1
|
Xiao Q, Wang L, Wang J, Wang M, Wang DW, Ding H. A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3. Mol Metab 2024; 88:102011. [PMID: 39173944 PMCID: PMC11399561 DOI: 10.1016/j.molmet.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear. METHODS We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation. RESULTS GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes. CONCLUSIONS The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Man Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
2
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska A, Olszewski R, Rysz J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9244. [PMID: 39273193 PMCID: PMC11395304 DOI: 10.3390/ijms25179244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024] Open
Abstract
Lipid disorders increase the risk for the development of cardiometabolic disorders, including type 2 diabetes, atherosclerosis, and cardiovascular disease. Lipids levels, apart from diet, smoking, obesity, alcohol consumption, and lack of exercise, are also influenced by genetic factors. Recent studies suggested the role of long noncoding RNAs (lncRNAs) in the regulation of lipid formation and metabolism. Despite their lack of protein-coding capacity, lncRNAs are crucial regulators of various physiological and pathological processes since they affect the transcription and epigenetic chromatin remodelling. LncRNAs act as molecular signal, scaffold, decoy, enhancer, and guide molecules. This review summarises available data concerning the impact of lncRNAs on lipid levels and metabolism, as well as impact on cardiovascular disease risk. This relationship is significant because altered lipid metabolism is a well-known risk factor for cardiovascular diseases, and lncRNAs may play a crucial regulatory role. Understanding these mechanisms could pave the way for new therapeutic strategies to mitigate cardiovascular disease risk through targeted modulation of lncRNAs. The identification of dysregulated lncRNAs may pose promising candidates for therapeutic interventions, since strategies enabling the restoration of their levels could offer an effective means to impede disease progression without disrupting normal biological functions. LncRNAs may also serve as valuable biomarker candidates for various pathological states, including cardiovascular disease. However, still much remains unknown about the functions of most lncRNAs, thus extensive studies are necessary elucidate their roles in physiology, development, and disease.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Aleksandra Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Robert Olszewski
- Department of Gerontology, Public Health and Didactics, National Institute of Geriatrics, Rheumatology and Rehabilitation in Warsaw, 02-637 Warsaw, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
3
|
Xiao Q, Wang J, Wang L, Ding H. APOA1/C3/A4/A5 Gene Cluster at 11q23.3 and Lipid Metabolism Disorders: From Epigenetic Mechanisms to Clinical Practices. Biomedicines 2024; 12:1224. [PMID: 38927431 PMCID: PMC11201263 DOI: 10.3390/biomedicines12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
4
|
Tao Q, Xie J, Wu Y, Jin Y. Long non-coding RNAs as modulators and therapeutic targets in non-alcoholic fatty liver disease (NAFLD). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:506-516. [PMID: 37806343 DOI: 10.1016/j.gastrohep.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world, with epidemiological studies indicating a 25% prevalence. NAFLD is considered to be a progressive disease that progresses from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH), then to liver fibrosis, and finally to cirrhosis or hepatocellular carcinoma (HCC). Existing research has mostly elucidated the etiology of NAFLD, yet its particular molecular processes remain uncertain. Long non-coding RNAs (LncRNAs) have been linked in a wide range of biological processes in recent years, with the introduction of microarray and high-throughput sequencing technologies, and previous studies have established their tight relationship with several stages of NAFLD development. Existing studies have shown that lncRNAs can regulate the signaling pathways related to hepatic lipid metabolism, NASH, NASH-related fibrosis and HCC. This review aims to provide a basic overview of NAFLD and lncRNAs, summarize and describe the mechanisms of lncRNAs action involved in the development of NAFLD, and provide an outlook on the future of lncRNAs-based therapy for NAFLD.
Collapse
Affiliation(s)
- Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Meroni M, De Caro E, Chiappori F, Longo M, Paolini E, Mosca E, Merelli I, Lombardi R, Badiali S, Maggioni M, Orro A, Mezzelani A, Valenti L, Fracanzani AL, Dongiovanni P. Hepatic and adipose tissue transcriptome analysis highlights a commonly deregulated autophagic pathway in severe MASLD. Obesity (Silver Spring) 2024; 32:923-937. [PMID: 38439203 DOI: 10.1002/oby.23996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly ramping up due to the spread of obesity, which is characterized by expanded and dysfunctional visceral adipose tissue (VAT). Previous studies have investigated the hepatic transcriptome across MASLD, whereas few studies have focused on VAT. METHODS We performed RNA sequencing in 167 hepatic samples from patients with obesity and in a subset of 79 matched VAT samples. Circulating cathepsin D (CTSD), a lysosomal protease, was measured by ELISA, whereas the autophagy-lysosomal pathway was assessed by Western blot in hepatic and VAT samples (n = 20). RESULTS Inflammation, extracellular matrix remodeling, and mitochondrial dysfunction were upregulated in severe MASLD in both tissues, whereas autophagy and oxidative phosphorylation were reduced. Tissue comparative analysis revealed 13 deregulated genes, including CTSD, which showed the most robust diagnostic accuracy in discriminating mild and severe MASLD. CTSD expression correlated with circulating protein, whose increase was further validated in 432 histologically characterized MASLD patients, showing a high accuracy in foreseeing severe liver injury. In addition, the assessment of serum CTSD increased the performance of fibrosis 4 in diagnosing advanced disease. CONCLUSIONS By comparing the hepatic and VAT transcriptome during MASLD, we refined the concept by which CTSD may represent a potential biomarker of severe disease.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilia De Caro
- Life and Medical Sciences Institute (LIMES), University of Bonn, Germany/System Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Federica Chiappori
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Rosa Lombardi
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sara Badiali
- Department of Surgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Alessandra Mezzelani
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Adesanya O, Das D, Kalsotra A. Emerging roles of RNA-binding proteins in fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1840. [PMID: 38613185 PMCID: PMC11018357 DOI: 10.1002/wrna.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
A rampant and urgent global health issue of the 21st century is the emergence and progression of fatty liver disease (FLD), including alcoholic fatty liver disease and the more heterogenous metabolism-associated (or non-alcoholic) fatty liver disease (MAFLD/NAFLD) phenotypes. These conditions manifest as disease spectra, progressing from benign hepatic steatosis to symptomatic steatohepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma. With numerous intricately regulated molecular pathways implicated in its pathophysiology, recent data have emphasized the critical roles of RNA-binding proteins (RBPs) in the onset and development of FLD. They regulate gene transcription and post-transcriptional processes, including pre-mRNA splicing, capping, and polyadenylation, as well as mature mRNA transport, stability, and translation. RBP dysfunction at every point along the mRNA life cycle has been associated with altered lipid metabolism and cellular stress response, resulting in hepatic inflammation and fibrosis. Here, we discuss the current understanding of the role of RBPs in the post-transcriptional processes associated with FLD and highlight the possible and emerging therapeutic strategies leveraging RBP function for FLD treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Godet AC, Roussel E, Laugero N, Morfoisse F, Lacazette E, Garmy-Susini B, Prats AC. Translational control by long non-coding RNAs. Biochimie 2024; 217:42-53. [PMID: 37640229 DOI: 10.1016/j.biochi.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Long non-coding (lnc) RNAs, once considered as junk and useless, are now broadly recognized to have major functions in the cell. LncRNAs are defined as non-coding RNAs of more than 200 nucleotides, regulate all steps of gene expression. Their origin is diverse, they can arise from intronic, intergenic or overlapping region, in sense or antisense direction. LncRNAs are mainly described for their action on transcription, while their action at the translational level is more rarely cited. However, the bibliography in the field is more and more abundant. The present synopsis of lncRNAs involved in the control of translation reveals a wide field of regulation of gene expression, with at least nine distinct molecular mechanisms. Furthermore, it appears that all these lncRNAs are involved in various pathologies including cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Godet
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France; Threonin Design, 220 Chemin de Montabon, Le Touvet, France
| | - Emilie Roussel
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Nathalie Laugero
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Florent Morfoisse
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Eric Lacazette
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | | | | |
Collapse
|
8
|
Wang L, Fang X, Yang Z, Li X, Cheng M, Cheng L, Wang G, Li W, Liu L. LncRP11-675F6.3 responds to rapamycin treatment and reduces triglyceride accumulation via interacting with HK1 in hepatocytes by regulating autophagy and VLDL-related proteins. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1606-1617. [PMID: 37222534 PMCID: PMC10577451 DOI: 10.3724/abbs.2023091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been widely proven to be involved in liver lipid homeostasis. Herein, we identify an upregulated lncRNA named lncRP11-675F6.3 in response to rapamycin treatment using a microarray in HepG2 cells. Knockdown of lncRP11-675F6. 3 leads to a significant reduction in apolipoprotein 100 (ApoB100), microsomal triglyceride transfer protein (MTTP), ApoE and ApoC3 with increased cellular triglyceride level and autophagy. Furthermore, we find that ApoB100 is obviously colocalized with GFP-LC3 in autophagosomes when lncRP11-675F6. 3 is knocked down, indicating that elevated triglyceride accumulation likely related to autophagy induces the degradation of ApoB100 and impairs very low-density lipoprotein (VLDL) assembly. We then identify and validate that hexokinase 1 (HK1) acts as the binding protein of lncRP11-675F6.3 and mediates triglyceride regulation and cell autophagy. More importantly, we find that lncRP11-675F6.3 and HK1 attenuate high fat diet induced nonalcoholic fatty liver disease (NAFLD) by regulating VLDL-related proteins and autophagy. In conclusion, this study reveals that lncRP11-675F6.3 is potentially involved in the downstream of mTOR signaling pathway and the regulatory network of hepatic triglyceride metabolism in cooperation with its interacting protein HK1, which may provide a new target for fatty liver disorder treatment.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xiaojuan Fang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ziyou Yang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xueling Li
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Mengdi Cheng
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Liang Cheng
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ganglin Wang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Wei Li
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Lin Liu
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
- Zhuji Affiliated Hospital of Wenzhou Medical UniversityShaoxing311800China
| |
Collapse
|
9
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
10
|
Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res 2023; 48:105-123. [PMID: 35973552 PMCID: PMC10248733 DOI: 10.1016/j.jare.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The investigation of lncRNAs has provided a novel perspective for elucidating mechanisms underlying diverse physiological and pathological processes. Compelling evidence has revealed an intrinsic link between lncRNAs and lipid metabolism, demonstrating that lncRNAs-induced disruption of lipid metabolism and signaling contribute to the development of multiple cancers and some other diseases, including obesity, fatty liver disease, and cardiovascular disease. AIMOF REVIEW The current review summarizes the recent advances in basic research about lipid metabolism and lipid signaling-related lncRNAs. Meanwhile, the potential and challenges of targeting lncRNA for the therapy of cancers and other lipid metabolism-related diseases are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Compared with the substantial number of lncRNA loci, we still know little about the role of lncRNAs in metabolism. A more comprehensive understanding of the function and mechanism of lncRNAs may provide a new standpoint for the study of lipid metabolism and signaling. Developing lncRNA-based therapeutic approaches is an effective strategy for lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| |
Collapse
|
11
|
Zeng Q, Liu CH, Wu D, Jiang W, Zhang N, Tang H. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Biomolecules 2023; 13:biom13030560. [PMID: 36979495 PMCID: PMC10046118 DOI: 10.3390/biom13030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide. Early identification and prompt treatment are critical to optimize patient management and improve long-term prognosis. Long non-coding RNA (lncRNA) and circular RNA (circRNA) are recently emerging non-coding RNAs, and are highly stable and easily detected in the circulation, representing a promising non-invasive approach for predicting NAFLD. A literature search of the Pubmed, Embase, Web of Science, and Cochrane Library databases was performed and 36 eligible studies were retrieved, including 18 on NAFLD, 13 on nonalcoholic steatohepatitis (NASH), and 11 on fibrosis and/or cirrhosis. Dynamic changes in lncRNA expression were associated with the occurrence and progression of NAFLD, among which lncRNA NEAT1, MEG3, and MALAT1 exhibited great potential as biomarkers for NAFLD. Moreover, mitochondria-located circRNA SCAR can drive metaflammation and its inhibition might be a promising therapeutic target for NASH. In this systematic review, we highlight the great potential of lncRNA/circRNA for early diagnosis and progression assessment of NAFLD. To further verify their clinical value, large-cohort studies incorporating lncRNA and circRNA expression both in liver tissue and blood should be conducted. Additionally, detailed studies on the functional mechanisms of NEAT1, MEG3, and MALAT1 will be essential for elucidating their roles in diagnosing and treating NAFLD, NASH, and fibrosis.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Xu J, Liu X, Wu S, Zhang D, Liu X, Xia P, Ling J, Zheng K, Xu M, Shen Y, Zhang J, Yu P. RNA-binding proteins in metabolic-associated fatty liver disease (MAFLD): From mechanism to therapy. Biosci Trends 2023; 17:21-37. [PMID: 36682800 DOI: 10.5582/bst.2022.01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease globally and seriously increases the public health burden, affecting approximately one quarter of the world population. Recently, RNA binding proteins (RBPs)-related pathogenesis of MAFLD has received increasing attention. RBPs, vividly called the gate keepers of MAFLD, play an important role in the development of MAFLD through transcription regulation, alternative splicing, alternative polyadenylation, stability and subcellular localization. In this review, we describe the mechanisms of different RBPs in the occurrence and development of MAFLD, as well as list some drugs that can improve MAFLD by targeting RBPs. Considering the important role of RBPs in the development of MAFLD, elucidating the RNA regulatory networks involved in RBPs will facilitate the design of new drugs and biomarkers discovery.
Collapse
Affiliation(s)
- Jiawei Xu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuqin Wu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai Zheng
- Medical Care Strategic Customer Department, China Merchants Bank Shenzhen Branch, Shenzhen, Guangdong, Guangdong, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Kudriashov V, Sufianov A, Mashkin A, Beilerli A, Ilyasova T, Liang Y, Lyulin S, Beylerli O. The role of long non-coding RNAs in carbohydrate and fat metabolism in the liver. Noncoding RNA Res 2023; 8:294-301. [PMID: 36970373 PMCID: PMC10031277 DOI: 10.1016/j.ncrna.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The metabolism of carbohydrates and lipids (fat) in the liver is closely interconnected both in physiological conditions and in pathology. This relationship in the body is possible due to the regulation by many factors, including epigenetic ones. Histone modifications, DNA methylation, and non-coding RNAs are considered to be the main epigenetic factors. Non-coding RNAs (ncRNAs) refers to ribonucleic acid (RNA) molecules that do not code for a protein. They cover a huge number of RNA classes and perform a wide range of biological functions such as regulating gene expression, protecting the genome from exogenous DNA, and directing DNA synthesis. One such class of ncRNAs that has been extensively studied are long non-coding RNAs (lncRNAs). The important role of lncRNAs in the formation and maintenance of normal homeostasis of biological systems, as well as participation in many pathological processes, has been proven. The results of recent studies indicate the importance of lncRNAs in lipid and carbohydrate metabolism. Modifications of lncRNAs expression can lead to disruption of biological processes in tissues, including fat and protein, such as adipocyte proliferation and differentiation, inflammation, and insulin resistance. Further study of lncRNAs made it possible to partly determine the regulatory mechanisms underlying the formation of an imbalance in carbohydrate and fat metabolism individually and in their relationship, and the degree of interaction between different types of cells involved in this process. This review will focus on the function of lncRNAs and its relation to hepatic carbohydrate and fat metabolism and related diseases in order to elucidate the underlying mechanisms and prospects for studies with lncRNAs.
Collapse
|
14
|
Fang Z, Fan M, Yuan D, Jin L, Wang Y, Ding L, Xu S, Tu J, Zhang E, Wu X, Chen ZB, Huang W. Downregulation of hepatic lncRNA Gm19619 improves gluconeogenesis and lipogenesis following vertical sleeve gastrectomy in mice. Commun Biol 2023; 6:105. [PMID: 36707678 PMCID: PMC9883214 DOI: 10.1038/s42003-023-04483-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging important epigenetic regulators in metabolic processes. Whether they contribute to the metabolic effects of vertical sleeve gastrectomy (VSG), one of the most effective treatments for sustainable weight loss and metabolic improvement, is unknown. Herein, we identify a hepatic lncRNA Gm19619, which is strongly repressed by VSG but highly up-regulated by diet-induced obesity and overnight-fasting in mice. Forced transcription of Gm19619 in the mouse liver significantly promotes hepatic gluconeogenesis with the elevated expression of G6pc and Pck1. In contrast, AAV-CasRx mediated knockdown of Gm19619 in high-fat diet-fed mice significantly improves hepatic glucose and lipid metabolism. Mechanistically, Gm19619 is enriched along genomic regions encoding leptin receptor (Lepr) and transcription factor Foxo1, as revealed in chromatin isolation by RNA purification (ChIRP) assay and is confirmed to modulate their transcription in the mouse liver. In conclusion, Gm19619 may enhance gluconeogenesis and lipid accumulation in the liver.
Collapse
Affiliation(s)
- Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pediatric, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lili Ding
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Senlin Xu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrated Genomic Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
15
|
Sangeeth A, Malleswarapu M, Mishra A, Gutti RK. Long Non-Coding RNAs as Cellular Metabolism and Haematopoiesis Regulators. J Pharmacol Exp Ther 2023; 384:79-91. [PMID: 35667690 DOI: 10.1124/jpet.121.001120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a category of non-coding RNAs (ncRNAs) that are more than 200 bases long and play major regulatory roles in a wide range of biologic processes, including hematopoeisis and metabolism. Metabolism in cells is an immensely complex process that involves the interconnection and unification of numerous signaling pathways. A growing body of affirmation marks that lncRNAs do participate in metabolism, both directly and indirectly, via metabolic regulation of enzymes and signaling pathways, respectively. The complexities are disclosed by the latest studies demonstrating how lncRNAs could indeed alter tissue-specific metabolism. We have entered a new realm for discovery that is both intimidating and intriguing. Understanding the different functions of lncRNAs in various cellular pathways aids in the advancement of predictive and therapeutic capabilities for a wide variety of myelodysplastic and metabolic disorders. This review has tried to give an overview of the different ncRNAs and their effects on hematopoiesis and metabolism. We have focused on the pathway of action of several lncRNAs and have also delved into their prognostic value. Their use as biomarkers and possible therapeutic targets has also been discussed. SIGNIFICANCE STATEMENT: This review has tried to give an overview of the different ncRNAs and their effects on hematopoiesis and metabolism. The pathway of action of several lncRNAs and their prognostic value was discussed. Their use as biomarkers and possible therapeutic targets has also been elaborated.
Collapse
Affiliation(s)
- Anjali Sangeeth
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Mahesh Malleswarapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Amit Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| |
Collapse
|
16
|
Li WH, Zhang L, Li YY, Wang XY, Li JL, Zhao SN, Ni MQ, Li Q, Sun H. Apolipoprotein A-IV Has Bi-Functional Actions in Alcoholic Hepatitis by Regulating Hepatocyte Injury and Immune Cell Infiltration. Int J Mol Sci 2022; 24:ijms24010670. [PMID: 36614113 PMCID: PMC9820766 DOI: 10.3390/ijms24010670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Alcohol abuse can lead to alcoholic hepatitis (AH), a worldwide public health issue with high morbidity and mortality. Here, we identified apolipoprotein A-IV (APOA4) as a biomarker and potential therapeutic target for AH. APOA4 expression was detected by Gene Expression Omnibus (GEO) databases, Immunohistochemistry, and qRT-PCR in AH. Bioinformatics Methods (protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Set Enrichment Analysis (GSEA) were used to show down-stream gene and pathways of APOA4 in AH. AML-12 cells were used to evaluate the biological function of APOA4 using an ELISA kit (AST, ALT, and IL-1β) and flow cytometry (ROS activity). Both in vivo and in vitro, APOA4 expression was significantly elevated in the AH model induced by alcohol (ETOH). AML-12 cell damage was specifically repaired by APOA4 deficiency, while AST, ALT, and IL-1β activity that was increased by ETOH (200 µmol, 12 h) were suppressed. APOA4 inhibition increased intracellular ROS induced by ETOH, which was detected by flow cytometry. Functional and PPI network analyses showed Fcgamma receptor (FCGR) and platelet activation signaling were potential downstream pathways. We identified CIDEC as a downstream gene of APOA4. The CIDEC AUC values for the ROC curves were 0.861. At the same time, APOA4 silencing downregulated the expression of CIDEC, whereas the knockdown of CIDEC did not influence the expression of APOA4 in AML-12 cells. Collectively, APOA4 regulates CIDEC expression and immune cell infiltration and may hold great potential as a biomarker and therapeutic target for AH.
Collapse
Affiliation(s)
- Wan-Hong Li
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Li Zhang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yue-Ying Li
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xin-Yue Wang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jin-Liang Li
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shu-Ning Zhao
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ming-Qi Ni
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qian Li
- Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Correspondence: (Q.L.); (H.S.); Tel./Fax: +86-451-86699347 (Q.L.)
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Correspondence: (Q.L.); (H.S.); Tel./Fax: +86-451-86699347 (Q.L.)
| |
Collapse
|
17
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Katturajan R, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Renu K, Dey A, Vellingiri B, Prince SE. Exploring the Regulatory Role of ncRNA in NAFLD: A Particular Focus on PPARs. Cells 2022; 11:3959. [PMID: 36552725 PMCID: PMC9777112 DOI: 10.3390/cells11243959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Liver diseases are responsible for global mortality and morbidity and are a significant cause of death worldwide. Consequently, the advancement of new liver disease targets is of great interest. Non-coding RNA (ncRNA), such as microRNA (miRNA) and long ncRNA (lncRNA), has been proven to play a significant role in the pathogenesis of virtually all acute and chronic liver disorders. Recent studies demonstrated the medical applications of miRNA in various phases of hepatic pathology. PPARs play a major role in regulating many signaling pathways involved in various metabolic disorders. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, encompassing a spectrum spanning from mild steatosis to severe non-alcoholic steatohepatitis (NASH). PPARs were found to be one of the major regulators in the progression of NAFLD. There is no recognized treatment for NAFLD, even though numerous clinical trials are now underway. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC), and its frequency increases as obesity and diabetes become more prevalent. Reprogramming anti-diabetic and anti-obesity drugs is an effective therapy option for NAFLD and NASH. Several studies have also focused on the role of ncRNAs in the pathophysiology of NAFLD. The regulatory effects of these ncRNAs make them a primary target for treatments and as early biomarkers. In this study, the main focus will be to understand the regulation of PPARs through ncRNAs and their role in NAFLD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
18
|
Shen X, Zhang Y, Ji X, Li B, Wang Y, Huang Y, Zhang X, Yu J, Zou R, Qin D, Zhou H, Wang Q, Li JZ. Long Noncoding RNA lncRHL Regulates Hepatic VLDL Secretion by Modulating hnRNPU/BMAL1/MTTP Axis. Diabetes 2022; 71:1915-1928. [PMID: 35771993 PMCID: PMC9862400 DOI: 10.2337/db21-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Dysregulation of hepatic VLDL secretion contributes to the pathogenesis of metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD) and hyperlipidemia. Accumulating evidence has suggested that long noncoding RNAs (lncRNAs) had malfunctioning roles in the pathogenesis of NAFLD. However, the function of lncRNAs in controlling hepatic VLDL secretion remains largely unillustrated. Here, we identified a novel lncRNA, lncRNA regulator of hyperlipidemia (lncRHL), which was liver-enriched, downregulated on high-fat diet feeding, and inhibited by oleic acid treatment in primary hepatocytes. With genetic manipulation in mice and primary hepatocytes, depletion of lncRHL induces hepatic VLDL secretion accompanied by decreased hepatic lipid contents. Conversely, lncRHL restoration reduces VLDL secretion with increased lipid deposition in hepatocytes. Mechanistic analyses indicate that lncRHL binds directly to heterogeneous nuclear ribonuclear protein U (hnRNPU), and thereby enhances its stability, and that hnRNPU can transcriptional activate Bmal1, leading to inhibition of VLDL secretion in hepatocytes. lncRHL deficiency accelerates the protein degradation of hnRNPU and suppresses the transcription of Bmal1, which in turn activates VLDL secretion in hepatocytes. With results taken together, we conclude that lncRHL is a novel suppressor of hepatic VLDL secretion. Activating the lncRHL/hnRNPU/BMAL1/MTTP axis represents a potential strategy for the maintenance of intrahepatic and plasma lipid homeostasis.
Collapse
Affiliation(s)
- Xuan Shen
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yajun Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xuetao Ji
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Bo Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yuzhu Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Huang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jingxian Yu
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ruihan Zou
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Shanghai Qi Zhi Institute, Shanghai, China
| |
Collapse
|
19
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
22
|
Hennessy EJ. LncRNAs and Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:71-95. [PMID: 35220566 DOI: 10.1007/978-3-030-92034-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel class of RNA molecule emerged from human transcriptome sequencing studies termed long non-coding RNAs. These RNA molecules differ from other classes of non-coding RNAs such as microRNAs in their sizes, sequence motifs and structures. Studies have demonstrated that long non-coding RNAs play a prominent role in the development and progression of cardiovascular disease. They provide the cell with tiered levels of gene regulation interacting with DNA, other RNA molecules or proteins acting in various capacities to control a variety of cellular mechanisms. Cell specificity is a hallmark of lncRNA studies and they have been identified in macrophages, smooth muscle cells, endothelial cells and hepatocytes. Recent lncRNA studies have uncovered functional micropeptides encoded within lncRNA genes that can have a different function to the lncRNA. Disease associated mutations in the genome tend to occur in non-coding regions signifying the importance of non-coding genes in disease associations. There is a great deal of work to be done in the non-coding RNA field and tremendous therapeutic potential due to their cell type specificity. A better understanding of the functions and interactions of lncRNAs will inevitably have clinical implications.
Collapse
Affiliation(s)
- Elizabeth J Hennessy
- University of Pennsylvania, Perelman School of Medicine, Institute for Translational Medicine and Therapeutics (ITMAT), Philadelphia, PA, USA.
| |
Collapse
|
23
|
Ding K, Li X, Ren X, Ding N, Tao L, Dong X, Chen Z. GBP5 promotes liver injury and inflammation by inducing hepatocyte apoptosis. FASEB J 2021; 36:e22119. [PMID: 34958688 DOI: 10.1096/fj.202101448r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Liver injury is the first step in causing fibrosis, cirrhosis, and liver cancer, leading to mortality. However, the drivers of progressive liver injury are still incompletely defined. Here, we identify GBP5 as a major factor causing liver injury and inflammation. We show that the expression of GBP5 is abnormally elevated in the damaged liver, and its expression depends at least partially on the NF-κB-inducing kinase (NIK)/NF-κB2 signaling pathway. Knockout of Gbp5 ameliorates D-galactosamine/lipopolysaccharide (GalN/LPS)-induced liver injury and inflammation. Conversely, liver-specific overexpression of GBP5 induces liver injury and inflammation. Mechanistically, GBP5 induces hepatocyte apoptosis through the activation of both calpain/caspase 12/caspase 3 and TNFα/caspase 8/caspase 3 signaling pathways. Inhibition of either calpain activity or caspase 3 prevents GBP5-induced cell death. Our data demonstrate that GBP5 expression is induced by toxins or the NIK signaling pathway, which promotes both extrinsic and intrinsic apoptosis signaling pathways and further induces liver injury, providing a novel drug target for the treatment of liver injury and inflammation.
Collapse
Affiliation(s)
- Kaixin Ding
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaomeng Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, China.,Shenyang University of Chemical Technology, Shenyang, China
| | - Na Ding
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Li Tao
- 305 Hospital of People's Liberation Army, Beijing, China
| | - Xue Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
24
|
The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression. Nat Commun 2021; 12:7213. [PMID: 34893641 PMCID: PMC8664922 DOI: 10.1038/s41467-021-27539-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2021] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a key step in the progression of nonalcoholic fatty liver (NAFL) to cirrhosis. However, the molecular mechanisms of the NAFL-to-NASH transition are largely unknown. Here, we identify methyltransferase like 3 (METTL3) as a key negative regulator of NASH pathogenesis. Hepatocyte-specific deletion of Mettl3 drives NAFL-to-NASH progression by increasing CD36-mediated hepatic free fatty acid uptake and CCL2-induced inflammation, which is due to increased chromatin accessibility in the promoter region of Cd36 and Ccl2. Antibody blockade of CD36 and CCL2 ameliorates NASH progression in hepatic Mettl3 knockout mice. Hepatic overexpression of Mettl3 protects against NASH progression by inhibiting the expression of CD36 and CCL2. Mechanistically, METTL3 directly binds to the promoters of the Cd36 and Ccl2 genes and recruits HDAC1/2 to induce deacetylation of H3K9 and H3K27 in their promoters, thus suppressing Cd36 and Ccl2 transcription. Furthermore, METTL3 is translocated from the nucleus to the cytosol in NASH, which is associated with CDK9-mediated phosphorylation of METTL3. Our data reveal a mechanism by which METTL3 negatively regulates hepatic Cd36 and Ccl2 gene transcription via a histone modification pathway for protection against NASH progression.
Collapse
|
25
|
Huang Z, Li J, Chen J, Chen D. Construction of Prognostic Risk Model of 5-Methylcytosine-Related Long Non-Coding RNAs and Evaluation of the Characteristics of Tumor-Infiltrating Immune Cells in Breast Cancer. Front Genet 2021; 12:748279. [PMID: 34777473 PMCID: PMC8585929 DOI: 10.3389/fgene.2021.748279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose: The role of 5-methylcytosine-related long non-coding RNAs (m5C-lncRNAs) in breast cancer (BC) remains unclear. Here, we aimed to investigate the prognostic value, gene expression characteristics, and correlation between m5C-lncRNA risk model and tumor immune cell infiltration in BC. Methods: The expression matrix of m5C-lncRNAs in BC was obtained from The Cancer Genome Atlas database, and the lncRNAs were analyzed using differential expression analysis as well as univariate and multivariate Cox regression analysis to eventually obtain BC-specific m5C-lncRNAs. A risk model was developed based on three lncRNAs using multivariate Cox regression and the prognostic value, accuracy, as well as reliability were verified. Gene set enrichment analysis (GSEA) was used to analyze the Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment of the risk model. CIBERSORT algorithm and correlation analysis were used to explore the characteristics of the BC tumor-infiltrating immune cells. Finally, reverse transcription-quantitative polymerase chain reaction was performed to detect the expression level of three lncRNA in clinical samples. Results: A total of 334 differential m5C-lncRNAs were identified, and three BC-specific m5C-lncRNAs were selected, namely AP005131.2, AL121832.2, and LINC01152. Based on these three lncRNAs, a highly reliable and specific risk model was constructed, which was proven to be closely related to the prognosis of patients with BC. Therefore, a nomogram based on the risk score was built to assist clinical decisions. GSEA revealed that the risk model was significantly enriched in metabolism-related pathways and was associated with tumor immune cell infiltration based on the analysis with the CIBERSORT algorithm. Conclusion: The efficient risk model based on m5C-lncRNAs associated with cancer metabolism and tumor immune cell infiltration could predict the survival prognosis of patients, and AP005131.2, AL121832.2, and LINC01152 could be novel biomarkers and therapeutic targets for BC.
Collapse
Affiliation(s)
| | | | | | - Debo Chen
- Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
26
|
Alipoor B, Nikouei S, Rezaeinejad F, Malakooti-Dehkordi SN, Sabati Z, Ghasemi H. Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest 2021; 44:2015-2041. [PMID: 33792864 DOI: 10.1007/s40618-021-01559-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been suggested that dysregulation of long non-coding RNAs (lncRNAs) could be associated with the incidence and development of metabolic disorders. AIM Accordingly, this narrative review described the molecular mechanisms of lncRNAs in the development of metabolic diseases including insulin resistance, diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and coronary artery diseases (CAD). Furthermore, we investigated the up-to-date findings on the association of deregulated lncRNAs in the metabolic disorders, and potential use of lncRNAs as biomarkers and therapeutic targets. CONCLUSION LncRNAs/miRNA/regulatory proteins axis plays a crucial role in progression of metabolic disorders and may be used in development of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- B Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - S Nikouei
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - F Rezaeinejad
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Z Sabati
- MSc student of Hematology, Student Research Committee, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Ghasemi
- Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
27
|
Zhu B, Chan SL, Li J, Li K, Wu H, Cui K, Chen H. Non-alcoholic Steatohepatitis Pathogenesis, Diagnosis, and Treatment. Front Cardiovasc Med 2021; 8:742382. [PMID: 34557535 PMCID: PMC8452937 DOI: 10.3389/fcvm.2021.742382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In this review, we discuss the pathogenesis and current methods of diagnosis for NASH, and current status of drug development for this life-threatening liver disease.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jack Li
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn Li
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Hao Wu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
28
|
Shabgah AG, Norouzi F, Hedayati-Moghadam M, Soleimani D, Pahlavani N, Navashenaq JG. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:22. [PMID: 33622377 PMCID: PMC7903707 DOI: 10.1186/s12986-021-00552-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most prevalent diseases worldwide without a fully-known mechanism is non-alcoholic fatty liver disease (NAFLD). Recently, long non-coding RNAs (lncRNAs) have emerged as significant regulatory molecules. These RNAs have been claimed by bioinformatic research that is involved in biologic processes, including cell cycle, transcription factor regulation, fatty acids metabolism, and-so-forth. There is a body of evidence that lncRNAs have a pivotal role in triglyceride, cholesterol, and lipoprotein metabolism. Moreover, lncRNAs by up- or down-regulation of the downstream molecules in fatty acid metabolism may determine the fatty acid deposition in the liver. Therefore, lncRNAs have attracted considerable interest in NAFLD pathology and research. In this review, we provide all of the lncRNAs and their possible mechanisms which have been introduced up to now. It is hoped that this study would provide deep insight into the role of lncRNAs in NAFLD to recognize the better molecular targets for therapy.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naseh Pahlavani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | |
Collapse
|
29
|
Downregulation of lncRNA HCP5 has inhibitory effects on gastric cancer cells by regulating DDX21 expression. Cytotechnology 2021; 73:1-11. [PMID: 33505109 DOI: 10.1007/s10616-020-00429-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
LncRNA HCP5 has been confirmed to play crucial roles in many types of cancers. However, the role of lncRNA HCP5 in regulating the occurrence and development of gastric cancer (GC) remains unknown. In the current study, we aimed to investigate the precise effects of lncRNA HCP5 on cell proliferation, migration and invasion and molecular mechanisms in gastric cancer. Using RT-qPCR analysis, we found that lncRNA HCP5 was differentially expressed in GC cell lines. CCK-8, wound healing and transwell assay indicated that the proliferation, migration and invasion of gastric cancer cells were inhibited by downregulation of lncRNA HCP5 and lncRNA HCP5 overexpression exhibited the opposite effects in gastric cancer cells. Mechanistically, RNA binding protein immunoprecipitation and dual luciferase reporter assay confirmed the interaction between lncRNA HCP5 and DDX21. The effects of lncRNA HCP5 overexpression the proliferation, migration and invasion of GC cells were partly rescued by DDX21 silencing. Taken together, downregulation of lncRNA HCP5 exerted inhibitory effects on GC cell proliferation, migration and invasion through modulation of DDX21 expression, demonstrating the function of lncRNA HCP5 and DDX21 in GC progression.
Collapse
|
30
|
Lu Q, Guo P, Liu A, Ares I, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. The role of long noncoding RNA in lipid, cholesterol, and glucose metabolism and treatment of obesity syndrome. Med Res Rev 2020; 41:1751-1774. [PMID: 33368430 DOI: 10.1002/med.21775] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/13/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Obesity syndromes, characterized by abnormal lipid, cholesterol, and glucose metabolism, are detrimental to human health and cause many diseases, including obesity and type II diabetes. Increasing evidence has shown that long noncoding RNA (lncRNA), transcripts longer than 200 nucleotides that are not translated into proteins, play an important role in regulating abnormal metabolism in obesity syndromes. For the first time, we systematically summarize how lncRNA is involved in complex obesity metabolic syndromes, including the regulation of lipid, cholesterol, and glucose metabolism. Moreover, we discuss lncRNA involvement in food intake that mediates obesity syndromes. Furthermore, this review might shed new light on a lncRNA-based strategy for the prevention and treatment of obesity syndromes. Recent investigations support that lncRNA is a novel molecular target of obesity syndromes and should be emphasized. Namely, lncRNA plays a crucial role in the development of obesity syndrome process. Various lncRNAs are involved in the process of lipid, cholesterol, and glucose metabolism by regulating gene transcription, signaling pathway, and epigenetic modification of metabolism-related genes, proteins, and enzymes. Food intake could also induce abnormal expression of lncRNA associated with obesity syndrome, especially high-fat diet. Notably, some nanomolecules and natural extracts may target lncRNAs, associated with obesity syndrome, as a potential treatment for obesity syndromes.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
31
|
Effect of Embryo Vitrification on the Steroid Biosynthesis of Liver Tissue in Rabbit Offspring. Int J Mol Sci 2020; 21:ijms21228642. [PMID: 33207830 PMCID: PMC7696440 DOI: 10.3390/ijms21228642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Preimplantation embryo manipulations during standard assisted reproductive technologies (ART) have significant repercussions on offspring. However, few studies to date have investigated the potential long-term outcomes associated with the vitrification procedure. Here, we performed an experiment to unravel the particular effects related to stress induced by embryo transfer and vitrification techniques on offspring phenotype from the foetal period through to prepuberal age, using a rabbit model. In addition, the focus was extended to the liver function at prepuberal age. We showed that, compared to naturally conceived animals (NC), offspring derived after embryo exposure to the transfer procedure (FT) or cryopreservation-transfer procedure (VT) exhibited variation in growth and body weight from foetal life to prepuberal age. Strikingly, we found a nonlinear relationship between FT and VT stressors, most of which were already present in the FT animals. Furthermore, we displayed evidence of variation in liver function at prepuberal age, most of which occurred in both FT and VT animals. The present major novel finding includes a significant alteration of the steroid biosynthesis profile. In summary, here we provide that embryonic manipulation during the vitrification process is linked with embryo phenotypic adaptation detected from foetal life to prepuberal age and suggests that this phenotypic variation may be associated, to a great extent, with the effect of embryo transfer.
Collapse
|
32
|
Atorvastatin Increases the Expression of Long Non-Coding RNAs ARSR and CHROME in Hypercholesterolemic Patients: A Pilot Study. Pharmaceuticals (Basel) 2020; 13:ph13110382. [PMID: 33198086 PMCID: PMC7696809 DOI: 10.3390/ph13110382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 01/06/2023] Open
Abstract
Atorvastatin is extensively used to treat hypercholesterolemia. However, the wide interindividual variability observed in response to this drug still needs further elucidation. Nowadays, the biology of long non-coding RNAs (lncRNAs) is better understood, and some of these molecules have been related to cholesterol metabolism. Therefore, they could provide additional information on variability in response to statins. The objective of this research was to evaluate the effect of atorvastatin on three lncRNAs (lncRNA ARSR: Activated in renal cell carcinoma (RCC) with sunitinib resistance, ENST00000424980; lncRNA LASER: lipid associated single nucleotide polymorphism locus, ENSG00000237937; and lncRNA CHROME: cholesterol homeostasis regulator of miRNA expression, ENSG00000223960) associated with genes involved in cholesterol metabolism as predictors of lipid-lowering therapy performance. Twenty hypercholesterolemic patients were treated for four weeks with atorvastatin (20 mg/day). The lipid profile was determined before and after drug administration using conventional assays. The expression of lncRNAs was assessed in peripheral blood samples by RT-qPCR. As expected, atorvastatin improved the lipid profile, decreasing total cholesterol, LDL-C, and the TC/HDL-C ratio (p < 0.0001) while increasing the expression of lncRNAs ARSR and CHROME (p < 0.0001) upon completion of treatment. LASER did not show significant differences among the groups (p = 0.50). Our results indicate that atorvastatin modulates the expression of cholesterol-related lncRNAs differentially, suggesting that these molecules play a role in the variability of response to this drug; however, additional studies are needed to disclose the implication of this differential regulation on statin response.
Collapse
|
33
|
Our emerging understanding of the roles of long non-coding RNAs in normal liver function, disease, and malignancy. JHEP Rep 2020; 3:100177. [PMID: 33294829 PMCID: PMC7689550 DOI: 10.1016/j.jhepr.2020.100177] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important biological mediators that regulate numerous cellular processes. New experimental evidence suggests that lncRNAs play essential roles in liver development, normal liver physiology, fibrosis, and malignancy, including hepatocellular carcinoma and cholangiocarcinoma. In this review, we summarise our current understanding of the function of lncRNAs in the liver in both health and disease, as well as discuss approaches that could be used to target these non-coding transcripts for therapeutic purposes.
Collapse
Key Words
- ABCA1, ATP-binding cassette transporter A1
- ACTA2/ɑ-SMA, α-smooth muscle actin
- APO, apolipoprotein
- ASO, antisense oligonucleotides
- BDL, bile duct ligation
- CCA, cholangiocarcinoma
- CCl4, carbon tetrachloride
- COL1A1, collagen type I α 1
- CYP, cytochrome P450
- Cholangiocarcinoma
- DANCR, differentiation antagonising non-protein coding RNA
- DE, definitive endoderm
- DEANR1, definitive endoderm-associated lncRNA1
- DIGIT, divergent to goosecoid, induced by TGF-β family signalling
- DILC, downregulated in liver cancer stem cells
- EST, expression sequence tag
- EpCAM, epithelial cell adhesion molecule
- FBP1, fructose-bisphosphatase 1
- FENDRR, foetal-lethal non-coding developmental regulatory RNA
- FXR, farnesoid X receptor
- GAS5, growth arrest-specific transcript 5
- H3K18ac, histone 3 lysine 18 acetylation
- H3K36me3, histone 3 lysine 36 trimethylation
- H3K4me3, histone 3 lysine 4 trimethylation
- HCC, hepatocellular carcinoma
- HEIH, high expression In HCC
- HNRNPA1, heterogenous nuclear protein ribonucleoprotein A1
- HOTAIR, HOX transcript antisense RNA
- HOTTIP, HOXA transcript at the distal tip
- HSC, hepatic stellate cells
- HULC, highly upregulated in liver cancer
- Hepatocellular carcinoma
- HuR, human antigen R
- LCSC, liver cancer stem cell
- LSD1, lysine-specific demethylase 1
- LXR, liver X receptors
- LeXis, liver-expressed LXR-induced sequence
- Liver cancer
- Liver fibrosis
- Liver metabolism
- Liver-specific lncRNAs
- LncLSTR, lncRNA liver-specific triglyceride regulator
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MEG3, maternally expressed gene 3
- NAT, natural antisense transcript
- NEAT1, nuclear enriched abundant transcript 1
- ORF, open reading frame
- PKM2, pyruvate kinase muscle isozyme M2
- PPAR-α, peroxisome proliferator-activated receptor-α
- PRC, polycomb repressive complex
- RACE, rapid amplification of cDNA ends
- RNA Pol, RNA polymerase
- S6K1, S6 kinase 1
- SHP, small heterodimer partner
- SREBPs, steroid response binding proteins
- SREs, sterol response elements
- TGF-β, transforming growth factor-β
- TTR, transthyretin
- XIST, X-inactive specific transcript
- ZEB1, zinc finger E-box-binding homeobox 1
- ceRNA, competing endogenous RNA
- eRNA, enhancer RNAs
- lincRNA, long intervening non-coding RNA
- lncRNA
- lncRNA, long non-coding RNA
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
|
34
|
Das S, Shah R, Dimmeler S, Freedman JE, Holley C, Lee JM, Moore K, Musunuru K, Wang DZ, Xiao J, Yin KJ. Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e000062. [PMID: 32812806 DOI: 10.1161/hcg.0000000000000062] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The discovery that much of the non-protein-coding genome is transcribed and plays a diverse functional role in fundamental cellular processes has led to an explosion in the development of tools and technologies to investigate the role of these noncoding RNAs in cardiovascular health. Furthermore, identifying noncoding RNAs for targeted therapeutics to treat cardiovascular disease is an emerging area of research. The purpose of this statement is to review existing literature, offer guidance on tools and technologies currently available to study noncoding RNAs, and identify areas of unmet need. METHODS The writing group used systematic literature reviews (including MEDLINE, Web of Science through 2018), expert opinion/statements, analyses of databases and computational tools/algorithms, and review of current clinical trials to provide a broad consensus on the current state of the art in noncoding RNA in cardiovascular disease. RESULTS Significant progress has been made since the initial studies focusing on the role of miRNAs (microRNAs) in cardiovascular development and disease. Notably, recent progress on understanding the role of novel types of noncoding small RNAs such as snoRNAs (small nucleolar RNAs), tRNA (transfer RNA) fragments, and Y-RNAs in cellular processes has revealed a noncanonical function for many of these molecules. Similarly, the identification of long noncoding RNAs that appear to play an important role in cardiovascular disease processes, coupled with the development of tools to characterize their interacting partners, has led to significant mechanistic insight. Finally, recent work has characterized the unique role of extracellular RNAs in mediating intercellular communication and their potential role as biomarkers. CONCLUSIONS The rapid expansion of tools and pipelines for isolating, measuring, and annotating these entities suggests that caution in interpreting results is warranted until these methodologies are rigorously validated. Most investigators have focused on investigating the functional role of single RNA entities, but studies suggest complex interaction between different RNA molecules. The use of network approaches and advanced computational tools to understand the interaction of different noncoding RNA species to mediate a particular phenotype may be required to fully comprehend the function of noncoding RNAs in mediating disease phenotypes.
Collapse
MESH Headings
- American Heart Association
- Biomarkers/metabolism
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/pathology
- Humans
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- United States
Collapse
|
35
|
He J, Huang B, Zhang K, Liu M, Xu T. Long non-coding RNA in cervical cancer: From biology to therapeutic opportunity. Biomed Pharmacother 2020; 127:110209. [PMID: 32559848 DOI: 10.1016/j.biopha.2020.110209] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Genome regions that do not for code for proteins are generally transcribed into long non-coding RNAs. Growing evidence reveals that lncRNAs, defined as transcripts longer than 200 nucleotides, are commonly deregulated in cervical malignancies. New sequencing technologies have revealed a complete picture of the composition of the human transcriptome. LncRNAs perform diverse functions at transcriptional, translation, and post-translational levels through interactions with proteins, RNA and DNA. In the past decade, studies have shown that lncRNAs participate in the pathogenesis of many diseases, including cervical cancer. Hence, illuminating the roles of lncRNA will improve our understanding of cervical cancer. In this work, we summarize the current knowledge on lncRNAs in cervical cancer. We describe the emerging roles of lncRNAs in cervical cancer, particularly in cancer progression, metastasis, treatment resistance, HPV regulation, and metabolic reprogramming. The great promises of lncRNAs as potential biomarkers for cervical cancer diagnosis and prognosis are also discussed. We discuss current technologies used to target lncRNAs and thus control cancers, such as antisense oligonucleotides, CRISPR-Cas9, and exosomes. Overall, we show that lncRNAs hold great potentials as therapeutic agents and innovative biomarkers. Finally, further clinical research is necessary to advance our understanding of the therapeutic value of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Jiaxing He
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Bingyu Huang
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Mubiao Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China.
| |
Collapse
|
36
|
The novel long noncoding RNA Lnc19959.2 modulates triglyceride metabolism-associated genes through the interaction with Purb and hnRNPA2B1. Mol Metab 2020; 37:100996. [PMID: 32302712 PMCID: PMC7262451 DOI: 10.1016/j.molmet.2020.100996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023] Open
Abstract
Objective Long noncoding RNAs (lncRNAs) are currently considered to have a vital and wide range of biological functions, but the molecular mechanism underlying triglycerides metabolism remains poorly understood. This study aims to identify novel lncRNAs differentially expressed in rat livers with hypertriglyceridemia and elucidated the function role in TG metabolism. Methods Differentially expressions of lncRNAs in rat livers with hypertriglyceridemia were identified by transcriptome sequencing and validated by real-time PCR. The role of lnc19959.2 in triglyceride metabolism was assessed both in vitro and in vivo. RNA pulldown and RIP assays were conducted to evaluate the interactions between lnc19959.2 and its target proteins. ChIP and Dual report assays were performed to detect the interactions between transcription factors and promoters of its target genes. Results We identified a novel lncRNA, and lnc19959.2 was upregulated in rat livers with hypertriglyceridemia. The knockdown of lnc19959.2 has profound TG lowering effects in vitro and in vivo. Subsequently, the genome-wide analysis identified that the knockdown of lnc19959.2 caused the deregulation of many genes during TG homeostasis. Further mechanism studies revealed that lnc19959.2 upregulated ApoA4 expression via ubiquitinated transcription inhibitor factor Purb, while it specifically interacted with hnRNPA2B1 to downregulate the expression of Cpt1a, Tm7sf2, and Gpam, respectively. In the upstream pathway, palmitate acid upregulated CCAAT/Enhancer-Binding Protein Beta (Cebpb) and facilitated its binding to the promoter of lnc19959.2, which resulted in significant promotion of lnc19959.2 transcriptional activity. Conclusions Our findings provide novel insights into a new layer regulatory complexity of an lncRNA modulating triglyceride homeostasis by a novel lncRNA lnc19959.2. lnc19959.2 was identified as a novel LncRNA in hypertriglyceridemic rat liver. lnc19959.2 was involved in triglyceride metabolism in vivo and in vitro. lnc19959.2 upregulated ApoA4 expression via ubiquitinated transcription inhibitor factor Purb. lnc19959.2 interacted with hnRNPA2B1 and cooperated with RNP II that controls expression of Cpt1a, Tm7sf2 and Gpam.
Collapse
|
37
|
Li X, Zhang Y, Pei W, Zhang M, Yang H, Zhong M, Kong X, Xu Y, Zhu X, Chen T, Ye J, Lv K. LncRNA Dnmt3aos regulates Dnmt3a expression leading to aberrant DNA methylation in macrophage polarization. FASEB J 2020; 34:5077-5091. [PMID: 32052888 DOI: 10.1096/fj.201902379r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various biological processes. However, the roles of lncRNAs in macrophage polarization remain largely unexplored. In this study, thousands of lncRNAs were identified that are differentially expressed in distinct polarized bone marrow-derived macrophages. Among them, Dnmt3aos (DNA methyltransferase 3A, opposite strand), as a known lncRNA, locates on the antisense strand of Dnmt3a. Functional experiments further confirmed that Dnmt3aos were highly expressed in M(IL-4) macrophages and participated in the regulation of Dnmt3a expression, and played a key role in macrophage polarization. The DNA methylation profiles between the Dnmt3aos knockdown group and the control group in M(IL-4) macrophages were determined by MeDIP-seq technique for the first time, and the Dnmt3aos-Dnmt3a axis-mediated DNA methylation modification-regulated macrophage polarization- related gene IFN-γ was identified. Our study will help to enrich our knowledge of the mechanism of macrophage polarization.
Collapse
Affiliation(s)
- Xueqin Li
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Yingying Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Laboratory Medicine of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Weiya Pei
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Mengying Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Hui Yang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Min Zhong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Xiang Kong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Yang Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Xiaolong Zhu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Tianbing Chen
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Jingjing Ye
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, PR China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, PR China
| |
Collapse
|
38
|
Human antigen R: A potential therapeutic target for liver diseases. Pharmacol Res 2020; 155:104684. [PMID: 32045667 DOI: 10.1016/j.phrs.2020.104684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Human antigen R (HuR), also known as HuA and embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously expressed RNA binding protein and functions as an RNA regulator and mediates the expression of various proteins by diverse post-transcriptional mechanisms. HuR has been well characterized in the inflammatory responses and in the development of various cancers. The importance of HuR-mediated roles in cell signaling, inflammation, fibrogenesis and cancer development in the liver has attracted a great deal of attention. However, there is still a substantial gap between the current understanding of the potential roles of HuR in the progression of liver disease and whether HuR can be targeted for the treatment of liver diseases. In this review, we introduce the function and mechanistic characterization of HuR, and then focus on the physiopathological roles of HuR in the development of different liver diseases, including hepatic inflammation, alcoholic liver diseases, non-alcoholic fatty liver diseases, viral hepatitis, liver fibrosis and liver cancers. We also summarize existing approaches targeting HuR function. In conclusion, although characterizing the liver-specific HuR function and demonstrating the multi-level regulative networks of HuR in the liver are still required, emerging evidence supports the notion that HuR represents a potential therapeutic target for the treatment of chronic liver diseases.
Collapse
|
39
|
Zhang TN, Wang W, Yang N, Huang XM, Liu CF. Regulation of Glucose and Lipid Metabolism by Long Non-coding RNAs: Facts and Research Progress. Front Endocrinol (Lausanne) 2020; 11:457. [PMID: 32765426 PMCID: PMC7381111 DOI: 10.3389/fendo.2020.00457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA with a length that exceeds 200 nucleotides. Previous studies have shown that lncRNAs play an important role in the pathogenesis of various diseases. Research in both animal models and humans has begun to unravel the profound complexity of lncRNAs and demonstrated that lncRNAs exert direct effects on glucose and lipid metabolism both in vivo and in vitro. Such research has elucidated the regulatory role of lncRNAs in glucose and lipid metabolism in human disease. lncRNAs mediate glucose and lipid metabolism under physiological and pathological conditions and contribute to various metabolism disorders. This review provides an update on our understanding of the regulatory role of lncRNAs in glucose and lipid metabolism in various diseases. As our understanding of the function of lncRNAs improves, the future is promising for the development of new diagnostic biomarkers that utilize lncRNAs and treatments that target lncRNAs to improve clinical outcomes.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Tie-Ning Zhang
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT, United States
- Xin-Mei Huang
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Chun-Feng Liu
| |
Collapse
|
40
|
Hu YP, Jin YP, Wu XS, Yang Y, Li YS, Li HF, Xiang SS, Song XL, Jiang L, Zhang YJ, Huang W, Chen SL, Liu FT, Chen C, Zhu Q, Chen HZ, Shao R, Liu YB. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer 2019; 18:167. [PMID: 31752906 PMCID: PMC6868746 DOI: 10.1186/s12943-019-1097-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUNDS Long non-coding RNAs (lncRNAs) are essential factors that regulate tumor development and metastasis via diverse molecular mechanisms in a broad type of cancers. However, the pathological roles of lncRNAs in gallbladder carcinoma (GBC) remain largely unknown. Here we discovered a novel lncRNA termed lncRNA Highly expressed in GBC (lncRNA-HGBC) which was upregulated in GBC tissue and aimed to investigate its role and regulatory mechanism in the development and progression of GBC. METHODS The expression level of lncRNA-HGBC in GBC tissue and different cell lines was determined by quantitative real-time PCR. The full length of lncRNA-HGBC was obtained by 5' and 3' rapid amplification of the cDNA ends (RACE). Cellular localization of lncRNA-HGBC was detected by fluorescence in situ hybridization (FISH) assays and subcellular fractionation assay. In vitro and in vivo assays were preformed to explore the biological effects of lncRNA-HGBC in GBC cells. RNA pull-down assay, mass spectrometry, and RNA immunoprecipitation (RIP) assay were used to identify lncRNA-HGBC-interacting proteins. Dual luciferase reporter assays, AGO2-RIP, and MS2-RIP assays were performed to verify the interaction between lncRNA-HGBC and miR-502-3p. RESULTS We found that lncRNA-HGBC was upregulated in GBC and its upregulation could predict poor survival. Overexpression or knockdown of lncRNA-HGBC in GBC cell lines resulted in increased or decreased, respectively, cell proliferation and invasion in vitro and in xenografted tumors. LncRNA-HGBC specifically bound to RNA binding protein Hu Antigen R (HuR) that in turn stabilized lncRNA-HGBC. LncRNA-HGBC functioned as a competitive endogenous RNA to bind to miR-502-3p that inhibits target gene SET. Overexpression, knockdown or mutation of lncRNA-HGBC altered the inhibitory effects of miR-502-3p on SET expression and downstream activation of AKT. Clinically, lncRNA-HGBC expression was negatively correlated with miR-502-3p, but positively correlated with SET and HuR in GBC tissue. CONCLUSIONS Our study demonstrates that lncRNA-HGBC promotes GBC metastasis via activation of the miR-502-3p-SET-AKT cascade, pointing to lncRNA-HGBC as a new prognostic predictor and a therapeutic target.
Collapse
Affiliation(s)
- Yun-Ping Hu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, W. Building 3, Room 407, 280 Chongqi Road, Shanghai, 200025, China
| | - Yun-Peng Jin
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiang-Song Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yang Yang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yong-Sheng Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huai-Feng Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shan-Shan Xiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Ling Song
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Jian Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wen Huang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shi-Li Chen
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fa-Tao Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chen Chen
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qin Zhu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, W. Building 3, Room 407, 280 Chongqi Road, Shanghai, 200025, China.
| | - Rong Shao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China. .,Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, W. Building 3, Room 407, 280 Chongqi Road, Shanghai, 200025, China.
| | - Ying-Bin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Building 25, Room 513, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
41
|
Muret K, Désert C, Lagoutte L, Boutin M, Gondret F, Zerjal T, Lagarrigue S. Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species. BMC Genomics 2019; 20:882. [PMID: 31752679 PMCID: PMC6868825 DOI: 10.1186/s12864-019-6093-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken. Long noncoding RNAs (lncRNAs) are known to be involved in many biological processes including lipid metabolism. RESULTS In this context, this paper provides the most exhaustive list of lncRNAs involved in lipid metabolism with 60 genes identified after an in-depth analysis of the bibliography, while all "review" type articles list a total of 27 genes. These 60 lncRNAs are mainly described in human or mice and only a few of them have a precise described mode-of-action. Because these genes are still named in a non-standard way making such a study tedious, we propose a standard name for this list according to the rules dictated by the HUGO consortium. Moreover, we identified about 10% of lncRNAs which are conserved between mammals and chicken and 2% between mammals and fishes. Finally, we demonstrated that two lncRNA were wrongly considered as lncRNAs in the literature since they are 3' extensions of the closest coding gene. CONCLUSIONS Such a lncRNAs catalogue can participate to the understanding of the lipid metabolism regulators; it can be useful to better understand the genetic regulation of some human diseases (obesity, hepatic steatosis) or traits of economic interest in livestock species (meat quality, carcass composition). We have no doubt that this first set will be rapidly enriched in coming years.
Collapse
Affiliation(s)
- Kevin Muret
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - Colette Désert
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | | | - Morgane Boutin
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | | | - Tatiana Zerjal
- GABI INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| | | |
Collapse
|
42
|
Jia L, Jiang Y, Li X, Chen Z. Purβ promotes hepatic glucose production by increasing Adcy6 transcription. Mol Metab 2019; 31:85-97. [PMID: 31918924 PMCID: PMC6920194 DOI: 10.1016/j.molmet.2019.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/03/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Enhanced glucagon signaling and hepatic glucose production (HGP) can account for hyperglycemia in patients with obesity and type 2 diabetes. However, the detailed molecular mechanisms underlying the enhanced HGP in these patients are not fully understood. Here, we identify Purβ as a positive regulator of HGP and study its molecular mechanisms in the regulation of HGP both in vivo and in vitro. Methods Adenovirus-mediated knockdown or overexpression of Purβ was performed in either primary hepatocytes or the livers of db/db mice. Glucose metabolism, insulin sensitivity, and HGP were determined by glucose, insulin, and lactate tolerance tests, respectively. Purβ/ADCY6 protein levels, glucagon signaling (p-CREB/CREB), and insulin signaling (p-Akt/Akt) were measured by immunoblotting. Gene expression was measured by RNA-seq and real-time quantitative polymerase chain reaction. Luciferase reporter and chromatin immunoprecipitation assays were used to study the interaction between Purβ and the Adcy6 promoter. Results Purβ was abnormally elevated in obese mice and was also increased under fasting conditions or via the glucagon signaling pathway, which promoted HGP by increasing Adcy6 expression. Liver-specific knockdown of Purβ in db/db mice significantly ameliorated hyperglycemia and glucose intolerance by suppressing the glucagon/ADCY6/cAMP/PKA/CREB signaling pathway. Consistent with this observation, the knockdown of Purβ also inhibited glucose production in isolated primary hepatocytes by inhibiting the glucagon/ADCY6/cAMP/PKA/CREB signaling pathway, whereas the overexpression of Purβ promoted glucose production by activating this signaling pathway. Mechanistically, Purβ directly binds to the promoter of the Adcy6 gene and thereby promotes its transcription. Conclusions Taken together, these results illustrate a new model in which Purβ functions to regulate the glucagon/ADCY6/cAMP/PKA/CREB signaling pathway to help maintain glucose homeostasis. Purβ was identified as a novel positive regulator of hepatic glucose production. Purβ directly binds to the promoter of the Adcy6 gene, inducing its expression and activating the cAMP/PKA/CREB signaling pathway. Liver-specific knockdown of Purβ in db/db mice significantly ameliorates hyperglycemia and glucose intolerance by suppressing the ADCY6/cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China; HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yunfeng Jiang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
43
|
Li J, Wei L, Zhao C, Li J, Liu Z, Zhang M, Wang Y. Resveratrol Maintains Lipid Metabolism Homeostasis via One of the Mechanisms Associated with the Key Circadian Regulator Bmal1. Molecules 2019; 24:E2916. [PMID: 31408938 PMCID: PMC6718980 DOI: 10.3390/molecules24162916] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (RES) possesses anti-inflammatory and anti-oxidant activities, and it can prevent liver lipid metabolism disorders in obese and diabetic individuals. This study elucidated the mechanisms of brain and muscle Arnt-like protein-1 (Bmal1) in the protective effects of RES against liver lipid metabolism disorders. The results indicated that RES ameliorated free fatty acid (FFA)-induced (oleic acid (OA): palmitic acid (PA) = 2:1) glycolipid metabolic disorders in hepatocytes. Simultaneously, RES partially reverted the relatively shallow daily oscillations of FFA-induced circadian clock gene transcription and protein expression in HepG2 cells. RES also attenuated FFA-triggered reactive oxygen species (ROS) secretion and restored mitochondrial membrane potential consumption, as well as the restoration of mitochondrial respiratory complex expression. This study provides compelling evidence that RES controls intracellular lipid metabolic imbalance in a Bmal1-dependent manner. Overall, RES may serve as a promising natural nutraceutical for the regulation of lipid metabolic disorders relevant to the circadian clock.
Collapse
Affiliation(s)
- Jing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100089, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caicai Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100089, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Zhang S, Wang Y, Jia L, Wen X, Du Z, Wang C, Hao Y, Yu D, Zhou L, Chen N, Chen J, Chen H, Zhang H, Celik I, Gülsoy G, Luo J, Qin B, Cui X, Liu Z, Zhang S, Esteban MA, Ay F, Xu W, Chen R, Li W, Hoffman AR, Hu JF, Cui J. Profiling the long noncoding RNA interaction network in the regulatory elements of target genes by chromatin in situ reverse transcription sequencing. Genome Res 2019; 29:1521-1532. [PMID: 31315906 PMCID: PMC6724666 DOI: 10.1101/gr.244996.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) can regulate the activity of target genes by participating in the organization of chromatin architecture. We have devised a “chromatin-RNA in situ reverse transcription sequencing” (CRIST-seq) approach to profile the lncRNA interaction network in gene regulatory elements by combining the simplicity of RNA biotin labeling with the specificity of the CRISPR/Cas9 system. Using gene-specific gRNAs, we describe a pluripotency-specific lncRNA interacting network in the promoters of Sox2 and Pou5f1, two critical stem cell factors that are required for the maintenance of pluripotency. The promoter-interacting lncRNAs were specifically activated during reprogramming into pluripotency. Knockdown of these lncRNAs caused the stem cells to exit from pluripotency. In contrast, overexpression of the pluripotency-associated lncRNA activated the promoters of core stem cell factor genes and enhanced fibroblast reprogramming into pluripotency. These CRIST-seq data suggest that the Sox2 and Pou5f1 promoters are organized within a unique lncRNA interaction network that determines the fate of pluripotency during reprogramming. This CRIST approach may be broadly used to map lncRNA interaction networks at target loci across the genome.
Collapse
Affiliation(s)
- Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Zhonghua Du
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Dehai Yu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Naifei Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Jingcheng Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Huiling Chen
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Ilkay Celik
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Günhan Gülsoy
- Google Incorporated, Mountain View, California 94043, USA
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Baoming Qin
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Xueling Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Songling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Miguel A Esteban
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Wei Xu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
45
|
Wang XM, Li XM, Song N, Zhai H, Gao XM, Yang YN. Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed Pharmacother 2019; 118:109208. [PMID: 31302423 DOI: 10.1016/j.biopha.2019.109208] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 01/26/2023] Open
Abstract
In this study, we evaluated the potential of peripheral blood mononuclear cells (PBMC) derived long non-coding RNAs (lncRNAs) as biomarkers for acute myocardial infarction (AMI). To assess the value of PBMCs-derived lncRNAs levels in predicting clinical outcomes in AMI. We measured the PBMC-derived levels of 10 individual lncRNAs which are known to be relevant to cardiovascular disease in PBMCs from 132 AMI patients and 104 healthy participants using quantitative RT-PCR. For AMI group, blood sample were obtained from patients after the onset of AMI. Out of the 10 lncRNAs tested, the mRNA level of lncRNA H19, MIAT and MALAT1 were significantly higher in AMI patients than in healthy control (2.3 ± 0.2 vs. 1.0 ± 0.1, p < 0.001, 1.5±0.1 vs. 1.0±0.1, p = 0.002, 1.8±0.2 vs. 1.0±0.1, p < 0.001, respectively). Receiver operating characteristic curve analyses showed that PBMC-derived H19 had significant diagnostic value for AMI (AUC, 0.753; 95% CI, 0.689˜0.817). Multivariate logistic regression analysis showed that H19 as a dangerous risk for AMI (OR = 2.498, 95% CI, 1.321-4.726, p = 0.005). In addition, the lncRNA H19 alteration was inversely associated with a number of cardiovascular protective factors, and positively associated with cardiovascular risk factors, such as high-density lipoprotein (HDL) (r=-0.198, p = 0.010), lipoprotein A (r=-0.153, p = 0.049), white blood cell counting (r=0.301, p < 0.001) and cardiac ejection fraction (r=-0.157, p = 0.042). Moreover, lncRNA H19 was positively correlated with cardiac biomarkers, i.e. troponinT (r=0.344,p < 0.001), CK (r=0.261, p = 0.001) and CKMB (r=0.24, p = 0.002). Hence, elevated expression level of PBMC-derived H19, MIAT and MALAT1 may be considered as novel biomarkers of AMI.
Collapse
Affiliation(s)
- Xue-Mei Wang
- Xinjiang Key Laboratory of Medical Animal Model Research, Xinjiang Medical University, Urumqi, China; Department of public health, Xi'an Medical University, Xi'an, China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, China
| | - Ning Song
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Zhai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Ming Gao
- Xinjiang Key Laboratory of Medical Animal Model Research, Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, China.
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, China.
| |
Collapse
|
46
|
Tong J, Xu X, Zhang Z, Ma C, Xiang R, Liu J, Xu W, Wu C, Li J, Zhan F, Wu Y, Yan H. Hypoxia-induced long non-coding RNA DARS-AS1 regulates RBM39 stability to promote myeloma malignancy. Haematologica 2019; 105:1630-1640. [PMID: 31289203 PMCID: PMC7271587 DOI: 10.3324/haematol.2019.218289] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma is a malignant plasma-cell disease, which is highly dependent on the hypoxic bone marrow microenvironment. However, the underlying mechanisms of hypoxia contributing to myeloma genesis are not fully understood. Here, we show that long non-coding RNA DARS-AS1 in myeloma is directly upregulated by hypoxia inducible factor (HIF)-1. Importantly, DARS-AS1 is required for the survival and tumorigenesis of myeloma cells both in vitro and in vivo. DARS-AS1 exerts its function by binding RNA-binding motif protein 39 (RBM39), which impedes the interaction between RBM39 and its E3 ubiquitin ligase RNF147, and prevents RBM39 from degradation. The overexpression of RBM39 observed in myeloma cells is associated with poor prognosis. Furthermore, knockdown of DARS-AS1 inhibits the mammalian target of rapamycin signaling pathway, an effect that is reversed by RBM39 overexpression. We reveal that a novel HIF-1/DARS-AS1/RBM39 pathway is implicated in the pathogenesis of myeloma. Targeting DARS-AS1/RBM39 may, therefore, represent a novel strategy to combat myeloma.
Collapse
Affiliation(s)
- Jia Tong
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Xu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Zhang
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengning Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rufang Xiang
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghuang Zhan
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Shen X, Zhang Y, Zhang X, Yao Y, Zheng Y, Cui X, Liu C, Wang Q, Li JZ. Long non-coding RNA Bhmt-AS attenuates hepatic gluconeogenesis via modulation of Bhmt expression. Biochem Biophys Res Commun 2019; 516:215-221. [PMID: 31208716 DOI: 10.1016/j.bbrc.2019.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 01/16/2023]
Abstract
Dysregulation of gluconeogenesis contributes to the pathogenesis of metabolic disease, such as type-2 diabetes. The role of long non-coding RNAs (lncRNAs) in the pathogenesis of diabetes has recently received increased attention. In the present study, we identified a novel lncRNA, betaine-homocysteine methyltransferase-antisense (Bhmt-AS), and examined its expression patterns under pathophysiological conditions. Our results revealed that the expression of Bhmt-AS was significantly increased in the livers of fasted and db/db mice and was induced by gluconeogenic hormonal stimuli. The Bhmt-AS was also shown to be a concordant regulator of Bhmt expression. Functionally, depletion of Bhmt-AS suppressed hepatic glucose production both in vivo and in vitro. Adenovirus-mediated hepatic knockdown of Bhmt-AS improved pyruvate tolerance, glucose tolerance, and insulin sensitivity. Furthermore, overexpression of Bhmt restored the decreased glucose production caused by knockdown of Bhmt-AS in primary hepatocytes. Taken together, we uncovered a novel antisense lncRNA (Bhmt-AS) that is co-expressed with Bhmt and concordantly and specifically regulates Bhmt expression both in vitro and in vivo to regulate hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Xuan Shen
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yajun Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yiwei Yao
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yujie Zheng
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Hospital, China; Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Chang Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
48
|
Mongelli A, Martelli F, Farsetti A, Gaetano C. The Dark That Matters: Long Non-coding RNAs as Master Regulators of Cellular Metabolism in Non-communicable Diseases. Front Physiol 2019; 10:369. [PMID: 31191327 PMCID: PMC6539782 DOI: 10.3389/fphys.2019.00369] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs are pivotal for many cellular functions, such as splicing, gene regulation, chromosome structure, and hormone-like activity. Here, we will report about the biology and the general molecular mechanisms associated with long non-coding RNAs (lncRNAs), a class of >200 nucleotides-long ribonucleic acid sequences, and their role in chronic non-transmissible diseases. In particular, we will summarize knowledge about some of the best-characterized lncRNAs, such as H19 and MALAT1, and how they regulate carbohydrate and lipid metabolism as well as protein synthesis and degradation. Evidence is discussed about how lncRNAs expression might affect cellular and organismal metabolism and whether their modulation could provide ground for the development of innovative treatments.
Collapse
Affiliation(s)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Antonella Farsetti
- Institute of Cell Biology and Neurobiology, National Research Council, Università Cattolica di Roma, Rome, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, ICS Maugeri S.p.A., Pavia, Italy
| |
Collapse
|
49
|
Regulation of Cholesterol Homeostasis by a Novel Long Non-coding RNA LASER. Sci Rep 2019; 9:7693. [PMID: 31118464 PMCID: PMC6531449 DOI: 10.1038/s41598-019-44195-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified many genetic variants in genes related to lipid metabolism. However, how these variations affect lipid levels remains elusive. Long non-coding RNAs (lncRNAs) have been implicated in a variety of biological processes. We hypothesize lncRNAs are likely to be located within disease or trait-associated DNA regions to regulate lipid metabolism. The aim of this study was to investigate whether and how lncRNAs in lipid- associated DNA regions regulate cholesterol homeostasis in hepatocytes. In this study, we identified a novel long non-coding RNA in Lipid Associated Single nucleotide polymorphism gEne Region (LASER) by bioinformatic analysis. We report that LASER is highly expressed in both hepatocytes and peripheral mononuclear cells (PBMCs). Clinical studies showed that LASER expression is positively related with that of cholesterol containing apolipoprotein levels. In particular, we found that LASER is positively correlated with plasma PCSK9 levels in statin free patients. siRNAs mediated knock down of LASER dramatically reduces intracellular cholesterol levels and affects the expression of genes involved in cholesterol metabolism. Transcriptome analyses show that knockdown of LASER affects the expression of genes involved in metabolism pathways. We found that HNF-1α and PCSK9 were reduced after LASER knock-down. Interestingly, the reduction of PCSK9 can be blocked by the treatment of berberine, a natural cholesterol-lowering compound which functions as a HNF-1α antagonist. Mechanistically, we found that LASER binds to LSD1 (lysine-specific demethylase 1), a member of CoREST/REST complex, in nucleus. LASER knock-down enhance LSD1 targeting to genomic loci, resulting in decreased histone H3 lysine 4 mono-methylation at the promoter regions of HNF-1α gene. Conversely, LSD1 knock-down abolished the effect of LASER on HNF-1α and PCSK9 expressions. Finally, we found that statin treatment increased LASER expression, accompanied with increased PCSK9 expression, suggesting a feedback regulation of cholesterol on LASER expression. This observation may partly explain the statin escape during anti-cholesterol treatment. These findings identified a novel lncRNA in cholesterol homeostasis. Therapeutic targeting LASER might be an effective approach to augment the effect of statins on cholesterol levels in clinics.
Collapse
|
50
|
Xu H, Cao L, Sun B, Wei Y, Liang M. Transcriptomic Analysis of Potential "lncRNA-mRNA" Interactions in Liver of the Marine Teleost Cynoglossus semilaevis Fed Diets With Different DHA/EPA Ratios. Front Physiol 2019; 10:331. [PMID: 31001132 PMCID: PMC6454198 DOI: 10.3389/fphys.2019.00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 01/22/2023] Open
Abstract
Long non-coding RNAs (lncRNA) have emerged as important regulators of lipid metabolism and have been shown to play multifaceted roles in controlling transcriptional gene regulation, but very little relevant information has been available in fish, especially in non-model fish species. With a feeding trial on a typical marine teleost tongue sole C. semilaevis followed by transcriptomic analysis, the present study investigated the possible involvement of lncRNA in hepatic mRNA expression in response to different levels of dietary DHA and EPA, which are two most important fatty acids for marine fish. An 80-day feeding trial was conducted in a flow-through seawater system, and in this trial three experimental diets differing basically in DHA/EPA ratio, i.e., 0.61 (D/E-0.61), 1.46 (D/E-1.46), and 2.75 (D/E-2.75), were randomly assigned to 9 tanks of experimental fish. A total of 124.04 G high quality genome-wide clean data about coding and non-coding transcripts was obtained in the analysis of hepatic transcriptome. Compared to diet D/E-0.61, D/E-1.46 up-regulated expression of 178 lncRNAs and 2629 mRNAs, and down-regulated that of 47 lncRNAs and 3059 mRNAs, while D/E-2.75 resulted in much less change in gene expression. The co-expression and co-localization analysis of differentially expressed (DE) lncRNA and mRNA among dietary groups were then conducted. The co-expressed DE lncRNA and mRNA were primarily enriched in GO terms such as Metabolic process, Intracellular organelle, Catalytic activity, and Oxidoreductase activity, as well as in KEGG pathways such as Ribosome and Oxidative phosphorylation. Overlap of co-expression and co-localization analysis, i.e., lncRNA–mRNA matches “XR_523541.1–solute carrier family 16, member 5 (slc16a5)” and “LNC_000285–bromodomain adjacent to zinc finger domain 2A (baz2a),” were observed in all inter-group comparisons, indicating that they might crucially mediate the effects of dietary DHA and EPA on hepatic gene expression in tongue sole. In conclusion, this was the first time in marine teleost to investigate the possible lncRNA–mRNA interactions in response to dietary fatty acids. The results provided novel knowledge of lncRNAs in non-model marine teleost, and will serve as important resources for future studies that further investigate the roles of lncRNAs in lipid metabolism of marine teleost.
Collapse
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lin Cao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Beijing Institute of Feed Control, Beijing, China
| | - Bo Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|