1
|
Zhao X, Peng H, Hu J, Wang L, Zhang F. Nanotechnology-Enabled PCR with Tunable Energy Dynamics. JACS AU 2024; 4:3370-3382. [PMID: 39328766 PMCID: PMC11423310 DOI: 10.1021/jacsau.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
This Perspective elucidates the transformative impacts of advanced nanotechnology and dynamic energy systems on the polymer chain reaction (PCR), a cornerstone technique in biomedical research and diagnostic applications. Since its invention, the optimization of PCR-specifically its efficiency, specificity, cycling rate, and detection sensitivity-has been a focal point of scientific exploration. Our analysis spans the modulation of PCR from both material and energetic perspectives, emphasizing the intricate interplay between PCR components and externally added entities such as molecules, nanoparticles (NPs), and optical microcavities. We begin with a foundational overview of PCR, detailing the basic principles of PCR modulation through molecular additives to highlight material-level interactions. Then, we delve into how NPs, with their diverse material and surface properties, influence PCR through interface interactions and hydrothermal conduction, drawing parallels to molecular behaviors. Additionally, this Perspective ventures into the energetic regulation of PCR, examining the roles of electromagnetic radiation and optical resonators. We underscore the advanced capabilities of optical technologies in PCR regulation, characterized by their ultrafast, residue-free, and noninvasive nature, alongside label-free detection methods. Notably, optical resonators present a pioneering approach to control PCR processes even in the absence of light, targeting the often-overlooked water component in PCR. By integrating discussions on photocaging and vibrational strong coupling, this review presents innovative methods for the precise regulation of PCR processes, envisioning a new era of PCR technology that enhances both research and clinical diagnostics. The synergy between nanotechnological enhancements and energy dynamics not only enriches our understanding of PCR but also opens new avenues for developing rapid, accurate, and efficient PCR systems. We hope that this Perspective will inspire further innovations in PCR technology and guide the development of next-generation clinical detection instruments.
Collapse
Affiliation(s)
- Xinmin Zhao
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Hongzhen Peng
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jun Hu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Feng Zhang
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
2
|
Zeng R, Du Z, Ma H, Meng X, Li E, Li J. The 60 nm gold nanoparticles improve qPCR amplification efficiency through specific palindromic sequences (GGATCC or ACCGGT) in primers. Biochim Biophys Acta Gen Subj 2024; 1868:130560. [PMID: 38211821 DOI: 10.1016/j.bbagen.2024.130560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Polymerase chain reaction (PCR) technology and quantitative real-time PCR (qPCR) technology are widely used in clinical diagnosis and research, but amplification efficiency and sensitivity are still key problems for researchers. An increasing number of reports show that gold nanoparticles (AuNPs) can be used to improve the sensitivity and amplification efficiency of PCR. Here, we found that 60 nm gold nanoparticles with a positive charge (60 nm- Au+) can enhance the amplification efficiency of qPCR. METHODS Mouse DNA was extracted by the alkaline lysis method. Primer 5.0 software was used to design primers and mutation primers, and the DNA fragments were obtained by the method of synthesizing plasmids. The qPCR was applied to amplify target gene fragments. RESULTS The amplification efficiency of qPCR was improved by about 1.828 times in the experimental group with 60 nm- Au+ compared with the control group without 60 nm- Au+. The primer pair contains a specific palindromic sequence (GGATCC or ACCGGT). And 60 nm Au+ did not enhance the amplification efficiency of qPCR when the above primer was mutated. CONCLUSIONS The primers contain special palindrome sequences (GGATCC or ACCGGT) with 60 nm- Au+ can enhance the amplification efficiency of qPCR. Therefore, it suggests a more in-depth understanding of the mechanism and function of gold nanoparticles and primer sequences. This study has presented some implications for gold nanoparticles application in the development of qPCR technology.
Collapse
Affiliation(s)
- Ruyu Zeng
- The Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiqun Du
- The Department of Pathology, Dongyang People's Hospital, Zhejiang, China
| | - Hongliang Ma
- The Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiuqiong Meng
- The Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Erhua Li
- Guangzhou BDS Biological Technology Co., Ltd. Guangzhou, China
| | - Jiangchao Li
- The Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Madadelahi M, Agarwal R, Martinez-Chapa SO, Madou MJ. A roadmap to high-speed polymerase chain reaction (PCR): COVID-19 as a technology accelerator. Biosens Bioelectron 2024; 246:115830. [PMID: 38039729 DOI: 10.1016/j.bios.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
The limit of detection (LOD), speed, and cost of crucial COVID-19 diagnostic tools, including lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reactions (PCR), have all improved because of the financial and governmental support for the epidemic. The most notable improvement in overall efficiency among them has been seen with PCR. Its significance for human health increased during the COVID-19 pandemic, when it emerged as the commonly used approach for identifying the virus. However, because of problems with speed, complexity, and expense, PCR deployment in point-of-care settings continues to be difficult. Microfluidic platforms offer a promising solution by enabling the development of smaller, more affordable, and faster PCR systems. In this review, we delve into the engineering challenges associated with the advancement of high-speed microfluidic PCR equipment. We introduce criteria that facilitate the evaluation and comparison of factors such as speed, LOD, cycling efficiency, and multiplexing capacity, considering sample volume, fluidics, PCR reactor geometry and materials, as well as heating/cooling methods. We also provide a comprehensive list of commercially available PCR devices and conclude with projections and a discussion regarding the current obstacles that need to be addressed in order to progress further in this field.
Collapse
Affiliation(s)
- Masoud Madadelahi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico; Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Rahul Agarwal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico
| | | | - Marc J Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico; Autonomous Medical Devices Incorporated (AMDI), Santa Ana, CA, 92704, USA.
| |
Collapse
|
4
|
Chakraborty M, Soda N, Strachan S, Ngo CN, Bhuiyan SA, Shiddiky MJA, Ford R. Ratoon Stunting Disease of Sugarcane: A Review Emphasizing Detection Strategies and Challenges. PHYTOPATHOLOGY 2024; 114:7-20. [PMID: 37530477 DOI: 10.1094/phyto-05-23-0181-rvw] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sugarcane (Saccharum hybrid) is an important cash crop grown in tropical and subtropical countries. Ratoon stunting disease (RSD), caused by a xylem-inhabiting bacterium, Leifsonia xyli subsp. xyli (Lxx) is one of the most economically significant diseases globally. RSD results in severe yield losses because its highly contagious nature and lack of visually identifiable symptoms make it harder to devise an effective management strategy. The efficacy of current management practices is hindered by implementation difficulties caused by lack of resources, high cost, and difficulties in monitoring. Rapid detection of the causal pathogen in vegetative planting material is crucial for sugarcane growers to manage this disease. Several microscopic, serological, and molecular-based methods have been developed and used for detecting the RSD pathogen. Although these methods have been used across the sugarcane industry worldwide to diagnose Lxx, some lack reliability or specificity, are expensive and time-consuming to apply, and most of all, are not suitable for on-farm diagnosis. In recent decades, there has been significant progress in the development of integrated isothermal amplification-based microdevices for accurate human and plant pathogen detection. There is a significant opportunity to develop a novel diagnostic method that integrates nanobiosensing with isothermal amplification within a microdevice format for accurate Lxx detection. In this review, we summarize (i) the historical background and current knowledge of sugarcane ratoon stunting disease, including some aspects related to transmission, pathosystem, and management practices; and (ii) the drawbacks of current diagnostic methods and the potential for application of advanced diagnostics to improve disease management.
Collapse
Affiliation(s)
- Moutoshi Chakraborty
- Centre for Planetary Health and Food Security (CPHFS), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - Simon Strachan
- School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - Chuong N Ngo
- Sugar Research Australia (SRA), Indooroopilly, QLD 4068, Australia
| | - Shamsul A Bhuiyan
- Queensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Sugar Research Australia (SRA), 90 Old Cove Road, Woodford, QLD 4514, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Rural Health Research Institute (RHRI), Charles Sturt University, Orange NSW 2800, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security (CPHFS), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
5
|
Devika PP, Alex S, Soni KB, Sindura KP, Ayisha R, Manju RV. Nano-PCR for the early detection of tomato leaf curl virus. 3 Biotech 2024; 14:5. [PMID: 38074290 PMCID: PMC10700262 DOI: 10.1007/s13205-023-03842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/02/2023] [Indexed: 01/19/2024] Open
Abstract
Nano-PCR is a potential tool for the early detection of plant viruses. In the current study, different concentrations of silver nanoparticles (20 nm) and magnesium oxide nanoparticles (50 nm) were included in the PCR mixture to improve the sensitivity of PCR for the detection of tomato leaf curl virus. The inclusion of nanoparticles in single or combination in PCR mixture has resulted in improvement of PCR sensitivity. Four-fold improvement was exhibited by the inclusion of 3 ng/µL silver nanoparticles, whereas the combination of silver and magnesium oxide nanoparticles (3 ng/µL and 200 ng/µL, respectively), resulted in a 4.5-fold improvement. The inclusion of 200 ng/µL of magnesium oxide nanoparticles in the PCR mixture exhibited a 7.6-fold increase in PCR sensitivity. Replacement of magnesium chloride with a combination of silver and magnesium oxide nanoparticles (3 ng/µL and 275 ng/µL, respectively) resulted in a 12-fold increase. A 13-fold improvement in PCR sensitivity was observed by the replacement of magnesium chloride in PCR buffer with 275 ng/µL of magnesium oxide nanoparticles. This could also produce detectable amplicon in PCR with a minimum of 25 cycles, resulting in a 26.5% reduction in the duration of PCR. This is the first report on the use of magnesium oxide nanoparticles in PCR for the early detection and better management of tomato leaf curl virus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03842-2.
Collapse
Affiliation(s)
- P. P. Devika
- Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| | - Swapna Alex
- Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| | - K. B. Soni
- Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| | - K. P. Sindura
- Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| | - R. Ayisha
- Department of Plant Pathology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, Kerala 680656 India
| | - R. V. Manju
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| |
Collapse
|
6
|
Kumar PPP, Lim DK. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023; 15:2349. [PMID: 37765317 PMCID: PMC10534847 DOI: 10.3390/pharmaceutics15092349] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) have received great attention for various medical applications due to their unique physicochemical properties. AuNPs with tunable optical properties in the visible and near-infrared regions have been utilized in a variety of applications such as in vitro diagnostics, in vivo imaging, and therapeutics. Among the applications, this review will pay more attention to recent developments in diagnostic and therapeutic applications based on the photothermal (PT) effect of AuNPs. In particular, the PT effect of AuNPs has played an important role in medical applications utilizing light, such as photoacoustic imaging, photon polymerase chain reaction (PCR), and hyperthermia therapy. First, we discuss the fundamentals of the optical properties in detail to understand the background of the PT effect of AuNPs. For diagnostic applications, the ability of AuNPs to efficiently convert absorbed light energy into heat to generate enhanced acoustic waves can lead to significant enhancements in photoacoustic signal intensity. Integration of the PT effect of AuNPs with PCR may open new opportunities for technological innovation called photonic PCR, where light is used to enable fast and accurate temperature cycling for DNA amplification. Additionally, beyond the existing thermotherapy of AuNPs, the PT effect of AuNPs can be further applied to cancer immunotherapy. Controlled PT damage to cancer cells triggers an immune response, which is useful for obtaining better outcomes in combination with immune checkpoint inhibitors or vaccines. Therefore, this review examines applications to nanomedicine based on the PT effect among the unique optical properties of AuNPs, understands the basic principles, the advantages and disadvantages of each technology, and understands the importance of a multidisciplinary approach. Based on this, it is expected that it will help understand the current status and development direction of new nanoparticle-based disease diagnosis methods and treatment methods, and we hope that it will inspire the development of new innovative technologies.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Vajpayee K, Dash HR, Parekh PB, Shukla RK. PCR inhibitors and facilitators - Their role in forensic DNA analysis. Forensic Sci Int 2023; 349:111773. [PMID: 37399774 DOI: 10.1016/j.forsciint.2023.111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/01/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Since its inception, DNA typing technology has been practiced as a robust tool in criminal investigations. Experts usually utilize STR profiles to identify and individualize the suspect. However, mtDNA and Y STR analyses are also considered in some sample-limiting conditions. Based on DNA profiles thus generated, forensic scientists often opine the results as Inclusion, exclusion, and inconclusive. Inclusion and exclusion were defined as concordant results; the inconclusive opinions create problems in conferring justice in a trial- since nothing concrete can be interpreted from the profile generated. The presence of inhibitor molecules in the sample is the primary factor behind these indefinite results. Recently, researchers have been emphasizing studying the sources of PCR inhibitors and their mechanism of inhibition. Furthermore, several mitigation strategies- to facilitate the DNA amplification reaction -have now found their place in the routine DNA typing assays with compromised biological samples. The present review paper attempts to provide a comprehensive review of PCR inhibitors, their source, mechanism of inhibition, and ways to mitigate their effect using PCR facilitators.
Collapse
Affiliation(s)
- Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Hirak Ranjan Dash
- National Forensic Science University, New Delhi Campus, New Delhi, India
| | - Prakshal B Parekh
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.
| |
Collapse
|
8
|
Xue H, Liang Y, Gao X, Song Y, Zhu K, Yang M, Hao J, Ma H, Yu K. Development and Application of nanoPCR Method for Detection of Feline Panleukopenia Virus. Vet Sci 2023; 10:440. [PMID: 37505845 PMCID: PMC10386105 DOI: 10.3390/vetsci10070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Feline panleukopenia (FP) is a severe viral illness caused by the feline panleukopenia virus (FPV), putting sectors like companion cat breeding and endangered feline conservation at risk. The virus has a high morbidity and fatality rate and is found all over the world. We created a novel FPV assay using nanoPCR technology and assessed the method's specificity and sensitivity. The approach amplified a 345 bp nucleic acid fragment with a minimum detection limit of 7.97 × 102 copies/μL, which is about 100 times greater than traditional PCR. We collected anal swabs from 83 cats suspected of FPV infection for practical application, and the FPV-positive rate determined by the nanoPCR approach was 77.1%. In conclusion, the approach is more sensitive than conventional PCR and more convenient and cost-effective than qPCR methodology and may be utilized for the clinical detection of FPV.
Collapse
Affiliation(s)
- Haowen Xue
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Yang Liang
- Beijing Shengzetang Animal Hospital, Beijing 102218, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Meng Yang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Jingrui Hao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Kai Yu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| |
Collapse
|
9
|
Chauhan K, Kim DM, Cho E, Kim DE. Facilitation of Dye-Based Quantitative Real-Time Polymerase Chain Reaction with Poly(ethylene glycol)-Engrafted Graphene Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1348. [PMID: 37110934 PMCID: PMC10144433 DOI: 10.3390/nano13081348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Quantitative real-time polymerase chain reaction (qPCR) is an important and extensively utilized technique in medical and biotechnological applications. qPCR enables the real-time detection of nucleic acid during amplification, thus surpassing the necessity of post-amplification gel electrophoresis for amplicon detection. Despite being widely employed in molecular diagnostics, qPCR exhibits limitations attributed to nonspecific DNA amplification that compromises the efficiency and fidelity of qPCR. Herein, we demonstrate that poly(ethylene glycol)-engrafted nanosized graphene oxide (PEG-nGO) can significantly improve the efficiency and specificity of qPCR by adsorbing single-stranded DNA (ssDNA) without affecting the fluorescence of double-stranded DNA binding dye during DNA amplification. PEG-nGO adsorbs surplus ssDNA primers in the initial phase of PCR, having lower concentrations of DNA amplicons and thus minimizing the nonspecific annealing of ssDNA and false amplification due to primer dimerization and erroneous priming. As compared to conventional qPCR, the addition of PEG-nGO and the DNA binding dye, EvaGreen, in the qPCR setup (dubbed as PENGO-qPCR) significantly enhances the specificity and sensitivity of DNA amplification by preferential adsorption of ssDNA without inhibiting DNA polymerase activity. The PENGO-qPCR system for detection of influenza viral RNA exhibited a 67-fold higher sensitivity than the conventional qPCR setup. Thus, the performance of a qPCR can be greatly enhanced by adding PEG-nGO as a PCR enhancer as well as EvaGreen as a DNA binding dye to the qPCR mixture, which exhibits a significantly improved sensitivity of the qPCR.
Collapse
|
10
|
Yang Z, Shen B, Yue L, Miao Y, Hu Y, Ouyang R. Application of Nanomaterials to Enhance Polymerase Chain Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248854. [PMID: 36557991 PMCID: PMC9781713 DOI: 10.3390/molecules27248854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Polymerase Chain Reaction (PCR) is one of the most common technologies used to produce millions of copies of targeted nucleic acid in vitro and has become an indispensable technique in molecular biology. However, it suffers from low efficiency and specificity problems, false positive results, and so on. Although many conditions can be optimized to increase PCR yield, such as the magnesium ion concentration, the DNA polymerases, the number of cycles, and so on, they are not all-purpose and the optimization can be case dependent. Nano-sized materials offer a possible solution to improve both the quality and productivity of PCR. In the last two decades, nanoparticles (NPs) have attracted significant attention and gradually penetrated the field of life sciences because of their unique chemical and physical properties, such as their large surface area and small size effect, which have greatly promoted developments in life science and technology. Additionally, PCR technology assisted by NPs (NanoPCR) such as gold NPs (Au NPs), quantum dots (QDs), and carbon nanotubes (CNTs), etc., have been developed to significantly improve the specificity, efficiency, and sensitivity of PCR and to accelerate the PCR reaction process. This review discusses the roles of different types of NPs used to enhance PCR and summarizes their possible mechanisms.
Collapse
Affiliation(s)
- Zhu Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (Y.H.); (R.O.)
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (Y.M.); (Y.H.); (R.O.)
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (Y.H.); (R.O.)
| |
Collapse
|
11
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
12
|
Ye J, Li Z, Sun FY, Guo L, Feng E, Bai X, Cheng Y. Development of a triple NanoPCR method for feline calicivirus, feline panleukopenia syndrome virus, and feline herpesvirus type I virus. BMC Vet Res 2022; 18:379. [PMID: 36303189 PMCID: PMC9608924 DOI: 10.1186/s12917-022-03460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Feline calicivirus (FCV), Feline panleukopenia virus (FPV), and Feline herpesvirus type I (FHV-1) are the three most common pathogens in cats, and also are the main pathogens leading to the death of kittens. Here, by a combination of gold nanoparticles and conventional PCR, we established a novel triple NanoPCR molecular detection method for clinical detection. Results The triple NanoPCR molecular detection is able to detect 2.97 × 101copies/μL FCV recombinant copies plasmid per reaction, 2.64 × 104copies/μL FPV recombinant copies plasmid per reaction, and 2.85copies/μL FHV-1 recombinant copies plasmid per reaction at the same time. The sensitivity of each plasmid is 100 times, 10 times, and 100 times higher than conventional PCR, respectively. The clinical results showed that among the 38 samples, the positive rates of FCV, FPV, and FHV-1 in a NanoPCR test were 63.16, 31.58, and 60.53%, while in a conventional PCR were 39.47, 18.42, and 34.21%. Conclusions In this report, it is the first time that NanoPCR assays are applied in the detection of FCV, FPV, and FHV-1 as well. This sensitive and specific NanoPCR assay can be widely used in clinical diagnosis and field monitoring of FCV, FPV, and FHV-1 infections.
Collapse
Affiliation(s)
- Jingfei Ye
- grid.464373.1Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| | - Zhijie Li
- grid.464373.1Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| | - Fei Yan Sun
- grid.464373.1Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| | - Li Guo
- grid.507914.eJilin Agricultural Science and Technology University, Jilin, 132109 China
| | - Erkai Feng
- grid.464373.1Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| | - Xue Bai
- grid.464373.1Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| | - Yuening Cheng
- grid.464373.1Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| |
Collapse
|
13
|
Development and Preliminary Evaluation of a Nanoparticle-Assisted PCR Assay for the Detection of Cryptosporidium parvum in Calves. Animals (Basel) 2022; 12:ani12151953. [PMID: 35953942 PMCID: PMC9367258 DOI: 10.3390/ani12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
C. parvum is an important diarrheal pathogen in humans and animals, especially in young hosts. To accurately and rapidly detect C. parvum infection in calves, we established a nano-PCR assay targeting the cgd3_330 gene for the specific detection of C. parvum. This nano-PCR assay was ten times more sensitive than that of the normal PCR assay by applying the same primers and did not cross-react with C. andersoni, C. bovis, C. ryanae, Balantidium coli, Enterocytozoon bieneusi, Giardia lamblia, and Blastocystis sp. To further test the nano-PCR in clinical settings, a total of 20 faecal samples from calves were examined by using the nano-PCR, the normal PCR, and the nested PCR assays. The positive rates were 30% (6/20), 30% (6/20), and 25% (5/20) for the nano-PCR, the normal PCR, and the nested PCR assays, respectively, indicating that the nano-PCR and the normal PCR assays had the same positive rate (30%). Taken together, the present study could provide a candidate method for the specific detection of C. parvum infection in calves in clinical settings.
Collapse
|
14
|
Jiang X, Yang M, Liu J. Capping Gold Nanoparticles to Achieve a Protein-like Surface for Loop-Mediated Isothermal Amplification Acceleration and Ultrasensitive DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27666-27674. [PMID: 35687651 DOI: 10.1021/acsami.2c06061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a popular DNA amplification method. Gold nanoparticles (AuNPs) were reported to enhance the efficiency of LAMP, although the underlying mechanism remained elusive. Since AuNPs strongly adsorb a range of ligands, preadsorbed ligands cannot be easily displaced. In this work, we systematically investigated the effect of surface-modified AuNPs on LAMP by varying the order of mixing of AuNPs with each reagent in the LAMP system (Mg2+, template DNA, dNTPs, primers, and polymerase). Mixing the AuNPs with the primers delayed the LAMP based on SYBR green I fluorescence. While other orders of mixing had little effect, all accelerated the reaction. We then tested other common ligands including polymers (polyethylene glycol and polyvinylpyrrolidone), inorganic ions (Br-), proteins, glutathione (GSH), and DNA (A15) on AuNP-LAMP. The boosted AuNP performance on LAMP was most obvious when the AuNPs formed a protein-like surface. Finally, using GSH-capped AuNPs, a detection limit of around 100 copies/μL-1 of target DNA was achieved. This work has identified a ligand-capped AuNP strategy to boost LAMP and yielded a higher sensitivity in DNA sensing, which also deepens our understanding of AuNP-assisted LAMP.
Collapse
Affiliation(s)
- Xingxing Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
15
|
Luan Q, Jiang Z, Wang D, Wang S, Yin Y, Wang J. A sensitive triple nanoparticle-assisted PCR assay for detection of fowl adenovirus, infectious bursal disease virus and chicken anemia virus. J Virol Methods 2022; 303:114499. [PMID: 35217101 DOI: 10.1016/j.jviromet.2022.114499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Fowl adenovirus (FAdV) infections in chickens have resulted in global economic losses in the poultry industry. Infectious bursal disease virus (IBDV) and chicken anemia virus (CAV) infections lead to immunosuppression in chickens, and concomitant co- infection with FAdV usually produces severe and lethal infections. These co-infections are common occurrences on chicken farms and affect large number of chickens. Thus, a rapid, sensitive and specific diagnostic test for these viruses becomes a prerequisite to effective control and isolation measures. We developed a triplex nanoparticle-assisted PCR (nano-PCR) assay that can simultaneously detect these 3 viruses in a single assay tube using PCR primers directed at respective specific genes of each virus. The assay was specific for FAdVs, CAV and IBDV, and it did not amplify Newcastle disease virus, infectious bronchitis virus, egg drop syndrome virus or Marek's disease virus. The minimum detection limit was 27.2 femtogram (fg) for all three viruses and was 1000-fold more sensitive than multiplex PCR using identical primers. Screening of 69 clinical samples from 40 to 50 days old chickens with obvious lesions in liver using the nano-PCR compared with a multiplex PCR yielded identical results. Of the 69 samples, 13 were detected positive including 4 for FAdV, 4 for IBDV and 6 for CAV single virus infections, respectively, as well as 5 for FAdV/CAV, 2 for FAdV/IBDV and 3 for IBDV/CAV co-infections. The triple nano-PCR assay developed in our laboratory is a sensitive, specific and simple method that can be used for detection of FAdV, CAV and IBDV as single or mixed infections.
Collapse
Affiliation(s)
- Qingdong Luan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhiyao Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongdong Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shouchun Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanbo Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jianlin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
PCR enhancers: Types, mechanisms, and applications in long-range PCR. Biochimie 2022; 197:130-143. [DOI: 10.1016/j.biochi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
17
|
Zhang C, Belwal T, Luo Z, Su B, Lin X. Application of Nanomaterials in Isothermal Nucleic Acid Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102711. [PMID: 34626064 DOI: 10.1002/smll.202102711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/29/2021] [Indexed: 05/26/2023]
Abstract
Because of high sensitivity and specificity, isothermal nucleic acid amplification are widely applied in many fields. To facilitate and improve their performance, various nanomaterials, like nanoparticles, nanowires, nanosheets, nanotubes, and nanoporous films are introduced in isothermal nucleic acid amplification. However, the specific application, roles, and prospect of nanomaterials in isothermal nucleic acid amplification have not been comprehensively reviewed. Here, the application of different nanomaterials (0D, 1D, 2D, and 3D) in isothermal nucleic acid amplification is comprehensively discussed and recent progress in the field is summarized. The nanomaterials are mainly used for reaction enhancer, signal generation/amplification, or surface loading carriers. In addition, 3D nanomaterials can be also functioned as isolated chambers for digital nucleic acid amplification and the tools for DNA sequencing of amplified products. Challenges and future recommendations are also proposed to be better used for recent covid-19 detection, point-of-care diagnostic, food safety, and other fields.
Collapse
Affiliation(s)
- Chao Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
18
|
Kim JW, Park KW, Kim M, Lee KK, Lee CS. Highly Specific Loop-Mediated Isothermal Amplification Using Graphene Oxide-Gold Nanoparticles Nanocomposite for Foot-and-Mouth Disease Virus Detection. NANOMATERIALS 2022; 12:nano12020264. [PMID: 35055281 PMCID: PMC8778833 DOI: 10.3390/nano12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is a molecular diagnosis technology with the advantages of rapid results, isothermal reaction conditions, and high sensitivity. However, this diagnostic system often produces false positive results due to a high rate of non-specific reactions caused by formation of hairpin structures, self-dimers, and mismatched hybridization. The non-specific signals can be due to primers used in the methods because the utilization of multiple LAMP primers increases the possibility of self-annealing of primers or mismatches between primers and templates. In this study, we report a nanomaterial-assisted LAMP method that uses a graphene oxide-gold nanoparticles (AuNPs@GO) nanocomposite to enable the detection of foot-and-mouth disease virus (FMDV) with high sensitivity and specificity. Foot-and-mouth disease (FMD) is a highly contagious and deadly disease in cloven-hoofed animals; hence, a rapid, sensitive, and specific detection method is necessary. The proposed approach exhibited high sensitivity and successful reduction of non-specific signals compared to the traditionally established LAMP assays. Additionally, a mechanism study revealed that these results arose from the adsorption of single-stranded DNA on AuNPs@GO nanocomposite. Thus, AuNPs@GO nanocomposite is demonstrated to be a promising additive in the LAMP system to achieve highly sensitive and specific detection of diverse diseases, including FMD.
Collapse
Affiliation(s)
- Jong-Won Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-W.P.); (M.K.); (K.K.L.)
| | - Kyoung-Woo Park
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-W.P.); (M.K.); (K.K.L.)
- Department of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Korea
| | - Myeongkun Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-W.P.); (M.K.); (K.K.L.)
| | - Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-W.P.); (M.K.); (K.K.L.)
- Department of Biomedical and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-W.P.); (M.K.); (K.K.L.)
- Department of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-4-2879-8446
| |
Collapse
|
19
|
Halal and Kosher gelatin: Applications as well as detection approaches with challenges and prospects. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
|
21
|
Roque-Borda CA, Kulus D, Vacaro de Souza A, Kaviani B, Vicente EF. Cryopreservation of Agronomic Plant Germplasm Using Vitrification-Based Methods: An Overview of Selected Case Studies. Int J Mol Sci 2021; 22:6157. [PMID: 34200414 PMCID: PMC8201202 DOI: 10.3390/ijms22116157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous environmental and endogenous factors affect the level of genetic diversity in natural populations. Genetic variability is the cornerstone of evolution and adaptation of species. However, currently, more and more plant species and local varieties (landraces) are on the brink of extinction due to anthropopression and climate change. Their preservation is imperative for the sake of future breeding programs. Gene banks have been created worldwide to conserve different plant species of cultural and economic importance. Many of them apply cryopreservation, a conservation method in which ultra-low temperatures (-135 °C to -196 °C) are used for long-term storage of tissue samples, with little risk of variation occurrence. Cells can be successfully cryopreserved in liquid nitrogen (LN) when the adverse effect of ice crystal formation and growth is mitigated by the removal of water and the formation of the so-called biological glass (vitrification). This state can be achieved in several ways. The involvement of key cold-regulated genes and proteins in the acquisition of cold tolerance in plant tissues may additionally improve the survival of LN-stored explants. The present review explains the importance of cryostorage in agronomy and presents an overview of the recent works accomplished with this strategy. The most widely used cryopreservation techniques, classic and modern cryoprotective agents, and some protocols applied in crops are considered to understand which parameters provide the establishment of high quality and broadly applicable cryopreservation. Attention is also focused on the issues of genetic integrity and functional genomics in plant cryobiology.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil;
| | - Dariusz Kulus
- Laboratory of Ornamental Plants and Vegetable Crops, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology in Bydgoszcz, Bernardyńska 6, 85-029 Bydgoszcz, Poland
| | - Angela Vacaro de Souza
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, SP, Brazil; (A.V.d.S.); (E.F.V.)
| | - Behzad Kaviani
- Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht 4147654919, Iran;
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, SP, Brazil; (A.V.d.S.); (E.F.V.)
| |
Collapse
|
22
|
Xue Z, You M, Peng P, Tong H, He W, Li A, Mao P, Xu T, Xu F, Yao C. Taqman-MGB nanoPCR for Highly Specific Detection of Single-Base Mutations. Int J Nanomedicine 2021; 16:3695-3705. [PMID: 34113098 PMCID: PMC8185130 DOI: 10.2147/ijn.s310254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Detection of single-base mutations is important for real-time monitoring of tumor progression, therapeutic effects, and drug resistance. However, the specific detection of single-base mutations from excessive wild-type background sequences with routine PCR technology remains challenging. Our objective is to develop a simple and highly specific qPCR-based single-base mutation detection method. METHODS Using EGRF T790M as a model, gold nanoparticles at different concentrations were separately added into the Taqman-MGB qPCR system to test specificity improvement, leading to the development of the optimal Taqman-MGB nanoPCR system. Then, these optimal conditions were used to test the range of improvement in the specificity of mutant-type and wild-type templates and the detection limit of mutation abundances in a spiked sample. RESULTS The Taqman-MGB nanoPCR was established based on the traditional qPCR, with significantly suppressed background noise and improved specificity for single-base mutation detection. With EGFR T790M as a template, we demonstrated that our Taqman-MGB nanoPCR system could improve specificity across a wide concentration range from 10-9 μM to 10 μM and detect as low as 0.95% mutation abundance in spiked samples, which is lower than what the traditional Taqman-MGB qPCR and existing PCR methods can detect. Moreover, we also proposed an experimentally validated barrier hypothesis for the mechanism of improved specificity. CONCLUSION The developed Taqman-MGB nanoPCR system could be a powerful tool for clinical single-base mutation detection.
Collapse
Affiliation(s)
- Zhenrui Xue
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, 400038, People’s Republic of China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Ping Peng
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, 400038, People’s Republic of China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Haoyang Tong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Wanghong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Ping Mao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, 400038, People’s Republic of China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Ting Xu
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, 400038, People’s Republic of China
| |
Collapse
|
23
|
Su Y, Chu H, Tian J, Du Z, Xu W. Insight into the nanomaterials enhancement mechanism of nucleic acid amplification reactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Kadu P, Pandey S, Neekhra S, Kumar R, Gadhe L, Srivastava R, Sastry M, Maji SK. Machine-Free Polymerase Chain Reaction with Triangular Gold and Silver Nanoparticles. J Phys Chem Lett 2020; 11:10489-10496. [PMID: 33275439 DOI: 10.1021/acs.jpclett.0c02708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal effects of metal nanoparticles (NPs) are used for various biotechnological applications. Although NPs have been used in a polymerase chain reaction (PCR), the effects of shape on the photothermal properties and its efficiency on PCR are less explored. The present study reports the synthesis of triangular gold and silver NPs, which can attain temperatures up to ∼90 °C upon irradiation with 808 nm laser. This photothermal property of synthesized nanoparticles was evaluated using various concentrations, irradiation time, and power to create a temperature profile required for variable-temperature PCR. This study reports a cost-effective, machine-free PCR using both gold and silver triangular NPs, with efficiency similar to that of a commercial PCR machine. Interestingly, addition of triangular NPs increases PCR efficiency in commercial PCR reactions. The higher PCR efficiencies are due to the direct binding and unfolding of double-stranded DNA as suggested by circular dichroism and UV spectroscopy. These findings suggest that triangular NPs can be used to develop cost-effective, robust machine-free PCR modules and can be used in various other photothermal applications.
Collapse
Affiliation(s)
- Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Murali Sastry
- IITB-Monash Research Academy, Academy Building, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Department of Materials Engineering and Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
25
|
Kim JW, Kim M, Lee KK, Chung KH, Lee CS. Effects of Graphene Oxide-Gold Nanoparticles Nanocomposite on Highly Sensitive Foot-and-Mouth Disease Virus Detection. NANOMATERIALS 2020; 10:nano10101921. [PMID: 32993046 PMCID: PMC7601864 DOI: 10.3390/nano10101921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
The polymerase chain reaction (PCR) has become a powerful molecular diagnostic technique over the past few decades, but remains somewhat impaired due to low specificity, poor sensitivity, and false positive results. Metal and carbon nanomaterials, quantum dots, and metal oxides, can improve the quality and productivity of PCR assays. Here, we describe the ability of PCR assisted with nanomaterials (nano-PCR) comprising a nanocomposite of graphene oxide (GO) and gold nanoparticles (AuNPs) for sensitive detection of the foot-and-mouth disease virus (FMDV). Graphene oxide and AuNPs have been widely applied as biomedical materials for diagnosis, therapy, and drug delivery due to their unique chemical and physical properties. Foot-and-mouth disease (FMD) is highly contagious and fatal for cloven-hoofed animals including pigs, and it can thus seriously damage the swine industry. Therefore, a highly sensitive, specific, and practical method is needed to detect FMDV. The detection limit of real-time PCR improved by ~1000 fold when assisted by GO-AuNPs. We also designed a system of detecting serotypes in a single assay based on melting temperatures. Our sensitive and specific nano-PCR system can be applied to diagnose early FMDV infection, and thus may prove to be useful for clinical and biomedical applications.
Collapse
Affiliation(s)
- Jong-Won Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-W.K.); (M.K.); (K.K.L.)
- Dignostics Platform Research Section, Electronics and Telecommunications Research Institute (ETRI) 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea;
| | - Myeongkun Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-W.K.); (M.K.); (K.K.L.)
- Dignostics Platform Research Section, Electronics and Telecommunications Research Institute (ETRI) 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea;
| | - Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-W.K.); (M.K.); (K.K.L.)
- Dignostics Platform Research Section, Electronics and Telecommunications Research Institute (ETRI) 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea;
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Kwang Hyo Chung
- Dignostics Platform Research Section, Electronics and Telecommunications Research Institute (ETRI) 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea;
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-W.K.); (M.K.); (K.K.L.)
- Dignostics Platform Research Section, Electronics and Telecommunications Research Institute (ETRI) 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea;
- Department of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
26
|
Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review. Anal Chim Acta 2020; 1143:250-266. [PMID: 33384122 DOI: 10.1016/j.aca.2020.08.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Development of state-of-the-art assays for sensitive and specific detection of disease biomarkers has received significant interest for early detection and prevention of various diseases. Enzyme Linked Immunosorbent assays (ELISA) and Polymerase Chain Reaction (PCR) are two examples of proteins and nucleic acid detection assays respectively, which have been widely used for the sensitive detection of target analytes in biological fluids. Recently, immuno-PCR has emerged as a sensitive detection method, where high specificity of sandwich ELISA assays is combined with high sensitivity of PCR for trace detection of biomarkers. However, inherent disadvantages of immuno-PCR assays limit their application as rapid and sensitive detection method in clinical settings. With advances in nanomaterials, nanoparticles-based immunoassays have been widely used to improve the sensitivity and simplicity of traditional immunoassays. Owing to facile synthesis, surface functionalization, and superior optical and electronic properties, gold nanoparticles have been at the forefront of sensing and detection technologies and have been extensively studied to improve the efficacies of immunoassays. This review provides a brief history of immuno-PCR assays and specifically focuses on the role of gold nanoparticles to improve the sensitivity and specificity of ELISA, PCR and immuno-PCR assays.
Collapse
Affiliation(s)
| | - Rafiq Islam
- Somru BioScience Inc., 19 Innovation Way, BioCommons Research Park.Charlottetown, PE, C1E 0B7, Canada
| | - Marya Ahmed
- Department of Chemistry, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
27
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
28
|
Vázquez‐González M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
29
|
Uskoković V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine (Lond) 2020; 15:1719-1734. [PMID: 32462968 PMCID: PMC7265684 DOI: 10.2217/nnm-2020-0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Prior research on nanotechnologies in diagnostics, prevention and treatment of coronavirus infections is reviewed. Gold nanoparticles and semiconductor quantum dots in colorimetric and immunochromatographic assays, silica nanoparticles in the polymerase chain reaction and spike protein nanospheres as antigen carriers and adjuvants in vaccine formulations present notable examples in diagnostics and prevention, while uses of nanoparticles in coronavirus infection treatments have been merely sporadic. The current absence of antiviral therapeutics that specifically target human coronaviruses, including SARS-CoV-2, might be largely due to the underuse of nanotechnologies. Elucidating the interface between nanoparticles and coronaviruses is timely, but presents the only route to the rational design of precisely targeted therapeutics for coronavirus infections. Such a fundamental approach is also a viable prophylaxis against future pandemics of this type.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical & Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Upadhyay A, Yang H, Zaman B, Zhang L, Wu Y, Wang J, Zhao J, Liao C, Han Q. ZnO Nanolower-Based NanoPCR as an Efficient Diagnostic Tool for Quick Diagnosis of Canine Vector-Borne Pathogens. Pathogens 2020; 9:pathogens9020122. [PMID: 32075178 PMCID: PMC7169380 DOI: 10.3390/pathogens9020122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Polymerase chain reaction (PCR) is a unique technique in molecular biology and biotechnology for amplifying target DNA strands, and is also considered as a gold standard for the diagnosis of many canine diseases as well as many other infectious diseases. However, PCR still faces many challenges and issues related to its sensitivity, specificity, efficiency, and turnaround time. To address these issues, we described the use of unique ZnO nanoflowers in PCR reaction and an efficient ZnO nanoflower-based PCR (nanoPCR) for the molecular diagnosis of canine vector-borne diseases (CVBDs). A total of 1 mM of an aqueous solution of ZnO nanoflowers incorporated in PCR showed a significant enhancement of the PCR assay with respect to its sensitivity and specificity for the diagnosis of two important CVBDs, Babesia canis vogeli and Hepatozoon canis. Interestingly, it drastically reduced the turnaround time of the PCR assay without compromising the yield of the amplified DNA, which can be of benefit for veterinary practitioners for the improved management of diseases. This can be attributed to the favorable adsorption of ZnO nanoflowers to the DNA and thermal conductivity of ZnO nanoflowers. The unique ZnO nanoflower-assisted nanoPCR greatly improved the yield, purity, and quality of the amplified products, but the mechanism behind these properties and the effects and changes due to the different concentrations of ZnO nanoflowers in the PCR system needs to be further studied.
Collapse
Affiliation(s)
- Archana Upadhyay
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
| | - Huan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Haikou 570228, China;
| | - Bilal Zaman
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Material Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
| | - Jinhua Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
- Correspondence: (C.L.); (Q.H.)
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
- Correspondence: (C.L.); (Q.H.)
| |
Collapse
|
31
|
Ultrafast Photonic PCR Based on Photothermal Nanomaterials. Trends Biotechnol 2020; 38:637-649. [PMID: 31918858 DOI: 10.1016/j.tibtech.2019.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
Over the past few decades, PCR has been the gold standard for detecting nucleic acids (NAs) in various biomedical fields. However, there are several limitations associated with conventional PCR, such as complicated operation, need for bulky equipment, and, in particular, long thermocycling time. Emerging nanomaterials with photothermal effects have shown great potential for developing a new generation of PCR: ultrafast photonic PCR. Here, we review recent applications of photothermal nanomaterials in ultrafast photonic PCR. First, we introduce emerging photothermal nanomaterials and their light-to-heat energy conversion process in photonic PCR. We then review different photothermal nanomaterial-based photonic PCRs and compare their merits and drawbacks. Finally, we summarize existing challenges with photonic PCR and hypothesize its promising future research directions.
Collapse
|
32
|
Wang M, Yan Y, Wang R, Wang L, Zhou H, Li Y, Tang L, Xu Y, Jiang Y, Cui W, Qiao X. Simultaneous Detection of Bovine Rotavirus, Bovine Parvovirus, and Bovine Viral Diarrhea Virus Using a Gold Nanoparticle-Assisted PCR Assay With a Dual-Priming Oligonucleotide System. Front Microbiol 2019; 10:2884. [PMID: 31921061 PMCID: PMC6920155 DOI: 10.3389/fmicb.2019.02884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
Bovine rotavirus (BRV), bovine parvovirus (BPV), and bovine viral diarrhea virus (BVDV) are the pathogens that cause diarrhea primarily in newborn calves. A mixed infection of BRV, BPV, and BVDV makes clinical diagnosis difficult. In this study, we designed dual-priming oligonucleotide (DPO) primers the VP6 gene of BRV, VP2 gene of BPV, and 5′UTR gene of BVDV and synthesized gold nanoparticles (GNPs) with an average diameter of 10 nm. We combined the DPOs with the GNPs to develop a DPO-nanoPCR assay for detecting BRV, BPV, and BVDV. The annealing temperature, primer concentration, and GNP concentration were optimized for this assay. Compared to a conventional PCR assay, the DPO-nanoPCR assay allowed the use of a wider range of annealing temperatures (41–65°C) to effectively amplify target genes. PCR amplification was the most efficient at 56.2°C using conventional primers. The optimal volume of all the primers (10 μM) was 1.0 μL. The optimal volume of GNPs (10 nM) for all the reactions was 0.5 μL. The detection limits of DPO-nanoPCR for pMD19-T-VP6, pMD19-T-VP2, and pMD19-T-5′UTR were 9.40 × 102 copies/μL, 5.14 × 103 copies/μL, and 4.09 × 101 copies/μL, respectively; and those using conventional PCR were 9.40 × 104 copies/μL, 5.14 × 105 copies/μL, and 4.09 × 104 copies/μL, respectively. The sensitivity of DPO-nanoPCR was at least 100-fold higher than that of conventional PCR. The specificity detection showed that the DPO-nanoPCR was able to specifically detect BRV, BPV, and BVDV. Use of clinical samples indicated that target viruses can be detected accurately. Thus, DPO-nanoPCR is a new powerful, simple, specific, and sensitive tool for detecting mixed infections of BRV, BPV, and BVDV.
Collapse
Affiliation(s)
- Mengmeng Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Yan
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruichong Wang
- Department for Radiological Protection, Heilongjiang Province Center for Disease Control and Prevention, Harbin, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Han Zhou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Sun C, Cheng Y, Pan Y, Yang J, Wang X, Xia F. Efficient polymerase chain reaction assisted by metal-organic frameworks. Chem Sci 2019; 11:797-802. [PMID: 34123055 PMCID: PMC8145698 DOI: 10.1039/c9sc03202a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As a powerful tool for obtaining sufficient DNA from rare DNA resources, polymerase chain reaction (PCR) has been widely used in various fields, and the optimization of PCR is still in progress due to the dissatisfactory specificity, sensitivity and efficiency. Although many nanomaterials have been proven to be capable of optimizing PCR, their underlying mechanisms are still unclear. So far, the scientifically compelling and functionally evolving metal–organic framework (MOF) materials with high specific surface area, tunable pore sizes, alterable surface charges and favourable thermal conductivity have not been used for PCR optimization. In this study, UiO-66 and ZIF-8 were used to optimize error-prone two round PCR. The results demonstrated that UiO-66 and ZIF-8 not only enhanced the sensitivity and efficiency of the first round PCR, but also increased the specificity and efficiency of the second round PCR. Moreover, they could widen the annealing temperature range of the second round PCR. The interaction of DNA and Taq polymerase with MOFs may be the main reason. This work provided a candidate enhancer for PCR, deepened our understanding on the enhancement mechanisms of nano-PCR, and explored a new application field for MOFs. Many new materials have the ability to optimize polymerase chain reaction (PCR). Metal-organic frame materials UiO-66 and ZIF-8 can enhance sensitivity, specificity and efficiency of PCR, indicating their potential as PCR enhancers.![]()
Collapse
Affiliation(s)
- Chunli Sun
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yong Cheng
- School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yong Pan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Juliang Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Xudong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China .,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| |
Collapse
|
34
|
Gao CH, Mortimer M, Zhang M, Holden PA, Cai P, Wu S, Xin Y, Wu Y, Huang Q. Impact of metal oxide nanoparticles on in vitro DNA amplification. PeerJ 2019; 7:e7228. [PMID: 31293839 PMCID: PMC6599668 DOI: 10.7717/peerj.7228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Polymerase chain reaction (PCR) is used as an in vitro model system of DNA replication to assess the genotoxicity of nanoparticles (NPs). Prior results showed that several types of NPs inhibited PCR efficiency and increased amplicon error frequency. In this study, we examined the effects of various metal oxide NPs on inhibiting PCR, using high- vs. low-fidelity DNA polymerases; we also examined NP-induced DNA mutation bias at the single nucleotide level. The effects of seven major types of metal oxide NPs (Fe2O3, ZnO, CeO2, Fe3O4, Al2O3, CuO, and TiO2) on PCR replication via a low-fidelity DNA polymerase (Ex Taq) and a high-fidelity DNA polymerase (Phusion) were tested. The successfully amplified PCR products were subsequently sequenced using high-throughput amplicon sequencing. Using consistent proportions of NPs and DNA, we found that the effects of NPs on PCR yield differed depending on the DNA polymerase. Specifically, the efficiency of the high-fidelity DNA polymerase (Phusion) was significantly inhibited by NPs during PCR; such inhibition was not evident in reactions with Ex Taq. Amplicon sequencing showed that the overall error rate of NP-amended PCR was not significantly different from that of PCR without NPs (p > 0.05), and NPs did not introduce single nucleotide polymorphisms during PCR. Thus, overall, NPs inhibited PCR amplification in a DNA polymerase-specific manner, but mutations were not introduced in the process.
Collapse
Affiliation(s)
- Chun-Hui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Ming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Patricia A Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Shan Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yuexing Xin
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Lee SH, Park SM, Kim BN, Kwon OS, Rho WY, Jun BH. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 2019; 141:111448. [PMID: 31252258 DOI: 10.1016/j.bios.2019.111448] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, nucleic acid amplification tests (NAATs) including polymerase chain reaction (PCR) were an indispensable methodology for diagnosing cancers, viral and bacterial infections owing to their high sensitivity and specificity. Because the NAATs can recognize and discriminate even a few copies of nucleic acid (NA) and species-specific NA sequences, NAATs have become the gold standard in a wide range of applications. However, limitations of NAAT approaches have recently become more apparent by reason of their lengthy run time, large reaction volume, and complex protocol. To meet the current demands of clinicians and biomedical researchers, new NAATs have developed to achieve ultrafast sample-to-answer protocols for the point-of-care testing (POCT). In this review, ultrafast NA-POCT platforms are discussed, outlining their NA amplification principles as well as delineating recent advances in ultrafast NAAT applications. The main focus is to provide an overview of NA-POCT platforms in regard to sample preparation of NA, NA amplification, NA detection process, interpretation of the analysis, and evaluation of the platform design. Increasing importance will be given to innovative, ultrafast amplification methods and tools which incorporate artificial intelligence (AI)-associated data analysis processes and mobile-healthcare networks. The future prospects of NA POCT platforms are promising as they allow absolute quantitation of NA in individuals which is essential to precision medicine.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, USA
| | | | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, FL, USA
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Won-Yep Rho
- School of International Engineering and Science, Chonbuk National University, Jeonju, South Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, South Korea.
| |
Collapse
|
36
|
Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019; 144:396-411. [PMID: 30468217 DOI: 10.1039/c8an01488d] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The testing and rapid detection of pathogenic organisms is a crucial protocol in the prevention and identification of crises related to health, safety and wellbeing. Pathogen detection has become one of the most challenging aspects in the food and water industries, because of the rapid spread of waterborne and foodborne diseases in the community and at significant costs. With the prospect of inevitable population growth, and an influx of tourism to certain water bodies testing will become a requirement to control and prevent possible outbreaks of potentially fatal illnesses. The legislation is already particularly rigorous in the food industry, where failure to detect pathogenic materials represents a catastrophic event, particularly for the elderly, very young or immune-compromised population types. In spite of the need and requirement for rapid analytical testing, conventional and standard bacterial detection assays may take up to seven days to yield a result. Given the advent of new technologies, biosensors, chemical knowledge and miniaturisation of instrumentation this timescale is not acceptable. This review presents an opportunity to fill a knowledge gap for an extremely important research area; discussing the main techniques, biology, chemistry, miniaturisation, sensing and the emerging state-of-the-art research and developments for detection of pathogens in food, water, blood and faecal samples.
Collapse
Affiliation(s)
- P Rajapaksha
- School of Science, RMIT University, La Trobe Street, Melbourne, 3000, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Liu Z, Li J, Liu Z, Li J, Li Z, Wang C, Wang J, Guo L. Development of a nanoparticle-assisted PCR assay for detection of bovine respiratory syncytial virus. BMC Vet Res 2019; 15:110. [PMID: 30971257 PMCID: PMC6458741 DOI: 10.1186/s12917-019-1858-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Bovine respiratory syncytial virus (BRSV) is a common pathogen causing respiratory disease in cattle and a significant contributor to the bovine respiratory disease (BRD) complex. BRSV is widely distributed around the world, causing severe economic losses. This study we established a new molecular detection method of BRSV pathogen NanoPCR attributed to the combination of nano-particles in traditional PCR (Polymerase chain reaction) technology. Results In this study, the BRSV NanoPCR assay was developed, and its specificity and sensitivity were investigated. The results showed that no cross-reactivity was observed for the NanoPCR assay for related viruses, including the infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza virus type 3 (BPIV3), and the assay was more sensitive than the conventional PCR assay, with a detection limit of 1.43 × 102 copies recombinant plasmids per reaction, compared with 1.43 × 103 copies for conventional PCR analysis. Moreover, thirty-nine clinical bovine samples collected from two provinces in North-Eastern China, 46.15% were determined BRSV positive by our NanoPCR assay, compared with 23.07% for conventional PCR. Conclusions This is the first report to demonstrate the application of a NanoPCR assay for the detection of BRSV. The sensitive and specific NanoPCR assay developed in this study can be applied widely in clinical diagnosis and field surveillance of BRSV infection.
Collapse
Affiliation(s)
- Zhankui Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jianyou Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.,Graduate School of Northeast Agricultural University, Harbin, China
| | - Zeyu Liu
- Graduate School of Jilin Agricultural University, Jilin, China
| | - Jiawei Li
- Antu Animal Husbandry and Veterinary Station, Yanbian, China
| | - Zhijie Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Chao Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jianke Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Li Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
38
|
Wang C, Liu X, Wulf V, Vázquez-González M, Fadeev M, Willner I. DNA-Based Hydrogels Loaded with Au Nanoparticles or Au Nanorods: Thermoresponsive Plasmonic Matrices for Shape-Memory, Self-Healing, Controlled Release, and Mechanical Applications. ACS NANO 2019; 13:3424-3433. [PMID: 30822379 DOI: 10.1021/acsnano.8b09470] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (AuNPs) or gold nanorods (AuNRs) are loaded in polyacrylamide hydrogels cooperatively cross-linked by bis-acrylamide and nucleic acid duplexes or boronate ester-glucosamine and nucleic acid duplexes. The thermoplasmonic properties of AuNPs and AuNRs are used to control the stiffness of the hydrogels. The irradiation of the AuNP-loaded (λ = 532 nm) or the AuNR-loaded (λ = 808 nm) hydrogels leads to thermoplasmonic heating of the hydrogels, the dehybridization of the DNA duplexes, and the formation of hydrogels with lower stiffness. By ON/OFF irradiation, the hydrogels are switched between low- and high-stiffness states. The reversible control over the stiffness properties of the hydrogels is used to develop shape-memory hydrogels and self-healing soft materials and to tailor thermoplasmonic switchable drug release. In addition, by designing bilayer composites of AuNP- and AuNR-loaded hydrogels, a reversible thermoplasmonic, light-induced bending is demonstrated, where the bending direction is controlled by the stress generated in the respective bilayer composite.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Xia Liu
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Verena Wulf
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Margarita Vázquez-González
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Michael Fadeev
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
39
|
Wang J, Li T, Shen R, Li G, Ling L. Polymerase Chain Reaction-Dynamic Light Scattering Sensor for DNA and Protein by Using Both Replication and Cleavage Properties of Taq Polymerase. Anal Chem 2019; 91:3429-3435. [DOI: 10.1021/acs.analchem.8b04929] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tingting Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
40
|
Sensitive DNA detection by polymerase chain reaction with gold nanoparticles. Anal Chim Acta 2018; 1038:105-111. [DOI: 10.1016/j.aca.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023]
|
41
|
Enhancement of PCR Sensitivity and Yield Using Thiol-modified Primers. Sci Rep 2018; 8:14858. [PMID: 30291287 PMCID: PMC6173752 DOI: 10.1038/s41598-018-33223-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/25/2018] [Indexed: 02/02/2023] Open
Abstract
Various additives can enhance the quality of PCR amplification, but these generally require considerable optimization to achieve peak performance. Here, we demonstrate that the use of thiol-modified primers can enhance both PCR sensitivity and yield. In experiments with V. parahaemolyticus genomic DNA, this primer modification enhances PCR sensitivity by more than 100-fold, with accompanying improvements in amplicon yield. Then, an artificial plasmid with the same primer binding regions and different internal amplification sequence was designed. The result showed that the amplification also be improved by using the same thiol-modified primers. It indicated the enhancement was not caused by the effect of the thiol-modified primers on the second structure of amplification sequence. Subsequent experiments demonstrate that the effects of this modification are potentially due to altered interaction between the primers and proteins in the reaction mixture. Amplification with thiol-modified primers was strongly inhibited by the presence of extraneous proteins relative to standard DNA primers, which indicates that thiol-modified primers may be inhibited due to interaction with these proteins. In contaminant-free reactions, however, the thiol-modified primers might interact more strongly with DNA polymerase, which could in turn improve PCR amplification.
Collapse
|
42
|
Zhang C, Liu X, Yao Y, Liu K, Hui W, Zhu J, Dou Y, Hua K, Peng M, Wang Z, Vermorken AJM, Cui Y. Genotyping of Multiple Clinical Samples with a Combined Direct PCR and Magnetic Lateral Flow Assay. iScience 2018; 7:170-179. [PMID: 30245369 PMCID: PMC6153416 DOI: 10.1016/j.isci.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/19/2018] [Accepted: 09/05/2018] [Indexed: 02/09/2023] Open
Abstract
Developing a sensitive, low-cost, and easy-to-use point-of-care testing system for genotyping is important for informing treatment decisions and predicting the risk of underlying diseases. Conventional methods normally require complex operational procedures as well as expensive and sophisticated instruments. Here, we report a general approach that enables us to detect the genotype of multiple sample types directly without DNA purification. Moreover, the PCR results can be further quantitatively analyzed based on a magnetic lateral flow assay (MLFA) system, which avoids multiple steps needed for conventional nucleic acid biosensors. As a demonstration, we show that three genotypes of aldehyde dehydrogenase 2 (ALDH2) can be identified using a small volume of sample with an accuracy of 100% and a sensitivity of 1.0 × 102 cells/μL, which are better than those of the gold standard methods. We believe that the direct PCR-MLFA system represents a significant advance toward the development of portable, sensitive biomedical platforms.
Collapse
Affiliation(s)
- Chao Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaonan Liu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yao Yao
- Shaanxi Provincial Engineering Research Center of Nano-Biomedical Detection, Xi'an, China
| | - Kewu Liu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenli Hui
- College of Life Sciences, Northwest University, Xi'an, China
| | - Juanli Zhu
- Shaanxi Provincial Engineering Research Center of Nano-Biomedical Detection, Xi'an, China
| | - Yaling Dou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Hua
- College of Life Sciences, Northwest University, Xi'an, China
| | - Mingli Peng
- Shaanxi Provincial Engineering Research Center of Nano-Biomedical Detection, Xi'an, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | | | - Yali Cui
- College of Life Sciences, Northwest University, Xi'an, China; Shaanxi Provincial Engineering Research Center of Nano-Biomedical Detection, Xi'an, China.
| |
Collapse
|
43
|
Chen L, Liu B, Xu Z, Liu J. NiO Nanoparticles for Exceptionally Stable DNA Adsorption and Its Extraction from Biological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9314-9321. [PMID: 30001142 DOI: 10.1021/acs.langmuir.8b01743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Selective extraction of a small amount of nucleic acids from complex biological samples containing a high concentration of proteins is critical for bioanalytical chemistry. A number of previously published studies have focused on long, double-stranded DNA such as plasmid DNA. On the other hand, we are interested in short oligonucleotides. Nucleic acids have a negatively charged phosphate backbone that interacts with metal oxides strongly, and this may be used to distinguish them from proteins. In this work, a few metal oxide nanoparticles were screened, including NiO, CoO, ZnO, TiO2, CeO2, and Fe3O4 for DNA recovery. NiO had the highest DNA adsorption efficiency from mixtures containing bovine serum albumin or human blood serum. The adsorption of DNA by NiO was further characterized as a function of the pH, salt concentration, DNA length, and DNA sequence. The adsorption mechanism was studied by adding competing chemicals or denaturing agents. A striking observation was the extremely high adsorption affinity of NiO, much higher than that of the other tested oxides. Polyphosphate was the most effective agent for displacing adsorbed DNA, whereas simple inorganic phosphate was less effective. NiO was able to concentrate DNA from a serum mixture by 33- to 55-fold, depending on the serum concentration. NiO is thus a promising candidate for extracting DNA from biological samples.
Collapse
Affiliation(s)
- Lei Chen
- Research Center for Analytical Sciences , Northeastern University , Shenyang 110004 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Zhangrun Xu
- Research Center for Analytical Sciences , Northeastern University , Shenyang 110004 , China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
44
|
Hamdy ME, Del Carlo M, Hussein HA, Salah TA, El-Deeb AH, Emara MM, Pezzoni G, Compagnone D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J Nanobiotechnology 2018; 16:48. [PMID: 29751767 PMCID: PMC5946443 DOI: 10.1186/s12951-018-0374-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background Nano-PCR is a recent tool that is used in viral diseases diagnosis. The technique depends on the fundamental effects of gold nanoparticles (AuNPs) and is considered a very effective and sensitive tool in the diagnosis of different diseases including viral diseases. Although several techniques are currently available to diagnose foot and mouth disease virus (FMDV), a highly sensitive, highly specific technique is needed for specific diagnosis of the disease. In the present work, a novel AuNPs biosensor has been designed using thiol-linked oligonucleotides that recognize the conserved 3D gene of FMDV. Results The AuNPs-FMDV biosensor specifically recognizes RNA standards of FMDV, but not that of swine vesicular disease virus (SVDV) isolates. The analytical sensitivity of the AuNPs-FMDV biosensor was 10 copy number RNA standards in RT-PCR and 1 copy number RNA standard in real-time rRT-PCR with a 94.5% efficiency, 0.989 R2, a − 3.544 slope and 100% specificity (no cross-reactivity with SVDV). These findings were confirmed by the specific and sensitive recognition of 31 Egyptian FMDV clinical isolates that represents the three FMDV serotypes (O, A, and SAT2). Conclusions The AuNPs-FMDV biosensor presents in this study demonstrates a superior analytical and clinical performance for FMDV diagnosis. In addition, this biosensor has a simple workflow and accelerates epidemiological surveillance, hence, it is qualified as an efficient FMDV diagnosis tool for quarantine stations and farms particularly in FMDV endemic areas. Electronic supplementary material The online version of this article (10.1186/s12951-018-0374-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mervat E Hamdy
- Department of Biotechnology Animal Health Research Institute, Agriculture Research Centre, Giza, 12618, Egypt
| | - Michele Del Carlo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Taher A Salah
- Nanotechnology Research Centre, British University, Cairo, Egypt.,Nanotechnology and Advanced Materials Central Lab, Agricultural Research Centre, Giza, Egypt
| | - Ayman H El-Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Emara
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Guilia Pezzoni
- Department of Biotechnology, Zooprofilattico Institute of Lombardy and Emilia Romagna (IZSLER), 25124, Brescia, Italy
| | - Dario Compagnone
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy
| |
Collapse
|
45
|
Wang L, Huang Z, Wang R, Liu Y, Qian C, Wu J, Liu J. Transition Metal Dichalcogenide Nanosheets for Visual Monitoring PCR Rivaling a Real-Time PCR Instrument. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4409-4418. [PMID: 29327589 DOI: 10.1021/acsami.7b15746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monitoring the progress of polymerase chain reactions (PCRs) is of critical importance in bioanalytical chemistry and molecular biology. Although real-time PCR thermocyclers are ideal for this purpose, their high cost has limited their applications in resource-poor areas. Direct visual detection would be a more attractive alternative. To monitor the PCR amplification, DNA-staining dyes, such as SYBR Green I (SG), are often used. Although these dyes give higher fluorescence when binding to double-stranded DNA products, they also yield strong background fluorescence in the presence of a high concentration of single-stranded (ss) DNA primers. In this work, we screened various nanomaterials and found that graphene oxide (GO), reduced GO, molybdenum disulfide (MoS2), and tungsten disulfide (WS2) can quench the fluorescence of nonamplified negative samples while still retaining strong fluorescence of positive ones. The signal ratio of positive-over-negative samples was enhanced by around 50-fold in the presence of these materials. In particular, MoS2 and WS2 nearly fully retained the fluorescence of the positive samples. The mechanism for MoS2 and WS2 to enhance PCR signaling is attributed to the adsorption of both the ssDNA PCR primers and SG with an appropriate strength. MoS2 can also suppress nonspecific amplification caused by excess polymerase. Finally, this method was used to detect extracted transgenic soya GTS 40-3-2 DNA after PCR amplification. Compared with the samples without nanomaterials, the addition of MoS2 could better distinguish the concentration difference of the template DNA, and the sensitivity of visual detection rivaled that from a real-time PCR instrument.
Collapse
Affiliation(s)
- Liu Wang
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Rui Wang
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Cheng Qian
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
46
|
Tran BM, Nam NN, Son SJ, Lee NY. Nanoporous anodic aluminum oxide internalized with gold nanoparticles for on-chip PCR and direct detection by surface-enhanced Raman scattering. Analyst 2018; 143:808-812. [DOI: 10.1039/c7an01832k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoporous anodic aluminum oxide (AAO) internalized with gold nanoparticles was utilized as an integrated platform miniaturized for consecutively performing on-chip PCR and downstream detection of the target DNA amplicons using surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- B. M. Tran
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| | - N. N. Nam
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| | - S. J. Son
- Department of Chemistry
- Gachon University
- Seongnam-si
- Korea
| | - N. Y. Lee
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| |
Collapse
|
47
|
Sang F, Zhang Z, Yuan L, Liu D. Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR). Analyst 2018; 143:1259-1267. [DOI: 10.1039/c7an01764b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs).
Collapse
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai
- People's Republic of China
| | - Zhizhou Zhang
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai
- People's Republic of China
| | - Lin Yuan
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai
- People's Republic of China
| | - Deli Liu
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai
- People's Republic of China
| |
Collapse
|
48
|
Graphene oxide enhances the specificity of the polymerase chain reaction by modifying primer-template matching. Sci Rep 2017; 7:16510. [PMID: 29184216 PMCID: PMC5705716 DOI: 10.1038/s41598-017-16836-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
Aiming at improved specificity, nanoparticle assisted polymerase chain reaction (PCR) has been widely studied and shown to improve PCR. However, the reliability and mechanism of this method are still controversial. Here, we demonstrated that 1 μg/mL of graphene oxide (GO) effectively enhances the specificity of the error-prone multi-round PCR. Mismatched primers were designed as interference to produce nonspecific products when the same amounts of matched and mismatched primers were added into semi-multiplex PCR. It was found that GO can enhance specificity by suppressing the amplification of mismatched primers. We monitored the primer-template-polymerase-GO interactions involved in the PCR using a capillary electrophoresis/laser-induced fluorescence polarization (CE-LIFP) assay. The results showed that the addition of GO promoted the formation of a matched primer-template complex, but suppressed the formation of a mismatched primer-template complex during PCR, suggesting that interactions between the primers and GO play an essential role. Furthermore, we successfully amplified the FOXL2 gene from PEGFP-N1 vectors using GO to eliminate the nonspecific products in PCR. Taken together, these results suggest that the GO can be used as an efficient additive for improving the conventional PCR system.
Collapse
|
49
|
Development of Nano-Polymerase Chain Reaction and Its Application. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61051-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Sanabria NM, Gulumian M. The presence of residual gold nanoparticles in samples interferes with the RT-qPCR assay used for gene expression profiling. J Nanobiotechnology 2017. [PMID: 29017502 DOI: 10.1186/s12951-017-0299-9.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RT-qPCR is routinely used in expression profiling of toxicity pathway genes. However, genetic and molecular level studies used to determine, understand and clarify potential risks of engineered nanomaterials (ENMs) are still incomplete. Concerns regarding possible interference caused by intracellular ENMs during analyses have been raised. The aim of this study was to verify a qPCR procedure for gene expression assays, which can be used in toxicity and exposure assessments. RESULTS Amplification of ten reference genes was performed to test the expression stability. A preliminary study was performed on RNA from BEAS-2B cells that had been treated with AuNPs. Also, a reference total RNA standard from ten cell lines was spiked with various amounts of the same AuNP. This treatment mimics exposure assessment studies, where assay-interference may be caused by intracellular residual ENMs still being present in the biological samples (during and after isolation/purification procedures). Both types of RNA samples were reverse transcribed and then amplified by qPCR. The qPCR-related software and statistical programs used included BestKeeper, NormFinder, REST and qBase+. These results proved that using standard qPCR analysis and statistical programs should not be the only procedure applied to verify the assay for gene expression assessment related to ENMs. A comparison of SYBR Green to EVA Green was discussed, in addition to a comparison to the latest reports regarding the influence of ENM thermal conductivity, surface interactions with ENMs, effects of ENM size and charge, as well as, the limit of detection in a qPCR assay. CONCLUSIONS AuNPs have the potential to interfere with the assay mechanism of RT-qPCR, thus, assay verification is required for AuNP-related gene expression studies used to evaluate toxicity. It is recommended to use HSP90 and YWHAZ as reference genes, i.e. these were the most stable in our study, irrespective of the source of the RNA, or, the point at which the AuNPs interacted with the assay. This report describes steps that can be utilised to generate a suitable method for gene expression studies associated with toxicity testing of various ENMs. For example, RNA standards that have been spiked with known amounts of ENMs should be run in conjunction with the unknown samples, in order to verify any RT-qPCR assay and determine the degree of error.
Collapse
Affiliation(s)
| | - Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa. .,Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|