1
|
de Freitas JT, Thakur V, LaPorte KM, Thakur VS, Flores B, Caicedo V, Ajaegbu CGE, Ingrasci G, Lipman ZM, Zhang K, Qiu H, Malek TR, Bedogni B. Notch1 blockade by a novel, selective anti-Notch1 neutralizing antibody improves immunotherapy efficacy in melanoma by promoting an inflamed TME. J Exp Clin Cancer Res 2024; 43:295. [PMID: 39491031 PMCID: PMC11533310 DOI: 10.1186/s13046-024-03214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) have dramatically improved the life expectancy of patients with metastatic melanoma. However, about half of the patient population still present resistance to these treatments. We have previously shown Notch1 contributes to a non-inflamed TME in melanoma that reduces the response to ICI. Here, we addressed the therapeutic effects of a novel anti-Notch1 neutralizing antibody we produced, alone and in combination with immune checkpoint inhibition in melanoma models. METHODS Anti-Notch1 was designed to interfere with ligand binding. Mice were immunized with a peptide encompassing EGF-like repeats 11-15 of human Notch1, the minimal required region that allows ligand binding and Notch1 activation. Positive clones were expanded and tested for neutralizing capabilities. Anti-Notch1-NIC was used to determine whether anti-Notch1 was able to reduce Notch1 cleavage; while anti-SNAP23 and BCAT2 were used as downstream Notch1 and Notch2 targets, respectively. K457 human melanoma cells and the YUMM2.1 and 1.7 syngeneic mouse melanoma cells were used. Cell death after anti-Notch1 treatment was determined by trypan blue staining and compared to the effects of the gamma-secretase inhibitor DBZ. 10 mg/kg anti-Notch1 was used for in vivo tumor growth of YUMM2.1 and 1.7 cells. Tumors were measured and processed for flow cytometry using antibodies against major immune cell populations. RESULTS Anti-Notch1 selectively inhibited Notch1 but not Notch2; caused significant melanoma cell death in vitro but did not affect normal melanocytes. In vivo, it delayed tumor growth without evident signs of gastro-intestinal toxicities; and importantly promoted an inflamed TME by increasing the cytotoxic CD8+ T cells while reducing the tolerogenic Tregs and MDSCs, resulting in enhanced efficacy of anti-PD-1. CONCLUSIONS Anti-Notch1 safely exerts anti-melanoma effects and improves immune checkpoint inhibitor efficacy. Thus, anti-Notch1 could represent a novel addition to the immunotherapy repertoire for melanoma.
Collapse
Affiliation(s)
- Juliano Tiburcio de Freitas
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Varsha Thakur
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Vijay S Thakur
- Department of Radiation Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Brian Flores
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Valentina Caicedo
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Chioma G E Ajaegbu
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Giuseppe Ingrasci
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Zoe M Lipman
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Keman Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hong Qiu
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Barbara Bedogni
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Ceroni F, Cicekdal MB, Holt R, Sorokina E, Chassaing N, Clokie S, Naert T, Talbot LV, Muheisen S, Bax DA, Kesim Y, Kivuva EC, Vincent-Delorme C, Lienkamp SS, Plaisancié J, De Baere E, Calvas P, Vleminckx K, Semina EV, Ragge NK. Deletion upstream of MAB21L2 highlights the importance of evolutionarily conserved non-coding sequences for eye development. Nat Commun 2024; 15:9245. [PMID: 39455595 PMCID: PMC11511899 DOI: 10.1038/s41467-024-53553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Anophthalmia, microphthalmia and coloboma (AMC) comprise a spectrum of developmental eye disorders, accounting for approximately 20% of childhood visual impairment. While non-coding regulatory sequences are increasingly recognised as contributing to disease burden, characterising their impact on gene function and phenotype remains challenging. Furthermore, little is known of the nature and extent of their contribution to AMC phenotypes. We report two families with variants in or near MAB21L2, a gene where genetic variants are known to cause AMC in humans and animal models. The first proband, presenting with microphthalmia and coloboma, has a likely pathogenic missense variant (c.338 G > C; p.[Trp113Ser]), segregating within the family. The second individual, presenting with microphthalmia, carries an ~ 113.5 kb homozygous deletion 19.38 kb upstream of MAB21L2. Modelling of the deletion results in transient small lens and coloboma as well as midbrain anomalies in zebrafish, and microphthalmia and coloboma in Xenopus tropicalis. Using conservation analysis, we identify 15 non-coding conserved elements (CEs) within the deleted region, while ChIP-seq data from mouse embryonic stem cells demonstrates that two of these (CE13 and 14) bind Otx2, a protein with an established role in eye development. Targeted disruption of CE14 in Xenopus tropicalis recapitulates an ocular coloboma phenotype, supporting its role in eye development. Together, our data provides insights into regulatory mechanisms underlying eye development and highlights the importance of non-coding sequences as a source of genetic diagnoses in AMC.
Collapse
Affiliation(s)
- Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Munevver B Cicekdal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Richard Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Elena Sorokina
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Samuel Clokie
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland
| | - Lidiya V Talbot
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Sanaa Muheisen
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA
| | - Dorine A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Yesim Kesim
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emma C Kivuva
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland
| | - Julie Plaisancié
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Calvas
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Elena V Semina
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA.
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
3
|
Zhou L, Yang Y, Ye Y, Qiao Q, Mi Y, Liu H, Zheng Y, Wang Y, Liu M, Zhou Y. Notch1 signaling pathway promotes growth and metastasis of gastric cancer via modulating CDH5. Aging (Albany NY) 2024; 16:11893-11903. [PMID: 39172098 PMCID: PMC11386911 DOI: 10.18632/aging.206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To explore the underlying molecular mechanism of Notch1/cadherin 5 (CDH5) pathway in modulating in cell malignant behaviors of gastric cancer (GC). METHODS We performed bioinformatic analyses to screen the potential target genes of Notch1 from cadherins in GC. Western blot and RT-PCR were conducted to detect CDH5 expression in GC tissues and cells. We utilized chromatin immunoprecipitation (CHIP) assays to assess the interaction of Notch1 with CDH5 gene. The effects of Notch1/CDH5 axis on the proliferation, invasion, migration and vasculogenic mimicry in GC cells were evaluated by EdU, wound healing, transwell, and tubule formation assays. RESULTS Significantly increased CDH5 expression was found in GC tissues compared with paracancerous tissues and associated to clinical stage and poor overall survival (OS) in patients with GC. Notch1 positively regulate the expression of CDH5 in GC cells. CHIP assays validated that CDH5 was a direct target of Notch1. In addition, Notch1 upregulation enhanced the proliferation, migration, invasion and vasculogenic mimicry capacity of GC cells, which could be attenuated by CDH5 silencing. CONCLUSIONS These results indicated Notch1 upregulation enhanced GC malignant behaviors by triggering CDH5, suggesting that targeting Notch1/CDH5 axis could be a potential therapeutic strategy for GC progression.
Collapse
Affiliation(s)
- Lingshan Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Geriatrics Ward 2, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yuwei Ye
- Department of Gastroenterology Ward 2, Shanxi Provincial People’s Hospital, Xian 710000, China
| | - Qian Qiao
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yingying Mi
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Hongfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Wipplinger M, Mink S, Bublitz M, Gassner C. Regulation of the Lewis Blood Group Antigen Expression: A Literature Review Supplemented with Computational Analysis. Transfus Med Hemother 2024; 51:225-236. [PMID: 39135855 PMCID: PMC11318966 DOI: 10.1159/000538863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Lewis (Le) blood group system, unlike most other blood groups, is not defined by antigens produced internally to the erythrocytes and their precursors but rather by glycan antigens adsorbed on to the erythrocyte membrane from the plasma. These oligosaccharides are synthesized by the two fucosyltransferases FUT2 and FUT3 mainly in epithelial cells of the digestive tract and transferred to the plasma. At their place of synthesis, some Lewis blood group carbohydrate antigen variants also seem to be involved in various gastrointestinal malignancies. However, relatively little is known about the transcriptional regulation of FUT2 and FUT3. Summary To address this question, we screened existing literature and additionally used in silico prediction tools to identify novel candidate regulators for FUT2 and FUT3 and combine these findings with already known data on their regulation. With this approach, we were able to describe a variety of transcription factors, RNA binding proteins and microRNAs, which increase FUT2 and FUT3 transcription and translation upon interaction. Key Messages Understanding the regulation of FUT2 and FUT3 is crucial to fully understand the blood group system Lewis (ISBT 007 LE) phenotypes, to shed light on the role of the different Lewis antigens in various pathologies, and to identify potential new diagnostic targets for these diseases.
Collapse
Affiliation(s)
- Martin Wipplinger
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Maike Bublitz
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
5
|
Li F, Wang J, Li M, Zhang X, Tang Y, Song X, Zhang Y, Pei L, Liu J, Zhang C, Li X, Xu Y, Zhang Y. Identifying cell type-specific transcription factor-mediated activity immune modules reveal implications for immunotherapy and molecular classification of pan-cancer. Brief Bioinform 2024; 25:bbae368. [PMID: 39082649 PMCID: PMC11289680 DOI: 10.1093/bib/bbae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Systematic investigation of tumor-infiltrating immune (TII) cells is important to the development of immunotherapies, and the clinical response prediction in cancers. There exists complex transcriptional regulation within TII cells, and different immune cell types display specific regulation patterns. To dissect transcriptional regulation in TII cells, we first integrated the gene expression profiles from single-cell datasets, and proposed a computational pipeline to identify TII cell type-specific transcription factor (TF) mediated activity immune modules (TF-AIMs). Our analysis revealed key TFs, such as BACH2 and NFKB1 play important roles in B and NK cells, respectively. We also found some of these TF-AIMs may contribute to tumor pathogenesis. Based on TII cell type-specific TF-AIMs, we identified eight CD8+ T cell subtypes. In particular, we found the PD1 + CD8+ T cell subset and its specific TF-AIMs associated with immunotherapy response. Furthermore, the TII cell type-specific TF-AIMs displayed the potential to be used as predictive markers for immunotherapy response of cancer patients. At the pan-cancer level, we also identified and characterized six molecular subtypes across 9680 samples based on the activation status of TII cell type-specific TF-AIMs. Finally, we constructed a user-friendly web interface CellTF-AIMs (http://bio-bigdata.hrbmu.edu.cn/CellTF-AIMs/) for exploring transcriptional regulatory pattern in various TII cell types. Our study provides valuable implications and a rich resource for understanding the mechanisms involved in cancer microenvironment and immunotherapy.
Collapse
Affiliation(s)
- Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Jingwen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xiaomeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yongjuan Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xinyu Song
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yifang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Liying Pei
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Jiaqi Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| |
Collapse
|
6
|
Lleshi E, Milne-Clark T, Lee Yu H, Martin HW, Hanson R, Lach R, Rossi SH, Riediger AL, Görtz M, Sültmann H, Flewitt A, Lynch AG, Gnanapragasam VJ, Massie CE, Dev HS. Prostate cancer detection through unbiased capture of methylated cell-free DNA. iScience 2024; 27:110330. [PMID: 39055933 PMCID: PMC11269940 DOI: 10.1016/j.isci.2024.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Prostate cancer screening using prostate-specific antigen (PSA) has been shown to reduce mortality but with substantial overdiagnosis, leading to unnecessary biopsies. The identification of a highly specific biomarker using liquid biopsies, represents an unmet need in the diagnostic pathway for prostate cancer. In this study, we employed a method that enriches for methylated cell-free DNA fragments coupled with a machine learning algorithm which enabled the detection of metastatic and localized cancers with AUCs of 0.96 and 0.74, respectively. The model also detected 51.8% (14/27) of localized and 88.7% (79/89) of patients with metastatic cancer in an external dataset. Furthermore, we show that the differentially methylated regions reflect epigenetic and transcriptomic changes at the tissue level. Notably, these regions are significantly enriched for biologically relevant pathways associated with the regulation of cellular proliferation and TGF-beta signaling. This demonstrates the potential of circulating tumor DNA methylation for prostate cancer detection and prognostication.
Collapse
Affiliation(s)
- Ermira Lleshi
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Toby Milne-Clark
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Henson Lee Yu
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Henno W. Martin
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Robert Hanson
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Radoslaw Lach
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Sabrina H. Rossi
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Anja Lisa Riediger
- University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | | | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Andrew Flewitt
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Andy G. Lynch
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | | - Charlie E. Massie
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Harveer S. Dev
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| |
Collapse
|
7
|
Wang J, Pu Z, Zhang W, Qu M, Gao L, Pan W, Sun Y, Fu C, Zhang L, Huang M, Hu Y. Identification of the New GmJAG1 Transcription Factor Binding Motifs Using DAP-Seq. PLANTS (BASEL, SWITZERLAND) 2024; 13:1708. [PMID: 38931140 PMCID: PMC11207949 DOI: 10.3390/plants13121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Interaction between transcription factors (TFs) and motifs is essential for gene regulation and the subsequent phenotype formation. Soybean (Glycine max) JAGGEED 1 (GmJAG1) is a key TF that controls leaf shape, seed number and flower size. To understand the GmJAG1 binding motifs, in this study, we performed the GmJAG1 DNA affinity purification sequencing (DAP-seq) experiment, which is a powerful tool for the de novo motif prediction method. Two new significant GmJAG1 binding motifs were predicted and the EMSA experiments further verified the ability of GmJAG1 bound to these motifs. The potential binding sites in the downstream gene promoter were identified through motif scanning and a potential regulatory network mediated by GmJAG1 was constructed. These results served as important genomic resources for further understanding the regulatory mechanism of GmJAG1.
Collapse
Affiliation(s)
- Jinxing Wang
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Zigang Pu
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 330022, China; (Z.P.); (L.Z.)
- Heilongjiang Longke Seed Industry Group Co., Ltd., Harbin 150000, China
| | - Weiyao Zhang
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Mengnan Qu
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Lusi Gao
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Wenjing Pan
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Yanan Sun
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Chunxu Fu
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Ling Zhang
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 330022, China; (Z.P.); (L.Z.)
| | - Mingkun Huang
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 330022, China; (Z.P.); (L.Z.)
| | - Yufang Hu
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 330022, China; (Z.P.); (L.Z.)
| |
Collapse
|
8
|
Adkins-Threats M, Arimura S, Huang YZ, Divenko M, To S, Mao H, Zeng Y, Hwang JY, Burclaff JR, Jain S, Mills JC. Metabolic regulator ERRγ governs gastric stem cell differentiation into acid-secreting parietal cells. Cell Stem Cell 2024; 31:886-903.e8. [PMID: 38733994 PMCID: PMC11162331 DOI: 10.1016/j.stem.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Parietal cells (PCs) produce gastric acid to kill pathogens and aid digestion. Dysregulated PC census is common in disease, yet how PCs differentiate is unclear. Here, we identify the PC progenitors arising from isthmal stem cells, using mouse models and human gastric cells, and show that they preferentially express cell-metabolism regulator and orphan nuclear receptor Estrogen-related receptor gamma (Esrrg, encoding ERRγ). Esrrg expression facilitated the tracking of stepwise molecular, cellular, and ultrastructural stages of PC differentiation. EsrrgP2ACreERT2 lineage tracing revealed that Esrrg expression commits progenitors to differentiate into mature PCs. scRNA-seq indicated the earliest Esrrg+ PC progenitors preferentially express SMAD4 and SP1 transcriptional targets and the GTPases regulating acid-secretion signal transduction. As progenitors matured, ERRγ-dependent metabolic transcripts predominated. Organoid and mouse studies validated the requirement of ERRγ for PC differentiation. Our work chronicles stem cell differentiation along a single lineage in vivo and suggests ERRγ as a therapeutic target for PC-related disorders.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Division of Biomedical and Biological Sciences, Washington University, St. Louis, MO 63130, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sumimasa Arimura
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang-Zhe Huang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margarita Divenko
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah To
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heather Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenie Y Hwang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, TX 78249, USA
| | - Joseph R Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Shilpa Jain
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason C Mills
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Jiang J, Li J, Huang S, Jiang F, Liang Y, Xu X, Wang J. CACIMAR: cross-species analysis of cell identities, markers, regulations, and interactions using single-cell RNA sequencing data. Brief Bioinform 2024; 25:bbae283. [PMID: 38856169 PMCID: PMC11163379 DOI: 10.1093/bib/bbae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
Transcriptomic analysis across species is increasingly used to reveal conserved gene regulations which implicate crucial regulators. Cross-species analysis of single-cell RNA sequencing (scRNA-seq) data provides new opportunities to identify the cellular and molecular conservations, especially for cell types and cell type-specific gene regulations. However, few methods have been developed to analyze cross-species scRNA-seq data to uncover both molecular and cellular conservations. Here, we built a tool called CACIMAR, which can perform cross-species analysis of cell identities, markers, regulations, and interactions using scRNA-seq profiles. Based on the weighted sum models of the conserved features, we developed different conservation scores to measure the conservation of cell types, regulatory networks, and intercellular interactions. Using publicly available scRNA-seq data on retinal regeneration in mice, zebrafish, and chick, we demonstrated four main functions of CACIMAR. First, CACIMAR allows to identify conserved cell types even in evolutionarily distant species. Second, the tool facilitates the identification of evolutionarily conserved or species-specific marker genes. Third, CACIMAR enables the identification of conserved intracellular regulations, including cell type-specific regulatory subnetworks and regulators. Lastly, CACIMAR provides a unique feature for identifying conserved intercellular interactions. Overall, CACIMAR facilitates the identification of evolutionarily conserved cell types, marker genes, intracellular regulations, and intercellular interactions, providing insights into the cellular and molecular mechanisms of species evolution.
Collapse
Affiliation(s)
- Junyao Jiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Xihu District, Hangzhou, 310030, China
| | - Jinlian Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, China
| | - Sunan Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
| | - Fan Jiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
| | - Yanran Liang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, China
| | - Xueli Xu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
| |
Collapse
|
11
|
Calamari ZT, Flynn JJ. Gene expression supports a single origin of horns and antlers in hoofed mammals. Commun Biol 2024; 7:509. [PMID: 38769090 PMCID: PMC11106249 DOI: 10.1038/s42003-024-06134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/02/2024] [Indexed: 05/22/2024] Open
Abstract
Horns, antlers, and other bony cranial appendages of even-toed hoofed mammals (ruminant artiodactyls) challenge traditional morphological homology assessments. Cranial appendages all share a permanent bone portion with family-specific integument coverings, but homology determination depends on whether the integument covering is an essential component or a secondary elaboration of each structure. To enhance morphological homology assessments, we tested whether juvenile cattle horn bud transcriptomes share homologous gene expression patterns with deer antlers relative to pig outgroup tissues, treating the integument covering as a secondary elaboration. We uncovered differentially expressed genes that support horn and antler homology, potentially distinguish them from non-cranial-appendage bone and other tissues, and highlight the importance of phylogenetic outgroups in homology assessments. Furthermore, we found differentially expressed genes that could support a shared cranial neural crest origin for horns and antlers and expression patterns that refine our understanding of the timing of horn and antler differentiation.
Collapse
Affiliation(s)
- Zachary T Calamari
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Department of Natural Sciences, Baruch College, City University of New York, 17 Lexington Avenue, Box A-920, New York, NY, 10010, USA.
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
12
|
Padam KSR, Chakrabarty S, Hunter KD, Radhakrishnan R. Exploring the regulatory interactions between mutated genes and homeobox genes in the head and neck cancer progression. Arch Oral Biol 2024; 159:105872. [PMID: 38147801 DOI: 10.1016/j.archoralbio.2023.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE Understanding the regulatory role of homeobox (HOX) and mutated genes in the progression of head and neck cancers is essential, although their interaction remains elusive. This study aims to decipher the critical regulation of mutation driven effects on homeobox genes to enhance our understanding of head and neck cancer progression. METHODS Genomic mutation data from The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma were analyzed using VarScan2 for somatic variant detection. Mutational clustering, driver mutation identification, and cancer signaling pathway analysis were performed using the OncodriveCLUST method. Harmonizome datasets were retrieved to identify critical cancer driver genes affecting HOX genes. The effects of HPV infection on HOX and mutated genes were assessed using the oncoviral database. Altered pathway activity due to the effects of cancer drivers on HOX genes was analyzed with Gene Set Cancer Analysis. Functional enrichment analysis of gene ontology biological processes and molecular functions was conducted using the ClusterProfiler R package. RESULTS Significant alterations in HOX genes were observed in head and neck cancer cohorts with mutated TP53, FAT1, and CDKN2A. HOX genes were identified as functionally downstream targets of TP53, signifying transcriptionally mediated regulation. The interaction between HOX genes and mutated TP53, FAT1, and CDKN2A dysregulated the epithelial-to-mesenchymal transition, cell cycle, and apoptosis pathways in head and neck cancer progression. CONCLUSION The interplay between cancer driver genes and HOX genes is pivotal in regulating the oncogenic processes underlying the pathogenesis of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India; Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, UK.
| |
Collapse
|
13
|
Abrar M, Ali S, Hussain I, Khatoon H, Batool F, Ghazanfar S, Corcoran D, Kawakami Y, Abbasi AA. Cis-regulatory control of mammalian Trps1 gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024. [PMID: 38369890 DOI: 10.1002/jez.b.23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.
Collapse
Affiliation(s)
- Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA
| | - Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Center of Regenerative Medicine and Stem Cells Research, Aga Khan University Hospital, Karachi, Pakistan
| | - Hizran Khatoon
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Farrim MI, Gomes A, Milenkovic D, Menezes R. Gene expression analysis reveals diabetes-related gene signatures. Hum Genomics 2024; 18:16. [PMID: 38326874 PMCID: PMC10851551 DOI: 10.1186/s40246-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Diabetes is a spectrum of metabolic diseases affecting millions of people worldwide. The loss of pancreatic β-cell mass by either autoimmune destruction or apoptosis, in type 1-diabetes (T1D) and type 2-diabetes (T2D), respectively, represents a pathophysiological process leading to insulin deficiency. Therefore, therapeutic strategies focusing on restoring β-cell mass and β-cell insulin secretory capacity may impact disease management. This study took advantage of powerful integrative bioinformatic tools to scrutinize publicly available diabetes-associated gene expression data to unveil novel potential molecular targets associated with β-cell dysfunction. METHODS A comprehensive literature search for human studies on gene expression alterations in the pancreas associated with T1D and T2D was performed. A total of 6 studies were selected for data extraction and for bioinformatic analysis. Pathway enrichment analyses of differentially expressed genes (DEGs) were conducted, together with protein-protein interaction networks and the identification of potential transcription factors (TFs). For noncoding differentially expressed RNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which exert regulatory activities associated with diabetes, identifying target genes and pathways regulated by these RNAs is fundamental for establishing a robust regulatory network. RESULTS Comparisons of DEGs among the 6 studies showed 59 genes in common among 4 or more studies. Besides alterations in mRNA, it was possible to identify differentially expressed miRNA and lncRNA. Among the top transcription factors (TFs), HIPK2, KLF5, STAT1 and STAT3 emerged as potential regulators of the altered gene expression. Integrated analysis of protein-coding genes, miRNAs, and lncRNAs pointed out several pathways involved in metabolism, cell signaling, the immune system, cell adhesion, and interactions. Interestingly, the GABAergic synapse pathway emerged as the only common pathway to all datasets. CONCLUSIONS This study demonstrated the power of bioinformatics tools in scrutinizing publicly available gene expression data, thereby revealing potential therapeutic targets like the GABAergic synapse pathway, which holds promise in modulating α-cells transdifferentiation into β-cells.
Collapse
Affiliation(s)
- M I Farrim
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal
- Universidad de Alcalá, Escuela de Doctorado, Madrid, Spain
| | - A Gomes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | - D Milenkovic
- Department of Nutrition, University of California Davis, Davis, USA
| | - R Menezes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal.
| |
Collapse
|
15
|
Kadelka C, Butrie TM, Hilton E, Kinseth J, Schmidt A, Serdarevic H. A meta-analysis of Boolean network models reveals design principles of gene regulatory networks. SCIENCE ADVANCES 2024; 10:eadj0822. [PMID: 38215198 PMCID: PMC10786419 DOI: 10.1126/sciadv.adj0822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Gene regulatory networks (GRNs) play a central role in cellular decision-making. Understanding their structure and how it impacts their dynamics constitutes thus a fundamental biological question. GRNs are frequently modeled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data are sparse. We assembled the largest repository of expert-curated Boolean GRN models. A meta-analysis of this diverse set of models reveals several design principles. GRNs exhibit more canalization, redundancy, and stable dynamics than expected. Moreover, they are enriched for certain recurring network motifs. This raises the important question why evolution favors these design mechanisms.
Collapse
Affiliation(s)
- Claus Kadelka
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| | | | - Evan Hilton
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Jack Kinseth
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| | - Addison Schmidt
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Haris Serdarevic
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Park SY, Kim D, Jung JW, An HJ, Lee J, Park Y, Lee D, Lee S, Kim JM. Targeting class A GPCRs for hard tissue regeneration. Biomaterials 2024; 304:122425. [PMID: 38100905 DOI: 10.1016/j.biomaterials.2023.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play important roles in various pathogeneses and physiological regulations. Owing to their functional diversity, GPCRs are considered one of the primary pharmaceutical targets. However, drugs targeting GPCRs have not been developed yet to regenerate hard tissues such as teeth and bones. Mesenchymal stromal cells (MSCs) have high proliferation and multi-lineage differentiation potential, which are essential for hard tissue regeneration. Here, we present a strategy for targeting class A GPCRs for hard tissue regeneration by promoting the differentiation of endogenous MSCs into osteogenic and odontogenic progenitor cells. Through in vitro screening targeted at class A GPCRs, we identified six target receptors (LPAR1, F2R, F2RL1, F2RL2, S1PR1, and ADORA2A) and candidate drugs with potent biomineralization effects. Through a combination of profiling whole transcriptome and accessible chromatin regions, we identified that p53 acts as a key transcriptional activator of genes that modulate the biomineralization process. Moreover, the therapeutic potential of class A GPCR-targeting drugs was demonstrated in tooth pulpotomy and calvarial defect models. The selected drugs revealed potent regenerative effects in both tooth and bone defects, represented by newly formed highly mineralized regions. Consequently, this study provides translational evidence for a new regenerative strategy for damaged hard tissue.
Collapse
Affiliation(s)
- So Young Park
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Ju Won Jung
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Yeji Park
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dasun Lee
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea.
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Bull T, Khakhar A. Design principles for synthetic control systems to engineer plants. PLANT CELL REPORTS 2023; 42:1875-1889. [PMID: 37789180 DOI: 10.1007/s00299-023-03072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE Synthetic control systems have led to significant advancement in the study and engineering of unicellular organisms, but it has been challenging to apply these tools to multicellular organisms like plants. The ability to predictably engineer plants will enable the development of novel traits capable of alleviating global problems, such as climate change and food insecurity. Engineering predictable multicellular phenotypes will require the development of synthetic control systems that can precisely regulate how the information encoded in genomes is translated into phenotypes. Many efficient control systems have been developed for unicellular organisms. However, it remains challenging to use such tools to study or engineer multicellular organisms. Plants are a good chassis within which to develop strategies to overcome these challenges, thanks to their capacity to withstand large-scale reprogramming without lethality. Additionally, engineered plants have great potential for solving major societal problems. Here we briefly review the progress of control system development in unicellular organisms, and how that information can be leveraged to characterize control systems in plants. Further, we discuss strategies for developing control systems designed to regulate the expression of transgenes or endogenous loci and generate dosage-dependent or discrete traits. Finally, we discuss the utility that mathematical models of biological processes have for control system deployment.
Collapse
Affiliation(s)
- Tawni Bull
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
18
|
Li DX, Zhou P, Zhao BW, Su XR, Li GD, Zhang J, Hu PW, Hu L. Biocaiv: an integrative webserver for motif-based clustering analysis and interactive visualization of biological networks. BMC Bioinformatics 2023; 24:451. [PMID: 38030973 PMCID: PMC10685597 DOI: 10.1186/s12859-023-05574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND As an important task in bioinformatics, clustering analysis plays a critical role in understanding the functional mechanisms of many complex biological systems, which can be modeled as biological networks. The purpose of clustering analysis in biological networks is to identify functional modules of interest, but there is a lack of online clustering tools that visualize biological networks and provide in-depth biological analysis for discovered clusters. RESULTS Here we present BioCAIV, a novel webserver dedicated to maximize its accessibility and applicability on the clustering analysis of biological networks. This, together with its user-friendly interface, assists biological researchers to perform an accurate clustering analysis for biological networks and identify functionally significant modules for further assessment. CONCLUSIONS BioCAIV is an efficient clustering analysis webserver designed for a variety of biological networks. BioCAIV is freely available without registration requirements at http://bioinformatics.tianshanzw.cn:8888/BioCAIV/ .
Collapse
Affiliation(s)
- Dong-Xu Li
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Ürümqi, China
| | - Peng Zhou
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Ürümqi, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Ürümqi, China
| | - Guo-Dong Li
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Ürümqi, China
| | - Jun Zhang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Ürümqi, China
| | - Peng-Wei Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Ürümqi, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Ürümqi, China.
| |
Collapse
|
19
|
Tu KJ, Stewart CE, Hendrickson PG, Regal JA, Kim SY, Ashley DM, Waitkus MS, Reitman ZJ. Pooled genetic screens to identify vulnerabilities in TERT-promoter-mutant glioblastoma. Oncogene 2023; 42:3274-3286. [PMID: 37741952 PMCID: PMC10615780 DOI: 10.1038/s41388-023-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Pooled genetic screens represent a powerful approach to identify vulnerabilities in cancer. Here we used pooled CRISPR/Cas9-based approaches to identify vulnerabilities associated with telomerase reverse transcriptase (TERT) promoter mutations (TPMs) found in >80% of glioblastomas. We first developed a platform to detect perturbations that cause long-term growth defects in a TPM-mutated glioblastoma cell line. However, we could not detect dependencies on either TERT itself or on an E-twenty six transcription (ETS) factor known to activate TPMs. To explore this finding, we cataloged TPM status for 441 cell lines and correlated this with genome-wide screening data. We found that TPM status was not associated with differential dependency on TERT, but that E-twenty six (ETS) transcription factors represent key dependencies in both TPM+ and TPM- lines. Further, we found that TPMs are associated with expression of gene programs regulated by a wide array of ETS-factors in both cell lines and primary glioblastoma tissues. This work contributes a unique TPM cell line reagent, establishes TPM status for many deeply-profiled cell lines, and catalogs TPM-associated vulnerabilities. The results highlight challenges in executing genetic screens to detect TPM-specific vulnerabilities, and suggest redundancy in the genetic network that regulates TPM function with therapeutic implications.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 21044, USA
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Connor E Stewart
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Peter G Hendrickson
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Joshua A Regal
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David M Ashley
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA
| | - Matthew S Waitkus
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA.
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
20
|
Gonçalves TM, Stewart CL, Baxley SD, Xu J, Li D, Gabel HW, Wang T, Avraham O, Zhao G. Towards a comprehensive regulatory map of Mammalian Genomes. RESEARCH SQUARE 2023:rs.3.rs-3294408. [PMID: 37841836 PMCID: PMC10571623 DOI: 10.21203/rs.3.rs-3294408/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Genome mapping studies have generated a nearly complete collection of genes for the human genome, but we still lack an equivalently vetted inventory of human regulatory sequences. Cis-regulatory modules (CRMs) play important roles in controlling when, where, and how much a gene is expressed. We developed a training data-free CRM-prediction algorithm, the Mammalian Regulatory MOdule Detector (MrMOD) for accurate CRM prediction in mammalian genomes. MrMOD provides genome position-fixed CRM models similar to the fixed gene models for the mouse and human genomes using only genomic sequences as the inputs with one adjustable parameter - the significance p-value. Importantly, MrMOD predicts a comprehensive set of high-resolution CRMs in the mouse and human genomes including all types of regulatory modules not limited to any tissue, cell type, developmental stage, or condition. We computationally validated MrMOD predictions used a compendium of 21 orthogonal experimental data sets including thousands of experimentally defined CRMs and millions of putative regulatory elements derived from hundreds of different tissues, cell types, and stimulus conditions obtained from multiple databases. In ovo transgenic reporter assay demonstrates the power of our prediction in guiding experimental design. We analyzed CRMs located in the chromosome 17 using unsupervised machine learning and identified groups of CRMs with multiple lines of evidence supporting their functionality, linking CRMs with upstream binding transcription factors and downstream target genes. Our work provides a comprehensive base pair resolution annotation of the functional regulatory elements and non-functional regions in the mammalian genomes.
Collapse
Affiliation(s)
| | | | | | - Jason Xu
- Missouri University of Science & Technology
| | - Daofeng Li
- Washington University School of Medicine
| | | | - Ting Wang
- Washington University School of Medicine
| | | | | |
Collapse
|
21
|
Bankier S, Wang L, Crawford A, Morgan RA, Ruusalepp A, Andrew R, Björkegren JLM, Walker BR, Michoel T. Plasma cortisol-linked gene networks in hepatic and adipose tissues implicate corticosteroid-binding globulin in modulating tissue glucocorticoid action and cardiovascular risk. Front Endocrinol (Lausanne) 2023; 14:1186252. [PMID: 37745713 PMCID: PMC10513085 DOI: 10.3389/fendo.2023.1186252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/14/2023] [Indexed: 09/26/2023] Open
Abstract
Genome-wide association meta-analysis (GWAMA) by the Cortisol Network (CORNET) consortium identified genetic variants spanning the SERPINA6/SERPINA1 locus on chromosome 14 associated with morning plasma cortisol, cardiovascular disease (CVD), and SERPINA6 mRNA expression encoding corticosteroid-binding globulin (CBG) in the liver. These and other findings indicate that higher plasma cortisol levels are causally associated with CVD; however, the mechanisms by which variations in CBG lead to CVD are undetermined. Using genomic and transcriptomic data from The Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) study, we identified plasma cortisol-linked single-nucleotide polymorphisms (SNPs) that are trans-associated with genes from seven different vascular and metabolic tissues, finding the highest representation of trans-genes in the liver, subcutaneous fat, and visceral abdominal fat, [false discovery rate (FDR) = 15%]. We identified a subset of cortisol-associated trans-genes that are putatively regulated by the glucocorticoid receptor (GR), the primary transcription factor activated by cortisol. Using causal inference, we identified GR-regulated trans-genes that are responsible for the regulation of tissue-specific gene networks. Cis-expression Quantitative Trait Loci (eQTLs) were used as genetic instruments for identification of pairwise causal relationships from which gene networks could be reconstructed. Gene networks were identified in the liver, subcutaneous fat, and visceral abdominal fat, including a high confidence gene network specific to subcutaneous adipose (FDR = 10%) under the regulation of the interferon regulatory transcription factor, IRF2. These data identify a plausible pathway through which variation in the liver CBG production perturbs cortisol-regulated gene networks in peripheral tissues and thereby promote CVD.
Collapse
Affiliation(s)
- Sean Bankier
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lingfei Wang
- Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Crawford
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Ruth A. Morgan
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- SRUC, The Roslin Institute, Edinburgh, United Kingdom
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
- Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Ruth Andrew
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Johan L. M. Björkegren
- Clinical Gene Networks AB, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brian R. Walker
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom Michoel
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Xu LI, Bai Y, Cheng Y, Sheng X, Sun D. Pan-cancer Analysis Reveals Cancer-dependent Expression of SOX17 and Associated Clinical Outcomes. Cancer Genomics Proteomics 2023; 20:433-447. [PMID: 37643784 PMCID: PMC10464944 DOI: 10.21873/cgp.20395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/AIM SRY-box containing gene 17 (SOX17) plays a pivotal role in cancer onset and progression and is considered a potential target for cancer diagnosis and treatment. However, the expression pattern of SOX17 in cancer and its clinical relevance remains unknown. Here, we explored the relationship between the expression of SOX17 and drug response by examining SOX17 expression patterns across multiple cancer types. MATERIALS AND METHODS Single-cell and bulk RNA-seq analyses were used to explore the expression profile of SOX17. Analysis results were verified with qPCR and immunohistochemistry. Survival, drug response, and co-expression analyses were performed to illustrate its correlation with clinical outcomes. RESULTS The results revealed that abnormal expression of SOX17 is highly heterogenous across multiple cancer types, indicating that SOX17 manifests as a cancer type-dependent feature. Furthermore, the expression pattern of SOX17 is also associated with cancer prognosis in certain cancer types. Strong SOX17 expression correlates with the potency of small molecule drugs that affect PI3K/mTOR signaling. FGF18, a gene highly relevant to SOX17, is involved in the PI3K-AKT signaling pathway. Single-cell RNA-seq analysis demonstrated that SOX17 is mainly expressed in endothelial cells and barely expressed in other cells but spreads to other cell types during the development of ovarian cancer. CONCLUSION Our study revealed the expression pattern of SOX17 in pan-cancer through bulk and single-cell RNA-seq analyses and determined that SOX17 is related to the diagnosis, staging, and prognosis of some tumors. These findings have clinical implications and may help identify mechanistic pathways amenable to pharmacological interventions.
Collapse
Affiliation(s)
- L I Xu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R. China
| | - Youhuang Bai
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R. China
| | - Yihang Cheng
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R. China
| | - Xiujie Sheng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Deqiang Sun
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R. China;
| |
Collapse
|
23
|
Wang CW, Chuang HC, Tan TH. ACE2 in chronic disease and COVID-19: gene regulation and post-translational modification. J Biomed Sci 2023; 30:71. [PMID: 37608279 PMCID: PMC10464117 DOI: 10.1186/s12929-023-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a counter regulator of the renin-angiotensin system, provides protection against several chronic diseases. Besides chronic diseases, ACE2 is the host receptor for SARS-CoV or SARS-CoV-2 virus, mediating the first step of virus infection. ACE2 levels are regulated by transcriptional, post-transcriptional, and post-translational regulation or modification. ACE2 transcription is enhanced by transcription factors including Ikaros, HNFs, GATA6, STAT3 or SIRT1, whereas ACE2 transcription is reduced by the transcription factor Brg1-FoxM1 complex or ERRα. ACE2 levels are also regulated by histone modification or miRNA-induced destabilization. The protein kinase AMPK, CK1α, or MAP4K3 phosphorylates ACE2 protein and induces ACE2 protein levels by decreasing its ubiquitination. The ubiquitination of ACE2 is induced by the E3 ubiquitin ligase MDM2 or UBR4 and decreased by the deubiquitinase UCHL1 or USP50. ACE2 protein levels are also increased by the E3 ligase PIAS4-mediated SUMOylation or the methyltransferase PRMT5-mediated ACE2 methylation, whereas ACE2 protein levels are decreased by AP2-mediated lysosomal degradation. ACE2 is downregulated in several human chronic diseases like diabetes, hypertension, or lung injury. In contrast, SARS-CoV-2 upregulates ACE2 levels, enhancing host cell susceptibility to virus infection. Moreover, soluble ACE2 protein and exosomal ACE2 protein facilitate SARS-CoV-2 infection into host cells. In this review, we summarize the gene regulation and post-translational modification of ACE2 in chronic disease and COVID-19. Understanding the regulation and modification of ACE2 may help to develop prevention or treatment strategies for ACE2-mediated diseases.
Collapse
Affiliation(s)
- Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| |
Collapse
|
24
|
Karatzas E, Baltoumas FA, Aplakidou E, Kontou PI, Stathopoulos P, Stefanis L, Bagos PG, Pavlopoulos GA. Flame (v2.0): advanced integration and interpretation of functional enrichment results from multiple sources. Bioinformatics 2023; 39:btad490. [PMID: 37540207 PMCID: PMC10423032 DOI: 10.1093/bioinformatics/btad490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
Functional enrichment is the process of identifying implicated functional terms from a given input list of genes or proteins. In this article, we present Flame (v2.0), a web tool which offers a combinatorial approach through merging and visualizing results from widely used functional enrichment applications while also allowing various flexible input options. In this version, Flame utilizes the aGOtool, g: Profiler, WebGestalt, and Enrichr pipelines and presents their outputs separately or in combination following a visual analytics approach. For intuitive representations and easier interpretation, it uses interactive plots such as parameterizable networks, heatmaps, barcharts, and scatter plots. Users can also: (i) handle multiple protein/gene lists and analyse union and intersection sets simultaneously through interactive UpSet plots, (ii) automatically extract genes and proteins from free text through text-mining and Named Entity Recognition (NER) techniques, (iii) upload single nucleotide polymorphisms (SNPs) and extract their relative genes, or (iv) analyse multiple lists of differentially expressed proteins/genes after selecting them interactively from a parameterizable volcano plot. Compared to the previous version of 197 supported organisms, Flame (v2.0) currently allows enrichment for 14 436 organisms. AVAILABILITY AND IMPLEMENTATION Web Application: http://flame.pavlopouloslab.info. Code: https://github.com/PavlopoulosLab/Flame. Docker: https://hub.docker.com/r/pavlopouloslab/flame.
Collapse
Affiliation(s)
- Evangelos Karatzas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari (Athens), 16672, Greece
| | - Fotis A Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari (Athens), 16672, Greece
| | - Eleni Aplakidou
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari (Athens), 16672, Greece
| | - Panagiota I Kontou
- Department of Mathematics, University of Thessaly, Lamia, 35100, Greece
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, 35131, Greece
| | - Panos Stathopoulos
- 1st Department of Neurology, Eginition Hospital, Athens, 11528, Greece
- School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Athens, 11528, Greece
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, 35131, Greece
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari (Athens), 16672, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Hellenic Army Academy, Vari, 16673, Greece
| |
Collapse
|
25
|
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, Schlosser P, Surapaneni A, Grams ME, Duggan MR, Peng Z, Gomez GT, Tin A, Hoogeveen RC, Sullivan KJ, Ganz P, Lindbohm JV, Kivimaki M, Nevado-Holgado AJ, Buckley N, Gottesman RF, Mosley TH, Boerwinkle E, Ballantyne CM, Coresh J. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med 2023; 15:eadf5681. [PMID: 37467317 PMCID: PMC10665113 DOI: 10.1126/scitranslmed.adf5681] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
A diverse set of biological processes have been implicated in the pathophysiology of Alzheimer's disease (AD) and related dementias. However, there is limited understanding of the peripheral biological mechanisms relevant in the earliest phases of the disease. Here, we used a large-scale proteomics platform to examine the association of 4877 plasma proteins with 25-year dementia risk in 10,981 middle-aged adults. We found 32 dementia-associated plasma proteins that were involved in proteostasis, immunity, synaptic function, and extracellular matrix organization. We then replicated the association between 15 of these proteins and clinically relevant neurocognitive outcomes in two independent cohorts. We demonstrated that 12 of these 32 dementia-associated proteins were associated with cerebrospinal fluid (CSF) biomarkers of AD, neurodegeneration, or neuroinflammation. We found that eight of these candidate protein markers were abnormally expressed in human postmortem brain tissue from patients with AD, although some of the proteins that were most strongly associated with dementia risk, such as GDF15, were not detected in these brain tissue samples. Using network analyses, we found a protein signature for dementia risk that was characterized by dysregulation of specific immune and proteostasis/autophagy pathways in adults in midlife ~20 years before dementia onset, as well as abnormal coagulation and complement signaling ~10 years before dementia onset. Bidirectional two-sample Mendelian randomization genetically validated nine of our candidate proteins as markers of AD in midlife and inferred causality of SERPINA3 in AD pathogenesis. Last, we prioritized a set of candidate markers for AD and dementia risk prediction in midlife.
Collapse
Affiliation(s)
- Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| | - Liu Shi
- Novo Nordisk Research Centre Oxford (NNRCO), Oxford OX3 7FZ, UK
| | - Yunju Yang
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Michael R. Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Gabriela T. Gomez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Adrienne Tin
- MIND Center and Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ron C. Hoogeveen
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin J. Sullivan
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Peter Ganz
- Department of Medicine, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Joni V. Lindbohm
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Mika Kivimaki
- Department of Mental Health of Older People, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki 00100, Finland
| | | | - Noel Buckley
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD, UK
| | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke, Intramural Research Program, Bethesda, MD 20892, USA
| | - Thomas H. Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christie M. Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| |
Collapse
|
26
|
Kikuchi H, Chou CL, Yang CR, Chen L, Jung HJ, Park E, Limbutara K, Carter B, Yang ZH, Kun JF, Remaley AT, Knepper MA. Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics. Nat Commun 2023; 14:3481. [PMID: 37328470 PMCID: PMC10276015 DOI: 10.1038/s41467-023-38958-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/24/2023] [Indexed: 06/18/2023] Open
Abstract
Loss of a kidney results in compensatory growth of the remaining kidney, a phenomenon of considerable clinical importance. However, the mechanisms involved are largely unknown. Here, we use a multi-omic approach in a unilateral nephrectomy model in male mice to identify signaling processes associated with renal compensatory hypertrophy, demonstrating that the lipid-activated transcription factor peroxisome proliferator-activated receptor alpha (PPARα) is an important determinant of proximal tubule cell size and is a likely mediator of compensatory proximal tubule hypertrophy.
Collapse
Affiliation(s)
- Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kavee Limbutara
- The Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julia F Kun
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Chaand M, Fiore C, Johnston B, D'Ippolito A, Moon DH, Carulli JP, Shearstone JR. Erythroid lineage chromatin accessibility maps facilitate identification and validation of NFIX as a fetal hemoglobin repressor. Commun Biol 2023; 6:640. [PMID: 37316562 DOI: 10.1038/s42003-023-05025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Human genetics has validated de-repression of fetal gamma globin (HBG) in adult erythroblasts as a powerful therapeutic paradigm in diseases involving defective adult beta globin (HBB)1. To identify factors involved in the switch from HBG to HBB expression, we performed Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)2 on sorted erythroid lineage cells derived from bone marrow (BM) or cord blood (CB), representing adult and fetal states, respectively. BM to CB cell ATAC-seq profile comparisons revealed genome-wide enrichment of NFI DNA binding motifs and increased NFIX promoter chromatin accessibility, suggesting that NFIX may repress HBG. NFIX knockdown in BM cells increased HBG mRNA and fetal hemoglobin (HbF) protein levels, coincident with increased chromatin accessibility and decreased DNA methylation at the HBG promoter. Conversely, overexpression of NFIX in CB cells reduced HbF levels. Identification and validation of NFIX as a new target for HbF activation has implications in the development of therapeutics for hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeffrey R Shearstone
- Syros Pharmaceuticals, Cambridge, MA, USA
- Scientific and Medical Writing Partners, Cambridge, MA, USA
| |
Collapse
|
28
|
Ziaullah M S, Azhar Kamal M, Khan Warsi M, Alghamdi S, Al Qahtani MY, Al Rumaihi AM, Akber AH, Al Qahtani MA, M Rafeeq M. Potential biomarkers in Japanese encephalitis from different hosts and geographical locations. Bioinformation 2023; 19:611-622. [PMID: 37886150 PMCID: PMC10599671 DOI: 10.6026/97320630019611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 10/28/2023] Open
Abstract
Japanese encephalitis (JE) is a single-stranded, mosquito-borne, positive-sense RNA flavivirus that causes one of the most severe encephalitides. There are treatments available for those who contact this illness; however, there are no known cures. This disease has a 30% fatality rate, and of the people who survive, 30-50% develops neurologic and psychiatric sequelae. The JE virus genome size is 10.98 kb and contains two coding DNA sequences (CDS), two genes, and 15 mature peptides; the CDS polyprotein is 10.3 kb. In this study, we used 29 genomics sequences of the JE virus reported from different countries and infecting different animals and analysed vast dimensions of the genomic annotation of JE comparatively to understand its evolutionary aspects. The extensive SNPs analysis revealed that KF907505.1, reported from Taiwan, has only three SNPs, similar to sequences reported from India. Repeat and polymorphism analyses revealed that the genome tends to be similar in most JE sequences.
Collapse
Affiliation(s)
- Sain Ziaullah M
- Department of Microbiology, Faculty of Medicine,
Rabigh, King Abdulaziz University, Jeddah KSA 21589
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy,
Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, College of Science,
University of Jeddah, Jeddah 23890, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical
Research (UJ-CSMR), University of Jeddah, Jeddah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied
Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Yahya Al Qahtani
- Central Military Laboratory and Blood Bank Department -
Virology Division, Prince Sultan Military Medical City, Riyadh 12233, Saudi
Arabia
| | - Ahmed Muhammed Al Rumaihi
- Central Military Laboratory and Blood Bank Department -
Virology Division, Prince Sultan Military Medical City, Riyadh 12233, Saudi
Arabia
| | - Asif Hussain Akber
- Central Military Laboratory and Blood Bank Department -
Virology Division, Prince Sultan Military Medical City, Riyadh 12233, Saudi
Arabia
| | - Mohammed Ali Al Qahtani
- Central Military Laboratory and Blood Bank Department -
Microbiology Division, Prince Sultan Military Medical City, Riyadh 12233, Saudi
Arabia
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine,
Rabigh, King Abdulaziz University Jeddah, 21589, KSA
| |
Collapse
|
29
|
Wang Z, Zhu S, Jia Y, Wang Y, Kubota N, Fujiwara N, Gordillo R, Lewis C, Zhu M, Sharma T, Li L, Zeng Q, Lin YH, Hsieh MH, Gopal P, Wang T, Hoare M, Campbell P, Hoshida Y, Zhu H. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. Cell 2023; 186:1968-1984.e20. [PMID: 37040760 PMCID: PMC10321862 DOI: 10.1016/j.cell.2023.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/08/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.
Collapse
Affiliation(s)
- Zixi Wang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuemeng Jia
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheryl Lewis
- Tissue Management Shared Resource, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tripti Sharma
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiyu Zeng
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matt Hoare
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; University of Cambridge Early Cancer Institute, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Peter Campbell
- Cancer Genome Project, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Shimazaki Y, Yoneya S, Fujita S, Nakashima T, Nabeshima K, Sudoh S, Matsubara K, Okumura N, Kondo H, Nishifuji K, Koba R, Tohya Y. Identification and characterization of the genome of a papillomavirus from skin lesions of four-toed hedgehogs (Atelerix albiventris). Virus Genes 2023; 59:234-239. [PMID: 36626061 DOI: 10.1007/s11262-022-01965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The present study describes the clinical and pathological characteristics of skin lesions in two four-toed hedgehogs (Atelerix albiventris). We performed inverse PCR to identify the genome of papillomavirus (PV) in the skin lesions and subsequently sequenced the full genome of the virus, which was tentatively named Atelerix albiventris papillomavirus 1 (AalbPV1). The overall sequences of the viral genomes of both four-toed hedgehogs were identical. This study first identified the presence of a novel PV in Japanese four-toed hedgehogs and provided genetic information about this virus.
Collapse
Affiliation(s)
- Yotaro Shimazaki
- Faculty of Agriculture, Animal Medical Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Shion Yoneya
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan
| | - Shigeru Fujita
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomomi Nakashima
- IDEXX Laboratories, K.K., 5-8-18 Kajinocho, Koganei-shi, Tokyo, 184-8515, Japan
| | - Kei Nabeshima
- Ecological Risk Assessment and Control Section Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-shi, Ibaraki, 305-8506, Japan
| | - Sumire Sudoh
- Banquet Animal Hospital, 1-3-23 Mishuku, Setagaya-ku, Tokyo, 154-0005, Japan
| | - Katsuki Matsubara
- Banquet Animal Hospital, 1-3-23 Mishuku, Setagaya-ku, Tokyo, 154-0005, Japan
| | - Naka Okumura
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan
| | - Koji Nishifuji
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Ryota Koba
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan.
| | - Yukinobu Tohya
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan
| |
Collapse
|
31
|
Lu H, Ma L, Quan C, Li L, Lu Y, Zhou G, Zhang C. RegVar: Tissue-specific Prioritization of Non-coding Regulatory Variants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:385-395. [PMID: 34973416 PMCID: PMC10626172 DOI: 10.1016/j.gpb.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
Non-coding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional non-coding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant-gene expression associations in a variety of human tissues, RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a web server at https://regvar.omic.tech/.
Collapse
Affiliation(s)
- Hao Lu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Luyu Ma
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Cheng Quan
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Lei Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Yiming Lu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China.
| | - Gangqiao Zhou
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China.
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China.
| |
Collapse
|
32
|
Wang Z, Zhu S, Jia Y, Wang Y, Kubota N, Fujiwara N, Gordillo R, Lewis C, Zhu M, Sharma T, Li L, Zeng Q, Lin YH, Hsieh MH, Gopal P, Wang T, Hoare M, Campbell P, Hoshida Y, Zhu H. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533505. [PMID: 36993727 PMCID: PMC10055219 DOI: 10.1101/2023.03.20.533505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Somatic mutations in non-malignant tissues accumulate with age and insult, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate mutations found in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to non-alcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7 , a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side-by-side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Bcl6, Tbx3, or Smyd2 resulted in protection against NASH. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease. Highlights Mosaic Mboat7 mutations that increase lipotoxicity lead to clonal disappearance in NASH. In vivo screening can identify genes that alter hepatocyte fitness in NASH. Mosaic Gpam mutations are positively selected due to reduced lipogenesis. In vivo screening of transcription factors and epifactors identified new therapeutic targets in NASH.
Collapse
|
33
|
Liu Y, Zhao M, Qu H. A Database of Lung Cancer-Related Genes for the Identification of Subtype-Specific Prognostic Biomarkers. BIOLOGY 2023; 12:biology12030357. [PMID: 36979050 PMCID: PMC10045015 DOI: 10.3390/biology12030357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
The molecular subtype is critical for accurate treatment and follow-up in patients with lung cancer; however, information regarding subtype-associated genes is dispersed among thousands of published studies. Systematic curation and cross-validation of the scientific literature would provide a solid foundation for comparative genetic studies of the major molecular subtypes of lung cancer. Here, we constructed a literature-based lung cancer gene database (LCGene). In the current release, we collected and curated 2507 unique human genes, including 2267 protein-coding and 240 non-coding genes from comprehensive manual examination of 10,960 PubMed article abstracts. Extensive annotations were added to aid identification of differentially expressed genes, potential gene editing sites, and non-coding gene regulation. For instance, we prepared 607 curated genes with CRISPR knockout information in 43 lung cancer cell lines. Further comparison of these implicated genes among different subtypes identified several subtype-specific genes with high mutational frequencies. Common tumor suppressors and oncogenes shared by lung adenocarcinoma and lung squamous cell carcinoma, for example, exhibited different mutational frequencies and prognostic features, suggesting the presence of subtype-specific biomarkers. Our retrospective analysis revealed 43 small cell lung cancer-specific genes. Moreover, 52 tumor suppressors and oncogenes shared by lung adenocarcinoma and squamous cell carcinoma confirmed the different molecular mechanisms of these two cancer subtypes. The subtype-based genetic differences, when combined, may provide insight into subtype-specific biomarkers for genetic testing.
Collapse
Affiliation(s)
- Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510180, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
35
|
Li X, Meng X, Chen H, Fu X, Wang P, Chen X, Gu C, Zhou J. Integration of single sample and population analysis for understanding immune evasion mechanisms of lung cancer. NPJ Syst Biol Appl 2023; 9:4. [PMID: 36765073 PMCID: PMC9918494 DOI: 10.1038/s41540-023-00267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
A deep understanding of the complex interaction mechanism between the various cellular components in tumor microenvironment (TME) of lung adenocarcinoma (LUAD) is a prerequisite for understanding its drug resistance, recurrence, and metastasis. In this study, we proposed two complementary computational frameworks for integrating multi-source and multi-omics data, namely ImmuCycReg framework (single sample level) and L0Reg framework (population or subtype level), to carry out difference analysis between the normal population and different LUAD subtypes. Then, we aimed to identify the possible immune escape pathways adopted by patients with different LUAD subtypes, resulting in immune deficiency which may occur at different stages of the immune cycle. More importantly, combining the research results of the single sample level and population level can improve the credibility of the regulatory network analysis results. In addition, we also established a prognostic scoring model based on the risk factors identified by Lasso-Cox method to predict survival of LUAD patients. The experimental results showed that our frameworks could reliably identify transcription factor (TF) regulating immune-related genes and could analyze the dominant immune escape pathways adopted by each LUAD subtype or even a single sample. Note that the proposed computational framework may be also applicable to the immune escape mechanism analysis of pan-cancer.
Collapse
Affiliation(s)
- Xiong Li
- School of Software, East China Jiaotong University, Nanchang, 330013, China.
| | - Xu Meng
- grid.440711.7School of Software, East China Jiaotong University, Nanchang, 330013 China
| | - Haowen Chen
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiangzheng Fu
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Peng Wang
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xia Chen
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Changlong Gu
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Juan Zhou
- grid.440711.7School of Software, East China Jiaotong University, Nanchang, 330013 China
| |
Collapse
|
36
|
Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data 2023; 10:67. [PMID: 36732524 PMCID: PMC9893183 DOI: 10.1038/s41597-023-01960-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Developing personalized diagnostic strategies and targeted treatments requires a deep understanding of disease biology and the ability to dissect the relationship between molecular and genetic factors and their phenotypic consequences. However, such knowledge is fragmented across publications, non-standardized repositories, and evolving ontologies describing various scales of biological organization between genotypes and clinical phenotypes. Here, we present PrimeKG, a multimodal knowledge graph for precision medicine analyses. PrimeKG integrates 20 high-quality resources to describe 17,080 diseases with 4,050,249 relationships representing ten major biological scales, including disease-associated protein perturbations, biological processes and pathways, anatomical and phenotypic scales, and the entire range of approved drugs with their therapeutic action, considerably expanding previous efforts in disease-rooted knowledge graphs. PrimeKG contains an abundance of 'indications', 'contradictions', and 'off-label use' drug-disease edges that lack in other knowledge graphs and can support AI analyses of how drugs affect disease-associated networks. We supplement PrimeKG's graph structure with language descriptions of clinical guidelines to enable multimodal analyses and provide instructions for continual updates of PrimeKG as new data become available.
Collapse
Affiliation(s)
- Payal Chandak
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Kexin Huang
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Harvard Data Science Initiative, Cambridge, MA, 02138, USA.
| |
Collapse
|
37
|
Dong YL, Tang N, Zhao H, Liang JQ. Nucleus Pulposus Cells from Calcified Discs Promote the Degradation of the Extracellular Matrix through Upregulation of the GATA3 Expression. Curr Med Sci 2023; 43:146-155. [PMID: 36821040 DOI: 10.1007/s11596-022-2686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Disc calcification is strongly associated with disc degeneration; however, the underlying mechanisms driving its pathogenesis are poorly understood. This study aimed to provide a gene expression profile of nucleus pulposus cells (NPCs) from calcified discs, and clarify the potential mechanism in disc degeneration. METHODS Primary NPCs were isolated from calcified and control discs (CAL-NPC and CON-NPC), respectively. The proliferation and extracellular matrix (ECM) metabolism capacities of the cells were evaluated using MTT and Western blotting, respectively. RNA sequencing was used to identify differentially expressed genes (DEGs) in the CAL-NPCs. The biological functions of the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The transcription factor database and Cytoscape software were used to construct the transcription factor-DEGs regulatory network. The role of the verified transcription factor in NPC proliferation and ECM metabolism was also investigated. RESULTS The CAL-NPCs exhibited a lower proliferation rate and higher ECM degradation capacity than the CON-NPCs. In total, 375 DEGs were identified in the CAL-NPCs. The GO and KEGG analyses showed that the DEGs were primarily involved in the regulation of ribonuclease activity and NF-kappa B and p53 signaling pathways. GATA-binding protein 3 (GATA3) with the highest verified levels was selected for further studies. Overexpression of GATA3 in the CON-NPCs significantly inhibited their proliferation and promoted their ECM degradation function, while the knockdown of GATA3 in the CAL-NPCs resulted in the opposite phenotypes. CONCLUSION This study provided a comprehensive gene expression profile of the NPCs from the calcified discs and supported that GATA3 could be a potential target for reversing calcification-associated disc degeneration.
Collapse
Affiliation(s)
- Yu-Lei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ning Tang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hong Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jin-Qian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
38
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
39
|
Fang Z, Fan M, Yuan D, Jin L, Wang Y, Ding L, Xu S, Tu J, Zhang E, Wu X, Chen ZB, Huang W. Downregulation of hepatic lncRNA Gm19619 improves gluconeogenesis and lipogenesis following vertical sleeve gastrectomy in mice. Commun Biol 2023; 6:105. [PMID: 36707678 PMCID: PMC9883214 DOI: 10.1038/s42003-023-04483-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging important epigenetic regulators in metabolic processes. Whether they contribute to the metabolic effects of vertical sleeve gastrectomy (VSG), one of the most effective treatments for sustainable weight loss and metabolic improvement, is unknown. Herein, we identify a hepatic lncRNA Gm19619, which is strongly repressed by VSG but highly up-regulated by diet-induced obesity and overnight-fasting in mice. Forced transcription of Gm19619 in the mouse liver significantly promotes hepatic gluconeogenesis with the elevated expression of G6pc and Pck1. In contrast, AAV-CasRx mediated knockdown of Gm19619 in high-fat diet-fed mice significantly improves hepatic glucose and lipid metabolism. Mechanistically, Gm19619 is enriched along genomic regions encoding leptin receptor (Lepr) and transcription factor Foxo1, as revealed in chromatin isolation by RNA purification (ChIRP) assay and is confirmed to modulate their transcription in the mouse liver. In conclusion, Gm19619 may enhance gluconeogenesis and lipid accumulation in the liver.
Collapse
Affiliation(s)
- Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pediatric, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lili Ding
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Senlin Xu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrated Genomic Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
40
|
Zogopoulos VL, Malatras A, Kyriakidis K, Charalampous C, Makrygianni EA, Duguez S, Koutsi MA, Pouliou M, Vasileiou C, Duddy WJ, Agelopoulos M, Chrousos GP, Iconomidou VA, Michalopoulos I. HGCA2.0: An RNA-Seq Based Webtool for Gene Coexpression Analysis in Homo sapiens. Cells 2023; 12:cells12030388. [PMID: 36766730 PMCID: PMC9913097 DOI: 10.3390/cells12030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Genes with similar expression patterns in a set of diverse samples may be considered coexpressed. Human Gene Coexpression Analysis 2.0 (HGCA2.0) is a webtool which studies the global coexpression landscape of human genes. The website is based on the hierarchical clustering of 55,431 Homo sapiens genes based on a large-scale coexpression analysis of 3500 GTEx bulk RNA-Seq samples of healthy individuals, which were selected as the best representative samples of each tissue type. HGCA2.0 presents subclades of coexpressed genes to a gene of interest, and performs various built-in gene term enrichment analyses on the coexpressed genes, including gene ontologies, biological pathways, protein families, and diseases, while also being unique in revealing enriched transcription factors driving coexpression. HGCA2.0 has been successful in identifying not only genes with ubiquitous expression patterns, but also tissue-specific genes. Benchmarking showed that HGCA2.0 belongs to the top performing coexpression webtools, as shown by STRING analysis. HGCA2.0 creates working hypotheses for the discovery of gene partners or common biological processes that can be experimentally validated. It offers a simple and intuitive website design and user interface, as well as an API endpoint.
Collapse
Affiliation(s)
- Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Apostolos Malatras
- Biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, 2029 Nicosia, Cyprus
| | - Konstantinos Kyriakidis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Charalampous
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evanthia A. Makrygianni
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stéphanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| | - Marianna A. Koutsi
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Marialena Pouliou
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Christos Vasileiou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Engineering Design and Computing Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - William J. Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| | - Marios Agelopoulos
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
41
|
Bhattacharjee B, Hallan V. NF-YB family transcription factors in Arabidopsis: Structure, phylogeny, and expression analysis in biotic and abiotic stresses. Front Microbiol 2023; 13:1067427. [PMID: 36733773 PMCID: PMC9887194 DOI: 10.3389/fmicb.2022.1067427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Nuclear factor-Y (NF-Y) transcription factors (TFs) are conserved heterotrimeric complexes present and widespread across eukaryotes. Three main subunits make up the structural and functional aspect of the NF-Y TFs: NF-YA, NF-YB and NF-YC, which bind to the conserved CCAAT- box of the promoter region of specific genes, while also interacting with each other, thereby forming myriad combinations. The NF-YBs are expressed differentially in various tissues and plant development stages, likely impacting many of the cellular processes constitutively and under stress conditions. In this study, ten members of NF-YB family from Arabidopsis thaliana were identified and expression profiles were mined from microarray data under different biotic and abiotic conditions, revealing key insights into the involvement of this class of proteins in the cellular and biological processes in Arabidopsis. Analysis of cis-acting regulatory elements (CAREs) indicated the presence of abiotic and biotic stress-related transcription factor binding sites (TFBs), shedding light on the multifaceted roles of these TFs. Microarray data analysis inferred distinct patterns of expression in various tissues under differing treatments such as drought, cold and heat stress as well as bacterial, fungal, and viral stress, indicating their likelihood of having an expansive range of regulatory functions under native and stressed conditions; while quantitative real-time PCR (qRT-PCR) based expression analysis revealed that these TFs get real-time-modulated in a stress dependent manner. This study, overall, provides an understanding of the AtNF-YB family of TFs in their regulation and participation in various morphogenetic and defense- related pathways and can provide insights for development of transgenic plants for trait dependent studies.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India,*Correspondence: Vipin Hallan, ✉
| |
Collapse
|
42
|
Elkin ER, Su AL, Dou JF, Colacino JA, Bridges D, Padmanabhan V, Harris SM, Boldenow E, Loch-Caruso R, Bakulski KM. Sexually concordant and dimorphic transcriptional responses to maternal trichloroethylene and/or N-acetyl cysteine exposure in Wistar rat placental tissue. Toxicology 2023; 483:153371. [PMID: 36396003 PMCID: PMC10078828 DOI: 10.1016/j.tox.2022.153371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Numerous Superfund sites are contaminated with the volatile organic chemical trichloroethylene (TCE). In women, exposure to TCE in pregnancy is associated with reduced birth weight. Our previous study reported that TCE exposure in pregnant rats decreased fetal weight and elevated oxidative stress biomarkers in placentae, suggesting placental injury as a potential mechanism of TCE-induced adverse birth outcomes. In this study, we investigated if co-exposure with the antioxidant N-acetylcysteine (NAC) attenuates TCE exposure effects on RNA expression. Timed-pregnant Wistar rats were exposed orally to 480 mg TCE/kg/day on gestation days 6-16. Exposure of 200 mg NAC/kg/day alone or as a pre/co-exposure with TCE occurred on gestation days 5-16 to stimulate antioxidant genes prior to TCE exposure. Tissue was collected on gestation day 16. In male and female placentae, we evaluated TCE- and/or NAC-induced changes to gene expression and pathway enrichment analyses using false discovery rate (FDR) and fold-change criteria. In female placentae, exposure to TCE caused significant differential expression 129 genes while the TCE+NAC altered 125 genes, compared with controls (FDR< 0.05 + fold-change >1). In contrast, in male placentae TCE exposure differentially expressed 9 genes and TCE+NAC differentially expressed 35 genes, compared with controls (FDR< 0.05 + fold-change >1). NAC alone did not significantly alter gene expression in either sex. Differentially expressed genes observed with TCE exposure were enriched in mitochondrial biogenesis and oxidative phosphorylation pathways in females whereas immune system pathways and endoplasmic reticulum stress pathways were differentially expressed in both sexes (FDR<0.05). TCE treatment was differentially enriched for genes regulated by the transcription factors ATF6 (both sexes) and ATF4 (males only), indicating a cellular condition triggered by misfolded proteins during endoplasmic reticulum stress. This study demonstrates novel genes and pathways involved in TCE-induced placental injury and showed antioxidant co-treatment largely did not attenuate TCE exposure effects.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Erica Boldenow
- Department of Biology, Calvin University, Grand Rapids, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Lee-Liu D, Sun L. Quantitative Proteomics of Nervous System Regeneration: From Sample Preparation to Functional Data Analyses. Methods Mol Biol 2023; 2636:343-366. [PMID: 36881310 DOI: 10.1007/978-1-0716-3012-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Mammals have a limited regenerative capacity, especially of the central nervous system. Consequently, any traumatic injury or neurodegenerative disease results in irreversible damage. An important approach to finding strategies to promote regeneration in mammals has been the study of regenerative organisms like Xenopus, the axolotl, and teleost fish. High-throughput technologies like RNA-Seq and quantitative proteomics are starting to provide valuable insight into the molecular mechanisms that drive nervous system regeneration in these organisms. In this chapter, we present a detailed protocol for performing iTRAQ proteomics that can be applied to the analysis of nervous system samples, using Xenopus laevis as an example. The quantitative proteomics protocol and directions for performing functional enrichment data analyses of gene lists (e.g., differentially abundant proteins from a proteomic study, or any type of high-throughput analysis) are aimed at the general bench biologist and do not require previous programming knowledge.
Collapse
Affiliation(s)
- Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
44
|
Ahi EP, Sinclair-Waters M, Donner I, Primmer CR. A pituitary gene network linking vgll3 to regulators of sexual maturation in male Atlantic salmon. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111337. [PMID: 36341967 DOI: 10.1016/j.cbpa.2022.111337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Age at maturity is a key life history trait and a significant contributor to life history strategy variation. The maturation process is influenced by genetic and environmental factors, but specific causes of variation in maturation timing remain elusive. In many species, the increase in the regulatory gonadotropin-releasing hormone 1 (GnRH1) marks the onset of puberty. Atlantic salmon, however, lacks the gnrh1 gene, suggesting gnrh3 and/or other regulatory factors are involved in the maturation process. Earlier research in Atlantic salmon has found a strong association between alternative alleles of vgll3 and maturation timing. Recently we reported strong induction of gonadotropin genes (fshb and lhb) in the pituitary of Atlantic salmon homozygous for the early maturation allele (E) of vgll3. The induction of gonadotropins was accompanied by increased expression of their direct upstream regulators, c-jun and sf1 (nr5a1b) but the regulatory connection between vgll3 and these regulators has never been investigated in any organism. In this study, we investigated the potential regulatory connection between vgll3 genotypes and these regulators through a stepwise approach of identifying a gene regulatory network (GRN) containing c-jun and sf1, and transcription factor motif enrichment analysis. We found a GRN containing c-jun with predicted upstream regulators, e2f1, egr1, foxj1 and klf4, to be differentially expressed in the pituitary. Finally, we suggest a vgll3 and Hippo pathway -dependent model for transcriptional regulation of c-jun and sf1 in the pituitary, which may have broader implications across vertebrates.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Marion Sinclair-Waters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Centre d'Ecologie Fonctionelle et Evolutive, Centre National de la Recherche Scientifique, Montpellier, France. https://twitter.com/Marionswaters
| | - Iikki Donner
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland.
| |
Collapse
|
45
|
Ahi EP, Richter F, Sefc KM. Gene expression patterns associated with caudal fin shape in the cichlid Lamprologus tigripictilis. HYDROBIOLOGIA 2022; 850:2257-2273. [PMID: 37325486 PMCID: PMC10261199 DOI: 10.1007/s10750-022-05068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Variation in fin shape is one of the most prominent features of morphological diversity among fish. Regulation of fin growth has mainly been studied in zebrafish, and it is not clear whether the molecular mechanisms underlying shape variation are equally diverse or rather conserved across species. In the present study, expression levels of 37 candidate genes were tested for association with fin shape in the cichlid fish Lamprologus tigripictilis. The tested genes included members of a fin shape-associated gene regulatory network identified in a previous study and novel candidates selected within this study. Using both intact and regenerating fin tissue, we tested for expression differences between the elongated and the short regions of the spade-shaped caudal fin and identified 20 genes and transcription factors (including angptl5, cd63, csrp1a, cx43, esco2, gbf1, and rbpj), whose expression patterns were consistent with a role in fin growth. Collated with available gene expression data of two other cichlid species, our study not only highlights several genes that were correlated with fin growth in all three species (e.g., angptl5, cd63, cx43, and mmp9), but also reveals species-specific gene expression and correlation patterns, which indicate considerable divergence in the regulatory mechanisms of fin growth across cichlids. Supplementary Information The online version contains supplementary material available at 10.1007/s10750-022-05068-4.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Florian Richter
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
46
|
Jameel A, Ketehouli T, Wang Y, Wang F, Li X, Li H. Detection and validation of cis-regulatory motifs in osmotic stress-inducible synthetic gene switches via computational and experimental approaches. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1043-1054. [PMID: 35940614 DOI: 10.1071/fp21314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Synthetic cis -regulatory modules can improve our understanding of gene regulatory networks. We applied an ensemble approach for de novo cis motif discovery among the promoters of 181 drought inducible differentially expressed soybean (Glycine max L.) genes. A total of 43 cis motifs were identified in promoter regions of all gene sets using the binding site estimation suite of tools (BEST). Comparative analysis of these motifs revealed similarities with known cis -elements found in PLACE database and led to the discovery of cis -regulatory motifs that were not yet implicated in drought response. Compiled with the proposed synthetic promoter design rationale, three synthetic assemblies were constructed by concatenating multiple copies of drought-inducible cis motifs in a specific order with inter-motif spacing using random bases and placed upstream of 35s minimal core promoter. Each synthetic module substituted 35S promoter in pBI121 and pCAMBIA3301 to drive glucuronidase expression in soybean hairy roots and Arabidopsis thaliana L. Chimeric soybean seedlings and 3-week-old transgenic Arabidopsis plants were treated with simulated with different levels of osmotic stress. Histochemical staining of transgenic soybean hairy roots and Arabidopsis displayed drought-inducible GUS activity of synthetic promoters. Fluorometric assay and expression analysis revealed that SP2 is the better manual combination of cis -elements for stress-inducible expression. qRT-PCR results further demonstrated that designed synthetic promoters are not tissue-specific and thus active in different parts upon treatment with osmotic stress in Arabidopsis plants. This study provides tools for transcriptional upgradation of valuable crops against drought stress and adds to the current knowledge of synthetic biology.
Collapse
Affiliation(s)
- Aysha Jameel
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Toi Ketehouli
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yifan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, 570228, Haikou, China
| |
Collapse
|
47
|
Kim IB, Lee T, Lee J, Kim J, Lee S, Koh IG, Kim JH, An JY, Lee H, Kim WK, Ju YS, Cho Y, Yu SJ, Kim SA, Oh M, Han DW, Kim E, Choi JK, Yoo HJ, Lee JH. Non-coding de novo mutations in chromatin interactions are implicated in autism spectrum disorder. Mol Psychiatry 2022; 27:4680-4694. [PMID: 35840799 DOI: 10.1038/s41380-022-01697-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Three-dimensional chromatin interactions regulate gene expressions. The significance of de novo mutations (DNMs) in chromatin interactions remains poorly understood for autism spectrum disorder (ASD). We generated 813 whole-genome sequences from 242 Korean simplex families to detect DNMs, and identified target genes which were putatively affected by non-coding DNMs in chromatin interactions. Non-coding DNMs in chromatin interactions were significantly involved in transcriptional dysregulations related to ASD risk. Correspondingly, target genes showed spatiotemporal expressions relevant to ASD in developing brains and enrichment in biological pathways implicated in ASD, such as histone modification. Regarding clinical features of ASD, non-coding DNMs in chromatin interactions particularly contributed to low intelligence quotient levels in ASD probands. We further validated our findings using two replication cohorts, Simons Simplex Collection (SSC) and MSSNG, and showed the consistent enrichment of non-coding DNM-disrupted chromatin interactions in ASD probands. Generating human induced pluripotent stem cells in two ASD families, we were able to demonstrate that non-coding DNMs in chromatin interactions alter the expression of target genes at the stage of early neural development. Taken together, our findings indicate that non-coding DNMs in ASD probands lead to early neurodevelopmental disruption implicated in ASD risk via chromatin interactions.
Collapse
Affiliation(s)
- Il Bin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Psychiatry, Hanyang University Guri Hospital, Guri, 11923, Republic of Korea
| | - Taeyeop Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Junehawk Lee
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Jonghun Kim
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea
| | - In Gyeong Koh
- Industry-University Cooperation Foundation, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Hyun Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.,BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.,BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunseong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05030, Republic of Korea
| | - Woo Kyeong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yongseong Cho
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Seok Jong Yu
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, Eulji University, Daejeon, 13135, Republic of Korea
| | - Miae Oh
- Department of Psychiatry, Kyung Hee University Hospital, Seoul, 02447, Republic of Korea
| | - Dong Wook Han
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.,Organoid sciences, Ltd., Bundang-gu, Seongnam, 13488, Republic of Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea. .,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Sovargen Co. Ltd., Daejeon, 34051, Republic of Korea.
| |
Collapse
|
48
|
Zhang Y, Zhang T, Xu L, Zhu Y, Zhao LL, Li XD, Yang WW, Chen J, Gu M, Gu XS, Yang J. Evolution of the ErbB gene family and analysis of regulators of Egfr expression during development of the rat spinal cord. Neural Regen Res 2022; 17:2484-2490. [PMID: 35535900 PMCID: PMC9120683 DOI: 10.4103/1673-5374.339010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Egfr, a member of the ErbB gene family, plays a critical role in tissue development and homeostasis, wound healing, and disease. However, expression and regulators of Egfr during spinal cord development remain poorly understood. In this study, we investigated ErbB evolution and analyzed co-expression modules, miRNAs, and transcription factors that may regulate Egfr expression in rats. We found that ErbB family members formed via Egfr duplication in the ancient vertebrates but diverged after speciation of gnathostomes. We identified a module that was co-expressed with Egfr, which involved cell proliferation and blood vessel development. We predicted 25 miRNAs and nine transcription factors that may regulate Egfr expression. Dual-luciferase reporter assays showed six out of nine transcription factors significantly affected Egfr promoter reporter activity. Two of these transcription factors (KLF1 and STAT3) inhibited the Egfr promoter reporter, whereas four transcription factors (including FOXA2) activated the Egfr promoter reporter. Real-time PCR and immunofluorescence experiments showed high expression of FOXA2 during the embryonic period and FOXA2 was expressed in the floor plate of the spinal cord, suggesting the importance of FOXA2 during embryonic spinal cord development. Considering the importance of Egfr in embryonic spinal cord development, wound healing, and disease (specifically in cancer), regulatory elements identified in this study may provide candidate targets for nerve regeneration and disease treatment in the future.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Tao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Di Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei-Wei Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Song Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
49
|
Ramezankhani R, Ghavidel AA, Rashidi S, Rojhannezhad M, Abolkheir HR, Mirhosseini M, Taleahmad S, Vosough M. Gender-related differentially expressed genes in pancreatic cancer: possible culprits or accomplices? Front Genet 2022; 13:966941. [DOI: 10.3389/fgene.2022.966941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer mortality worldwide, and its incidence and mortality rate in several regions is higher in male patients. Although numerous efforts have been made to enhance the clinical outcomes of existing therapeutic regimens, their efficiency is still low, and drug resistance usually occurs in many patients. In addition, the exact underlying molecular basis that makes PC slightly more prevalent among males remains unknown. Providing information regarding the possible association between gender and PC tumorigenesis may offer important clues for how certain molecular cross-talks can affect PC initiation and/or progression. In this study, we used several microarray expression data to identify the common up- and downregulated genes within one specific gender, which were also specified to have binding sites for androgen and/or estrogen receptors. Using functional enrichment analysis among the others, for all the gene sets found in this study, we have shed light on the plausible importance of the androgenic effectors in tumorigenesis, such as the androgen-regulated expression of the GLI transcription factor and the potential role of testosterone in the extracellular matrix (ECM)–cell interaction, which are known for their importance in tumorigenesis. Moreover, we demonstrated that the biological process axon guidance was highlighted regarding the upregulated genes in male patients. Overall, identification of gene candidates as the possible link between gender and PC progression or survival rates may help in developing strategies to reduce the incidence of this cancer.
Collapse
|
50
|
Motif and conserved module analysis in DNA (promoters, enhancers) and RNA (lncRNA, mRNA) using AlModules. Sci Rep 2022; 12:17588. [PMID: 36266399 PMCID: PMC9584888 DOI: 10.1038/s41598-022-21732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/30/2022] [Indexed: 01/13/2023] Open
Abstract
Nucleic acid motifs consist of conserved and variable nucleotide regions. For functional action, several motifs are combined to modules. The tool AIModules allows identification of such motifs including combinations of them and conservation in several nucleic acid stretches. AIModules recognizes conserved motifs and combinations of motifs (modules) allowing a number of interesting biological applications such as analysis of promoter and transcription factor binding sites (TFBS), identification of conserved modules shared between several gene families, e.g. promoter regions, but also analysis of shared and conserved other DNA motifs such as enhancers and silencers, in mRNA (motifs or regulatory elements e.g. for polyadenylation) and lncRNAs. The tool AIModules presented here is an integrated solution for motif analysis, offered as a Web service as well as downloadable software. Several nucleotide sequences are queried for TFBSs using predefined matrices from the JASPAR DB or by using one's own matrices for diverse types of DNA or RNA motif discovery. Furthermore, AIModules can find TFBSs common to two or more sequences. Demanding high or low conservation, AIModules outperforms other solutions in speed and finds more modules (specific combinations of TFBS) than alternative available software. The application also searches RNA motifs such as polyadenylation site or RNA-protein binding motifs as well as DNA motifs such as enhancers as well as user-specified motif combinations ( https://bioinfo-wuerz.de/aimodules/ ; alternative entry pages: https://aimodules.heinzelab.de or https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/aimodules ). The application is free and open source whether used online, on-site, or locally.
Collapse
|