. Practical guide for dynamic monitoring of protein oxidation using genetically encoded ratiometric fluorescent biosensors of methionine sulfoxide. Methods 2016; 109:149-157. [PMID: 27345570 DOI: 10.1016/j.ymeth.2016.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 11/30/2022] Open
Abstract
In cells, physiological and pathophysiological conditions may lead to the formation of methionine sulfoxide (MetO). This oxidative modification of methionine exists in the form of two diastereomers, R and S, and may occur in both free amino acid and proteins. MetO is reduced back to methionine by methionine sulfoxide reductases (MSRs). Methionine oxidation was thought to be a nonspecific modification affecting protein functions and methionine availability. However, recent findings suggest that cyclic methionine oxidation and reduction is a posttranslational modification that actively regulates protein function akin to redox regulation by cysteine oxidation and phosphorylation. Methionine oxidation is thus an important mechanism that could play out in various physiological contexts. However, detecting MetO generation and MSR functions remains challenging because of the lack of tools and reagents to detect and quantify this protein modification. We recently developed two genetically encoded diasterospecific fluorescent sensors, MetSOx and MetROx, to dynamically monitor MetO in living cells. Here, we provide a detailed procedure for their use in bacterial and mammalian cells using fluorimetric and fluorescent imaging approaches. This method can be adapted to dynamically monitor methionine oxidation in various cell types and under various conditions.
Collapse
Affiliation(s)
- Zalán Péterfi
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lionel Tarrago
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Sun X, Sun M, Jia B, Qin Z, Yang K, Chen C, Yu Q, Zhu Y. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca(2+) /CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:514-529. [PMID: 27121031 DOI: 10.1111/tpj.13187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Although research has extensively illustrated the molecular basis of plant responses to salt and high-pH stresses, knowledge on carbonate alkaline stress is poor and the specific responsive mechanism remains elusive. We have previously characterized a Glycine soja Ca(2+) /CAM-dependent kinase GsCBRLK that could increase salt tolerance. Here, we characterize a methionine sulfoxide reductase (MSR) B protein GsMSRB5a as a GsCBRLK interactor by using Y2H and BiFc assays. Further analyses showed that the N-terminal variable domain of GsCBRLK contributed to the GsMSRB5a interaction. Y2H assays also revealed the interaction specificity of GsCBRLK with the wild soybean MSRB subfamily proteins, and determined that the BoxI/BoxII-containing regions within GsMSRBs were responsible for their interaction. Furthermore, we also illustrated that the N-terminal basic regions in GsMSRBs functioned as transit peptides, which targeted themselves into chloroplasts and thereby prevented their interaction with GsCBRLK. Nevertheless, deletion of these regions allowed them to localize on the plasma membrane (PM) and interact with GsCBRLK. In addition, we also showed that GsMSRB5a and GsCBRLK displayed overlapping tissue expression specificity and coincident expression patterns under carbonate alkaline stress. Phenotypic experiments demonstrated that GsMSRB5a and GsCBRLK overexpression in Arabidopsis enhanced carbonate alkaline stress tolerance. Further investigations elucidated that GsMSRB5a and GsCBRLK inhibited reactive oxygen species (ROS) accumulation by modifying the expression of ROS signaling, biosynthesis and scavenging genes. Summarily, our results demonstrated that GsCBRLK and GsMSRB5a interacted with each other, and activated ROS signaling under carbonate alkaline stress.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Zhiwei Qin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Kejun Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chao Chen
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Qingyue Yu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| |
Collapse
|
45
|
Identification of Biomarkers for Resistance to Fusarium oxysporum f. sp. cubense Infection and in Silico Studies in Musa paradisiaca Cultivar Puttabale through Proteomic Approach. Proteomes 2016; 4:proteomes4010009. [PMID: 28248219 PMCID: PMC5217371 DOI: 10.3390/proteomes4010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 01/10/2023] Open
Abstract
Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the major disease constraints of banana production. Previously, we reported the disease resistance Musa paradisiaca cv. puttabale clones developed from Ethylmethanesulfonate and Foc culture filtrate against Foc inoculation. Here, the same resistant clones and susceptible clones were used for the study of protein accumulation against Foc inoculation by two-dimensional gel electrophoresis (2-DE), their expression pattern and an in silico approach. The present investigation revealed mass-spectrometry identified 16 proteins that were over accumulated and 5 proteins that were under accumulated as compared to the control. The polyphosphoinositide binding protein ssh2p (PBPssh2p) and Indoleacetic acid-induced-like (IAA) protein showed significant up-regulation and down-regulation. The docking of the pathogenesis-related protein (PR) with the fungal protein endopolygalacturonase (PG) exemplify the three ionic interactions and seven hydrophobic residues that tends to good interaction at the active site of PG with free energy of assembly dissociation (1.5 kcal/mol). The protein-ligand docking of the Peptide methionine sulfoxide reductase chloroplastic-like protein (PMSRc) with the ligand β-1,3 glucan showed minimum binding energy (−6.48 kcal/mol) and docking energy (−8.2 kcal/mol) with an interaction of nine amino-acid residues. These explorations accelerate the research in designing the host pathogen interaction studies for the better management of diseases.
Collapse
|
46
|
Evidence for the dimerization-mediated catalysis of methionine sulfoxide reductase A from Clostridium oremlandii. PLoS One 2015; 10:e0131523. [PMID: 26107511 PMCID: PMC4479559 DOI: 10.1371/journal.pone.0131523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
Clostridium oremlandii MsrA (CoMsrA) is a natively selenocysteine-containing methionine-S-sulfoxide reductase and classified into a 1-Cys type MsrA. CoMsrA exists as a monomer in solution. Herein, we report evidence that CoMsrA can undergo homodimerization during catalysis. The monomeric CoMsrA dimerizes in the presence of its substrate methionine sulfoxide via an intermolecular disulfide bond between catalytic Cys16 residues. The dimeric CoMsrA is resolved by the reductant glutaredoxin, suggesting the relevance of dimerization in catalysis. The dimerization reaction occurs in a concentration- and time-dependent manner. In addition, the occurrence of homodimer formation in the native selenoprotein CoMsrA is confirmed. We also determine the crystal structure of the dimeric CoMsrA, having the dimer interface around the two catalytic Cys16 residues. A central cone-shaped hole is present in the surface model of dimeric structure, and the two Cys16 residues constitute the base of the hole. Collectively, our biochemical and structural analyses suggest a novel dimerization-mediated mechanism for CoMsrA catalysis that is additionally involved in CoMsrA regeneration by glutaredoxin.
Collapse
|
47
|
Ksas B, Becuwe N, Chevalier A, Havaux M. Plant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis. Sci Rep 2015; 5:10919. [PMID: 26039552 PMCID: PMC4454199 DOI: 10.1038/srep10919] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Plastoquinone-9 is known as a photosynthetic electron carrier to which has also been attributed a role in the regulation of gene expression and enzyme activities via its redox state. Here, we show that it acts also as an antioxidant in plant leaves, playing a central photoprotective role. When Arabidopsis plants were suddenly exposed to excess light energy, a rapid consumption of plastoquinone-9 occurred, followed by a progressive increase in concentration during the acclimation phase. By overexpressing the plastoquinone-9 biosynthesis gene SPS1 (solanesyl diphosphate synthase 1) in Arabidopsis, we succeeded in generating plants that specifically accumulate plastoquinone-9 and its derivative plastochromanol-8. The SPS1-overexpressing lines were much more resistant to photooxidative stress than the wild type, showing marked decreases in leaf bleaching, lipid peroxidation and PSII photoinhibition under excess light. Comparison of the SPS1 overexpressors with other prenyl quinone mutants indicated that the enhanced phototolerance of the former plants is directly related to their increased capacities for plastoquinone-9 biosynthesis.
Collapse
Affiliation(s)
- Brigitte Ksas
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Noëlle Becuwe
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Anne Chevalier
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Michel Havaux
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| |
Collapse
|
48
|
Zhu J, Ding P, Li Q, Gao Y, Chen F, Xia G. Molecular characterization and expression profile of methionine sulfoxide reductase gene family in maize (Zea mays) under abiotic stresses. Gene 2015; 562:159-68. [DOI: 10.1016/j.gene.2015.02.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/01/2015] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
|
49
|
Jacques S, Ghesquière B, De Bock PJ, Demol H, Wahni K, Willems P, Messens J, Van Breusegem F, Gevaert K. Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress. Mol Cell Proteomics 2015; 14:1217-29. [PMID: 25693801 DOI: 10.1074/mcp.m114.043729] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 02/02/2023] Open
Abstract
Reactive oxygen species such as hydrogen peroxide can modify proteins via direct oxidation of their sulfur-containing amino acids, cysteine and methionine. Methionine oxidation, studied here, is a reversible posttranslational modification that is emerging as a mechanism by which proteins perceive oxidative stress and function in redox signaling. Identification of proteins with oxidized methionines is the first prerequisite toward understanding the functional effect of methionine oxidation on proteins and the biological processes in which they are involved. Here, we describe a proteome-wide study of in vivo protein-bound methionine oxidation in plants upon oxidative stress using Arabidopsis thaliana catalase 2 knock-out plants as a model system. We identified over 500 sites of oxidation in about 400 proteins and quantified the differences in oxidation between wild-type and catalase 2 knock-out plants. We show that the activity of two plant-specific glutathione S-transferases, GSTF9 and GSTT23, is significantly reduced upon oxidation. And, by sampling over time, we mapped the dynamics of methionine oxidation and gained new insights into this complex and dynamic landscape of a part of the plant proteome that is sculpted by oxidative stress.
Collapse
Affiliation(s)
- Silke Jacques
- From the Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium, Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Bart Ghesquière
- From the Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Pieter-Jan De Bock
- From the Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Hans Demol
- From the Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Khadija Wahni
- VIB Structural Biology Research Center, Vrije Universiteit Brussel (VUB), B-1050 Brussels, Belgium, Brussels Center for Redox Biology, B-1050 Brussels, Belgium, Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Patrick Willems
- From the Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium, Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Joris Messens
- VIB Structural Biology Research Center, Vrije Universiteit Brussel (VUB), B-1050 Brussels, Belgium, Brussels Center for Redox Biology, B-1050 Brussels, Belgium, Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium, Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium,
| | - Kris Gevaert
- From the Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium,
| |
Collapse
|
50
|
Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance. Appl Environ Microbiol 2015; 81:2781-96. [PMID: 25681179 DOI: 10.1128/aem.04221-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.
Collapse
|