1
|
Li J, Yang P, Fu H, Li J, Wang Y, Zhu K, Yu J, Li J. Transcriptome analysis reveals key regulatory networks and genes involved in the acquisition of cold stress memory in pepper seedlings. BMC PLANT BIOLOGY 2024; 24:959. [PMID: 39396950 PMCID: PMC11479542 DOI: 10.1186/s12870-024-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Temperature is an important limiting factor in the counter-seasonal cultivation of pepper. Currently, there are no studies on transcriptomic analysis of 'cold stress memory' in pepper. In this study, in order to understand the mechanism of 'cold stress memory' in pepper (Capsicum annuum L.), seedlings were subjected to the following treatments: normal temperature treatment (P0), the first cold treatment for 3 days (P3), the recovery temperature treatment for 3 days (R3), and another cold treatment for 3 days (RP3). The results showed that P3 plants wilted the most, RP3 the second and R3 the least. Leaf reactive oxygen species (ROS) and electrolyte leakage were the most in P3, the second in RP3 and the least in R3. In addition, RP3 had the highest accumulation of zeaxanthin, violaxanthin and β-cryptoxanthin, followed by P3, and R3 had the least. These results suggest that pepper seedlings are characterized by 'cold stress memory'. Transcriptomics was used to analyze the key genes and transcription factors involved in the biosynthesis of zeaxanthin, violaxanthin and β-cryptoxanthin during the formation of 'cold stress memory'. This study provides candidate genes and transcription factors for an in-depth study of the cold tolerance mechanism in pepper.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Ping Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Hongbo Fu
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Juan Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Yanzhuang Wang
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Keyan Zhu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China.
| | - Jie Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China.
| |
Collapse
|
2
|
Sun Z, Liu D, Li B, Yan F, Wang Y, Yang T, Wang H, Xu J, Zhou H, Zhao M. 3'UTR of tobacco vein mottling virus regulates downstream GFP expression and changes in host gene expression. Front Microbiol 2024; 15:1477074. [PMID: 39469465 PMCID: PMC11514416 DOI: 10.3389/fmicb.2024.1477074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Tobacco vein mottling virus (TVMV) is a member of the family Potyviridae. The 3' untranslated region (3'UTR) of viral genomic RNA has been reported to significantly impact viral infection. Nevertheless, the role of the TVMV 3'UTR during viral infection remains unknown. Methods Here, a 3'UTR-GFP expression vector was transiently expressed in Nicotiana benthamiana, in which the 3'UTR of TVMV was introduced upstream of the green fluorescent protein (GFP) gene. Transcriptome sequencing was performed to analyze the genes associated with plant resistance. The effect of the TVMV 3'UTR on GFP expression was studied using an Agrobacterium-mediated transient expression assay, revealing that the TVMV 3'UTR significantly inhibited GFP expression. Transcriptome analysis of differentially expressed genes in 3'UTR-GFP in N. benthamiana was performed to elucidate the why the TVMV 3'UTR inhibited GFP expression. Results Eighty genes related to plant disease resistance were differentially expressed, including 29 upregulated and 51 downregulated genes. Significantly upregulated genes included those encoding the calcium-binding protein CML24, leucine-rich repeat receptor-like tyrosine-protein kinase, and respiratory burst oxidase homolog protein E. The significantly downregulated genes included calcium-binding protein 7, ethylene-responsive transcription factor 10, endoglucanase 5, and receptor-like protein kinase. Discussion These findings indicate that the 3'UTR of TVMV may inhibit the expression of GFP gene by inducing the expression of plant resistance genes. This study provides a theoretical basis for further research on the function and mechanism of the TVMV 3'UTR.
Collapse
Affiliation(s)
- Zhenqi Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyang Liu
- Liangshan Zhou Company of Sichuan Province Company of Tobacco Corporation in China, Liangshan Zhou, China
| | - Bin Li
- Sichuan Province Company of Tobacco Corporation in China, Chengdu, China
| | - Fangfang Yan
- Panzhihua City Company of Sichuan Province Company of Tobacco Corporation in China, Panzhihuan, China
| | - Yuhu Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Tianqi Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Haijuan Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaxin Xu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of the Development and Resource Utilization of Biological Pesticide in Inner Mongolia, Hohhot, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of the Development and Resource Utilization of Biological Pesticide in Inner Mongolia, Hohhot, China
| |
Collapse
|
3
|
Suppiah J, Md Sani SS, Hassan SS, Nadzar NIF, Ibrahim N'I, Thayan R, Mohd Zain R. Unraveling potential gene biomarkers for dengue infection through RNA sequencing. Virus Genes 2024:10.1007/s11262-024-02114-2. [PMID: 39397194 DOI: 10.1007/s11262-024-02114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Dengue virus hijacks host cell mechanisms and immune responses in order to replicate efficiently. The interaction between the host and the virus affects the host's gene expression, which remains largely unexplored. This pilot study aimed to profile the host transcriptome as a potential strategy for identifying specific biomarkers for dengue prediction and detection. High-throughput RNA sequencing (RNA-seq) was employed to generate host transcriptome profiles in 16 dengue patients and 10 healthy controls. Differentially expressed genes (DEGs) were identified in patients with severe dengue and those with dengue with warning signs compared to healthy individuals. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to elucidate the functions of upregulated and downregulated genes. Compared to healthy controls, 6466 genes were significantly differentially expressed (p < 0.05) in the dengue with warning signs group and 3082 genes in the severe dengue group, with over half being upregulated. The major KEGG pathways implicated included transport and catabolism (14.4%-16.3%), signal transduction (6.6%-7.3%), global and overview maps (6.7%-7.1%), viral diseases (4.6%-4.8%), and the immune system (4.4%-4.6%). Several genes exhibited consistent and significant upregulation across all dengue patients, regardless of severity: Interferon alpha inducible protein 27 (IFI27), Potassium Channel Tetramerization Domain Containing 14 (KCTD14), Syndecan 1 (SDC1), DCC netrin 1 receptor (DCC), Ubiquitin C-terminal hydrolase L1 (UCHL1), Marginal zone B and B1 cell-specific protein (MZB1), Nestin (NES), C-C motif chemokine ligand 2 (CCL2), TNF receptor superfamily member 17 (TNFSF17), and TNF receptor superfamily member 13B (TNFRSF13B). Further analysis revealed potential biomarkers for severe dengue prediction, including TNF superfamily member 15 (TNFSF15), Plasminogen Activator Inhibitor-2 (SERPINB2), motif chemokine ligand 7 (CCL7), aconitate decarboxylase 1 (ACOD1), Metallothionein 1G (MT1G), and Myosin Light Chain Kinase (MYLK2), which were expressed 3.5 times, 2.9 times, 2.3 times, 2.1 times, 1.7 times, and 1.4 times greater, respectively, than dengue patients exhibiting warning signs. The identification of these host biomarkers through RNA-sequencing holds promising implications and potential to augment existing dengue detection algorithms, contributing significantly to improved diagnostic and prognostic capabilities.
Collapse
Affiliation(s)
- Jeyanthi Suppiah
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia.
| | | | - Safiah Sabrina Hassan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Nur Iman Fasohah Nadzar
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ravindran Thayan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Rozainanee Mohd Zain
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Tian D, Zhang W, Wang L, Qi J, Xu T, Zuo M, Han B, Li X, Zhao K. Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin. J Proteomics 2024; 310:105327. [PMID: 39395776 DOI: 10.1016/j.jprot.2024.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Long hair trait represents a valuable genetic asset in Qinghai Tibetan sheep, with its quality and yield being contingent upon the characteristics of hair follicles (HFs). This study aims to elucidate the genetic mechanism underlying primary hair follicles (PFs) formation through an integrated analysis of proteomics and transcriptomics. Samples were collected at key stages of fetal HF formation (E65 and E85) for histological observation, revealing significant alterations in the microstructure of PF (E65) during the developmental process. In this study, a comprehensive analysis revealed a total of 217 overlapping genes that exhibited concordant expression patterns at both the proteomic and transcriptomic levels. Furthermore, to ensure the reliability of our findings, we employed parallel response monitoring (PRM) to validate the obtained proteomic data. The protein-protein interaction (PPI) network diagram highlights five hub core proteins (TTN, IGTA2, F2, EGFR, and MYH14). These differentially expressed proteins (DEPs) play crucial roles in metabolic processes, cell adhesion, and diverse biological processes. The potential synergy between transcriptional regulation and post-translational modifications plays a pivotal role in governing the initiation PF development. The findings presented in this study offer innovative insights into the molecular mechanisms underlying HFs generation and establish a robust foundation for targeted breeding strategies aimed at augmenting wool traits in sheep. SIGNIFICANCE: The composition of coarse hair primarily consists of long, myelinated fibers originating from primary hair follicles. Sheep fetal skin initiates the formation of primary hair follicles around E65, followed by the development of secondary hair follicles around E85. Conducting differential proteomic and transcriptomic analyses during these developmental stages enhances our understanding of the molecular mechanisms underlying primary hair follicle development and offers valuable insights for sustainable utilization of high-quality germplasm resources.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Junying Qi
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Teng Xu
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Mingxing Zuo
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China.
| |
Collapse
|
5
|
Manikantan V, Ripley NE, Nielsen MK, Dangoudoubiyam S. Protein profile of extracellular vesicles derived from adult Parascaris spp. Parasit Vectors 2024; 17:426. [PMID: 39390471 PMCID: PMC11468347 DOI: 10.1186/s13071-024-06502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Parascaris spp. represent a significant threat to equine health worldwide, particularly in foals. The long-term survival of parasites in the host necessitates persistent modulation of the host immune response. Intercellular communication achieved through the exchange of molecules via extracellular vesicles (EVs) released from the parasite could be a crucial factor in this regard. This study aimed to isolate and characterize EVs released by adult male and female Parascaris worms and conduct a proteomic analysis to identify sex-specific proteins and potential immunomodulatory factors. METHODS Live adult Parascaris worms were collected, and EVs were isolated from spent culture media using differential ultracentrifugation. Nanoparticle tracking analysis and transmission electron microscopy confirmed the size, concentration, and morphology of the isolated EVs. Proteins within the isolated EVs were analyzed using mass spectrometry-based proteomics (LC-MS/MS). RESULTS Proteomic analysis revealed a total of 113 proteins in Parascaris EVs, with several proteins showing homology to known helminth exosome proteins and exhibiting immunomodulatory functions. Sex-specific differences in EV protein composition were observed, with a distinct abundance of C-type lectins in female EVs, suggesting potential sex-specific roles or regulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed metabolic pathways shared between male and female Parascaris EVs, as well as differences in signal transduction, and cell growth and death pathways, indicating sex-specific variations. CONCLUSIONS These findings imply that Parascaris EVs and their protein cargo are complex. This data potentially opens avenues for discovering innovative approaches to managing and understanding helminth infection.
Collapse
Affiliation(s)
- Vishnu Manikantan
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Nichol E Ripley
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Sriveny Dangoudoubiyam
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Lu X, Zhang L, Lin GM, Lu JG, Cui ZB. Analysis of Differential Gene Expression under Acute Lead or Mercury Exposure in Larval Zebrafish Using RNA-Seq. Animals (Basel) 2024; 14:2877. [PMID: 39409826 PMCID: PMC11475140 DOI: 10.3390/ani14192877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
This study was first conducted to investigate the effects of acute lead exposure on developing zebrafish embryos or larvae from 24 to 120 h post-fertilization (hpf). Our data showed that treatment with 50-200 μM lead significantly affected larval survivability and morphology compared to the respective control. Second, we chose 120 hpf larvae treated with 12.5 μM lead for RNA sequencing due to its exposure level being sufficient to produce toxic effects with minimum death and lead bioaccumulation in developing zebrafish. A total of 137.45 million raw reads were obtained, and more than 86% of clean data were mapped to the zebrafish reference genome. Differential expression profiles generated 116 up- and 34 down-regulated genes upon lead exposure. The most enriched GO terms for representative DEGs were ion transport and lipid metabolism. Third, a comparison with the dataset of mercury-regulated gene expression identified 94 genes (64 up-regulated and 30 down-regulated) for exposure specific to lead, as well as 422 genes (338 up-regulated and 84 down-regulated) for exposure specific to mercury. In addition, 56 genes were co-regulated by micromolar mercury and lead treatment, and the expression of thirteen genes, including mt2, ctssb.1, prdx1, txn, sqrdl, tmprss13a, socs3a, trpv6, abcb6a, gsr, hbz, fads2, and zgc:92590 were validated by qRT-PCR. These genes were mainly associated with metal ion binding, proteolysis, antioxidant activity, signal transduction, calcium ion or oxygen transport, the fatty acid biosynthetic process, and protein metabolism. Taken together, these findings help better understand the genome-wide responses of developing zebrafish to lead or mercury and provide potential biomarkers for acute exposure to toxic metals.
Collapse
Affiliation(s)
- Xing Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China;
| | - Gen-Mei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (G.-M.L.); (J.-G.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Jian-Guo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (G.-M.L.); (J.-G.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Zong-Bin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
7
|
Wang F, Feng Z, Yang X, Zhou G, Peng Y. Physiological Parameters and Transcriptomic Levels Reveal the Response Mechanism of Maize to Deep Sowing and the Mechanism of Exogenous MeJA to Alleviate Deep Sowing Stress. Int J Mol Sci 2024; 25:10718. [PMID: 39409045 PMCID: PMC11477193 DOI: 10.3390/ijms251910718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Deep sowing, as a method to mitigate drought and preserve soil moisture and seedlings, can effectively mitigate the adverse effects of drought stress on seedling growth. The elongation of the hypocotyl plays an important role in the emergence of maize seeds from deep-sowing stress. This study was designed to explore the function of exogenous methyl jasmonate (MeJA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of a 1.5 μ mol L-1 MeJA treatment significantly increased the mesocotyl length (MES), mesocotyl and coleoptile length (MESCOL), and seedling length (SDL) of maize seedlings. Transcriptome analysis showed that exogenous MeJA can alleviate maize deep-sowing stress, and the differentially expressed genes (DEGs) mainly include ornithine decarboxylase, terpene synthase 7, ethylene responsive transcription factor 11, and so on. In addition, candidate genes that may regulate the length of maize hypocotyls were screened by Weighted Gene Co-expression Network Analysis (WGCNA). These genes may be involved in the growth of maize hypocotyls through transcriptional regulation, histones, ubiquitin protease, protein binding, and chlorophyll biosynthesis and play an important role in maize deep-sowing tolerance. Our research findings may provide a theoretical basis for determining the tolerance of maize to deep-sowing stress and the mechanism of exogenous hormone regulation of deep-sowing stress.
Collapse
Affiliation(s)
- Fang Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (F.W.); (Z.F.); (X.Y.); (G.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhijin Feng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (F.W.); (Z.F.); (X.Y.); (G.Z.)
| | - Xinyi Yang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (F.W.); (Z.F.); (X.Y.); (G.Z.)
| | - Guangkuo Zhou
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (F.W.); (Z.F.); (X.Y.); (G.Z.)
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (F.W.); (Z.F.); (X.Y.); (G.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Kukreti A, Kotasthane AS, Tandon AL, Nekkanti A, Prasannakumar MK, Devanna P, Aravindaram K, Sreedevi K, Sushil SN, Manjunatha C. Hybrid de novo whole genome assembly of lipopeptide producing novel Bacillus thuringiensis strain NBAIR BtAr exhibiting antagonistic activity against Sclerotium rolfsii. Microb Pathog 2024; 195:106867. [PMID: 39168357 DOI: 10.1016/j.micpath.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Bacillus thuringiensis Berliner is recognized as a predominant bioinsecticide but its antifungal potential has been relatively underexplored. A novel B. thuringiensis strain NBAIR BtAr was isolated and morphologically characterized using light and scanning electron microscopy, revealing presence of bipyramidal, cuboidal, and spherical parasporal crystals. The crude form of lipopeptides was extracted from NBAIR BtAr and assessed for its antagonistic activity in vitro, and demonstrated 100 % inhibition of Sclerotium rolfsii Sacc. at a minimum inhibitory concentration of 50 μL of the crude lipopeptide extract per mL of potato dextrose agar. To identify the antagonistic genes responsible, we performed whole genome sequencing of NBAIR BtAr, revealing the presence of circular chromosome of 5,379,913 bp and 175,362 bp plasmid with 36.06 % guanine-cytosine content and 5814 protein-coding sequences. Average nucleotide identity and whole genome phylogenetic analysis delineated the NBAIR BtAr strain as konkukian serovar. Gene ontology analysis revealed associations of 1474, 1323, and 1833 genes with biological processes, molecular function, and cellular components, respectively. Antibiotics & secondary metabolite analysis shell analysis of the whole genome yielded secondary metabolites biosynthetic gene clusters with 100 %, 85 %, 40 %, and 35 % similarity for petrobactin, bacillibactin, fengycin, and paenilamicin, respectively. Also, novel biosynthetic gene clusters, along with antimicrobial genes, including zwittermicin A, chitinase, and phenazines, were identified. Moreover, the presence of eight bacteriophage sequences, 18 genomic islands, insertion sequences, and one CRISPR region indicated prior occurrences of genetic exchange and thus improved competitive fitness of the strain. Overall, the whole genome sequence of NBAIR BtAr is presented, with its taxonomic classification and critical genetic attributes that contribute to its strong antagonistic activity against S. rolfsii.
Collapse
Affiliation(s)
- Aditya Kukreti
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India; ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Anil Sudhakar Kotasthane
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Ashwarya Lalit Tandon
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Aarthi Nekkanti
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India; ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | | | - Pramesh Devanna
- Agricultural Research Station, Gangavathi, University of Agricultural Sciences, Raichur, 583 227, India
| | - Kandan Aravindaram
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Kolla Sreedevi
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Satya Nand Sushil
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Channappa Manjunatha
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India.
| |
Collapse
|
9
|
Rahmat NL, Zifruddin AN, Yusoff NS, Sulaiman S, Zainal Abidin CMR, Othman NW, Nor Muhammad NA, Hassan M. Transcriptome analysis reveals mechanisms of metabolic detoxification and immune responses following farnesyl acetate treatment in Metisa plana. Comput Biol Chem 2024; 112:108176. [PMID: 39181100 DOI: 10.1016/j.compbiolchem.2024.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Metisa plana is a widespread insect pest infesting oil palm plantations in Malaysia. Farnesyl acetate (FA), a juvenile hormone analogue, has been reported to exert in vitro and in vivo insecticidal activity against other insect pests. However, the insecticidal mechanism of FA on M. plana remains unclear. Therefore, this study aims to elucidate responsive genes in M. plana in response to FA treatment. The RNA-sequencing reads of FA-treated M. plana were de novo-assembled with existing raw reads from non-treated third instar larvae, and 55,807 transcripts were functionally annotated to multiple protein databases. Several insecticide detoxification-related genes were differentially regulated among the 321 differentially expressed transcripts. Cytochrome P450 monooxygenase, carboxylesterase, and ATP-binding cassette protein were upregulated, while peptidoglycan recognition protein was downregulated. Innate immune response genes, such as glutathione S-transferases, acetylcholinesterase, and heat shock protein, were also identified in the transcriptome. The findings signify that changes occurred in the insect's receptor and signaling, metabolic detoxification of insecticides, and immune responses upon FA treatment on M. plana. This valuable information on FA toxicity may be used to formulate more effective biorational insecticides for better M. plana pest management strategies in oil palm plantations.
Collapse
Affiliation(s)
- Nur Lina Rahmat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
| | - Anis Nadyra Zifruddin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
| | - Nur Syamimi Yusoff
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
| | - Suhaila Sulaiman
- Bioinformatics Unit, FGV R&D Sdn. Bhd., FGV Innovation Centre, PT23417 Lengkuk Teknologi,Bandar Enstek, Nilai, Negeri Sembilan 71760, Malaysia
| | | | - Nurul Wahida Othman
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia; Bioinformatics and Molecular Simulations Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia; Systems and Synthetic Biology Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
10
|
Fan C, Li Y, Zhang J, Zhao Y, Zhang Y, Zhu J, Gao X, Liang Y, Qiu Y, Song J, Wang G. Multi-Omics Revealed Regulatory Mechanisms Underlying the Flowering of Ferula sinkiangensis across Three Dimensions. Genes (Basel) 2024; 15:1275. [PMID: 39457399 PMCID: PMC11508013 DOI: 10.3390/genes15101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Backgroud/Objectives: Ferula spp. is an essential crop in Central Asia with pronounced economic benefits governed by its flowering process. However, the mechanisms of the flowering phenotype remain unclear. Methods: In this study, using F. sinkiangensis as a model plant, we integrated transcriptome, proteome, and metabolome analyses to compare the multilayer differences in leaves and roots of plants with flowering and unflowering phenotypes. Results: We found that several variations in the transcriptome, proteome, and metabolome were closely associated with flowering. The Photosynthesis and Phenylpropanoid biosynthesis pathways in plants with the flowering phenotype were more active. Additionally, three flowering genes, named FL2-FL4, were upregulated in the leaves of flowering plants. Notably, six transcription factors were potentially responsible for regulating the expression of FL2-FL4 in the leaves to mediate flowering process of F. sinkiangensis. Moreover, genes relevant to Photosynthesis and Phenylpropanoid biosynthesis were also involved in regulating the expression of FL2-FL4 in flowering plants. Conclusions: The active regulation network together with Photosynthesis and Phenylpropanoid biosynthesis were essential for inducing the expression of flowering-related genes in leaves to promote the flowering process of F. sinkiangensis.
Collapse
Affiliation(s)
- Congzhao Fan
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100193, China; (C.F.); (Y.L.); (J.S.)
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science, and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (X.G.); (Y.L.)
| | - Yanfei Li
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100193, China; (C.F.); (Y.L.); (J.S.)
| | - Jizhao Zhang
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| | - Yaqin Zhao
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| | - Yigong Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science, and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (X.G.); (Y.L.)
| | - Jun Zhu
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| | - Xingwang Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science, and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (X.G.); (Y.L.)
| | - Yan Liang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science, and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (X.G.); (Y.L.)
| | - Yuanjin Qiu
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| | - Jingyuan Song
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100193, China; (C.F.); (Y.L.); (J.S.)
| | - Guoping Wang
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| |
Collapse
|
11
|
Yang P, Song X, Zhang L, Wang X, Han Z, Wang R, Yang M, Liu P, Zhang Z. Unraveling the molecular landscape of breast muscle development in domestic Yuzhong pigeons and European meat pigeon: Insights from Iso-seq and RNA-seq analysis. PLoS One 2024; 19:e0305907. [PMID: 39052586 PMCID: PMC11271864 DOI: 10.1371/journal.pone.0305907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanisms governing gene regulation in domestic Yuzhong pigeon breast muscle development remain largely elusive. Here, we conducted a comparative analysis using Iso-seq and RNA-seq data from domestic Yuzhong pigeons and European meat pigeons to uncover signaling pathways and genes involved in breast muscle development. The Iso-seq data from domestic Yuzhong pigeons yielded 131,377,075 subreads, resulting in 16,587 non-redundant high-quality full-length transcripts post-correction. Furthermore, utilizing pfam, CPC, PLEK, and CPAT, we predicted 5575, 4973, 2333, and 4336 lncRNAs, respectively. Notably, several genes potentially implicated in breast muscle development were identified, including tropomyosin beta chain, myosin regulatory light chain 2, and myosin binding protein C. KEGG enrichment analysis revealed critical signaling pathways in breast muscle development, spanning carbon metabolism, biosynthesis of amino acids, glycolysis/gluconeogenesis, estrogen signaling, PI3K-AKT signaling, protein processing in the endoplasmic reticulum, oxidative phosphorylation, pentose phosphate pathway, fructose and mannose metabolism, and tight junctions. These findings offer insights into the biological processes driving breast muscle development in domestic Yuzhong pigeon, contributing to our understanding of this complex phenomenon.
Collapse
Affiliation(s)
- Pengkun Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xinghui Song
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Liheng Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xinlei Wang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhanbing Han
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Runzhi Wang
- Nanjing Institute of Animal Husbandry and Poultry Science, Nanjing, China
| | - Mingjun Yang
- Henan Tiancheng Pigeon Industry Co., Ltd, Pingdingshan, China
| | - Peiyao Liu
- Henan Tiancheng Pigeon Industry Co., Ltd, Pingdingshan, China
| | - Zhen Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
12
|
Bhatia N, Tiwari JK, Kumari C, Zinta R, Sharma S, Buckseth T, Thakur AK, Singh RK, Kumar V. Transcriptome analysis reveals genes associated with late blight resistance in potato. Sci Rep 2024; 14:15501. [PMID: 38969681 PMCID: PMC11226683 DOI: 10.1038/s41598-024-60608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 07/07/2024] Open
Abstract
Late blight is a serious disease of potato worldwide. Our study aimed to unveil genes involved in late blight resistance in potato by RNA-seq analysis after artificial inoculation under controlled conditions. In this study, two potato somatic hybrids (P7 and Crd6) and three varieties such as Kufri Girdhari, Kufri Jyoti and Kufri Bahar (control) were used. Transcriptiome analysis revealed statistically significant (p < 0.05) differentially expressed genes (DEGs), which were analysed into up-regulated and down-regulated genes. Further, DEGs were functionally characterized by the Gene Ontology annotations and the Kyoto Encyclopedia of Genes and Genomes pathways. Overall, some of the up-regulated genes in resistant genotypes were disease resistance proteins such as CC-NBS-LRR resistance protein, ankyrin repeat family protein, cytochrome P450, leucine-rich repeat family protein/protein kinase family, and MYB transcription factor. Sequence diversity analysis based on 38 peptide sequences representing 18 genes showed distinct variation and the presence of three motifs in 15 amino acid sequences. Selected genes were also validated by real-time quantitative polymerase chain reaction analysis. Interestingly, gene expression markers were developed for late blight resistant genotypes. Our study elucidates genes involved in imparting late blight resistance in potato, which will be beneficial for its management strategies in the future.
Collapse
Affiliation(s)
- Nisha Bhatia
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jagesh Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India.
| | - Chandresh Kumari
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Rasna Zinta
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Tanuja Buckseth
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ajay K Thakur
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh K Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
13
|
Piazza CE, Mattos JJ, Lima D, Siebert MN, Zacchi FL, Dos Reis ÍMM, Ferrari FL, Balsanelli E, Toledo-Silva G, de Souza EM, Bainy ACD. Hepatic transcriptome, transcriptional effects and antioxidant responses in Poecilia vivipara exposed to sanitary sewage. MARINE POLLUTION BULLETIN 2024; 203:116426. [PMID: 38692005 DOI: 10.1016/j.marpolbul.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Aquatic environments are subject to threats from multiple human activities, particularly through the release of untreated sanitary sewage into the coastal environments. These effluents contain a large group of natural or synthetic compounds referred to as emerging contaminants. Monitoring the types and quantities of toxic substances in the environment, especially complex mixtures, is an exhausting and challenging task. Integrative effect-based tools, such as biomarkers, are recommended for environmental quality monitoring programs. In this study, fish Poecilia vivipara were exposed for 24 and 96 h to raw untreated sewage diluted 33 % (v/v) in order to identify hepatic genes to be used as molecular biomarkers. Through a de novo hepatic transcriptome assembly, using Illumina MiSeq, 54,285 sequences were assembled creating a reference transcriptome for this guppy species. Transcripts involved in biotransformation systems, antioxidant defenses, ABC transporters, nuclear and xenobiotic receptors were identified and evaluated by qPCR. Sanitary sewage induced transcriptional changes in AhR, PXR, CYP2K1, CYP3A30, NQO1, UGT1A1, GSTa3, GSTmu, ST1C1, SOD, ABCC1 and SOX9 genes from liver of fish, particularly after 96 h of exposure. Changes in hepatic enzyme activities were also observed. The enzymes showed differences in fish exposed to both periods, while in the gills there was a prevalence of significant results after 96 h. The observed differences were associated to gender and/or to sewage exposure. The obtained results support the use of P. vivipara as sentinel and model organism for ecotoxicological studies and evidence the importance of understanding the differential responses associated to gender.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Ísis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Fernanda Luiza Ferrari
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Guilherme Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Gaddelapati SC, George S, Moola A, Sengodan K, Palli SR. N(alpha)-acetyltransferase 40-mediated histone acetylation plays an important role in ecdysone regulation of metamorphosis in the red flour beetle, Tribolium castaneum. Commun Biol 2024; 7:521. [PMID: 38702540 PMCID: PMC11068786 DOI: 10.1038/s42003-024-06212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
Histone acetylation, a crucial epigenetic modification, is governed by histone acetyltransferases (HATs), that regulate many biological processes. Functions of HATs in insects are not well understood. We identified 27 HATs and determined their functions using RNA interference (RNAi) in the model insect, Tribolium castaneum. Among HATs studied, N-alpha-acetyltransferase 40 (NAA40) knockdown caused a severe phenotype of arrested larval development. The steroid hormone, ecdysone induced NAA40 expression through its receptor, EcR (ecdysone receptor). Interestingly, ecdysone-induced NAA40 regulates EcR expression. NAA40 acetylates histone H4 protein, associated with the promoters of ecdysone response genes: EcR, E74, E75, and HR3, and causes an increase in their expression. In the absence of ecdysone and NAA40, histone H4 methylation by arginine methyltransferase 1 (ART1) suppressed the above genes. However, elevated ecdysone levels at the end of the larval period induced NAA40, promoting histone H4 acetylation and increasing the expression of ecdysone response genes. NAA40 is also required for EcR, and steroid-receptor co-activator (SRC) mediated induction of E74, E75, and HR3. These findings highlight the key role of ecdysone-induced NAA40-mediated histone acetylation in the regulation of metamorphosis.
Collapse
Affiliation(s)
- Sharath Chandra Gaddelapati
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Smitha George
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Anilkumar Moola
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Karthi Sengodan
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
15
|
Cai Z, Zhao X, Qian Y, Zhang K, Guo S, Kan Y, Wang Y, Ayra-Pardo C, Li D. Transcriptomic and Metatranscriptomic Analyses Provide New Insights into the Response of the Pea Aphid Acyrthosiphon pisum (Hemiptera: Aphididae) to Acetamiprid. INSECTS 2024; 15:274. [PMID: 38667404 PMCID: PMC11050337 DOI: 10.3390/insects15040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Acetamiprid is a broad-spectrum neonicotinoid insecticide used in agriculture to control aphids. While recent studies have documented resistance to acetamiprid in several aphid species, the underlying mechanisms are still not fully understood. In this study, we analyzed the transcriptome and metatranscriptome of a laboratory strain of the pea aphid, Acyrthosiphon pisum (Harris, 1776), with reduced susceptibility to acetamiprid after nine generations of exposure to identify candidate genes and the microbiome involved in the adaptation process. Sequencing of the transcriptome of both selected (RS) and non-selected (SS) strains allowed the identification of 14,858 genes and 4938 new transcripts. Most of the differentially expressed genes were associated with catalytic activities and metabolic pathways involving carbon and fatty acids. Specifically, alcohol-forming fatty acyl-CoA reductase (FAR) and acyl-CoA synthetase (ACSF2), both involved in the synthesis of epidermal wax layer components, were significantly upregulated in RS, suggesting that adaptation to acetamiprid involves the synthesis of a thicker protective layer. Metatranscriptomic analyses revealed subtle shifts in the microbiome of RS. These results contribute to a deeper understanding of acetamiprid adaptation by the pea aphid and provide new insights for aphid control strategies.
Collapse
Affiliation(s)
- Zhiyan Cai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Xuhui Zhao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Yuxin Qian
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Kun Zhang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Shigang Guo
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
- School of Life Science and Technology, Henan Institute of Science and Technology, 90 East of Hualan Avenue, Xinxiang 453003, China
| | - Yuqing Wang
- Scientific Research Center, Nanyang Medical College, Nanyang 473061, China;
| | - Camilo Ayra-Pardo
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, Avda. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| |
Collapse
|
16
|
Zinta R, Tiwari JK, Buckseth T, Goutam U, Singh RK, Kumar V, Thakur AK. Transcriptome profiling and characterization of genes associated with tuberization under high temperature in aeroponics in potato cv. Kufri Anand. Genes Genomics 2024; 46:409-421. [PMID: 38381322 DOI: 10.1007/s13258-024-01503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND High temperature stress is an important abiotic factor, which affects tuberization and ultimately causes heavy yield reduction in potato. OBJECTIVES Identification and characterization of genes associated with tuberization under high temperature stress is essential for future management through biotechnology. METHODOLOGY Two contrasting potato varieties Kufri Anand (profuse tuber-bearing) versus Kufri Frysona (very less/scanty tuber-bearing, control) were cultivated in aeroponics under high temperature stress, and transcriptomes were analyzed. RESULTS Potato cv. Kufri Anand was found superior over control (Kufri Frysona) for tuber yield and its component traits along with root morphology under aeroponics. Transcriptomes of tuber and leaf tissues were analyzed. Statistically significant (p < 0.05) differentially expressed genes (DEGs) were categorised into up-regulated (> 2 log2 fold change, FC) and down-regulated (< -2 log2 FC) genes. DEGs were annotated by gene ontology and KEGG pathways. A few selected up-regulated genes of both tissues were identified, and phylogeny tree and motif analysis were analysed based on 36 peptide sequences representing 15 selected DEGs in this study. Further, gene expression markers were developed and validated by real time qPCR analysis for the identification of high temperature tolerant genotypes. CONCLUSION A few key genes associated in tuberization under high temperature conditions were heat shock proteins (e.g. 18.5 kDa class I heat shock protein), sugar metabolism (e.g. glucosyltransferase), transcription factor (e.g. WRKY), and phytohormones (e.g. auxin-induced beta-glucosidase). Our study provides an overview of key genes involved in tuberization under high temperature stress in potato cv. Kufri Anand under aeroponics.
Collapse
Affiliation(s)
- Rasna Zinta
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jagesh Kumar Tiwari
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
- ICAR-Indian Institute of Vegetable Research Institute, Varanasi, Uttar Pradesh, India.
| | - Tanuja Buckseth
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Umesh Goutam
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar Singh
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ajay Kumar Thakur
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
17
|
Tang L, Dong S, Xing X. Comparative Genomics Reveal Phylogenetic Relationship and Chromosomal Evolutionary Events of Eight Cervidae Species. Animals (Basel) 2024; 14:1063. [PMID: 38612302 PMCID: PMC11010878 DOI: 10.3390/ani14071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Cervidae represents a family that is not only rich in species diversity but also exhibits a wide range of karyotypes. The controversies regarding the phylogeny and classification of Cervidae still persist. The flourishing development of the genomic era has made it possible to address these issues at the genomic level. Here, the genomes of nine species were used to explore the phylogeny and chromosomal evolutionary events of Cervidae. By conducting whole-genome comparisons, we identified single-copy orthologous genes across the nine species and constructed a phylogenetic tree based on the single-copy orthologous genes sequences, providing new insights into the phylogeny of Cervidae, particularly the phylogenetic relationship among sika deer, red deer, wapiti and Tarim red deer. Gene family analysis revealed contractions in the olfactory receptor gene family and expansions in the histone gene family across eight Cervidae species. Furthermore, synteny analysis was used to explore the chromosomal evolutionary events of Cervidae species, revealing six chromosomal fissions during the evolutionary process from Bovidae to Cervidae. Notably, specific chromosomal fusion events were found in four species of Cervus, and a unique chromosomal fusion event was identified in Muntiacus reevesi. Our study further completed the phylogenetic relationship within the Cervidae and demonstrated the feasibility of inferring species phylogeny at the whole-genome level. Additionally, our findings on gene family evolution and the chromosomal evolutionary events in eight Cervidae species lay a foundation for comprehensive research of the evolution of Cervidae.
Collapse
Affiliation(s)
| | | | - Xiumei Xing
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (L.T.); (S.D.)
| |
Collapse
|
18
|
Borlay AJ, Mweu CM, Nyanjom SG, Omolo KM, Naitchede LHS. De novo transcriptomic analysis of Doum Palm (Hyphaene compressa) revealed an insight into its potential drought tolerance. PLoS One 2024; 19:e0292543. [PMID: 38470884 DOI: 10.1371/journal.pone.0292543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/24/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Doum palms (Hyphaene compressa) perform a crucial starring role in the lives of Kenya's arid and semi-arid people for empowerment and sustenance. Despite the crop's potential for economic gain, there is a lack of genetic resources and detailed information about its domestication at the molecular level. Given the doum palm's vast potential as a widely distributed plant in semi-arid and arid climates and a source of many applications, coupled with the current changing climate scenario, it is essential to understand the molecular processes that provide drought resistance to this plant. RESULTS Assembly of the first transcriptome of doum palms subjected to water stress generated about 39.97 Gb of RNA-Seq data. The assembled transcriptome revealed 193,167 unigenes with an average length of 1655 bp, with 128,708 (66.63%) successfully annotated in seven public databases. Unigenes exhibited significant differentially expressed genes (DEGs) in well-watered and stressed-treated plants, with 45071 and 42457 accounting for up-regulated and down-regulated DEGs, respectively. GO term, KEGG, and KOG analysis showed that DEGs were functionally enriched cellular processes, metabolic processes, cellular and catalytic activity, metabolism, genetic information processing, signal transduction mechanisms, and posttranslational modification pathways. Transcription factors (TF), such as the MYB, WRKY, NAC family, FAR1, B3, bHLH, and bZIP, were the prominent TF families identified as doum palm DEGs encoding drought stress tolerance. CONCLUSIONS This study provides a complete understanding of DEGs involved in drought stress at the transcriptome level in doum palms. This research is, therefore, the foundation for the characterization of potential genes, leading to a clear understanding of its drought stress responses and providing resources for improved genetic modification.
Collapse
Affiliation(s)
- Allen Johnny Borlay
- Department of Biological Sciences, University of Liberia, Monrovia, Liberia
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Cecilia Mbithe Mweu
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Steven Ger Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Kevin Mbogo Omolo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Labode Hospice Stevenson Naitchede
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
| |
Collapse
|
19
|
Shen A, Qian A, Ma S, Xiang S, Ouyang L, Shao L. Transcriptome analysis of the bloom-forming dinoflagellate Prorocentrum donghaiense exposed to Ginkgo biloba leaf extract, with an emphasis on photosynthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18579-18592. [PMID: 38351353 DOI: 10.1007/s11356-024-32409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
Ginkgo biloba leaf extract (GBE) can effectively treat bloom-forming freshwater algae. However, there is limited information about the underlying suppression mechanism of the marine bloom-forming Prorocentrum donghaiense-the most dominant algal bloom species in the East China Sea. We investigated the effect of GBE on P. donghaiense in terms of its response to photosynthesis at the molecular/omic level. In total, 93,743 unigenes were annotated using six functional databases. Furthermore, 67,203 differentially expressed genes (DEGs) were identified in algae treated with 1.8 g∙L-1 GBE. Among these DEGs, we identified the genes involved in photosynthesis. PsbA, PsbB and PsbD in photosystem II, PsaA in photosystem I, and PetB and PetD in the cytochrome b6/f complex were downregulated. Other related genes, such as PsaC, PsaE, and PsaF in photosystem I; PetA in the cytochrome b6/f complex; and atpA, atpD, atpH, atpG, and atpE in the F-type H+-ATPase were upregulated. These results suggest that the structure and activity of the complexes were destroyed by GBE, thereby inhibiting the electron flow between the primary and secondary quinone electron acceptors, primary quinone electron acceptor, and oxygen-evolving complex in the PSII complex, and interrupting the electron flow between PSII and PSI, ultimately leading to a decline in algal cell photosynthesis. These findings provide a basis for understanding the molecular mechanisms underlying P. donghaiense exposure to GBE and a theoretical basis for the prevention and control of harmful algal blooms.
Collapse
Affiliation(s)
- Anglu Shen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| | - Aixue Qian
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shengwei Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, People's Republic of China
| | - Shu Xiang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Longling Ouyang
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- East China Sea Fisheries Research Institute, Shanghai, 200090, China
| | - Liu Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| |
Collapse
|
20
|
Zhou J, Yu J, Chu Q. Comparative transcriptome analysis reveals potential regulatory mechanisms of genes and immune pathways following Vibrio harveyi infection in red drum (Sciaenops ocellatus). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109386. [PMID: 38242261 DOI: 10.1016/j.fsi.2024.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Red drum (Sciaenops ocellatus), as an important economical marine fish, has been affected by various bacterial diseases in recent years. Vibrio harveyi cause fatal vibriosis in S. ocellatus, leading to massive mortality and causing significant setbacks in aquaculture. However, the regulatory mechanisms of S. ocellatus response to V. harveyi infection are poorly understood. In this regard, we performed transcriptomic analysis with head kidney tissues of S. ocellatus after V. harveyi infection from 12 h to 48 h to reveal genes, gene expression profiles, and pathways involved in immune and inflammation responses. Specifically, a total of 9,599, 5,728, and 7144 differentially expressed genes (DEGs) were identified after V. harveyi infection at 12 h, 24 h, and 48 h, respectively, and 1,848 shared DEGs have been identified from the above three comparison groups. Subsequent pathway analysis revealed that the shared DEGs following V. harveyi were involved in complement and coagulation cascades (C1R, C1QC, C3, C4, C5, C7, C8A, C8B, C8G, C9, CFB, CFH, and CFI), MAPK signaling pathway, chemokine signaling pathway (CCL19, CXCL8, CXCL12, CXCL14, CCR4, CCR7, and CXCR2), PPAR signaling pathway (PPAR-α, PPAR-γ and PPAR-β), and TNF signaling pathway. Finally, the expression patterns of DEGs in head kidney tissues and S. ocellatus macrophages were validated by qRT-PCR, suggesting the reliability of RNA sequencing for gene expression analysis. This dynamic transcriptome analyses provided insights into gene expression regulation and immune related pathways involved in S. ocellatus after V. harveyi infection, and provides useful information for further study on the immune defense mechanisms in S. ocellatus as well as other teleost species.
Collapse
Affiliation(s)
- Jiale Zhou
- School of Agriculture, Ludong University, Yantai, China
| | - Jingyao Yu
- School of Agriculture, Ludong University, Yantai, China
| | - Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
21
|
Li F, Yang Y, Ge J, Wang C, Chen Z, Li Q, Yang F. Multi-omics revealed the mechanisms of Codonopsis pilosula aqueous extract in improving UC through blocking abnormal activation of PI3K/Akt signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117220. [PMID: 37820998 DOI: 10.1016/j.jep.2023.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
ETHNOPHARMACOLOGICALRELEVANCE Codonopsis pilosula (DS), a traditional Chinese medicine, had been used to regulate the immune, digestive and circulatory systems of the human, as well as protect the gastrointestinal tract, improve lung function. AIM OF THE STUDY The aim of study was to explore the effects and mechanism of Codonopsis pilosula aqueous extract (DS) intervention in improving ulcerative colitis (UC). MATERIALS AND METHODS UC model rats were established using combination of TNBS and ethanol. Tissue samples were collected for transcriptome and metabolomics analysis. Network pharmacology was performed on DS to identify bioactive compounds. Western blot was used to detect the key proteins involved in UC pathogenesis and PI3K/AKT pathways. RESULTS DS exerted the preventive and therapeutic effects in improving UC via inhibiting abnormal inflammatory responses and promoting antioxidant capacity. Levels of intestinal barrier, oxidative stress and inflammatory mediators were improved to nearly normal level in vivo by DS. Metabolome profiles showed that DS could restore the metabolic disorders associated with the UC pathogenesis. Further transcriptome results showed that DS mainly alleviate UC through inhibiting PI3K/Akt signaling pathway, and various related genes that dramatically expressed in UC Model rats were downregulated by DS. Typically, network pharmacology analysis identified that Glycitein was the hub compounds that involved in the mechanism of DS in improving UC. CONCLUSIONS The results show that Codonopsis pilosula (DS) was an potential excellent material in treating of UC depending on its suitable concentration. Possible therapeutic mechanisms of the DS involved in mitigating colonal inflammation, restoring metabolic disorders, promoting antioxidant capacity, and especially blocking the activation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Fang Li
- College of pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| | - Yanping Yang
- College of pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China; The First Affiliated Hospital of Air Force Medical University, China.
| | - Junli Ge
- College of pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| | - Chunxia Wang
- College of pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| | - Zhengjun Chen
- College of pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| | - Qin Li
- College of pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China; Gansu Health Vocational College, Lanzhou, 730030, China.
| | - Fude Yang
- College of pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Zhang D, Ren L, Wang Q, Wenjing Li, Song Z, Jin X, Fang W, Yan D, Li Y, Wang Q, He L, Cao A. Systematic assessment of the antifungal mechanism of soil fumigant methyl isothiocyanate against Fusarium oxysporum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122791. [PMID: 37940016 DOI: 10.1016/j.envpol.2023.122791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
Fusarium oxysporum is an important phytopathogenic fungus, it can be controlled by the soil fumigant methyl isothiocyanate (MITC). However, the antimicrobial mechanism of MITC against F. oxysporum, especially at the transcriptional level, is still unclear. In this experiment, the antimicrobial mechanism of MITC against F. oxysporum was investigated. Our results indicated that when F. oxysporum was exposed to 6 mg/L MITC for 12 h, the inhibitory rate of MITC on F. oxysporum was 80%. Transmission electron microscopes showed that the cell wall and membrane of F. oxysporum had shrunk and folded, vacuoles increased, and mitochondria swelled and deformed. In addition, the enzyme activity of F. oxysporum treated with MITC showed a decrease of 32.50%, 8.28% and 74.04% in catalase, peroxidase and superoxide dismutase, respectively. Transcriptome sequencing of F. oxysporum was performed and the results showed that 1478 differentially expressed genes (DEGs) were produced in response to MITC exposure. GO and KEGG analysis showed that the DEGs identified were involved in substance and energy metabolism, signal transduction, transport and catalysis. MITC disrupted cell homeostasis by influencing the expression of some key genes involved in chitin synthase and detoxification enzymes production, but F. oxysporum also protected itself by up-regulating genes involved in energy synthesis (such as upregulating acnA, CS and LSC2 in TCA). qRT-PCR data validated the reliability of transcriptome data. Our research used biochemical and genetic techniques to identify molecular lesions in the mycelia of F. oxysporum exposed to MITC, and provide valuable insights into the toxic mechanism of pathogenic fungi mediated by MITC. These techniques are also likely to be useful for rapidly screening and identifying new, environmentally-friendly soil fumigants that are efficacious against fungal pathogens.
Collapse
Affiliation(s)
- Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qing Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenjing Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhaoxin Song
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Jin
- Beijing Innovation Consortium of Agriculture Research System, Beijing 100193, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Lin He
- Innovation Research Team of Vegetable Pests Biology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Innovation Consortium of Agriculture Research System, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China.
| |
Collapse
|
23
|
Wang W, Hwang S, Park D, Park YD. The Features of Shared Genes among Transcriptomes Probed in Atopic Dermatitis, Psoriasis, and Inflammatory Acne: S100A9 Selection as the Target Gene. Protein Pept Lett 2024; 31:356-374. [PMID: 38766834 DOI: 10.2174/0109298665290166240426072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Atopic dermatitis (AD), psoriasis (PS), and inflammatory acne (IA) are well-known as inflammatory skin diseases. Studies of the transcriptome with altered expression levels have reported a large number of dysregulated genes and gene clusters, particularly those involved in inflammatory skin diseases. OBJECTIVE To identify genes commonly shared in AD, PS, and IA that are potential therapeutic targets, we have identified consistently dysregulated genes and disease modules that overlap with AD, PS, and IA. METHODS Microarray data from AD, PS, and IA patients were downloaded from Gene Expression Omnibus (GEO), and identification of differentially expressed genes from microarrays of AD, PS, and IA was conducted. Subsequently, gene ontology and gene set enrichment analysis, detection of disease modules with known disease-associated genes, construction of the protein-protein interaction (PPI) network, and PPI sub-mapping analysis of shared genes were performed. Finally, the computational docking simulations between the selected target gene and inhibitors were conducted. RESULTS We identified 50 shared genes (36 up-regulated and 14 down-regulated) and disease modules for each disease. Among the shared genes, 20 common genes in PPI network were detected such as LCK, DLGAP5, SELL, CEP55, CDC20, RRM2, S100A7, S100A9, MCM10, AURKA, CCNB1, CHEK1, BTC, IL1F7, AGTR1, HABP4, SERPINB13, RPS6KA4, GZMB, and TRIP13. Finally, S100A9 was selected as the target gene for therapeutics. Docking simulations between S100A9 and known inhibitors indicated several key binding residues, and based on this result, we suggested several cannabinoids such as WIN-55212-2, JZL184, GP1a, Nabilone, Ajulemic acid, and JWH-122 could be potential candidates for a clinical study for AD, PS, and IA via inhibition of S100A9-related pathway. CONCLUSION Overall, our approach may become an effective strategy for discovering new disease candidate genes for inflammatory skin diseases with a reevaluation of clinical data.
Collapse
Affiliation(s)
- Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
| | - Sungbo Hwang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
24
|
Long Y, Xu W, Liu C, Dong M, Liu W, Pei X, Li L, Chen R, Jin W. Genetically modified soybean lines exhibit less transcriptomic variation compared to natural varieties. GM CROPS & FOOD 2023; 14:1-11. [PMID: 37454359 DOI: 10.1080/21645698.2023.2233122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Genetically modified (GM) soybeans provide a huge amount of food for human consumption and animal feed. However, the possibility of unexpected effects of transgenesis has increased food safety concerns. High-throughput sequencing profiling provides a potential approach to directly evaluate unintended effects caused by foreign genes. In this study, we performed transcriptomic analyses to evaluate differentially expressed genes (DEGs) in individual soybean tissues, including cotyledon (C), germ (G), hypocotyl (H), and radicle (R), instead of using the whole seed, from four GM and three non-GM soybean lines. A total of 3,351 DEGs were identified among the three non-GM soybean lines. When the GM lines were compared with their non-GM parents, 1,836 to 4,551 DEGs were identified. Furthermore, Gene Ontology (GO) analysis of the DEGs showed more abundant categories of GO items (199) among non-GM lines than between GM lines and the non-GM natural varieties (166). Results of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that most KEGG pathways were the same for the two types of comparisons. The study successfully employed RNA sequencing to assess the differences in gene expression among four tissues of seven soybean varieties, and the results suggest that transgenes do not induce massive transcriptomic alterations in transgenic soybeans compared with those that exist among natural varieties. This work offers empirical evidence to investigate the genomic-level disparities induced by genetic modification in soybeans, specifically focusing on seed tissues.
Collapse
Affiliation(s)
- Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixiao Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinwu Pei
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Ma L, Zhu Z, Zhang S, Yang R, Liu C, Yu Y, Yang X. Comparative Transcriptome Analysis of the Skin and the Peritoneal Wall Layer of Triplophysa stenura Distributed in High Elevations. BIOLOGY 2023; 13:5. [PMID: 38275726 PMCID: PMC10812932 DOI: 10.3390/biology13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
A total of 81,868 All-Unigenes were sequenced and assembled by the transcriptome in the dorsal skin, the lateral skin, and the peritoneal wall layer of Triplophysa stenura with a total assembly length of 123,827,585 bp, and 68,750 unigenes were annotated to seven functional databases. A total of 588 DEGs were screened between the dorsal and lateral skin, 17,097 DEGs were screened between the dorsal skin and the peritoneal wall layer, and 16,598 DEGs were screened between the lateral skin and the peritoneal wall layer. Most of DEGs in three tissues were annotated to GO terms related to cellular structures, binding, cellular processes, and catalytic activity. They were also annotated to KEGG pathways such as the MAPK signaling pathway, PI3K-Akt signaling pathway, Wnt signaling pathway, melanogenesis, tyrosine metabolism, and cell cycle. A total of twenty-three DEGs were found to be enriched in the melanin synthesis pathway by a local Blast comparison, of which nine DEGs were significantly upregulated in the peritoneal wall layer and six DEGs were significantly upregulated in the dorsal and lateral skin. The results suggest that these genes may be associated with the molecular mechanism of melanin synthesis in T. stenura, and the differential regulation of genes may be related to the differences in UVR intensity and tissue sites of melanin synthesis. Further investigation is needed on how these genes specifically regulate melanin synthesis.
Collapse
Affiliation(s)
- Li Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.M.); (Z.Z.); (R.Y.); (C.L.); (Y.Y.)
| | - Zhen Zhu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.M.); (Z.Z.); (R.Y.); (C.L.); (Y.Y.)
- Hubei Vocational College of Bio-Technology, Wuhan 430070, China
| | - Shanzhong Zhang
- Hechuan Campus, Sichuan Fisheries School, Hechuan, Chongqing 401520, China;
| | - Ruibin Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.M.); (Z.Z.); (R.Y.); (C.L.); (Y.Y.)
| | - Chen Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.M.); (Z.Z.); (R.Y.); (C.L.); (Y.Y.)
| | - Yongyao Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.M.); (Z.Z.); (R.Y.); (C.L.); (Y.Y.)
| | - Xuefen Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.M.); (Z.Z.); (R.Y.); (C.L.); (Y.Y.)
| |
Collapse
|
26
|
Qu D, Yan F, Zhang Y, Huang L. A 4D Proteome Investigation of the Potential Mechanisms of SA in Triggering Resistance in Kiwifruit to Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2023; 24:17448. [PMID: 38139278 PMCID: PMC10744097 DOI: 10.3390/ijms242417448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Kiwifruit bacterial cankers caused by Pseudomonas syringae pv. actinidiae (Psa) are a serious threat to the kiwifruit industry. Salicylic acid (SA) regulates plant defense responses and was previously found to enhance kiwifruit's resistance to Psa. However, the underlying mechanisms of this process remain unclear. In this study, we used 4D proteomics to investigate how SA enhances kiwifruit's resistance to Psa and found that both SA treatment and Psa infection induced dramatic changes in the proteomic pattern of kiwifruit. Psa infection triggered the activation of numerous resistance events, including the MAPK cascade, phenylpropanoid biosynthesis, and hormone signaling transduction. In most cases, the differential expression of a number of genes involved in the SA signaling pathway played a significant role in kiwifruit's responses to Psa. Moreover, SA treatment upregulated numerous resistance-related proteins, which functioned in defense responses to Psa, including phenylpropanoid biosynthesis, the MAPK cascade, and the upregulation of pathogenesis-related proteins. We also found that SA treatment could facilitate timely defense responses to Psa infection and enhance the activation of defense responses that were downregulated in kiwifruit during infection with Psa. Thus, our research deciphered the potential mechanisms of SA in promoting Psa resistance in kiwifruit and can provide a basis for the use of SA to enhance kiwifruit resistance and effectively control the occurrence of kiwifruit bacterial cankers.
Collapse
Affiliation(s)
- Dong Qu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (Y.Z.)
| | - Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (Y.Z.)
| | - Yu Zhang
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (Y.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Lili Huang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
27
|
Zhao Y, Su C, He B, Nie R, Wang Y, Ma J, Song J, Yang Q, Hao J. Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome. Nat Commun 2023; 14:8190. [PMID: 38081828 PMCID: PMC10713551 DOI: 10.1038/s41467-023-44023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Parnassius glacialis is a typical "Out of the QTP" alpine butterfly that originated on the Qinghai-Tibet Plateau (QTP) and dispersed into relatively low-altitude mountainous. Here we assemble a chromosome-level genome of P. glacialis and resequence 9 populations in order to explore the genome evolution and local adaptation of this species. These results indicated that the rapid accumulation and slow unequal recombination of transposable elements (TEs) contributed to the formation of its large genome. Several ribosomal gene families showed extensive expansion and selective evolution through transposon-mediated processed pseudogenes. Additionally, massive structural variations (SVs) of TEs affected the genetic differentiation of low-altitude populations. These low-altitude populations might have experienced a genetic bottleneck in the past and harbor genes with selective signatures which may be responsible for the potential adaptation to low-altitude environments. These results provide a foundation for understanding genome evolution and local adaptation for "Out of the QTP" of P. glacialis.
Collapse
Affiliation(s)
- Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruie Nie
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunliang Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Junye Ma
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingyu Song
- College of Animal Science, Shandong Agricultural University, Taian, 271000, China
| | - Qun Yang
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Nanjing College, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
28
|
Hwang J, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. Cells 2023; 12:2805. [PMID: 38132125 PMCID: PMC10741483 DOI: 10.3390/cells12242805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Long non-coding RNA (lncRNA) mediated transcriptional regulation is increasingly recognized as an important gene regulatory mechanism during development and disease. LncRNAs are emerging as critical regulators of chromatin state; yet the nature and the extent of their interactions with chromatin remain to be fully revealed. We have previously identified Ppp1r1b-lncRNA as an essential epigenetic regulator of myogenic differentiation in cardiac and skeletal myocytes in mice and humans. We further demonstrated that Ppp1r1b-lncRNA function is mediated by the interaction with the chromatin-modifying complex polycomb repressive complex 2 (PRC2) at the promoter of myogenic differentiation transcription factors, TBX5 and MyoD1. Herein, we employed unbiased chromatin isolation by RNA purification (ChIRP) and high throughput sequencing to map the repertoire of Ppp1r1b-lncRNA chromatin occupancy genome-wide in the mouse muscle myoblast cell line. We uncovered a total of 99732 true peaks corresponding to Ppp1r1b-lncRNA binding sites at high confidence (p-value < 1E-5) and enrichment score ≥ 10). The Ppp1r1b-lncRNA-binding sites averaged 558 bp in length and were distributed widely within the coding and non-coding regions of the genome. Approximately 46% of these true peaks were mapped to gene elements, of which 1180 were mapped to experimentally validated promoter sequences. Importantly, the promoter-mapped binding sites were enriched in myogenic transcription factors and heart development while exhibiting focal interactions with known motifs of proximal promoters and transcription initiation by RNA Pol-II, including TATA-box, transcription initiator motif, CCAAT-box, and GC-box, supporting Ppp1r1b-lncRNA role in transcription initiation of myogenic regulators. Remarkably, nearly 40% of Ppp1r1b-lncRNA-binding sites mapped to gene introns were enriched with the Homeobox family of transcription factors and exhibited TA-rich motif sequences, suggesting potential motif-specific Ppp1r1b-lncRNA-bound introns. Lastly, more than 136521 enhancer sequences were detected in Ppp1r1b-lncRNA-occupancy sites at high confidence. Among these enhancers, 3390 (12%) exhibited cell type/tissue-specific enrichment in fetal heart and muscles. Together, our findings provide further insights into the genome-wide Ppp1r1b-lncRNA: Chromatin interactome that may dictate its function in myogenic differentiation and potentially other cellular and biological processes.
Collapse
Affiliation(s)
- John Hwang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xuedong Kang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte Wolf
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Medical and Life Science, College of Life Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, College of Life Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Tan K, Dong Y, Tan K, Lim LS, Waiho K, Chen J, Xu P, Kwan KY. siRNA Silencing of FpVtg Induces Ovarian Cell Apoptosis in Redtail Prawn, Fenneropenaeus penicillatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1176-1190. [PMID: 38010485 DOI: 10.1007/s10126-023-10269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Inadequate gonadal maturation and poor spawning performance increasingly threaten the sustainability of shrimp aquaculture. Unraveling the mechanisms regulating ovarian development and maturation hence is critical to address industry challenges. Vitellogenin (Vtg), a precursor of yolk protein found in the hepatopancreas and ovary of shrimp, plays a key role in facilitating shrimp's oocyte maturation and embryonic development after oviposition. This study found that FpVtg was specifically expressed in F. penicillatus hepatopancreas and ovary. FpVtg was localized predominantly in the oocyte cytoplasm and distributed uniformly in the hepatopancreas tissue. Silencing FpVtg led to apoptosis in both hepatopancreas and ovary tissues. Furthermore, FpVtg depletion upregulated the expression of ovarian peritrophin 1, ovarian peritrophin 2, serine proteinase inhibitor 6, and juvenile hormone esterase-like carboxylesterase 1, while downregulated that of vitellogenin, delta-9 desaturase, and insulin-like receptor. KEGG pathway analysis implicated such as PI3K-AKT signaling, RNA transport, ECM-receptor interaction, hippo signaling, oocyte meiosis, and apoptosis were enriched and involved in ovarian development. These findings have provided insights into the FpVtg's reproductive role and the associated regulatory genes and pathways in F. penicillatus. This knowledge can contribute to establishing strategies to improve the breeding and aquaculture production of F. penicillatus by elucidating its vitellogenesis regulation in redtail prawn and other penaeid species. Further characterization of the implicated pathways and genes will clarify the intricacies underlying ovarian maturation.
Collapse
Affiliation(s)
- Kianann Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Yaxin Dong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu City, Sabah, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus City, 21030, Terengganu, Malaysia
| | - Jing Chen
- Zhejiang Institute of Freshwater Fisheries, Huzhou City, 313001, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China.
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China.
| |
Collapse
|
30
|
Hwang J, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565657. [PMID: 37961291 PMCID: PMC10635152 DOI: 10.1101/2023.11.04.565657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Long non-coding RNA (lncRNA) mediated transcriptional regulation is increasingly recognized as an important gene regulatory mechanism during development and disease. LncRNAs are emerging as critical regulators of chromatin state; yet the nature and the extent of their interactions with chromatin remain to be fully revealed. We have previously identified Ppp1r1b-lncRNA as an essential epigenetic regulator of myogenic differentiation in cardiac and skeletal myocytes in mice and humans. We further demonstrated that Ppp1r1b-lncRNA function is mediated by the interaction with the chromatin-modifying complex polycomb repressive complex 2 (PRC2) at the promoter of myogenic differentiation transcription factors, TBX5 and MyoD1. Herein, we employed an unbiased chromatin isolation by RNA purification (ChIRP) and high throughput sequencing to map the repertoire of Ppp1r1b-lncRNA chromatin occupancy genome-wide in the mouse muscle myoblast cell line. We uncovered a total of 99732 true peaks corresponding to Ppp1r1b-lncRNA binding sites at high confidence (P-value < 1e-5 and enrichment score ≥ 10). The Ppp1r1b-lncRNA-binding sites averaged 558 bp in length and were distributed widely within the coding and non-coding regions of the genome. Approximately 46% of these true peaks were mapped to gene elements, of which 1180 were mapped to experimentally validated promoter sequences. Importantly, the promoter-mapped binding sites were enriched in myogenic transcription factors and heart development while exhibiting focal interactions with known motifs of proximal promoters and transcription initiation by RNA polII, including TATA, transcription initiator, CCAAT-box, and GC-box, supporting Ppp1r1b-lncRNA role in transcription initiation of myogenic regulators. Remarkably, nearly 40% of Ppp1r1b-lncRNA-binding sites mapped to gene introns, were enriched with the Homeobox family of transcription factors, and exhibited TA-rich motif sequences, suggesting potential motif specific Ppp1r1b-lncRNA-bound introns. Lastly, more than 136521enhancer sequences were detected in Ppp1r1b-lncRNA-occupancy sites at high confidence. Among these enhancers,12% exhibited cell type/tissue-specific enrichment in fetal heart and muscles. Together, our findings provide further insights into the genome-wide Ppp1r1b-lncRNA: Chromatin interactome that may potentially dictate its function in myogenic differentiation and potentially other cellular and biological processes.
Collapse
Affiliation(s)
- John Hwang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Xuedong Kang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Charlotte Wolf
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Medical and Life Science, College of Life Science, University of California Los Angeles, Los Angeles, CA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Molecular Biology Institute, College of Life Science, University of California Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
31
|
Iannucci A, Zhu J, Antonielli L, Ayari A, Nasri-Ammar K, Knoll W, Pelosi P, Dani FR. Chemosensory proteins as putative semiochemical carriers in the desert isopod Hemilepistus reaumurii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104012. [PMID: 37743031 DOI: 10.1016/j.ibmb.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.
Collapse
Affiliation(s)
- Alessio Iannucci
- Department of Biology, University of Firenze, 50019, Firenze, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Anas Ayari
- Université Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Bio-Ecologie et Systématique Evolutive, 2092, Tunis, Tunisia
| | - Karima Nasri-Ammar
- Université Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Bio-Ecologie et Systématique Evolutive, 2092, Tunis, Tunisia
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Francesca Romana Dani
- Department of Biology, University of Firenze, 50019, Firenze, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
32
|
Sperschneider J, Yildirir G, Rizzi YS, Malar C M, Mayrand Nicol A, Sorwar E, Villeneuve-Laroche M, Chen ECH, Iwasaki W, Brauer EK, Bosnich W, Gutjahr C, Corradi N. Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host-plant interactions. Nat Microbiol 2023; 8:2142-2153. [PMID: 37884816 DOI: 10.1038/s41564-023-01495-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are prominent root symbionts that can carry thousands of nuclei deriving from two parental strains in a large syncytium. These co-existing genomes can also vary in abundance with changing environmental conditions. Here we assemble the nuclear genomes of all four publicly available AMF heterokaryons using PacBio high-fidelity and Hi-C sequencing. We find that the two co-existing genomes of these strains are phylogenetically related but differ in structure, content and epigenetics. We confirm that AMF heterokaryon genomes vary in relative abundance across conditions and show this can lead to nucleus-specific differences in expression during interactions with plants. Population analyses also reveal signatures of genetic exchange indicative of past events of sexual reproduction in these strains. This work uncovers the origin and contribution of two nuclear genomes in AMF heterokaryons and opens avenues for the improvement and environmental application of these strains.
Collapse
Affiliation(s)
- Jana Sperschneider
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yanina S Rizzi
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Essam Sorwar
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Elizabeth K Brauer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Whynn Bosnich
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
33
|
Yin J, Ren W, Fry EL, Sun S, Han H, Guo F. DNA methylation mediates overgrazing-induced clonal transgenerational plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165338. [PMID: 37414175 DOI: 10.1016/j.scitotenv.2023.165338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Overgrazing generally induces dwarfism in grassland plants, and these phenotypic traits could be transmitted to clonal offspring even when overgrazing is excluded. However, the dwarfism-transmitted mechanism remains largely unknown, despite generally thought to be enabled by epigenetic modification. To clarify the potential role of DNA methylation on clonal transgenerational effects, we conducted a greenhouse experiment with Leymus chinensis clonal offspring from different cattle/sheep overgrazing histories via the demethylating agent 5-azacytidine. The results showed that clonal offspring from overgrazed (by cattle or sheep) parents were dwarfed and the auxin content of leaves significantly decreased compared to offspring from no-grazed parents'. The 5-azaC application generally increased the auxin content and promoted the growth of overgrazed offspring while inhibited no-grazed offspring growth. Meanwhile, there were similar trends in the expression level of genes related to auxin-responsive target genes (ARF7, ARF19), and signal transduction gene (AZF2). These results suggest that DNA methylation leads to overgrazing-induced plant transgenerational dwarfism via inhibiting auxin signal pathway.
Collapse
Affiliation(s)
- Jingjing Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China; Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot 010016, China.
| | - Ellen L Fry
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Siyuan Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Huijie Han
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fenghui Guo
- Industrial Crop Institute, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
34
|
Deng C, Ren J, Hong T, Liu Y, Li F, Zhang Y, Li C, Dong Z, Huang X, Zhang N. Full-length transcriptome of Oocystis borgei under stress condition. Front Genet 2023; 14:1255595. [PMID: 37915828 PMCID: PMC10616457 DOI: 10.3389/fgene.2023.1255595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Affiliation(s)
- Chengcheng Deng
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jiajia Ren
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ting Hong
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yang Liu
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Feng Li
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yulei Zhang
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Changling Li
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xianghu Huang
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ning Zhang
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
35
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
36
|
Qin Y, Cai Q, Ling Y, Chen X, Xu J, Huang G, Liang S, Yuan X, Yang XM, Lu D, Wang X, Wei Y. Arbuscular mycorrhizal fungi improve selenium uptake by modulating root transcriptome of rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1242463. [PMID: 37799552 PMCID: PMC10547891 DOI: 10.3389/fpls.2023.1242463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
Although selenium (Se) is an essential trace element in humans, the intake of Se from food is still generally inadequate throughout the world. Inoculation with arbuscular mycorrhizal fungi (AMF) improves the uptake of Se in rice (Oryza sativa L.). However, the mechanism by which AMF improves the uptake of Se in rice at the transcriptome level is unknown. Only a few studies have evaluated the effects of uptake of other elements in rice under the combined effects of Se and AMF. In this study, Se combined with the AMF Funneliformis mosseae (Fm) increased the biomass and Se concentration of rice plants, altered the pattern of ionomics of the rice roots and shoots, and reduced the antagonistic uptake of Se with nickel, molybdenum, phosphorus, and copper compared with the treatment of Se alone, indicating that Fm can enhance the effect of fertilizers rich in Se. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the hub genes in modules significantly associated with the genes that contained Se and were related to protein phosphorylation, protein serine/threonine kinase activity, membrane translocation, and metal ion binding, suggesting that the uptake of Se by the rice roots may be associated with these genes when Fm and Se act in concert. This study provides a reference for the further exploration of genes related to Se uptake in rice under Fm treatment.
Collapse
Affiliation(s)
- Yan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Qiuliang Cai
- Industrial College of Subtropical Characteristic Agriculture, Agriculture and Food Engineering College, Baise University, Baise, China
| | - Yiting Ling
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xue Chen
- Guangxi Eco-engineering Vocational & Technical College, Liuzhou, China
| | - Jingmao Xu
- Liuzhou Railway Vocational Technical College, Liuzhou, China
| | - Guirong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Shanhe Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xiu Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao Mu Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Dan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xueli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
37
|
Dixit N, Motwani H, Patel SK, Rawal RM, Solanki HA. Decoding the mechanism of andrographolide to combat hepatocellular carcinoma: a network pharmacology integrated molecular docking and dynamics approach. J Biomol Struct Dyn 2023; 42:10237-10255. [PMID: 37728545 DOI: 10.1080/07391102.2023.2256866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
HepatoCellular Carcinoma, being one of the most mortally convoluted malignancy with mounting number of occurrences across the world and being classified as the third most prevalent cause of cancer-associated mortalities and sixth most prevalent neoplasia. The active phytoconstituent andrographolide, derived from Andrographis paniculata is conveyed to reconcile a number of human ailments including various oncologies. However, the molecular mechanism underlying the anti-oncogenic effects of Andrographolide on HCC remains skeptical and unclear, emerging as a budding challenge for researchers and oncologists. The present study intends to analyze the underlying pharmacological mechanism of Andrographolide over HCC, established via assimilated approach of network pharmacology. Herein, the Network pharmacology stratagem was instigated to investigate potential HCC targets. The Andrographolide targets along with HCC targets were extracted from multiple databases. A total of 162 potential overlapping targets among HCC and Andrographolide were obtained and further subjected to gene ontology and Pathway enrichment analysis by employing OmicsBox and DAVID database, respectively. Subsequently, Protein-protein interaction network construction by Cytoscape software identified the top 10 hub nodes which were validated by survival and expression analysis. Further, the results derived from molecular docking and dynamic simulations by CB-Dock2 server and Desmond module (Schrodinger software) indicate ALB, CCND1, HIF1A, TNF, and VEGFA as potential Andrographolide related targets with high binding affinity and promising complex stability. Our findings not only reveal the antioncogenic role of andrographolide but also provide novel insights illuminating the identified targets as scientific foundation for anti-oncogenic clinical application of andrographolide in HCC therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nandan Dixit
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, Gujarat, India
| | - Harsha Motwani
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Hiteshkumar A Solanki
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
38
|
Zhou M, Wang J, Zhou J, Liu L, Yang R, Xu J, Liang M, Xu L. Exogenous IAA application affects the specific characteristics of fluoranthene distribution in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115306. [PMID: 37515970 DOI: 10.1016/j.ecoenv.2023.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Indole-3-acetic acid (IAA) is a crucial growth regulator involved in the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the precise physiological and molecular mechanisms underlying IAA-mediated plant growth and PAH accumulation are not yet fully understood. In this study, two distinct IAA-sensitive genotypes of Arabidopsis thaliana (wild type and Axr5 mutant) were chosen to investigate the mechanisms of fluoranthene (Flu) uptake and accumulation in plant tissues (roots and leaves) through physiological and molecular analyses. The results revealed that the Flu concentration in Axr5 leaves was significantly higher than that in wild-type (WT) leaves. In roots, the Flu content decreased significantly with increasing IAA treatment, while no significant changes were observed with lower IAA treatment. Principal component analysis demonstrated that Flu accumulation in Arabidopsis roots was associated with IAA concentrations, whereas Flu accumulation in leaves was dependent on the genotype. Moreover, Flu accumulation showed a positive correlation with the activity of glutathione S-transferase (GST) and root length and a positive correlation with catalase (CAT) and peroxidase (POD) activity in the leaves. Transcriptome analysis confirmed that the expression of the ethylene-related gene ATERF6 and GST-related genes ATGSTF14 and ATGSTU27 in roots, as well as the POD-related genes AtPRX9 and AtPRX25 and CAT-related gene AtCAT3 in leaves, played a role in Flu accumulation. Furthermore, WRKY transcription factors (TFs) in roots and NAC TFs in leaves were identified as important regulators of Flu accumulation. Understanding the mechanisms of Flu uptake and accumulation in A. thaliana provides valuable insights for regulating PAH accumulation in plants.
Collapse
Affiliation(s)
- Mengjia Zhou
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
| | - Ji Wang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhou
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
| | - Lin Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruixuan Yang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingxiang Liang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China.
| |
Collapse
|
39
|
Kim TL, Lim H, Denison MIJ, Oh C. Transcriptomic and Physiological Analysis Reveals Genes Associated with Drought Stress Responses in Populus alba × Populus glandulosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:3238. [PMID: 37765403 PMCID: PMC10535988 DOI: 10.3390/plants12183238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Drought stress affects plant productivity by altering plant responses at the morphological, physiological, and molecular levels. In this study, we identified physiological and genetic responses in Populus alba × Populus glandulosa hybrid clones 72-30 and 72-31 after 12 days of exposure to drought treatment. After 12 days of drought treatment, glucose, fructose, and sucrose levels were significantly increased in clone 72-30 under drought stress. The Fv/Fo and Fv/Fm values in both clones also decreased under drought stress. The changes in proline, malondialdehyde, and H2O2 levels were significant and more pronounced in clone 72-30 than in clone 72-31. The activities of antioxidant-related enzymes, such as catalase and ascorbate peroxidase, were significantly higher in the 72-31 clone. To identify drought-related genes, we conducted a transcriptomic analysis in P. alba × P. glandulosa leaves exposed to drought stress. We found 883 up-regulated and 305 down-regulated genes in the 72-30 clone and 279 and 303 in the 72-31 clone, respectively. These differentially expressed genes were mainly in synthetic pathways related to proline, abscisic acid, and antioxidants. Overall, clone 72-31 showed better drought tolerance than clone 72-30 under drought stress, and genetic changes also showed different patterns.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| |
Collapse
|
40
|
Maybery-Reupert K, Isenegger D, Hayden M, Cogan N. Development of genomic resources for Rhodes grass ( Chloris gayana), draft genome and annotated variant discovery. FRONTIERS IN PLANT SCIENCE 2023; 14:1239290. [PMID: 37731974 PMCID: PMC10507473 DOI: 10.3389/fpls.2023.1239290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Genomic resources for grasses, especially warm-season grasses are limited despite their commercial and environmental importance. Here, we report the first annotated draft whole genome sequence for diploid Rhodes grass (Chloris gayana), a tropical C4 species. Generated using long read nanopore sequencing and assembled using the Flye software package, the assembled genome is 603 Mbp in size and comprises 5,233 fragments that were annotated using the GenSas pipeline. The annotated genome has 46,087 predicted genes corresponding to 92.0% of the expected genomic content present via BUSCO analysis. Gene ontology terms and repetitive elements are identified and discussed. An additional 94 individual plant genotypes originating from three diploid and two tetraploid Rhodes grass cultivars were short-read whole genome resequenced (WGR) to generate a single nucleotide polymorphism (SNP) resource for the species that can be used to elucidate inter- and intra-cultivar relationships across both ploidy levels. A total of 75,777 high quality SNPs were used to generate a phylogenetic tree, highlighting the diversity present within the cultivars which agreed with the known breeding history. Differentiation was observed between diploid and tetraploid cultivars. The WGR data were also used to provide insights into the nature and evolution of the tetraploid status of the species, with results largely agreeing with the published literature that the tetraploids are autotetraploid.
Collapse
Affiliation(s)
- Kellie Maybery-Reupert
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Daniel Isenegger
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Noel Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
41
|
Li J, Mao Y, Yi J, Lin M, Xu H, Cheng Y, Wu H, Liu J. Induced expression modes of genes related to Toll, Imd, and JAK/STAT signaling pathway-mediated immune response in Spodoptera frugiperda infected with Beauveria bassiana. Front Physiol 2023; 14:1249662. [PMID: 37693000 PMCID: PMC10484109 DOI: 10.3389/fphys.2023.1249662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Spodoptera frugiperda is one of the most harmful pests that attack maize and other major food crops and causes huge economic loss every year in China and other countries and regions. Beauveria bassiana, a kind of entomological fungus that is highly pathogenic to pests, is harmless to the environment and human beings. However, at present, S. frugiperda has gradually developed resistance to many pesticides and microbial insecticides. In this study, transcriptome sequencing was conducted to analyze the differences in gene expression between B. bassiana-infected and -uninfected S. frugiperda. More than 160 Gb of clean data were obtained as 150-bp paired-end reads using the Illumina HiSeq™ 4000 platform, and 2,767 and 2,892 DEGs were identified in LH36vsCK36 and LH144vsCK144, respectively. In order to explore the roles of JAK/STAT, Toll, and Imd signaling pathways in antifungal immune response in S. frugiperda against B. bassiana infection, the expression patterns of those signaling pathway-related genes in B. bassiana-infected S. frugiperda were analyzed by quantitative real-time PCR. In addition, antifungal activity experiments revealed that the suppression of JAK/STAT, Toll, and Imd signaling pathways by inhibitors could inhibit the antifungal activity to a large extent and lead to increased sensitivity of S. frugiperda to B. bassiana infection, indicating that JAK/STAT, Toll, and Imd signaling pathways and their associated genes might be involved in the synthesis and secretion of antifungal substances. This study implied that JAK/STAT, Toll, and Imd signaling pathways played crucial roles in the antifungal immune response of the S. frugiperda larvae, in which the related genes of these signaling pathways could play special regulatory roles in signal transduction. This study would improve our understanding of the molecular mechanisms underlying innate immunity and provide the basis for a wide spectrum of strategies against antifungal resistance of S. frugiperda.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Han Wu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianbai Liu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
42
|
Singh V, Singh V. Characterizing the circadian connectome of Ocimum tenuiflorum using an integrated network theoretic framework. Sci Rep 2023; 13:13108. [PMID: 37567911 PMCID: PMC10421869 DOI: 10.1038/s41598-023-40212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Across the three domains of life, circadian clock is known to regulate vital physiological processes, like, growth, development, defence etc. by anticipating environmental cues. In this work, we report an integrated network theoretic methodology comprising of random walk with restart and graphlet degree vectors to characterize genome wide core circadian clock and clock associated raw candidate proteins in a plant for which protein interaction information is available. As a case study, we have implemented this framework in Ocimum tenuiflorum (Tulsi); one of the most valuable medicinal plants that has been utilized since ancient times in the management of a large number of diseases. For that, 24 core clock (CC) proteins were mined in 56 template plant genomes to build their hidden Markov models (HMMs). These HMMs were then used to identify 24 core clock proteins in O. tenuiflorum. The local topology of the interologous Tulsi protein interaction network was explored to predict the CC associated raw candidate proteins. Statistical and biological significance of the raw candidates was determined using permutation and enrichment tests. A total of 66 putative CC associated proteins were identified and their functional annotation was performed.
Collapse
Affiliation(s)
- Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himahcal Pradesh, Dharamshala, Himahcal Pradesh, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himahcal Pradesh, Dharamshala, Himahcal Pradesh, 176206, India.
| |
Collapse
|
43
|
Gundaraniya SA, Ambalam PS, Budhwar R, Padhiyar SM, Tomar RS. Transcriptome analysis provides insights into the stress response in cultivated peanut (Arachis hypogaea L.) subjected to drought-stress. Mol Biol Rep 2023; 50:6691-6701. [PMID: 37378750 DOI: 10.1007/s11033-023-08563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Peanut (Arachis hypogaea L.) is one of the valuable oilseed crops grown in drought-prone areas worldwide. Drought severely limits peanut production and productivity significantly. METHOD AND RESULTS In order to decipher the drought tolerance mechanism in peanut under drought stress, RNA sequencing was performed in TAG - 24 (drought tolerant genotype) and JL-24 (drought susceptible genotype). Approximately 51 million raw reads were generated from four different libraries of two genotypes subjected to drought stress exerted by 20% PEG 6000 stress and control conditions, of which ~ 41 million (80.87%) filtered reads were mapped to the Arachis hypogaea L. reference genome. The transcriptome analysis detected 1,629 differentially expressed genes (DEGs), 186 genes encoding transcription factors (TFs) and 30,199 SSR among the identified DEGs. Among the differentially expressed TF encoding genes, the highest number of genes were WRKY followed by bZIP, C2H2, and MYB during drought stress. The comparative analysis between the two genotypes revealed that TAG-24 exhibits activation of certain key genes and transcriptional factors that are involved in essential biological processes. Specifically, TAG-24 showed activation of genes involved in the plant hormone signaling pathway such as PYL9, Auxin response receptor gene, and ABA. Additionally, genes related to water deprivation such as LEA protein and those involved in combating oxidative damage such as Glutathione reductase were also found to be activated in TAG-24. CONCLUSION This genome-wide transcription map, therefore, provides a valuable tool for future transcript profiling under drought stress and enriches the genetic resources available for this important oilseed crop.
Collapse
Affiliation(s)
- Srutiben A Gundaraniya
- Department of Biosciences, Saurashtra University Rajkot, Christ Campus, 360005, Vidya Niketan, Gujarat, India
| | - Padma S Ambalam
- Christ Campus, Saurashtra University, 360005, Vidya Niketan, Rajkot, Gujarat, India
| | - Roli Budhwar
- Bionivid Technology Private Limited, Bengaluru, Karnataka, India
| | - Shital M Padhiyar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, 362001, Junagadh, Gujarat, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, 362001, Junagadh, Gujarat, India.
| |
Collapse
|
44
|
Yu Q, Xiong Y, Su X, Xiong Y, Dong Z, Zhao J, Shu X, Bai S, Lei X, Yan L, Ma X. Integrating Full-Length Transcriptome and RNA Sequencing of Siberian Wildrye ( Elymus sibiricus) to Reveal Molecular Mechanisms in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2719. [PMID: 37514333 PMCID: PMC10385362 DOI: 10.3390/plants12142719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Drought is one of the most significant limiting factors affecting plant growth and development on the Qinghai-Tibet Plateau (QTP). Mining the drought-tolerant genes of the endemic perennial grass of the QTP, Siberian wildrye (Elymus sibiricus), is of great significance to creating new drought-resistant varieties which can be used in the development of grassland livestock and restoring natural grassland projects in the QTP. To investigate the transcriptomic responsiveness of E. sibiricus to drought stress, PEG-induced short- and long-term drought stress was applied to two Siberian wildrye genotypes (drought-tolerant and drought-sensitive accessions), followed by third- and second-generation transcriptome sequencing analysis. A total of 40,708 isoforms were detected, of which 10,659 differentially expressed genes (DEGs) were common to both genotypes. There were 2107 and 2498 unique DEGs in the drought-tolerant and drought-sensitive genotypes, respectively. Additionally, 2798 and 1850 DEGs were identified in the drought-tolerant genotype only under short- and long-term conditions, respectively. DEGs numbering 1641 and 1330 were identified in the drought-sensitive genotype only under short- and long-term conditions, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that all the DEGs responding to drought stress in E. sibiricus were mainly associated with the mitogen-activated protein kinase (MAKP) signaling pathway, plant hormone signal transduction, the linoleic acid metabolism pathway, the ribosome pathway, and plant circadian rhythms. In addition, Nitrate transporter 1/Peptide transporter family protein 3.1 (NPF3.1) and Auxin/Indole-3-Acetic Acid (Aux/IAA) family protein 31(IAA31) also played an important role in helping E. sibiricus resist drought. This study used transcriptomics to investigate how E. sibiricus responds to drought stress, and may provide genetic resources and references for research into the molecular mechanisms of drought resistance in native perennial grasses and for breeding drought-tolerant varieties.
Collapse
Affiliation(s)
- Qingqing Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Su
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Shu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
45
|
Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE, Swamy RAR, Namuddu A, Maslen GL, Mugerwa H, Armean IM, Haggerty L, Martin FJ, Malka O, Santos-Garcia D, Juravel K, Morin S, Stephens ME, Muhindira PV, Kersey PJ, Maruthi MN, Omongo CA, Navas-Castillo J, Fiallo-Olivé E, Mohammed IU, Wang HL, Onyeka J, Alicai T, Colvin J. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics 2023; 24:408. [PMID: 37468834 DOI: 10.1186/s12864-023-09474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Collapse
Affiliation(s)
- Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, UK.
| | - Sharon L van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- CSIRO Health and Biosecurity, Dutton Park, QLD, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tadeo Kaweesi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rwebitaba Zonal Agricultural Research and Development Institute, Fort Portal, Uganda
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Rekha A R Swamy
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Annet Namuddu
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- National Crops Resources Research Institute, Kampala, Uganda
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Imperial College London, South Kensington, London, UK
| | - Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- CNRS, Laboratory of Biometry and Evolutionary Biology UMR 5558, University of Lyon, Villeurbanne, France
- Center for Biology and Management of Populations, INRAe UMR1062, Montferrier-sur-Lez, France
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Paul Visendi Muhindira
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Royal Botanic Gardens, Kew, London, UK
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | | | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | | | - Hua-Ling Wang
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Joseph Onyeka
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
46
|
Bhatia N, Tiwari JK, Kumari C, Zinta R, Sharma S, Thakur AK, Buckseth T, Dalamu D, Singh RK, Kumar V. Screening of wild species and transcriptome profiling to identify differentially regulated genes in response to late blight resistance in potato. FRONTIERS IN PLANT SCIENCE 2023; 14:1212135. [PMID: 37502703 PMCID: PMC10368984 DOI: 10.3389/fpls.2023.1212135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Late blight (Phytophthora infestans) is a serious disease of potatoes. The aim of this study was to screen wild potato species and identify differentially expressed genes (DEGs) associated with late blight resistance. Wild potato species such as PIN45 (Solanum pinnatisectum), CPH62 (Solanum cardiophyllum), JAM07 (Solanum jamesii), MCD24 (Solanum microdontum), PLD47 (Solanum polyadenium), and cv. Kufri Bahar (control) were tested by artificial inoculation of P. infestans under controlled conditions. Transcriptomes of the leaf tissues (96 h post-inoculation) were sequenced using the Illumina platform. Statistically significant (p < 0.05) DEGs were analyzed in wild species by comparison with the control, and upregulated (>2 log2 fold change, FC) and downregulated (<-2 log2 FC) genes were identified. DEGs were functionally characterized with Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Selected genes were validated by real-time PCR analysis to confirm RNA-seq results. We identified some upregulated genes associated with late blight resistance in wild species such as cytochrome P450, proline-rich protein, MYB transcription factor MYB139, ankyrin repeat-containing protein, and LRR receptor-like serine/threonine-protein kinase in PIN45; glucosyltransferase, fructose-bisphosphate aldolase, and phytophthora-inhibited protease 1 in CPH62; steroid binding protein and cysteine proteinase 3 in JAM07; glycine-rich cell wall structural protein 1 and RING finger protein in MCD24; and cysteine proteinase 3 and major latex protein in PLD47. On the other hand, downregulated genes in these species were snakin-2 and WRKY transcription factor 3 in PIN45; lichenase and phenylalanine ammonia-lyase 1 in CPH62; metallothionein and LRR receptor-like serine/threonine-protein kinase in JAM07; UDP-glucoronosyl/UDP-glucosyl transferase family protein and steroid binding protein in MCD24; and cytoplasmic small heat shock protein class I and phosphatase PLD47. Our study identified highly resistant wild potato species and underlying genes such as disease resistance, stress response, phytohormones, and transcription factors (e.g., MYB, WRKY, AP2/ERF, and AN1) associated with late blight resistance in wild potato species.
Collapse
Affiliation(s)
- Nisha Bhatia
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jagesh Kumar Tiwari
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Division of Vegetable Improvement, Indian Council of Agricultural Research—Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Chandresh Kumari
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Rasna Zinta
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sanjeev Sharma
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ajay Kumar Thakur
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Tanuja Buckseth
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Dalamu Dalamu
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singh
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Division of Vegetable Improvement, Indian Council of Agricultural Research—Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Vinod Kumar
- Division of Crop Improvement, Indian Council of Agricultural Research—Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
47
|
Liu Q, Wang F, Xu Y, Lin C, Li X, Xu W, Wang H, Zhu Y. Molecular Mechanism Underlying the Sorghum sudanense (Piper) Stapf. Response to Osmotic Stress Determined via Single-Molecule Real-Time Sequencing and Next-Generation Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 12:2624. [PMID: 37514239 PMCID: PMC10385767 DOI: 10.3390/plants12142624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Drought, as a widespread environmental factor in nature, has become one of the most critical factors restricting the yield of forage grass. Sudangrass (Sorghum sudanense (Piper) Stapf.), as a tall and large grass, has a large biomass and is widely used as forage and biofuel. However, its growth and development are limited by drought stress. To obtain novel insight into the molecular mechanisms underlying the drought response and excavate drought tolerance genes in sudangrass, the first full-length transcriptome database of sudangrass under drought stress at different time points was constructed by combining single-molecule real-time sequencing (SMRT) and next-generation transcriptome sequencing (NGS). A total of 32.3 Gb of raw data was obtained, including 20,199 full-length transcripts with an average length of 1628 bp after assembly and correction. In total, 11,921 and 8559 up- and down-regulated differentially expressed genes were identified between the control group and plants subjected to drought stress. Additionally, 951 transcription factors belonging to 50 families and 358 alternative splicing events were found. A KEGG analysis of 158 core genes exhibiting continuous changes over time revealed that 'galactose metabolism' is a hub pathway and raffinose synthase 2 and β-fructofuranosidase are key genes in the response to drought stress. This study revealed the molecular mechanism underlying drought tolerance in sudangrass. Furthermore, the genes identified in this study provide valuable resources for further research into the response to drought stress.
Collapse
Affiliation(s)
- Qiuxu Liu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fangyan Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yalin Xu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Chaowen Lin
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiangyan Li
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Wenzhi Xu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hong Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yongqun Zhu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
48
|
Shams S, Ismaili A, Firouzabadi FN, Mumivand H, Sorkheh K. Comparative transcriptome analysis to identify putative genes involved in carvacrol biosynthesis pathway in two species of Satureja, endemic medicinal herbs of Iran. PLoS One 2023; 18:e0281351. [PMID: 37418504 PMCID: PMC10328369 DOI: 10.1371/journal.pone.0281351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/22/2023] [Indexed: 07/09/2023] Open
Abstract
Satureja is rich in phenolic monoterpenoids, mainly carvacrol, that is of interest due to diverse biological activities including antifungal and antibacterial. However, limited information is available regarding the molecular mechanisms underlying carvacrol biosynthesis and its regulation for this wonderful medicinal herb. To identify the putative genes involved in carvacrol and other monoterpene biosynthesis pathway, we generated a reference transcriptome in two endemic Satureja species of Iran, containing different yields (Satureja khuzistanica and Satureja rechingeri). Cross-species differential expression analysis was conducted between two species of Satureja. 210 and 186 transcripts related to terpenoid backbone biosynthesis were identified for S. khuzistanica and S. rechingeri, respectively. 29 differentially expressed genes (DEGs) involved in terpenoid biosynthesis were identified, and these DEGs were significantly enriched in monoterpenoid biosynthesis, diterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, carotenoid biosynthesis and ubiquinone and other terpenoid-quinone biosynthesis pathways. Expression patterns of S. khuzistanica and S. rechingeri transcripts involved in the terpenoid biosynthetic pathway were evaluated. In addition, we identified 19 differentially expressed transcription factors (such as MYC4, bHLH, and ARF18) that may control terpenoid biosynthesis. We confirmed the altered expression levels of DEGs that encode carvacrol biosynthetic enzymes using quantitative real-time PCR (qRT-PCR). This study is the first report on de novo assembly and transcriptome data analysis in Satureja which could be useful for an understanding of the main constituents of Satureja essential oil and future research in this genus.
Collapse
Affiliation(s)
- Somayeh Shams
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Hasan Mumivand
- Faculty of Agriculture, Department of Horticultural Science, Lorestan University, Khorramabad, Iran
| | - Karim Sorkheh
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
49
|
Haider M, Schilling MP, Moest MH, Steiner FM, Schlick‐Steiner BC, Arthofer W. Evolutionary history of an Alpine Archaeognath ( Machilis pallida): Insights from different variant. Ecol Evol 2023; 13:e10227. [PMID: 37404697 PMCID: PMC10316371 DOI: 10.1002/ece3.10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
Reconstruction of species histories is a central aspect of evolutionary biology. Patterns of genetic variation within and among populations can be leveraged to elucidate evolutionary processes and demographic histories. However, interpreting genetic signatures and unraveling the contributing processes can be challenging, in particular for non-model organisms with complex reproductive modes and genome organization. One way forward is the combined consideration of patterns revealed by different molecular markers (nuclear vs. mitochondrial) and types of variants (common vs. rare) that differ in their age, mode, and rate of evolution. Here, we applied this approach to RNAseq data generated for Machilis pallida (Archaeognatha), an Alpine jumping bristletail considered parthenogenetic and triploid. We generated de novo transcriptome and mitochondrial assemblies to obtain high-density data to investigate patterns of mitochondrial and common and rare nuclear variation in 17 M. pallida individuals sampled from all known populations. We find that the different variant types capture distinct aspects of the evolutionary history and discuss the observed patterns in the context of parthenogenesis, polyploidy, and survival during glaciation. This study highlights the potential of different variant types to gain insights into evolutionary scenarios even from challenging but often available data and the suitability of M. pallida and the genus Machilis as a study system for the evolution of sexual strategies and polyploidization during environmental change. We also emphasize the need for further research which will be stimulated and facilitated by these newly generated resources and insights.
Collapse
Affiliation(s)
- Marlene Haider
- Department of Ecology, Molecular Ecology GroupUniversity of InnsbruckInnsbruckAustria
| | - Martin P. Schilling
- Department of Ecology, Molecular Ecology GroupUniversity of InnsbruckInnsbruckAustria
| | - Markus H. Moest
- Department of Ecology, Molecular Ecology GroupUniversity of InnsbruckInnsbruckAustria
| | - Florian M. Steiner
- Department of Ecology, Molecular Ecology GroupUniversity of InnsbruckInnsbruckAustria
| | | | - Wolfgang Arthofer
- Department of Ecology, Molecular Ecology GroupUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
50
|
Catto MA, Labadie PE, Jacobson AL, Kennedy GG, Srinivasan R, Hunt BG. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of Frankliniella fusca, a thysanopteran phytovirus vector. BMC Genomics 2023; 24:343. [PMID: 37344773 DOI: 10.1186/s12864-023-09375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/13/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.
Collapse
Affiliation(s)
- Michael A Catto
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Paul E Labadie
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University College of Agriculture, Auburn, AL, 36849, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|