1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
2
|
Morando N, Rosenzvit MC, Pando MA, Allmer J. The Role of MicroRNAs in HIV Infection. Genes (Basel) 2024; 15:574. [PMID: 38790203 PMCID: PMC11120859 DOI: 10.3390/genes15050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in regulating gene expression at the post-transcriptional level. These regulatory molecules are integral to many biological processes and have been implicated in the pathogenesis of various diseases, including Human Immunodeficiency Virus (HIV) infection. This review aims to cover the current understanding of the multifaceted roles miRNAs assume in the context of HIV infection and pathogenesis. The discourse is structured around three primary focal points: (i) elucidation of the mechanisms through which miRNAs regulate HIV replication, encompassing both direct targeting of viral transcripts and indirect modulation of host factors critical for viral replication; (ii) examination of the modulation of miRNA expression by HIV, mediated through either viral proteins or the activation of cellular pathways consequent to viral infection; and (iii) assessment of the impact of miRNAs on the immune response and the progression of disease in HIV-infected individuals. Further, this review delves into the potential utility of miRNAs as biomarkers and therapeutic agents in HIV infection, underscoring the challenges and prospects inherent to this line of inquiry. The synthesis of current evidence positions miRNAs as significant modulators of the host-virus interplay, offering promising avenues for enhancing the diagnosis, treatment, and prevention of HIV infection.
Collapse
Affiliation(s)
- Nicolas Morando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Maria A. Pando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Jens Allmer
- Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, 45479 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Vaidyanathan A, Taylor HE, Hope TJ, D'Aquila RT, Bartom ET, Hultquist JF, Peter ME. Analysis of the Contribution of 6-mer Seed Toxicity to HIV-1-Induced Cytopathicity. J Virol 2023; 97:e0065223. [PMID: 37310263 PMCID: PMC10373551 DOI: 10.1128/jvi.00652-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.
Collapse
Affiliation(s)
- Aparajitha Vaidyanathan
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Harry E. Taylor
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Thomas J. Hope
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard T. D'Aquila
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marcus E. Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Pös O, Styk J, Buglyó G, Zeman M, Lukyova L, Bernatova K, Hrckova Turnova E, Rendek T, Csók Á, Repiska V, Nagy B, Szemes T. Cross-Kingdom Interaction of miRNAs and Gut Microbiota with Non-Invasive Diagnostic and Therapeutic Implications in Colorectal Cancer. Int J Mol Sci 2023; 24:10520. [PMID: 37445698 DOI: 10.3390/ijms241310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest incidences among all types of malignant diseases, affecting millions of people worldwide. It shows slow progression, making it preventable. However, this is not the case due to shortcomings in its diagnostic and management procedure and a lack of effective non-invasive biomarkers for screening. Here, we discuss CRC-associated microRNAs (miRNAs) and gut microbial species with potential as CRC diagnostic and therapy biomarkers. We provide rich evidence of cross-kingdom miRNA-mediated interactions between the host and gut microbiome. miRNAs have emerged with the ability to shape the composition and dynamics of gut microbiota. Intestinal microbes can uptake miRNAs, which in turn influence microbial growth and provide the ability to regulate the abundance of various microbial species. In the context of CRC, targeting miRNAs could aid in manipulating the balance of the microbiota. Our findings suggest the need for correlation analysis between the composition of the gut microbiome and the miRNA expression profile.
Collapse
Affiliation(s)
- Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Michal Zeman
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - Lydia Lukyova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Kamila Bernatova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Slovgen Ltd., 841 04 Bratislava, Slovakia
| | - Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
6
|
Ruivinho C, Gama-Carvalho M. Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic. Front Genet 2023; 14:1216890. [PMID: 37415603 PMCID: PMC10322155 DOI: 10.3389/fgene.2023.1216890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
The recurring outbreaks caused by emerging RNA viruses have fostered an increased interest in the research of the mechanisms that regulate viral life cycles and the pathological outcomes associated with infections. Although interactions at the protein level are well-studied, interactions mediated by RNA molecules are less explored. RNA viruses can encode small non-coding RNAs molecules (sncRNAs), including viral miRNAs (v-miRNAs), that play important roles in modulating host immune responses and viral replication by targeting viral or host transcripts. Starting from the analysis of public databases compiling the known repertoire of viral ncRNA molecules and the evolution of publications and research interests on this topic in the wake of the COVID-19 pandemic, we provide an updated view on the current knowledge on viral sncRNAs, with a focus on v-miRNAs encoded by RNA viruses, and their mechanisms of action. We also discuss the potential of these molecules as diagnostic and prognostic biomarkers for viral infections and the development of antiviral therapies targeting v-miRNAs. This review emphasizes the importance of continued research efforts to characterize sncRNAs encoded by RNA viruses, identifies the most relevant pitfalls in the study of these molecules, and highlights the paradigm changes that have occurred in the last few years regarding their biogenesis, prevalence and functional relevance in the context of host-pathogen interactions.
Collapse
|
7
|
Mao L, Chen Y, Gu J, Zhao Y, Chen Q. Roles and mechanisms of exosomal microRNAs in viral infections. Arch Virol 2023; 168:121. [PMID: 36977948 PMCID: PMC10047465 DOI: 10.1007/s00705-023-05744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/10/2023] [Indexed: 03/30/2023]
Abstract
Exosomes are small extracellular vesicles with a diameter of 30-150 nm that originate from endosomes and fuse with the plasma membrane. They are secreted by almost all kinds of cells and can stably transfer different kinds of cargo from donor to recipient cells, thereby altering cellular functions for assisting cell-to-cell communication. Exosomes derived from virus-infected cells during viral infections are likely to contain different microRNAs (miRNAs) that can be transferred to recipient cells. Exosomes can either promote or suppress viral infections and therefore play a dual role in viral infection. In this review, we summarize the current knowledge about the role of exosomal miRNAs during infection by six important viruses (hepatitis C virus, enterovirus A71, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, and Zika virus), each of which causes a significant global public health problem. We describe how these exosomal miRNAs, including both donor-cell-derived and virus-encoded miRNAs, modulate the functions of the recipient cell. Lastly, we briefly discuss their potential value for the diagnosis and treatment of viral infections.
Collapse
Affiliation(s)
- Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Yiwen Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medicine School of Medicine, Nanjing, China
| | - Yuxue Zhao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Ramirez PW, Pantoja C, Beliakova-Bethell N. An Evaluation on the Role of Non-Coding RNA in HIV Transcription and Latency: A Review. HIV AIDS (Auckl) 2023; 15:115-134. [PMID: 36942082 PMCID: PMC10024501 DOI: 10.2147/hiv.s383347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
The existence of latent cellular reservoirs is recognized as the major barrier to an HIV cure. Reactivating and eliminating "shock and kill" or permanently silencing "block and lock" the latent HIV reservoir, as well as gene editing, remain promising approaches, but so far have proven to be only partially successful. Moreover, using latency reversing agents or "block and lock" drugs pose additional considerations, including the ability to cause cellular toxicity, a potential lack of specificity for HIV, or low potency when each agent is used alone. RNA molecules, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are becoming increasingly recognized as important regulators of gene expression. RNA-based approaches for combatting HIV latency represent a promising strategy since both miRNAs and lncRNAs are more cell-type and tissue specific than protein coding genes. Thus, a higher specificity of targeting the latent HIV reservoir with less overall cellular toxicity can likely be achieved. In this review, we summarize current knowledge about HIV gene expression regulation by miRNAs and lncRNAs encoded in the human genome, as well as regulatory molecules encoded in the HIV genome. We discuss both the transcriptional and post-transcriptional regulation of HIV gene expression to align with the current definition of latency, and describe RNA molecules that either promote HIV latency or have anti-latency properties. Finally, we provide perspectives on using each class of RNAs as potential targets for combatting HIV latency, and describe the complexity of the interactions between different RNA molecules, their protein targets, and HIV.
Collapse
Affiliation(s)
- Peter W Ramirez
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Christina Pantoja
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Diallo I, Jacob RA, Vion E, Kozak RA, Mossman K, Provost P. Altered microRNA Transcriptome in Cultured Human Airway Cells upon Infection with SARS-CoV-2. Viruses 2023; 15:v15020496. [PMID: 36851710 PMCID: PMC9962802 DOI: 10.3390/v15020496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1β, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Rajesh Abraham Jacob
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Elodie Vion
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Robert A. Kozak
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Karen Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
10
|
miRNA Pathway Alteration in Response to Non-Coding RNA Delivery in Viral Vector-Based Gene Therapy. Int J Mol Sci 2022; 23:ijms232314954. [PMID: 36499289 PMCID: PMC9741442 DOI: 10.3390/ijms232314954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Gene therapy is widely used to treat incurable disorders and has become a routine procedure in clinical practice. Since viruses can exhibit specific tropisms, effectively penetrate the cell, and are easy to use, most gene therapy approaches are based on viral delivery of genetic material. However, viral vectors have some disadvantages, such as immune response and cytotoxicity induced by a disturbance of cell metabolism, including miRNA pathways that are an important part of transcription regulation. Therefore, any viral-based gene therapy approach involves the evaluation of side effects and safety. It is possible for such effects to be caused either by the viral vectors themselves or by the delivered genetic material. Many gene therapy techniques use non-coding RNA delivery as an effective agent for gene expression regulation, with the risk of cellular miRNA pathways being affected due to the nature of the non-coding RNAs. This review describes the effect of viral vector entry and non-coding RNA delivery by these vectors on miRNA signaling pathways.
Collapse
|
11
|
Joshi N, Chandane Tak M, Mukherjee A. The involvement of microRNAs in HCV and HIV infection. Ther Adv Vaccines Immunother 2022; 10:25151355221106104. [PMID: 35832725 PMCID: PMC9272158 DOI: 10.1177/25151355221106104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Approximately 2.3 million people are suffering from human immunodeficiency virus (HIV)/hepatitis C virus (HCV) co-infection worldwide. Faster disease progression and increased mortality rates during the HIV/HCV co-infection have become global health concerns. Effective therapeutics against co-infection and complete infection eradication has become a mandatory requirement. The study of small non-coding RNAs in cellular processes and viral infection has so far been beneficial in various terms. Currently, microRNAs are an influential candidate for disease diagnosis and treatment. Dysregulation in miRNA expression can lead to unfavorable outcomes; hence, this exact inevitable nature has made various studies a focal point. A considerable improvement in comprehending HIV and HCV mono-infection pathogenesis is seen using miRNAs. The prominent reason behind HIV/HCV co-infection is seen to be their standard route of transmission, while some pieces of evidence also suspect viral interplay between having a role in increased viral infection. This review highlights the involvement of microRNAs in HIV/HCV co-infection, along with their contribution in HIV mono- and HCV mono-infection. We also discuss miRNAs that carry the potentiality of becoming a biomarker for viral infection and early disease progression.
Collapse
Affiliation(s)
- Nicky Joshi
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | | | - Anupam Mukherjee
- Scientist D & RAMANUJAN Fellow, Division of Virology, ICMR-National AIDS Research Institute, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune 411026, Maharashtra, India
| |
Collapse
|
12
|
Diallo I, Husseini Z, Guellal S, Vion E, Ho J, Kozak RA, Kobinger GP, Provost P. Ebola Virus Encodes Two microRNAs in Huh7-Infected Cells. Int J Mol Sci 2022; 23:ijms23095228. [PMID: 35563619 PMCID: PMC9106010 DOI: 10.3390/ijms23095228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene regulatory molecules involved in a broad range of cellular activities. Although the existence and functions of miRNAs are clearly defined and well established in eukaryotes, this is not always the case for those of viral origin. Indeed, the existence of viral miRNAs is the subject of intense controversy, especially those of RNA viruses. Here, we characterized the miRNA transcriptome of cultured human liver cells infected or not with either of the two Ebola virus (EBOV) variants: Mayinga or Makona; or with Reston virus (RESTV). Bioinformatic analyses revealed the presence of two EBOV-encoded miRNAs, miR-MAY-251 and miR-MAK-403, originating from the EBOV Mayinga and Makona variants, respectively. From the miRDB database, miR-MAY-251 and miR-MAK-403 displayed on average more than 700 potential human host target candidates, 25% of which had a confidence score higher than 80%. By RT-qPCR and dual luciferase assays, we assessed the potential regulatory effect of these two EBOV miRNAs on selected host mRNA targets. Further analysis of Panther pathways unveiled that these two EBOV miRNAs, in addition to general regulatory functions, can potentially target genes involved in the hemorrhagic phenotype, regulation of viral replication and modulation of host immune defense.
Collapse
Affiliation(s)
- Idrissa Diallo
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Zeinab Husseini
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Sara Guellal
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Elodie Vion
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Jeffrey Ho
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Robert A. Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada;
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA;
| | - Patrick Provost
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
13
|
ALV-miRNA-p19-01 Promotes Viral Replication via Targeting Dual Specificity Phosphatase 6. Viruses 2022; 14:v14040805. [PMID: 35458535 PMCID: PMC9024826 DOI: 10.3390/v14040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of regulatory noncoding RNAs, serving as major regulators with a sequence-specific manner in multifarious biological processes. Although a series of viral families have been proved to encode miRNAs, few reports were available regarding the function of ALV-J-encoded miRNA. Here, we reported a novel miRNA (designated ALV-miRNA-p19-01) in ALV-J-infected DF-1 cells. We found that ALV-miRNA-p19-01 is encoded by the genome of the ALV-J SCAU1903 strain (located at nucleotides site 779 to 801) in a classic miRNA biogenesis manner. The transfection of DF-1 cells with ALV-miRNA-p19-01 enhanced ALV-J replication, while the blockage of ALV-miRNA-p19-01 suppressed ALV-J replication. Furthermore, our data showed that ALV-miRNA-p19-01 promotes ALV-J replication by directly targeting the cellular gene dual specificity phosphatase 6 through regulating ERK2 activity.
Collapse
|
14
|
Nanbo A, Furuyama W, Lin Z. RNA Virus-Encoded miRNAs: Current Insights and Future Challenges. Front Microbiol 2021; 12:679210. [PMID: 34248890 PMCID: PMC8266288 DOI: 10.3389/fmicb.2021.679210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate eukaryotic gene expression at the post-transcriptional level and affect a wide range of biological processes. Over the past two decades, numerous virus-encoded miRNAs have been identified. Some of them are crucial for viral replication, whereas others can help immune evasion. Recent sequencing-based bioinformatics methods have helped identify many novel miRNAs, which are encoded by RNA viruses. Unlike the well-characterized DNA virus-encoded miRNAs, the role of RNA virus-encoded miRNAs remains controversial. In this review, we first describe the current knowledge of miRNAs encoded by various RNA viruses, including newly emerging viruses. Next, we discuss how RNA virus-encoded miRNAs might facilitate viral replication, immunoevasion, and persistence in their hosts. Last, we briefly discuss the challenges in the experimental methodologies and potential applications of miRNAs for diagnosis and therapeutics.
Collapse
Affiliation(s)
- Asuka Nanbo
- Molecular and Cellular Virology, Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Wakako Furuyama
- Molecular and Cellular Virology, Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Zhen Lin
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| |
Collapse
|
15
|
Abel T, Moodley J, Naicker T. The Involvement of MicroRNAs in SARS-CoV-2 Infection Comorbid with HIV-Associated Preeclampsia. Curr Hypertens Rep 2021; 23:20. [PMID: 33847825 PMCID: PMC8042355 DOI: 10.1007/s11906-021-01138-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review This review investigated the potential role of microRNAs (miRNAs) in the synergy of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, preeclampsia (PE), and human immunodeficiency virus (HIV) infection. Maternal health is a great concern when treating pregnant women fighting this triad of diseases, which is highly prevalent in South Africa. MicroRNAs are involved in fine-tuning of physiological processes. Disruptions to the balance of this minute protein can lead to various physiological changes that are sometimes pathological. Recent Findings MicroRNAs have recently been implicated in PE and have been linked to the anti-angiogenic imbalance evident in PE. Recent in silico studies have identified potential host miRNAs with anti-viral properties against SARS-CoV-2 infection. Studies have demonstrated dysregulated expression of several miRNAs in HIV-1 infection along with the ability of HIV-1 to downregulate anti-viral host microRNAs. Summary This review has highlighted the significant gap in literature on the potential of miRNAs in women with HIV-associated PE in synergy with the novel SARS-CoV-2 infection. In addition, this review has provided evidence of the critical role that the epigenetic regulatory mechanism of miRNA plays in viral infections and PE, thereby providing a foundation for further research investigating the potential of therapeutic miRNA development with fewer side-effects for pregnant women.
Collapse
Affiliation(s)
- Tashlen Abel
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics & Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
16
|
Kim Y, Mensah GA, Al Sharif S, Pinto DO, Branscome H, Yelamanchili SV, Cowen M, Erickson J, Khatkar P, Mahieux R, Kashanchi F. Extracellular Vesicles from Infected Cells Are Released Prior to Virion Release. Cells 2021; 10:cells10040781. [PMID: 33916140 PMCID: PMC8066806 DOI: 10.3390/cells10040781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Here, we have attempted to address the timing of EV and virion release from virally infected cells. Uninfected (CEM), HIV-1-infected (J1.1), and human T cell leukemia virus-1 (HTLV-1)-infected (HUT102) cells were synchronized in G0. Viral latency was reversed by increasing gene expression with the addition of serum-rich media and inducers. Supernatants and cell pellets were collected post-induction at different timepoints and assayed for extracellular vesicle (EV) and autophagy markers; and for viral proteins and RNAs. Tetraspanins and autophagy-related proteins were found to be differentially secreted in HIV-1- and HTLV-1-infected cells when compared with uninfected controls. HIV-1 proteins were present at 6 h and their production increased up to 24 h. HTLV-1 proteins peaked at 6 h and plateaued. HIV-1 and HTLV-1 RNA production correlated with viral protein expression. Nanoparticle tracking analysis (NTA) showed increase of EV concentration over time in both uninfected and infected samples. Finally, the HIV-1 supernatant from the 6-h samples was found not to be infectious; however, the virus from the 24-h samples was successfully rescued and infectious. Overall, our data indicate that EV release may occur prior to viral release from infected cells, thereby implicating a potentially significant effect of EVs on uninfected recipient cells prior to subsequent viral infection and spread.
Collapse
Affiliation(s)
- Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Gifty A. Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, Ecole Normale Superieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, 69007 Lyon, France;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
- Correspondence: ; Tel.: +703-993-9160; Fax: +703-993-7022
| |
Collapse
|
17
|
Manfredonia I, Incarnato D. Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies. Biochem Soc Trans 2021; 49:341-352. [PMID: 33367597 PMCID: PMC7925004 DOI: 10.1042/bst20200670] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Coronaviruses (CoV) are positive-sense single-stranded RNA viruses, harboring the largest viral RNA genomes known to date. Apart from the primary sequence encoding for all the viral proteins needed for the generation of new viral particles, certain regions of CoV genomes are known to fold into stable structures, controlling several aspects of CoV life cycle, from the regulation of the discontinuous transcription of subgenomic mRNAs, to the packaging of the genome into new virions. Here we review the current knowledge on CoV RNA structures, discussing it in light of the most recent discoveries made possible by analyses of the SARS-CoV-2 genome.
Collapse
Affiliation(s)
- Ilaria Manfredonia
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
18
|
Zhan S, Wang Y, Chen X. RNA virus-encoded microRNAs: biogenesis, functions and perspectives on application. ACTA ACUST UNITED AC 2020; 2:15. [PMID: 33209991 PMCID: PMC7548135 DOI: 10.1186/s41544-020-00056-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression at the posttranscriptional level and play a crucial role in development and many diseases. The discovery of miRNAs has greatly expanded our understanding of the intricate scenario of genome-wide regulation. Over the last two decades, hundreds of virus-encoded miRNAs have been identified, most of which are from DNA viruses. Although the number of reported RNA virus-derived miRNAs is increasing, current knowledge of their roles in physiological and pathological processes has remained lacking. In this review, we discuss the biogenesis and biological functions of RNA virus- encoded miRNAs and their proposed roles in virus-host interactions and further underscore their potential value in the diagnosis and treatment of viral diseases.
Collapse
Affiliation(s)
- Shoubin Zhan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Yanbo Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Xi Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
19
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
20
|
Komori C, Takahashi T, Nakano Y, Ui-Tei K. TRBP-Dicer interaction may enhance HIV-1 TAR RNA translation via TAR RNA processing, repressing host-cell apoptosis. Biol Open 2020; 9:bio050435. [PMID: 32051109 PMCID: PMC7055394 DOI: 10.1242/bio.050435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
The transactivating response (TAR) RNA-binding protein (TRBP) has been identified as a double-stranded RNA (dsRNA)-binding protein, which associates with a stem-loop region known as the TAR element in human immunodeficiency virus-1 (HIV-1). However, TRBP is also known to be an enhancer of RNA silencing, interacting with Dicer, an enzyme that belongs to the RNase III family. Dicer cleaves long dsRNA into small dsRNA fragments called small interfering RNA or microRNA (miRNA) to mediate RNA silencing. During HIV-1 infection, TAR RNA-mediated translation is suppressed by the secondary structure of 5'UTR TAR RNA. However, TRBP binding to TAR RNA relieves its inhibitory action of translation and Dicer processes HIV-1 TAR RNA to generate TAR miRNA. However, whether the interaction between TRBP and Dicer is necessary for TAR RNA translation or TAR miRNA processing remains unclear. In this study, we constructed TRBP mutants that were unable to interact with Dicer by introducing mutations into amino acid residues necessary for the interaction. Furthermore, we established cell lines expressing such TRBP mutants. Then, we revealed that the TRBP-Dicer interaction is essential for both the TAR-containing RNA translation and the TAR miRNA processing in HIV-1.
Collapse
Affiliation(s)
- Chiaki Komori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Tomoko Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Yuko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwano-ha, Chiba 277-8561, Japan
| |
Collapse
|
21
|
Mishra R, Kumar A, Ingle H, Kumar H. The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Front Immunol 2020; 10:3079. [PMID: 32038626 PMCID: PMC6989438 DOI: 10.3389/fimmu.2019.03079] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are short non-coding RNAs that play a crucial role in the regulation of gene expression during cellular processes. The host-encoded miRNAs are known to modulate the antiviral defense during viral infection. In the last decade, multiple DNA and RNA viruses have been shown to produce miRNAs known as viral miRNAs (v-miRNAs) so as to evade the host immune response. In this review, we highlight the origin and biogenesis of viral miRNAs during the viral lifecycle. We also explore the role of viral miRNAs in immune evasion and hence in maintaining chronic infection and disease. Finally, we offer insights into the underexplored role of viral miRNAs as potential targets for developing therapeutics for treating complex viral diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Withers JB, Mondol V, Pawlica P, Rosa-Mercado NA, Tycowski KT, Ghasempur S, Torabi SF, Steitz JA. Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annu Rev Virol 2019; 6:297-317. [PMID: 31039329 PMCID: PMC6768742 DOI: 10.1146/annurev-virology-092818-015811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Like their host cells, many viruses express noncoding RNAs (ncRNAs). Despite the technical challenge of ascribing function to ncRNAs, diverse biological roles for virally expressed ncRNAs have been described, including regulation of viral replication, modulation of host gene expression, host immune evasion, cellular survival, and cellular transformation. Insights into conserved interactions between viral ncRNAs and host cell machinery frequently lead to novel findings concerning host cell biology. In this review, we discuss the functions and biogenesis of ncRNAs produced by animal viruses. Specifically, we describe noncanonical pathways of microRNA (miRNA) biogenesis and novel mechanisms used by viruses to manipulate miRNA and messenger RNA stability. We also highlight recent advances in understanding the function of viral long ncRNAs and circular RNAs.
Collapse
Affiliation(s)
- Johanna B Withers
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Vanessa Mondol
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Salehe Ghasempur
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Seyed F Torabi
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
23
|
Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral-host interactions: Thinking outside the cell. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1535. [PMID: 30963709 PMCID: PMC6617787 DOI: 10.1002/wrna.1535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Small RNAs and their associated RNA interference (RNAi) pathways underpin diverse mechanisms of gene regulation and genome defense across all three kingdoms of life and are integral to virus-host interactions. In plants, fungi and many animals, an ancestral RNAi pathway exists as a host defense mechanism whereby viral double-stranded RNA is processed to small RNAs that enable recognition and degradation of the virus. While this antiviral RNAi pathway is not generally thought to be present in mammals, other RNAi mechanisms can influence infection through both viral- and host-derived small RNAs. Furthermore, a burgeoning body of data suggests that small RNAs in mammals can function in a non-cell autonomous manner to play various roles in cell-to-cell communication and disease through their transport in extracellular vesicles. While vesicular small RNAs have not been proposed as an antiviral defense pathway per se, there is increasing evidence that the export of host- or viral-derived RNAs from infected cells can influence various aspects of the infection process. This review discusses the current knowledge of extracellular RNA functions in viral infection and the technical challenges surrounding this field of research. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adelina Rosca
- Department of VirologyCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
24
|
Chavali SS, Bonn-Breach R, Wedekind JE. Face-time with TAR: Portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. J Biol Chem 2019; 294:9326-9341. [PMID: 31080171 DOI: 10.1074/jbc.rev119.006860] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small molecules and short peptides that potently and selectively bind RNA are rare, making the molecular structures of these complexes highly exceptional. Accordingly, several recent investigations have provided unprecedented structural insights into how peptides and proteins recognize the HIV-1 transactivation response (TAR) element, a 59-nucleotide-long, noncoding RNA segment in the 5' long terminal repeat region of viral transcripts. Here, we offer an integrated perspective on these advances by describing earlier progress on TAR binding to small molecules, and by drawing parallels to recent successes in the identification of compounds that target the hepatitis C virus internal ribosome entry site (IRES) and the flavin-mononucleotide riboswitch. We relate this work to recent progress that pinpoints specific determinants of TAR recognition by: (i) viral Tat proteins, (ii) an innovative lab-evolved TAR-binding protein, and (iii) an ultrahigh-affinity cyclic peptide. New structural details are used to model the TAR-Tat-super-elongation complex (SEC) that is essential for efficient viral transcription and represents a focal point for antiviral drug design. A key prediction is that the Tat transactivation domain makes modest contacts with the TAR apical loop, whereas its arginine-rich motif spans the entire length of the TAR major groove. This expansive interface has significant implications for drug discovery and design, and it further suggests that future lab-evolved proteins could be deployed to discover steric restriction points that block Tat-mediated recruitment of the host SEC to HIV-1 TAR.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Rachel Bonn-Breach
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E Wedekind
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
25
|
Zhang Y, Zhang H. RNAa Induced by TATA Box-Targeting MicroRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 28639194 DOI: 10.1007/978-981-10-4310-9_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies reveal that some nuclear microRNAs (miRNA) and synthesized siRNAs target gene promoters to activate gene transcription (RNAa). Interestingly, our group identified a novel HIV-1-encoded miRNA, miR-H3, which targets specifically the core promoter TATA box of HIV-1 and activates viral gene expression. Depletion of miR-H3 significantly impaired the replication of HIV-1. miR-H3 mimics could activate viruses from CD4+ T cells isolated from patients receiving suppressive highly active antiretroviral therapy, which is very intriguing for reducing HIV-1 latent reservoir. Further study revealed that many cellular miRNAs also function like miR-H3. For instance, let-7i targets the TATA box of the interleukin-2 (IL-2) promoter and upregulates IL-2 expression in T-lymphocytes. In RNAa induced by TATA box-targeting miRNAs, Argonaute (AGO) proteins are needed, but there is no evidence for the involvement of promoter-associated transcripts or epigenetic modifications. We propose that the binding of small RNA-AGO complex to TATA box could facilitate the assembly of RNA Polymerase II transcription preinitiation complex. In addition, synthesized small RNAs targeting TATA box can also efficiently activate transcription of interested genes, such as insulin, IL-2, and c-Myc. The discovery of RNAa induced by TATA box-targeting miRNA provides an easy-to-use tool for activating gene expression.
Collapse
Affiliation(s)
- Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
26
|
Provost P. Platelet MicroRNAs. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Andrews RJ, Roche J, Moss WN. ScanFold: an approach for genome-wide discovery of local RNA structural elements-applications to Zika virus and HIV. PeerJ 2018; 6:e6136. [PMID: 30627482 PMCID: PMC6317755 DOI: 10.7717/peerj.6136] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/15/2018] [Indexed: 12/24/2022] Open
Abstract
In addition to encoding RNA primary structures, genomes also encode RNA secondary and tertiary structures that play roles in gene regulation and, in the case of RNA viruses, genome replication. Methods for the identification of functional RNA structures in genomes typically rely on scanning analysis windows, where multiple partially-overlapping windows are used to predict RNA structures and folding metrics to deduce regions likely to form functional structure. Separate structural models are produced for each window, where the step size can greatly affect the returned model. This makes deducing unique local structures challenging, as the same nucleotides in each window can be alternatively base paired. We are presenting here a new approach where all base pairs from analysis windows are considered and weighted by favorable folding. This results in unique base pairing throughout the genome and the generation of local regions/structures that can be ranked by their propensity to form unusually thermodynamically stable folds. We applied this approach to the Zika virus (ZIKV) and HIV-1 genomes. ZIKV is linked to a variety of neurological ailments including microcephaly and Guillain-Barré syndrome and its (+)-sense RNA genome encodes two, previously described, functionally essential structured RNA regions. HIV, the cause of AIDS, contains multiple functional RNA motifs in its genome, which have been extensively studied. Our approach is able to successfully identify and model the structures of known functional motifs in both viruses, while also finding additional regions likely to form functional structures. All data have been archived at the RNAStructuromeDB (www.structurome.bb.iastate.edu), a repository of RNA folding data for humans and their pathogens.
Collapse
Affiliation(s)
- Ryan J. Andrews
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Julien Roche
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Walter N. Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018; 10:v10080440. [PMID: 30126238 PMCID: PMC6116274 DOI: 10.3390/v10080440] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
30
|
Belashov IA, Crawford DW, Cavender CE, Dai P, Beardslee PC, Mathews DH, Pentelute BL, McNaughton BR, Wedekind JE. Structure of HIV TAR in complex with a Lab-Evolved RRM provides insight into duplex RNA recognition and synthesis of a constrained peptide that impairs transcription. Nucleic Acids Res 2018; 46:6401-6415. [PMID: 29961805 PMCID: PMC6061845 DOI: 10.1093/nar/gky529] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Natural and lab-evolved proteins often recognize their RNA partners with exquisite affinity. Structural analysis of such complexes can offer valuable insight into sequence-selective recognition that can be exploited to alter biological function. Here, we describe the structure of a lab-evolved RNA recognition motif (RRM) bound to the HIV-1 trans-activation response (TAR) RNA element at 1.80 Å-resolution. The complex reveals a trio of arginines in an evolved β2-β3 loop penetrating deeply into the major groove to read conserved guanines while simultaneously forming cation-π and salt-bridge contacts. The observation that the evolved RRM engages TAR within a double-stranded stem is atypical compared to most RRMs. Mutagenesis, thermodynamic analysis and molecular dynamics validate the atypical binding mode and quantify molecular contributions that support the exceptionally tight binding of the TAR-protein complex (KD,App of 2.5 ± 0.1 nM). These findings led to the hypothesis that the β2-β3 loop can function as a standalone TAR-recognition module. Indeed, short constrained peptides comprising the β2-β3 loop still bind TAR (KD,App of 1.8 ± 0.5 μM) and significantly weaken TAR-dependent transcription. Our results provide a detailed understanding of TAR molecular recognition and reveal that a lab-evolved protein can be reduced to a minimal RNA-binding peptide.
Collapse
Affiliation(s)
- Ivan A Belashov
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - David W Crawford
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Chapin E Cavender
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Peng Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrick C Beardslee
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Brian R McNaughton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
31
|
DeMarino C, Pleet ML, Cowen M, Barclay RA, Akpamagbo Y, Erickson J, Ndembi N, Charurat M, Jumare J, Bwala S, Alabi P, Hogan M, Gupta A, Noren Hooten N, Evans MK, Lepene B, Zhou W, Caputi M, Romerio F, Royal W, El-Hage N, Liotta LA, Kashanchi F. Antiretroviral Drugs Alter the Content of Extracellular Vesicles from HIV-1-Infected Cells. Sci Rep 2018; 8:7653. [PMID: 29769566 PMCID: PMC5955991 DOI: 10.1038/s41598-018-25943-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/01/2018] [Indexed: 01/09/2023] Open
Abstract
To date, the most effective treatment of HIV-1 is a combination antiretroviral therapy (cART), which reduces viral replication and reverses pathology. We investigated the effect of cART (RT and protease inhibitors) on the content of extracellular vesicles (EVs) released from HIV-1-infected cells. We have previously shown that EVs contain non-coding HIV-1 RNA, which can elicit responses in recipient cells. In this manuscript, we show that TAR RNA levels demonstrate little change with the addition of cART treatment in cell lines, primary macrophages, and patient biofluids. We determined possible mechanisms involved in the selective packaging of HIV-1 RNA into EVs, specifically an increase in EV-associated hnRNP A2/B1. More recent experiments have shown that several other FDA-approved drugs have the ability to alter the content of exosomes released from HIV-1-infected cells. These findings on cART-altered EV content can also be applied to general viral inhibitors (interferons) which are used to treat other chronic infections. Additionally, we describe unique mechanisms of ESCRT pathway manipulation by antivirals, specifically the targeting of VPS4. Collectively, these data imply that, despite antiretroviral therapy, EVs containing viral products are continually released and may cause neurocognitive and immunological dysfunction.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Yao Akpamagbo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Nicaise Ndembi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Manhattan Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jibreel Jumare
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunday Bwala
- National Hospital, Abuja, Federal Capital Territory, Nigeria
| | - Peter Alabi
- University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Max Hogan
- Systems Biosciences (SBI), Palo Alto, California, USA
| | - Archana Gupta
- Systems Biosciences (SBI), Palo Alto, California, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | | | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Fabio Romerio
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Walter Royal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
32
|
The Role of miRNAs in Virus-Mediated Oncogenesis. Int J Mol Sci 2018; 19:ijms19041217. [PMID: 29673190 PMCID: PMC5979478 DOI: 10.3390/ijms19041217] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
To date, viruses are reported to be responsible for more than 15% of all tumors worldwide. The oncogenesis could be influenced directly by the activity of viral oncoproteins or by the chronic infection or inflammation. The group of human oncoviruses includes Epstein–Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human herpesvirus 8 (HHV-8) or polyomaviruses, and transregulating retroviruses such as HIV or HTLV-1. Most of these viruses express short noncoding RNAs called miRNAs to regulate their own gene expression or to influence host gene expression and thus contribute to the carcinogenic processes. In this review, we will focus on oncogenic viruses and summarize the role of both types of miRNAs, viral as well as host’s, in the oncogenesis.
Collapse
|
33
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|
34
|
Zhang X, Ma X, Jing S, Zhang H, Zhang Y. Non-coding RNAs and retroviruses. Retrovirology 2018; 15:20. [PMID: 29426337 PMCID: PMC5807749 DOI: 10.1186/s12977-018-0403-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Retroviruses can cause severe diseases such as cancer and acquired immunodeficiency syndrome. A unique feature in the life cycle of retroviruses is that their RNA genome is reverse transcribed into double-stranded DNA, which then integrates into the host genome to exploit the host machinery for their benefits. The metazoan genome encodes numerous non-coding RNAs (ncRNA), which act as key regulators in essential cellular processes such as antiviral response. The development of next-generation sequencing technology has greatly accelerated the detection of ncRNAs from viruses and their hosts. ncRNAs have been shown to play important roles in the retroviral life cycle and virus–host interactions. Here, we review recent advances in ncRNA studies with special focus on those have changed our understanding of retroviruses or provided novel strategies to treat retrovirus-related diseases. Many ncRNAs such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are involved in the late phase of the retroviral life cycle. However, their roles in the early phase of viral replication merit further investigations.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuliang Jing
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yijun Zhang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
35
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
36
|
Khoury G, Darcis G, Lee MY, Bouchat S, Van Driessche B, Purcell DFJ, Van Lint C. The Molecular Biology of HIV Latency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:187-212. [PMID: 30030794 DOI: 10.1007/978-981-13-0484-2_8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
HIV remains incurable due to the existence of a reservoir of cells that harbor intact integrated genomes of the virus in the absence of viral replication. This population of infected cells remains invisible to the immune system and is not targeted by the drugs used in the current antiretroviral therapies (cART). Reversal of latency by the use of inhibitors of chromatin-remodeling enzymes has been studied extensively in an attempt to purge this reservoir of latent HIV but has thus far not shown any success in clinical trials. The full complexity of latent HIV infection has still not been appreciated, and the gaps in knowledge prevent development of adequate small-molecule compounds that can effectively perturb this reservoir. In this review, we will examine the role of epigenetic silencing of HIV transcription, posttranscriptional regulation, and mRNA processing in promoting HIV-1 latency.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Gilles Darcis
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michelle Y Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
37
|
Scarborough RJ, Gatignol A. RNA Interference Therapies for an HIV-1 Functional Cure. Viruses 2017; 10:E8. [PMID: 29280961 PMCID: PMC5795421 DOI: 10.3390/v10010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.
Collapse
Affiliation(s)
- Robert J Scarborough
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A0G4, Canada.
| |
Collapse
|
38
|
Eilebrecht S, Benecke BJ, Benecke AG. Latent HIV-1 TAR Regulates 7SK-responsive P-TEFb Target Genes and Targets Cellular Immune Responses in the Absence of Tat. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:313-323. [PMID: 29037489 PMCID: PMC5673678 DOI: 10.1016/j.gpb.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 01/04/2023]
Abstract
The transactivating response element (TAR) structure of the nascent HIV-1 transcript is critically involved in the recruitment of inactive positive transcription elongation factor b (P-TEFb) to the promoter proximal paused RNA polymerase II. The viral transactivator Tat is responsible for subsequent P-TEFb activation in order to start efficient viral transcription elongation. In the absence of the viral transactivator of transcription (Tat), e.g., during latency or in early stages of HIV transcription, TAR mediates an interaction of P-TEFb with its inhibitor hexamethylene bis-acetamide-inducible protein 1 (HEXIM1), keeping P-TEFb in its inactive form. In this study, we address the function of HIV-1 TAR in the absence of Tat by analyzing consequences of HIV-1 TAR overexpression on host cellular gene expression. An RNA chimera consisting of Epstein-Barr virus-expressed RNA 2 (EBER2) and HIV-1 TAR was developed to assure robust overexpression of TAR in HEK293 cells. The overexpression results in differential expression of more than 800 human genes. A significant proportion of these genes is involved in the suppression of cellular immune responses, including a significant set of 7SK-responsive P-TEFb target genes. Our findings identify a novel role for HIV-1 TAR in the absence of Tat, involving the interference with host cellular immune responses by targeting 7SK RNA-mediated gene expression and P-TEFb inactivation.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- CNRS UMR8246, Université Pierre et Marie Curie, Paris 75005, France; ACSIOMA GmbH, Technologiezentrum Ruhr, Bochum 44799, Germany.
| | | | - Arndt G Benecke
- CNRS UMR8246, Université Pierre et Marie Curie, Paris 75005, France; Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Fruci D, Rota R, Gallo A. The Role of HCMV and HIV-1 MicroRNAs: Processing, and Mechanisms of Action during Viral Infection. Front Microbiol 2017; 8:689. [PMID: 28484438 PMCID: PMC5399795 DOI: 10.3389/fmicb.2017.00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/04/2017] [Indexed: 11/23/2022] Open
Abstract
Viruses infect host cells releasing their genome (DNA or RNA) containing all information needed to replicate themselves. The viral genome takes control of the cells and helps the virus to evade the host immune system. Some viruses alter the functions of infected cells without killing them. In some cases infected cells lose control over normal cell proliferation and becomes cancerous. Viruses, such as HCMV and HIV-1, may leave their viral genome in the host cells for a certain period (latency) and begin to replicate when the cells are stressed causing diseases. HCMV and HIV-1 have developed multiple strategies to avoid recognition and elimination by the host’s immune system. These strategies rely on viral products that mimic specific components of the host cells to prevent immune recognition of virally infected cells. In addition to viral proteins, viruses encode short non-coding RNAs (vmiRNAs) that regulate both viral and host cellular transcripts to favor viral infection and actively curtail the host’s antiviral immune response. In this review, we will give an overview of the general functions of microRNAs generated by HCMV and HIV-1, their processing and interaction with the host’s immune system.
Collapse
Affiliation(s)
- Doriana Fruci
- Immuno-Oncology Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Rossella Rota
- Angiogenesis Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| |
Collapse
|
40
|
Darcis G, Van Driessche B, Bouchat S, Kirchhoff F, Van Lint C. Molecular Control of HIV and SIV Latency. Curr Top Microbiol Immunol 2017; 417:1-22. [PMID: 29071474 DOI: 10.1007/82_2017_74] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The HIV latent reservoirs are considered as the main hurdle to viral eradication. Numerous mechanisms lead to the establishment of HIV latency and act at the transcriptional and post-transcriptional levels. A better understanding of latency is needed in order to ultimately achieve a cure for HIV. The mechanisms underlying latency vary between patients, tissues, anatomical compartments, and cell types. From this point of view, simian immunodeficiency virus (SIV) infection and the use of nonhuman primate (NHP) models that recapitulate many aspects of HIV-associated latency establishment and disease progression are essential tools since they allow extensive tissue sampling as well as a control of infection parameters (virus type, dose, route, and time).
Collapse
Affiliation(s)
- Gilles Darcis
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041, Gosselies, Belgium.,Service des Maladies Infectieuses, Université de Liège, CHU de Liège, Domaine Universitaire du Sart-Tilman, B35, 4000, Liège, Belgium.,Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam, The Netherlands
| | - Benoit Van Driessche
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Sophie Bouchat
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Carine Van Lint
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041, Gosselies, Belgium.
| |
Collapse
|
41
|
Assays for precise quantification of total (including short) and elongated HIV-1 transcripts. J Virol Methods 2016; 242:1-8. [PMID: 28034670 DOI: 10.1016/j.jviromet.2016.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022]
Abstract
Despite intensive study, it is unclear which mechanisms are responsible for latent HIV infection in vivo. One potential mechanism is inhibition of HIV transcriptional elongation, which results in short abortive transcripts containing the trans-activation response (TAR) region. Because the relative levels of total (including short) and processive transcripts provide measures of HIV transcriptional initiation and elongation, there is a compelling need for techniques that accurately measure both. Nonetheless, prior assays for total transcripts have been semi-quantitative and have seen limited application to patient samples. This manuscript reports the validation of quantitative reverse transcription (RT) droplet digital PCR assays for measurement of total (TAR) and processive (R-U5/gag) HIV transcripts. Traditional RT priming strategies can efficiently detect the TAR region on long HIV transcripts but detect <4% of true short transcripts. The TAR assay presented here utilizes an initial polyadenylation step, which provides an accessible RT priming site and detects short and long transcripts with approximately equal efficiency (70%). By applying these assays to blood samples from 8 ART-treated HIV+ individuals, total HIV transcripts were detected at levels >10-fold higher than elongated transcripts, implying a substantial block to transcriptional elongation in vivo. This approach may be applied to other difficult-to-prime RNA targets.
Collapse
|
42
|
Weinberg MS, Morris KV. Transcriptional gene silencing in humans. Nucleic Acids Res 2016; 44:6505-17. [PMID: 27060137 PMCID: PMC5001580 DOI: 10.1093/nar/gkw139] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/21/2023] Open
Abstract
It has been over a decade since the first observation that small non-coding RNAs can functionally modulate epigenetic states in human cells to achieve functional transcriptional gene silencing (TGS). TGS is mechanistically distinct from the RNA interference (RNAi) gene-silencing pathway. TGS can result in long-term stable epigenetic modifications to gene expression that can be passed on to daughter cells during cell division, whereas RNAi does not. Early studies of TGS have been largely overlooked, overshadowed by subsequent discoveries of small RNA-directed post-TGS and RNAi. A reappraisal of early work has been brought about by recent findings in human cells where endogenous long non-coding RNAs function to regulate the epigenome. There are distinct and common overlaps between the proteins involved in small and long non-coding RNA transcriptional regulatory mechanisms, suggesting that the early studies using small non-coding RNAs to modulate transcription were making use of a previously unrecognized endogenous mechanism of RNA-directed gene regulation. Here we review how non-coding RNA plays a role in regulation of transcription and epigenetic gene silencing in human cells by revisiting these earlier studies and the mechanistic insights gained to date. We also provide a list of mammalian genes that have been shown to be transcriptionally regulated by non-coding RNAs. Lastly, we explore how TGS may serve as the basis for development of future therapeutic agents.
Collapse
Affiliation(s)
- Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, WITS 2050, South Africa HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, WITS 2050, South Africa
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA Center for Gene Therapy, City of Hope - BeckmanResearch Institute; Duarte, CA 91010, USA School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, 2033 Australia
| |
Collapse
|
43
|
Flór TB, Blom B. Pathogens Use and Abuse MicroRNAs to Deceive the Immune System. Int J Mol Sci 2016; 17:538. [PMID: 27070595 PMCID: PMC4848994 DOI: 10.3390/ijms17040538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence has demonstrated that microRNAs (miRs) play a role in the survival and amplification of viruses, bacteria and other pathogens. There are various ways in which pathogens can benefit from miR-directed alterations in protein translation and signal transduction. Members of the herpesviridae family have previously been shown to encode multiple miRs, while the production of miRs by viruses like HIV-1 remained controversial. Recently, novel techniques have facilitated the elucidation of true miR targets by establishing miR-argonaute association and the subsequent interactions with their cognate cellular mRNAs. This, in combination with miR reporter assays, has generated physiologically relevant evidence that miRs from the herpesviridae family have the potential to downregulate multiple cellular targets, which are involved in immune activation, cytokine signaling and apoptosis. In addition, viruses and bacteria have also been linked to the induction of host cellular miRs, which have the capacity to mitigate immune activation, cytokine signaling and apoptosis. Interfering with miR expression may be clinically relevant. In the case of hepatitis C infection, the cellular miR-122 is already targeted therapeutically. This not only exemplifies how important miRs can be for the survival of specific viruses, but it also delineates the potential to use miRs as drug targets. In this paper we will review the latest reports on viruses and bacteria that abuse miR regulation for their benefit, which may be of interest in the development of miR-directed therapies.
Collapse
Affiliation(s)
- Thomas B Flór
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
44
|
Poltronieri P, Sun B, Mallardo M. RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load. Curr Genomics 2016; 16:327-35. [PMID: 27047253 PMCID: PMC4763971 DOI: 10.2174/1389202916666150707160613] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 01/30/2023] Open
Abstract
The review intends to present and recapitulate the current knowledge on the roles and importance of regulatory RNAs, such as microRNAs and small interfering RNAs, RNA binding proteins and enzymes processing RNAs or activated by RNAs, in cells infected by RNA viruses. The review focuses on how non-coding RNAs are involved in RNA virus replication, pathogenesis and host response, especially in retroviruses HIV, with examples of the mechanisms of action, transcriptional regulation, and promotion of increased stability of their targets or their degradation.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- CNR-ISPA, Institute of Sciences of Food Productions, National Research Council of Italy, Lecce, Italy
| | - Binlian Sun
- Research Group of HIV Molecular Epidemiology and Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II°, Napoli, Italy
| |
Collapse
|
45
|
Piedade D, Azevedo-Pereira JM. MicroRNAs, HIV and HCV: a complex relation towards pathology. Rev Med Virol 2016; 26:197-215. [PMID: 27059433 DOI: 10.1002/rmv.1881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs are small non-coding RNAs that modulate protein production by post-transcriptional gene regulation. They impose gene expression control by interfering with mRNA translation and stability in cell cytoplasm through a mechanism involving specific binding to mRNA based on base pair complementarity. Because of their intracellular replication cycle it is no surprise that viruses evolved in a way that allows them to use microRNAs to infect, replicate and persist in host cells. Several ways of interference between virus and host-cell microRNA machinery have been described. Most of the time, viruses drastically alter host-cell microRNA expression or synthesize their own microRNA to facilitate infection and pathogenesis. HIV and HCV are two prominent examples of this complex interplay revealing how fine-tuning of microRNA expression is crucial for controlling key host pathways that allow viral infection and replication, immune escape and persistence. In this review we delve into the mechanisms underlying cellular and viral-encoded microRNA functions in the context of HIV and HCV infections. We focus on which microRNAs are differently expressed and deregulated upon viral infection and how these alterations dictate the fate of virus and cell. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
46
|
Harwig A, Jongejan A, van Kampen AHC, Berkhout B, Das AT. Tat-dependent production of an HIV-1 TAR-encoded miRNA-like small RNA. Nucleic Acids Res 2016; 44:4340-53. [PMID: 26984525 PMCID: PMC4872094 DOI: 10.1093/nar/gkw167] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Evidence is accumulating that retroviruses can produce microRNAs (miRNAs). To prevent cleavage of their RNA genome, retroviruses have to use an alternative RNA source as miRNA precursor. The transacting responsive (TAR) hairpin structure in HIV-1 RNA has been suggested as source for miRNAs, but how these small RNAs are produced without impeding virus replication remained unclear. We used deep sequencing analysis of AGO2-bound HIV-1 RNAs to demonstrate that the 3′ side of the TAR hairpin is processed into a miRNA-like small RNA. This ∼21 nt RNA product is able to repress the expression of mRNAs bearing a complementary target sequence. Analysis of the small RNAs produced by wild-type and mutant HIV-1 variants revealed that non-processive transcription from the HIV-1 LTR promoter results in the production of short TAR RNAs that serve as precursor. These TAR RNAs are cleaved by Dicer and processing is stimulated by the viral Tat protein. This biogenesis pathway differs from the canonical miRNA pathway and allows HIV-1 to produce the TAR-encoded miRNA-like molecule without cleavage of the RNA genome.
Collapse
Affiliation(s)
- Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
47
|
Li L, Feng H, Da Q, Jiang H, Chen L, Xie L, Huang Q, Xiong H, Luo F, Kang L, Zeng Y, Hu H, Hou W, Feng Y. Expression of HIV-encoded microRNA-TAR and its inhibitory effect on viral replication in human primary macrophages. Arch Virol 2016; 161:1115-23. [PMID: 26831929 DOI: 10.1007/s00705-016-2755-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
A number of virus-encoded microRNAs have been shown to play important roles in virus replication and virus-host interactions, although the expression and function of miR-TAR-3p derived from the human immunodeficiency virus type 1 (HIV-1) TAR element remain controversial. In this study, miR-TAR-3p was detected in human peripheral blood monocyte-derived macrophages (MDMs) infected by HIV-1. Overexpression of miR-TAR-3p impaired viral replication, while inhibition of miR-TAR-3p enhanced it. Additionally, miR-TAR-3p repressed viral transcription and replication by targeting the TAR element in the HIV-1 5'-LTR in a sequence-specific manner. These results confirm the presence of miR-TAR-3p in HIV-1-infected MDMs and suggest that its function might be used as a mechanism to modulate HIV-1 replication through the expression of a negative regulatory factor.
Collapse
Affiliation(s)
- Li Li
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Haimin Feng
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Qin Da
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Honglin Jiang
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Linlin Xie
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Qiuling Huang
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Hairong Xiong
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Fan Luo
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Lei Kang
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| | - Yong Feng
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| |
Collapse
|
48
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
49
|
Daniels SM, Sinck L, Ward NJ, Melendez-Peña CE, Scarborough RJ, Azar I, Rance E, Daher A, Pang KM, Rossi JJ, Gatignol A. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs. RNA Biol 2015; 12:123-35. [PMID: 25668122 DOI: 10.1080/15476286.2015.1014759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.
Collapse
Key Words
- Ago2, Argonaute-2
- EGFP, enhanced green fluorescent protein
- EMSA, electrophoresis mobility shift assay
- FL, firefly luciferase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HIV, human immunodeficiency virus
- HIV-1
- IP, immunoprecipitation
- NC, nucleocapsid
- PAGE, polyacrylamide gel electrophoresis
- RISC, RNA-Induced Silencing Complex
- RL, Renilla luciferase
- RNA interference
- RNA silencing suppressor
- RNAi, RNA interference
- RRE, Rev Response Element
- RSS, RNA silencing suppressor
- RT, reverse transcription
- Rev-Response Element RNA
- TAR RNA Binding Protein (TRBP)
- TAR, trans-activation responsive element
- TRBP, TAR RNA Binding Protein
- Trans-Activation Response Element
- UTR, untranslated region
- VA, virus-associated
- WT, wild-type
- adenovirus
- ds, double-stranded
- lentiviral vectors
- miRNA, micro RNA
- pre-miRNA, precursor miRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Sylvanne M Daniels
- a Virus-Cell Interactions Laboratory ; Lady Davis Institute for Medical Research ; Montréal , Québec , Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC, Hakami RM, Zadeh MA, Lepene B, Klase ZA, El-Hage N, Young M, Iordanskiy S, Kashanchi F. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA. J Biol Chem 2015; 291:1251-66. [PMID: 26553869 DOI: 10.1074/jbc.m115.662171] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.
Collapse
Affiliation(s)
- Gavin C Sampey
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Mohammed Saifuddin
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Angela Schwab
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Robert Barclay
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Shreya Punya
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Myung-Chul Chung
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Ramin M Hakami
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Mohammad Asad Zadeh
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | | | - Zachary A Klase
- the Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Nazira El-Hage
- the Department of Immunology, Herbert Wertheim College of Medicine, Miami, Florida 33199, and
| | - Mary Young
- the Department of Medicine, Women's Intra-Agency HIV Study, Georgetown University, Washington, D. C. 20007
| | - Sergey Iordanskiy
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110,
| | - Fatah Kashanchi
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110,
| |
Collapse
|