1
|
Li S, Zhang Y, Yang K, Zhou W. Exploring potential causal links between air pollutants and congenital malformations: A two-sample Mendelian Randomization study. Reprod Toxicol 2024; 128:108655. [PMID: 38972362 DOI: 10.1016/j.reprotox.2024.108655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Observational studies have suggested an association between air pollutants and congenital malformations; however, conclusions are inconsistent and the causal associations have not been elucidated. In this study, based on publicly available genetic data, a two-sample Mendelian randomization (MR) was applied to explore the associations between particulate matter 2.5 (PM2.5), NOX, NO2 levels and 11 congenital malformations. Inverse variance weighted (IVW), MR-Egger and weighted median were used as analytical methods, with IVW being the main method. A series of sensitivity analyses were used to verify the robustness of the results. For significant associations, multivariable MR (MVMR) was utilized to explore possible mediating effects. The IVW results showed that PM2.5 was associated with congenital malformations of digestive system (OR = 7.72, 95 %CI = 2.33-25.54, P = 8.11E-4) and multiple systems (OR = 8.63, 95 %CI = 1.02-73.43, P = 0.048) risks; NOX was associated with circulatory system (OR = 4.65, 95 %CI = 1.15-18.86, P = 0.031) and cardiac septal defects (OR = 14.09, 95 %CI = 1.62-122.59, P = 0.017) risks; NO2 was correlated with digestive system (OR = 27.12, 95 %CI = 1.81-407.07, P = 0.017) and cardiac septal defects (OR = 22.57, 95 %CI = 2.50-203.45, P = 0.005) risks. Further MVMR analyses suggest that there may be interactions in the effects of these air pollutants on congenital malformations. In conclusion, this study demonstrated a causal association between air pollution and congenital malformations from a genetic perspective.
Collapse
Affiliation(s)
- Shufen Li
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yanping Zhang
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Kaiyan Yang
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Wenbo Zhou
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China; International Genome Center, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Bisht A, Dey S, Kulshreshtha R. Integrated meta-analyses of genome-wide effects of PM 2.5 in human cells identifies widespread dysregulation of genes and pathways associated with cancer progression and patient survival. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173448. [PMID: 38797421 DOI: 10.1016/j.scitotenv.2024.173448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Epidemiological studies have consistently shown a positive association between exposure to ambient PM2.5, a major component of air pollution, and various types of cancer. Previous biological research has primarily focused on the association between PM2.5 and lung cancer, with limited investigation into other cancer types. In this study, we conducted a meta-analysis on multiple PM2.5-treated normal human cell lines to identify potential molecular targets and pathways of PM2.5. Our analysis revealed 310 common differentially expressed genes (DEGs) that exhibited significant dysregulation upon exposure to PM2.5. These dysregulated genes covered a diverse range of functional categories, including oncogenes, tumor suppressor genes, and immune-related genes, which collectively contribute to PM2.5-induced carcinogenesis. Pathway enrichment analysis revealed the up-regulation of pathways associated with HIF-1, VEGF, and MAPK signalling, all of which have been implicated in various cancers. Induction in the levels of HIF pathway genes (HIF1⍺, HIF2⍺, VEGFA, BNIP3, EPO and PGK1) upon PM2.5 treatment was also confirmed by qRT-PCR. Furthermore, the construction of a protein-protein interaction (PPI) network unveiled hub genes, such as NQO1 and PDGFRB, that are known to be dysregulated and significantly correlated with overall survival in lung and breast cancer patients, suggesting their potential clinical significance. This study provides a deep insight into how PM2.5-mediated dysregulation of oncogenes or tumor suppressor genes across various human tissues may play an important role in PM2.5-induced carcinogenesis. Further exploration of these dysregulated molecular targets may enhance our understanding of the biological effects of PM2.5 and facilitate the development of preventive strategies and targeted therapies for PM2.5-associated cancers.
Collapse
Affiliation(s)
- Anadi Bisht
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India; Centre of Excellence for Research on Clean Air, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
3
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model. CHEMOSPHERE 2024; 362:142621. [PMID: 38880256 DOI: 10.1016/j.chemosphere.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia.
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia
| |
Collapse
|
4
|
Sarwar SA, O'Malley GR, Botvinov J, Khan Y, Kumar RP, Ali M, Cassimatis ND, Hundal JS, Patel NV. Impact of environmental pollutants on pediatric brain tumor incidence in New Jersey. Clin Neurol Neurosurg 2024; 242:108318. [PMID: 38759503 DOI: 10.1016/j.clineuro.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE The relationship between environmental contaminants and brain tumor incidence in adults has been thoroughly explored but research into how these contaminants affect pediatric brain tumor (PBT) incidence has not been explored. Children, typically having more limited geographical movement and thus more consistent environmental contaminant exposure, might offer more reliable insights into which environmental contaminants affect the incidence of brain tumors. The present study is the first to focus on exploring whether a possible association exists between the incidence of PBTs and exposure to environmental pollutants in New Jersey (NJ). METHODS Linear regressions were run between PBT incidence and the concentration of air quality pollutants such as Ozone (O3), Particulate Matter 2.5 (PM2.5), Particulate Matter 10 (PM10), and Carbon Monoxide (CO). Similarly, linear regressions were run between PBT incidence and Elevated Blood Lead Levels (BLL). RESULTS The study observed a significant positive relationship between O3 and PBT incidence (β = 0.34, p = 0.028). However, the relationship between PBT incidence, and environmental pollutants such as CO (β = 0.0047, p = 0.098), PM2.5 (β = -0.2624, p = 0.74), and PM10 (β = -0.7353, p = 0.073) were found to be nonsignificant. For elevated BLL, nonsignificant relationships with PBT incidence were observed at 10-14 µg/dL (β = -39.38, p = 0.30), 15-19 µg/dL (β = -67.00, p = 0.21), and 20-44 µg/dL (β = -201.98, p = 0.12). CONCLUSIONS The results indicate a possible impact of O3 on the incidence of PBTs in NJ. In contrast to the significant links found in prior studies of adult brain tumors, the associations between PBT occurrence and particulate matter were not significant. These findings highlight the importance of further investigating how environmental factors, especially O3, relate to PBTs.
Collapse
Affiliation(s)
- Syed A Sarwar
- Department of Neurosurgery, Hackensack Meridian Health - Jersey Shore University Medical Center, USA.
| | | | - Julia Botvinov
- Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| | - Yasmin Khan
- Department of Cell Biology & Neuroscience, Rutgers University-New Brunswick, New Brunswick, NJ, USA
| | - Rohit Prem Kumar
- Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| | - Mir Ali
- Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| | | | - Jasdeep S Hundal
- Department of Neurology, Hackensack Meridian Health - Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Nitesh V Patel
- Department of Neurosurgery, Hackensack Meridian Health - Jersey Shore University Medical Center, USA; Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| |
Collapse
|
5
|
Vojnits K, de León A, Rathore H, Liao S, Zhao M, Gibon J, Pakpour S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro- and nanoplastics of diverse shapes and forms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134017. [PMID: 38518696 DOI: 10.1016/j.jhazmat.2024.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Andrés de León
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Harneet Rathore
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Sophia Liao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Michael Zhao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada; Office of Vice-Principal, Research and Innovation, McGill University, Montreal, Quebec, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
6
|
Shah BUD, Raj R, Kaur P, Karim A, Bansari RB, Mehmoodi A, Malik J. Association of transportation noise with cardiovascular diseases. Clin Cardiol 2024; 47:e24275. [PMID: 38708862 PMCID: PMC11071170 DOI: 10.1002/clc.24275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
This comprehensive article delves into the intricate and multifaceted issue of noise pollution, shedding light on its diverse sources, profound health implications, and the economic burden it imposes on societies. Noise pollution is an increasingly prevalent environmental challenge, impacting millions of people worldwide, often without their full awareness of its adverse effects. Drawing from a wealth of scientific research, the article underscores the well-established links between noise pollution and a spectrum of health issues, including cardiovascular diseases, sleep disturbances, and psychological stress. While exploring the sources and consequences of noise pollution, the article highlights the urgent need for a holistic and collaborative approach to mitigate its impact. This entails a combination of regulatory measures, technological innovations, urban planning strategies, and public education campaigns. It is increasingly evident that the detrimental effects of noise pollution extend beyond physical health, encompassing mental and social well-being. The article also addresses the synergistic relationship between noise pollution and other environmental stressors, emphasizing the importance of considering noise in conjunction with factors like air pollution and access to green spaces. It examines the potential of green spaces to mitigate the effects of noise pollution and enhance overall health.
Collapse
Affiliation(s)
- Badar ud Din Shah
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Rohan Raj
- Department of MedicineNalanda Medical College and HospitalPatnaIndia
| | - Parvinder Kaur
- Department of MedicineCrimean State Medical UniversitySimferopolUkraine
| | - Ali Karim
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Raveena Bai Bansari
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Amin Mehmoodi
- Department of MedicineIbn e Seena HospitalKabulAfghanistan
| | - Jahanzeb Malik
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| |
Collapse
|
7
|
Zhu J, Zhou Y, Lin Q, Wu K, Ma Y, Liu C, Liu N, Tu T, Liu Q. Causal relationship between particulate matter and COVID-19 risk: A mendelian randomization study. Heliyon 2024; 10:e27083. [PMID: 38439838 PMCID: PMC10909784 DOI: 10.1016/j.heliyon.2024.e27083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Background Observational studies have linked exposure to fine (PM2.5) and coarse (PM10) particulate matter air pollution with adverse COVID-19 outcomes, including higher incidence and mortality. However, some studies questioned the effect of air pollution on COVID-19 susceptibility, raising questions about the causal nature of these associations. To address this, a less biased method like Mendelian randomization (MR) is utilized, which employs genetic variants as instrumental variables to infer causal relationships in observational data. Method We performed two-sample MR analysis using public genome-wide association studies data. Instrumental variables correlated with PM2.5 concentration, PM2.5 absorbance, PM2.5-10 concentration and PM10 concentration were identified. The inverse variance weighted (IVW), robust adjusted profile score (RAPS) and generalized summary data-based Mendelian randomization (GSMR) methods were used for analysis. Results IVW MR analysis showed PM2.5 concentration [odd ratio (OR) = 3.29, 95% confidence interval (CI) 1.48-7.35, P-value = 0.0036], PM2.5 absorbance (OR = 5.62, 95%CI 1.98-15.94, P-value = 0.0012), and PM10 concentration (OR = 3.74, 95%CI 1.52-9.20, P-value = 0.0041) increased the risk of COVID-19 severity after Bonferroni correction. Further validation confirmed PM2.5 absorbance was associated with heightened COVID-19 severity (OR = 6.05, 95%CI 1.99-18.38, P-value = 0.0015 for RAPS method; OR = 4.91, 95%CI 1.65-14.59, P-value = 0.0042 for GSMR method) and hospitalization (OR = 3.15, 95%CI 1.54-6.47, P-value = 0.0018 for RAPS method). No causal links were observed between particulate matter exposure and COVID-19 susceptibility. Conclusions Our study established a causal relationship between smaller particle pollution, specifically PM2.5, and increased risk of COVID-19 severity and hospitalization. These findings highlight the importance of improving air quality to mitigate respiratory disease progression.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Na Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| |
Collapse
|
8
|
Smith CJ, Perfetti TA, Chokshi C, Venugopal C, Ashford JW, Singh SK. Alkylating agents are possible inducers of glioblastoma and other brain tumors. Hum Exp Toxicol 2024; 43:9603271241256598. [PMID: 38758727 DOI: 10.1177/09603271241256598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Epidemiological evidence of an association between exposure to chemical carcinogens and an increased risk for development of glioblastoma (GBM) is limited to weak statistical associations in cohorts of firefighters, farmers, residents exposed to air pollution, and soldiers exposed to toxic chemicals (e.g., military burn pits, oil-well fire smoke). A history of ionizing radiation therapy to the head or neck is associated with an increased risk of GBM. Ionizing radiation induces point mutations, frameshift mutations, double-strand breaks, and chromosomal insertions or deletions. Mutational profiles associated with chemical exposures overlap with the broad mutational patterns seen with ionizing radiation. Data on 16 agents (15 chemicals and radio frequency radiation) that induced tumors in the rodent brain were extracted from 602 Technical Reports on 2-years cancer bioassays found in the National Toxicology Program database. Ten of the 15 chemical agents that induce brain tumors are alkylating agents. Three of the 15 chemical agents have idiosyncratic structures and might be alkylating agents. Only two of the 15 chemical agents are definitively not alkylating agents. The rat model is thought to be of possible relevance to humans suggesting that exposure to alkylating chemicals should be considered in epidemiology studies on GBM and other brain tumors.
Collapse
Affiliation(s)
- Carr J Smith
- Society for Brain Mapping and Therapeutics, Pacific Palisades, CA, USA
| | | | - Chirayu Chokshi
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Center for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - J Wesson Ashford
- Stanford University and VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sheila K Singh
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Center for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Liu X, Cheng LC, Gao TY, Luo J, Zhang C. The burden of brain and central nervous system cancers in Asia from 1990 to 2019 and its predicted level in the next twenty-five years : Burden and prediction model of CNS cancers in Asia. BMC Public Health 2023; 23:2522. [PMID: 38104107 PMCID: PMC10724911 DOI: 10.1186/s12889-023-17467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Primary brain and central nervous system cancer (collectively called CNS cancers) cause a significant burden to society. The purpose of this study was to evaluate the trends in the burden of CNS cancers from 1990 to 2019 and to predict the incidence and mortality rates and the corresponding numbers for the next 25 years to help countries to understand the trends in its incidence and mortality, and to make better adjustments or formulation of policies and allocation of resources thereby reducing the burden of the disease. METHODS The 2019 Global Burden of Disease Study provided incidence rates, death rates, and disability-adjusted life year (DALY) data in Asia from 1990 to 2019. To reflect the trends in the age-standardized incidence, mortality, and DALY rates, the estimated annual percentage change (EAPC) was determined. The Bayesian age-period cohort (BAPC) model was employed to predict the burden of CNS cancers in the next 25 years. RESULTS The incidence, death, and DALY rates of CNS cancers all increased from 1990 to 2019. The age-standardized incidence rate (ASIR) for CNS cancers increased from 9.89/100,000 in 1990 to 12.14/100,000 in 2019, with an EAPC of 0.69 (95% confidence interval (CI): 0.65, 0.73). The ASDR and the age-standardized DALY rate both decreased, with EAPCs of - 0.08 and - 0.52, respectively. Before 2005, the age-standardized DALY rate in East Asia was much greater in females than in males, while in Central Asia, the age-standardized death and DALY rates in males both increased sharply after 2000. In contrast to 1990, the caseload increased for the 55-70 years age group. The number of deaths decreased sharply among individuals aged younger than 20 years, especially in East Asia, accounting for only 5.41% of all deaths. The age group with the highest mortality rate was > 60 years, especially in Japan. The ASIR will continue to increase in Asia from 2020 to 2044, and the ASDR will gradually diminish. The incidence and number of deaths from CNS cancers in Asia are expected to increase over the next 25 years, especially among females. CONCLUSIONS The study identified an increasing trend in morbidity, mortality and disability-adjusted life-years (DALYs), with differences in age-standardized morbidity rates for different population groups. In addition, it is noteworthy that the burden of disease (as measured by disability-adjusted life-years (DALYs)) is higher among women in Central Asia compared with other regions. ASIR will continue to increase over the next 25 years, with the increase in female cases and mortality expected to be more pronounced. This may need to be further substantiated by additional research, on the basis of which health authorities and policymakers can better utilize limited resources and develop appropriate policies and preventive measures.
Collapse
Affiliation(s)
- Xin Liu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan, 442000, China
| | - Lin-Can Cheng
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan, 442000, China
| | - Teng-Yu Gao
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan, 442000, China
| | - Jie Luo
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan, 442000, China.
- Department of Neurosurgery, Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan, 442000, China.
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan, 442000, China.
| |
Collapse
|
10
|
Hvidtfeldt UA, Chen J, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Katsouyanni K, Ketzel M, Leander K, Magnusson PKE, Nagel G, Pershagen G, Rizzuto D, Samoli E, So R, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Zhang J, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen O. Long-term air pollution exposure and malignant intracranial tumours of the central nervous system: a pooled analysis of six European cohorts. Br J Cancer 2023; 129:656-664. [PMID: 37420001 PMCID: PMC10421949 DOI: 10.1038/s41416-023-02348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 μg/m³ NO2, 1.17 (0.96, 1.41) per 5 μg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 μg/m³ O3. CONCLUSIONS We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.
Collapse
Affiliation(s)
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate-interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Departments of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, UK
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rina So
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jiawei Zhang
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
- Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
11
|
Liu C, Peng J, Liu Y, Peng Y, Kuang Y, Zhang Y, Ma Q. Causal relationship between particulate matter 2.5 (PM 2.5), PM 2.5 absorbance, and COVID-19 risk: A two-sample Mendelian randomisation study. J Glob Health 2023; 13:06027. [PMID: 37449380 PMCID: PMC10346132 DOI: 10.7189/jogh.13.06027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Background Several observational studies reported on the association between particulate matter ≤2.5μm (PM2.5) and its absorbance with coronavirus (COVID-19), but none use Mendelian randomisation (MR). To strengthen the knowledge on causality, we examined the association of PM2.5 and its absorbance with COVID-19 risk using MR. Methods We selected genome-wide association study (GWAS) integration data from the UK Biobank and IEU Open GWAS Project for two-sample MR analysis. We used inverse variance weighted (IVW) and its multiple random effects and fixed effects alternatives to generally predict the association of PM2.5 and its absorbance with COVID-19, and six methods (MR Egger, weighted median, simple mode, weighted mode, maximum-likelihood and MR-PRESSO) as complementary analyses. Results MR results suggested that PM2.5 absorbance was associated with COVID-19 infection (odds ratio (OR) = 2.64; 95% confidence interval (CI) = 1.32-5.27, P = 0.006), hospitalisation (OR = 3.52; 95% CI = 1.05-11.75, P = 0.041) and severe respiratory symptoms (OR = 28.74; 95% CI = 4.00-206.32, P = 0.001) in IVW methods. We observed no association between PM2.5 and COVID-19. Conclusions We found a potential causal association of PM2.5 absorbance with COVID-19 infection, hospitalisation, and severe respiratory symptoms using MR analysis. Prevention and control of air pollution could help delay and halt the negative progression of COVID-19.
Collapse
Affiliation(s)
- Chenxi Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jia Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yubo Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yi Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Department of Rheumatology and Immunology (T.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Kuang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinzhuang Zhang
- Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, Hunan, China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
12
|
Hassanipour S, Nikbakht HA, Amrane A, Arab-Zozani M, Shojaie L, Rostami S, Badeenezhad A. The Relationship between Air Pollution and Brain Cancer: A Systematic Review and Meta-Analysis. Ann Glob Health 2023; 89:45. [PMID: 37362828 PMCID: PMC10289053 DOI: 10.5334/aogh.3889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/30/2023] [Indexed: 06/28/2023] Open
Abstract
Background There is very little epidemiological evidence on the effects of ambient air pollution on brain tumor risk. The purpose of this study was to determine the relationship between exposure to air pollution and the incidence of brain tumors. Methods A comprehensive literature search in five international databases, including PubMed/Medline, ProQuest, Scopus, Embase, and ISI/WOS on April 15, 2019, was conducted. The methodology of the present study was based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) statement. The Newcastle-Ottawa Quality Assessment Form was used to evaluate the quality of the selected papers. Results Five studies that measured adult brain tumors as well as their long-term exposure to at least one of the pollutants criteria for air pollution, PM2.5 absorbance, and proximity to traffic (Trafnear) were reviewed. The results showed that the pooled relative risk (RR) for incidence of brain tumor and long term exposure to Trafnear, PM2.5, PM2.5 absorbance, O3 and NOx were RR = 1.07, (95% CI 0.99-1.16), P = 0.079, for Trafnear; RR = 0.90, (95% CI 0.80-1.00), P = 0.064 for PM2.5; RR = 1.63, (95% CI 1.04-2.55), P = 0.031 for PM2.5 absorbance; RR = 1.3, (95% CI 1.03-1.6), P = 0.023 for O3; and RR = 1.16, (95% CI 0.93-1.45), P = 0.173 for NOx. Exposure to other air pollutants had no statistically significant association with brain tumor incidence. Conclusion The results showed that exposure to air pollutants, such as O3 and PM2.5 absorbance, had the highest correlation with brain tumor incidence. They also showed an absence of correlation between exposure to certain pollutants (SO2, CO, NO2, PM10, PM2.5) and brain tumor incidence.
Collapse
Affiliation(s)
- Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein-Ali Nikbakht
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Morteza Arab-Zozani
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Layla Shojaie
- Division of GI/Liver, Department of Medicine, Keck school of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Saeid Rostami
- Department of Environmental Health Engineering, Shiraz University of Medical Science, Shiraz, Iran
| | - Ahmad Badeenezhad
- Department of Environmental Health Engineering, School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
13
|
Moon J. The relationship between radiofrequency-electromagnetic radiation from cell phones and brain tumor: The brain tumor incidence trends in South Korea. ENVIRONMENTAL RESEARCH 2023; 226:115657. [PMID: 36906274 DOI: 10.1016/j.envres.2023.115657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION The aim of this study is to investigate the relationship between the nationwide cell phone subscription rate and the nationwide incidence of brain tumors in South Korea. The nationwide cell phone subscription rate was used as a proxy for the RF-EMR exposure assessment. METHODS The data for cell phone subscriptions per 100 persons from 1985 to 2019 were found in the Statistics, International Telecom Union (ITU). The brain tumor incidence data from 1999 to 2018 provided by the South Korea Central Cancer Registry operated by the National Cancer Center were used. RESULTS In South Korea, the subscription rate increased from 0 per 100 persons in 1991 to 57 per 100 persons in 2000. The subscription rate became 97 per 100 persons in 2009 and 135 per 100 persons in 2019. For the correlation coefficient between cell phone subscription rate before 10 years and ASIR per 100,000, a positive correlation coefficient with a statistical significance was reported in 3 benign brain tumors (International Classification of Diseases, ICD-10 code, D32, D33, and D32.0) and in 3 malignant brain tumors (ICD-10 code, C71.0, C71.1, and C71.2). Positive correlation coefficients with a statistical significance in malignant brain tumors ranged from 0.75 (95% CI 0.46-0.90) for C71.0 to 0.85 (95% CI 0.63-0.93) for C71.1. DISCUSSION In consideration of the fact that the main route for RF-EMR exposure has been through the frontotemporal side of the brain (the location of both ears), the positive correlation coefficient with a statistical significance in the frontal lobe (C71.1) and temporal lobe (C71.2) can be understood. Statistically insignificant results from recent cohort and large population international studies and contrasting results from many previous case-control studies could indicate a difficulty in identifying a factor as a determinant of a disease in ecological study design.
Collapse
Affiliation(s)
- Jinyoung Moon
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inhang-ro 27, Jung-gu, Incheon, 22332, South Korea; Department of Environmental Health Science, Graduate School of Public Health, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
14
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
15
|
Matthews JC, Chompoobut C, Navasumrit P, Khan MAH, Wright MD, Ruchirawat M, Shallcross DE. Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5316. [PMID: 37047932 PMCID: PMC10094290 DOI: 10.3390/ijerph20075316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Traffic is a major source of particulate pollution in large cities, and particulate matter (PM) level in Bangkok often exceeds the World Health Organisation limits. While PM2.5 and PM10 are both measured in Bangkok regularly, the sub-micron range of PM, of specific interest in regard to possible adverse health effects, is very limited. In the study, particle number concentration (PNC) was measured on public transport in Bangkok. A travel route through Bangkok using the state railway, the mass rapid transport underground system, the Bangkok Mass Transit System (BTS) Skytrain and public buses on the road network, with walking routes between, was taken whilst measuring particle levels with a hand-held concentration particle counter. The route was repeated 19 times covering different seasons during either morning or evening rush hours. The highest particle concentrations were found on the state railway, followed by the bus, the BTS Skytrain and the MRT underground with measured peaks of 350,000, 330,000, 33,000 and 9000 cm-3, respectively, though particle numbers over 100,000 cm-3 may be an underestimation due to undercounting in the instrument. Inside each form of public transport, particle numbers would peak when stopping to collect passengers (doors opening) and decay with a half-life between 2 and 3 min. There was a weak correlation between particle concentration on bus, train and BTS and Skytrain with carbon monoxide concentration, as measured at a fixed location in the city.
Collapse
Affiliation(s)
- James C. Matthews
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Chalida Chompoobut
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - M. Anwar H. Khan
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Matthew D. Wright
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Mathuros Ruchirawat
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Dudley E. Shallcross
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7375, South Africa
| |
Collapse
|
16
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure. Int J Mol Sci 2023; 24:ijms24065130. [PMID: 36982203 PMCID: PMC10049281 DOI: 10.3390/ijms24065130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Pagano C, Navarra G, Coppola L, Savarese B, Avilia G, Giarra A, Pagano G, Marano A, Trifuoggi M, Bifulco M, Laezza C. Impacts of Environmental Pollution on Brain Tumorigenesis. Int J Mol Sci 2023; 24:5045. [PMID: 36902485 PMCID: PMC10002587 DOI: 10.3390/ijms24055045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Pollutants consist of several components, known as direct or indirect mutagens, that can be associated with the risk of tumorigenesis. The increased incidence of brain tumors, observed more frequently in industrialized countries, has generated a deeper interest in examining different pollutants that could be found in food, air, or water supply. These compounds, due to their chemical nature, alter the activity of biological molecules naturally found in the body. The bioaccumulation leads to harmful effects for humans, increasing the risk of the onset of several pathologies, including cancer. Environmental components often combine with other risk factors, such as the individual genetic component, which increases the chance of developing cancer. The objective of this review is to discuss the impact of environmental carcinogens on modulating the risk of brain tumorigenesis, focusing our attention on certain categories of pollutants and their sources.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Beatrice Savarese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Giovanni Pagano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
18
|
Liu H, Zhang X, Sun Z, Chen Y. Ambient Fine Particulate Matter and Cancer: Current Evidence and Future Perspectives. Chem Res Toxicol 2023; 36:141-156. [PMID: 36688945 DOI: 10.1021/acs.chemrestox.2c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The high incidence of cancer has placed an enormous health and economic burden on countries around the world. In addition to evidence of epidemiological studies, conclusive evidence from animal experiments and mechanistic studies have also shown that morbidity and mortality of some cancers can be attributed to ambient fine particulate matter (PM2.5) exposure, especially in lung cancer. However, the underlying carcinogenetic mechanisms of PM2.5 remain unclear. Furthermore, in terms of risks of other types of cancer, both epidemiological and mechanistic evidence are more limited and scattered, and the results are also inconsistent. In order to sort out the carcinogenic effect of PM2.5, this paper reviews the association of cancers with PM2.5 based on epidemiological and biological evidence including genetic, epigenetic, and molecular mechanisms. The limitations of existing researches and the prospects for the future are also well clarified in this paper to provide insights for future studies.
Collapse
Affiliation(s)
- Hanrui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
19
|
Issakhov A, Omarova P, Abylkassymova A. Determination of optimal height of barriers to reduce the amount of pollution in the viaduct settings in an idealized urban canyon: a numerical study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:178. [PMID: 36471175 DOI: 10.1007/s10661-022-10751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
In this work, we numerically investigate the process of atmospheric air pollution in idealized urban canyons along the road in the presence of a viaduct, taking into account different height of barriers. To solve this problem, the 3D Reynolds-averaged Navier-Stokes equations (RANS) were used. The closure of this system of equations was achieved by using various turbulent models. The verification of the mathematical model and the numerical algorithm was carried out using a test problem. The obtained results using various turbulent models were compared with experimental data and calculated results of other authors. The main problem considered in this work is characterized as follows: assessment of emissions of pollutants between buildings using barriers of various types in the presence of a viaduct. Computational results have shown that the barrier viaduct plays a large role in improving air quality in urban canyons. So, for example, a barrier erected on a viaduct with a height of 2 m reduces the concentration value to a cross-section x = 84 by more than 2 times in comparison with the case of a complete absence of protective barriers. A similar situation was observed with barriers erected above the earth's surface: located along the road, they also significantly reduce the value of the concentration of pollutants. Thus, the presence of barriers in both cases is necessary to prevent the dispersion and deposition of pollutants.
Collapse
Affiliation(s)
- Alibek Issakhov
- Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan.
- Kazakh British Technical University, Almaty, Republic of Kazakhstan.
- International Information Technology University, Almaty, Republic of Kazakhstan.
| | - Perizat Omarova
- Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
| | | |
Collapse
|
20
|
Mukherjee S, Kundu U, Desai D, Pillai PP. Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights. J Mol Neurosci 2022; 72:2188-2206. [PMID: 36370303 DOI: 10.1007/s12031-022-02069-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Uma Kundu
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Dhwani Desai
- Integrated Microbiome Resource, Department of Pharmacology and Marine Microbial Genomics and Biogeochemistry lab, Department of Biology, Dalhousie University, Halifix, Canada
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
21
|
Kazemi Shariat Panahi H, Dehhaghi M, Lam SS, Peng W, Aghbashlo M, Tabatabaei M, Guillemin GJ. Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: The case of glioblastoma multiforme. Semin Cancer Biol 2022; 86:1122-1142. [PMID: 34004331 DOI: 10.1016/j.semcancer.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023]
Abstract
Human livelihood highly depends on applying different sources of energy whose utilization is associated with air pollution. On the other hand, air pollution may be associated with glioblastoma multiforme (GBM) development. Unlike other environmental causes of cancer (e.g., irradiation), air pollution cannot efficiently be controlled by geographical borders, regulations, and policies. The unavoidable exposure to air pollution can modify cancer incidence and mortality. GBM treatment with chemotherapy or even its surgical removal has proven insufficient (100% recurrence rate; patient's survival mean of 15 months; 90% fatality within five years) due to glioma infiltrative and migratory capacities. Given the barrage of attention and research investments currently plowed into next-generation cancer therapy, oncolytic viruses are perhaps the most vigorously pursued. Provision of an insight into the current state of the research and future direction is essential for stimulating new ideas with the potentials of filling research gaps. This review manuscript aims to overview types of brain cancer, their burden, and different causative agents. It also describes why air pollution is becoming a concerning factor. The different opinions on the association of air pollution with brain cancer are reviewed. It tries to address the significant controversy in this field by hypothesizing the air-pollution-brain-cancer association via inflammation and atopic conditions. The last section of this review deals with the oncolytic viruses, which have been used in, or are still under clinical trials for GBM treatment. Engineered adenoviruses (i.e., DNX-2401, DNX-2440, CRAd8-S-pk7 loaded Neural stem cells), herpes simplex virus type 1 (i.e., HSV-1 C134, HSV-1 rQNestin34.5v.2, HSV-1 G207, HSV-1 M032), measles virus (i.e., MV-CEA), parvovirus (i.e., ParvOryx), poliovirus (i.e., Poliovirus PVSRIPO), reovirus (i.e., pelareorep), moloney murine leukemia virus (i.e., Toca 511 vector), and vaccinia virus (i.e., vaccinia virus TG6002) as possible life-changing alleviations for GBM have been discussed. To the best of our knowledge, this review is the first review that comprehensively discusses both (i) the negative/positive association of air pollution with GBM; and (ii) the application of oncolytic viruses for GBM, including the most recent advances and clinical trials. It is also the first review that addresses the controversies over air pollution and brain cancer association. We believe that the article will significantly appeal to a broad readership of virologists, oncologists, neurologists, environmentalists, and those who work in the field of (bio)energy. Policymakers may also use it to establish better health policies and regulations about air pollution and (bio)fuels exploration, production, and consumption.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.Org, Australia
| | - Su Shiung Lam
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mortaza Aghbashlo
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.Org, Australia.
| |
Collapse
|
22
|
Matthews JC, Navasumrit P, Wright MD, Chaisatra K, Chompoobut C, Arbon R, Khan MAH, Ruchirawat M, Shallcross DE. Aerosol mass and size-resolved metal content in urban Bangkok, Thailand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79025-79040. [PMID: 35705762 PMCID: PMC9587116 DOI: 10.1007/s11356-022-20806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Inhalable particulate matter (PM) is a health concern, and people living in large cities such as Bangkok are exposed to high concentrations. This exposure has been linked to respiratory and cardiac diseases and cancers of the lung and brain. Throughout 2018, PM was measured in northern Bangkok near a toll road (13.87°N, 100.58°E) covering all three seasons (cool, hot and rainy). PM10 was measured in 24- and 72-h samples. On selected dates aerodynamic size and mass distribution were measured as 3-day samples from a fixed 5th floor inlet. Particle number concentration was measured from the 5th floor inlet and in roadside survey measurements. There was a large fraction of particle number concentration in the sub-micron range, which showed the greatest variability compared with larger fractions. Metals associated with combustion sources were most found on the smaller size fraction of particles, which may have implications for associated adverse health outcomes because of the likely location of aerosol deposition in the distal airways of the lung. PM10 samples varied between 30 and 100 μg m-3, with highest concentrations in the cool season. The largest metal fractions present in the PM10 measurements were calcium, iron and magnesium during the hot season with average airborne concentrations of 13.2, 3.6 and 2.0 μg m-3, respectively. Copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony and lead had large non-crustal sources. Principal component analysis (PCA) identified likely sources of the metals as crustal minerals, tailpipe exhaust and non-combustion traffic. A health risk analysis showed a higher risk of both carcinogenic and non-carcinogenic health effects in the drier seasons than the wet season due to ingestion of nickel, arsenic, cadmium and lead.
Collapse
Affiliation(s)
- James C Matthews
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Matthew D Wright
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Krittinee Chaisatra
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Chalida Chompoobut
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Robert Arbon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- Jean Golding Institute, Royal Fort House, University of Bristol, Bristol, BS8 1UH, UK
| | - M Anwar H Khan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Dudley E Shallcross
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, 7375, South Africa
| |
Collapse
|
23
|
Abbastabar H. Trend of incidence and mortality of brain and central nervous system cancer in Iran from 1990 to 2017: A global burden of disease-based study. CURRENT JOURNAL OF NEUROLOGY 2022; 21:217-223. [PMID: 38011359 PMCID: PMC10189195 DOI: 10.18502/cjn.v21i4.11718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2023]
Abstract
Background: Brain and central nervous system (CNS) cancers make up about 3% of all cancers around the world and are more common among men than women. Present study aimed to evaluate the occurrence trend of brain and CNS cancers in Iran from 1990 to 2017. Methods: This study using global burden of disease (GBD) 1990 to 2017 data demonstrated the trend of incidence and mortality of brain and nervous system cancer in Iran. All-age, sex-based, age-standardized, age-specific (from 1990 to 2017), and age distribution of incidence and mortality rates of brain and nervous system cancer were estimated in Iran during 2017. Results: Both incidence and mortality rates of brain and nervous system cancer increased from 1990 to 2005 in Iran, Eastern Mediterranean Region, and global level. During 1990, incidence and mortality rates of brain and nervous system cancer were higher in women than men, but gradually both rates increased in men and exceeded women in Iran. From 1990 to 2017, the value of age-adjusted rate was higher than all-age rate of brain and nervous system cancer. The most incidence and mortality of brain and nervous system cancer from 1990 to 2017 occurred in age group of > 70 and the least values were seen in 15-49-year-old group in Iran. Conclusion: The brain tumor occurrence and mortality in Iran was higher than other Eastern Mediterranean Region countries. Incidence and mortality of this cancer has an increasing trend in Iran and this trend somewhat was independent from population aging.
Collapse
Affiliation(s)
- Hedayat Abbastabar
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Liu G, Yang Z, Wang C, Wang D. PM 2.5 exposure and cervical cancer survival in Liaoning Province, northeastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74669-74676. [PMID: 35641744 DOI: 10.1007/s11356-022-20597-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter with a diameter of 2.5 μm or less (PM2.5) has frequently been reported to be associated with an increased incidence of cancer, but few studies have explored the association between PM2.5 exposure and cancer survival. We retrospectively analyzed the association between PM2.5 exposure and the overall survival (OS) of cervical cancer patients residing in 14 urban areas of Liaoning Province, northeastern China, during January 2014-October 2021. Patients from urban areas who completed the recommended treatments with complete follow-up information were included. The PM2.5 monitoring data of each urban area of Liaoning Province were retrieved, and individual exposure to PM2.5 after diagnosis was calculated as the average daily concentration in the city of residence from the date of discharge to the date of death or the last follow-up. Log-rank tests and Cox regression were performed to examine the relationship between PM2.5 exposure and cervical cancer survival. A total of 1753 cervical cancer patients were finally included, among whom 804 (45.9%) were from Shenyang City, the capital of Liaoning Province. The median average daily concentration of PM2.5 to which the patients were exposed was 45.0 (interquartile range 38.2-50.0) μg/m3. Both log-rank tests (grouped by quartiles, p < 0.001) and Cox regression (continuous, HR = 1.06, 95% CI 1.04-1.08) indicated that PM2.5 was significantly associated with shorter OS. Sensitivity analysis also confirmed the robustness of our findings. From the subgroup analysis, only the OS of stage II and stage III patients was associated with PM exposure. Our findings provide the insight that PM2.5 exposure might be associated with shorter OS of cervical cancer patients.
Collapse
Affiliation(s)
- Guangcong Liu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute Shenyang, Shenyang, People's Republic of China
| | - Zhuo Yang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute Shenyang, Shenyang, People's Republic of China
| | - Chenyu Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute Shenyang, Shenyang, People's Republic of China
| | - Danbo Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute Shenyang, Shenyang, People's Republic of China.
| |
Collapse
|
25
|
Cosemans C, Wang C, Alfano R, Martens DS, Sleurs H, Dockx Y, Vanbrabant K, Janssen BG, Vanpoucke C, Lefebvre W, Smeets K, Nawrot TS, Plusquin M. In utero particulate matter exposure in association with newborn mitochondrial ND4L 10550A>G heteroplasmy and its role in overweight during early childhood. Environ Health 2022; 21:88. [PMID: 36117180 PMCID: PMC9484069 DOI: 10.1186/s12940-022-00899-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/01/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Mitochondria play an important role in the energy metabolism and are susceptible to environmental pollution. Prenatal air pollution exposure has been linked with childhood obesity. Placental mtDNA mutations have been associated with prenatal particulate matter exposure and MT-ND4L10550A>G heteroplasmy has been associated with BMI in adults. Therefore, we hypothesized that in utero PM2.5 exposure is associated with cord blood MT-ND4L10550A>G heteroplasmy and early life growth. In addition, the role of cord blood MT-ND4L10550A>G heteroplasmy in overweight during early childhood is investigated. METHODS This study included 386 mother-newborn pairs. Outdoor PM2.5 concentrations were determined at the maternal residential address. Cord blood MT-ND4L10550A>G heteroplasmy was determined using Droplet Digital PCR. Associations were explored using logistic regression models and distributed lag linear models. Mediation analysis was performed to quantify the effects of prenatal PM2.5 exposure on childhood overweight mediated by cord blood MT-ND4L10550A>G heteroplasmy. RESULTS Prenatal PM2.5 exposure was positively associated with childhood overweight during the whole pregnancy (OR = 2.33; 95% CI: 1.20 to 4.51; p = 0.01), which was mainly driven by the second trimester. In addition, prenatal PM2.5 exposure was associated with cord blood MT-ND4L10550A>G heteroplasmy from gestational week 9 - 13. The largest effect was observed in week 10, where a 5 µg/m3 increment in PM2.5 was linked with cord blood MT-ND4L10550A>G heteroplasmy (OR = 0.93; 95% CI: 0.87 to 0.99). Cord blood MT-ND4L10550A>G heteroplasmy was also linked with childhood overweight (OR = 3.04; 95% CI: 1.15 to 7.50; p = 0.02). The effect of prenatal PM2.5 exposure on childhood overweight was mainly direct (total effect OR = 1.18; 95% CI: 0.99 to 1.36; natural direct effect OR = 1.20; 95% CI: 1.01 to 1.36)) and was not mediated by cord blood MT-ND4L10550A>G heteroplasmy. CONCLUSIONS Cord blood MT-ND4L10550A>G heteroplasmy was linked with childhood overweight. In addition, in utero exposure to PM2.5 during the first trimester of pregnancy was associated with cord blood MT-ND4L10550A>G heteroplasmy in newborns. Our analysis did not reveal any mediation of cord blood MT-ND4L10550A>G heteroplasmy in the association between PM2.5 exposure and childhood overweight.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Wouter Lefebvre
- Flemish Institute for Technological Research, VITO, Mol, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- School of Public Health, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
26
|
Markozannes G, Pantavou K, Rizos EC, Sindosi OΑ, Tagkas C, Seyfried M, Saldanha IJ, Hatzianastassiou N, Nikolopoulos GK, Ntzani E. Outdoor air quality and human health: An overview of reviews of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119309. [PMID: 35469927 DOI: 10.1016/j.envpol.2022.119309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The epidemiological evidence supporting putative associations between air pollution and health-related outcomes continues to grow at an accelerated pace with a considerable heterogeneity and with varying consistency based on the outcomes assessed, the examined surveillance system, and the geographic region. We aimed to evaluate the strength of this evidence base, to identify robust associations as well as to evaluate effect variation. An overview of reviews (umbrella review) methodology was implemented. PubMed and Scopus were systematically screened (inception-3/2020) for systematic reviews and meta-analyses examining the association between air pollutants, including CO, NOX, NO2, O3, PM10, PM2.5, and SO2 and human health outcomes. The quality of systematic reviews was evaluated using AMSTAR. The strength of evidence was categorized as: strong, highly suggestive, suggestive, or weak. The criteria included statistical significance of the random-effects meta-analytical estimate and of the effect estimate of the largest study in a meta-analysis, heterogeneity between studies, 95% prediction intervals, and bias related to small study effects. Seventy-five systematic reviews of low to moderate methodological quality reported 548 meta-analyses on the associations between outdoor air quality and human health. Of these, 57% (N = 313) were not statistically significant. Strong evidence supported 13 associations (2%) between elevated PM2.5, PM10, NO2, and SO2 concentrations and increased risk of cardiorespiratory or pregnancy/birth-related outcomes. Twenty-three (4%) highly suggestive associations were identified on elevated PM2.5, PM10, O3, NO2, and SO2 concentrations and increased risk of cardiorespiratory, kidney, autoimmune, neurodegenerative, cancer or pregnancy/birth-related outcomes. Sixty-seven (12%), and 132 (24%) meta-analyses were graded as suggestive, and weak, respectively. Despite the abundance of research on the association between outdoor air quality and human health, the meta-analyses of epidemiological studies in the field provide evidence to support robust associations only for cardiorespiratory or pregnancy/birth-related outcomes.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Evangelos C Rizos
- Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus; Hellenic Open University, Patra, Greece
| | - Ourania Α Sindosi
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Christos Tagkas
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Maike Seyfried
- Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Ian J Saldanha
- Center for Evidence Synthesis in Health, Department of Health Services, Policy, and Practice, and Department of Epidemiology, School of Public Health, Brown University, RI, USA
| | - Nikos Hatzianastassiou
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Center for Evidence Synthesis in Health, Department of Health Services, Policy, and Practice, and Department of Epidemiology, School of Public Health, Brown University, RI, USA.
| |
Collapse
|
27
|
Long-Term Exposure to Air Pollution Associates the Risk of Benign Brain Tumor: A Nationwide, Population-Based, Cohort Study in Taiwan. TOXICS 2022; 10:toxics10040176. [PMID: 35448437 PMCID: PMC9028167 DOI: 10.3390/toxics10040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Air pollutants as risk factors for benign brain tumor (BBT) remain unclear. Therefore, we conducted a nationwide retrospective cohort study by integrating the patients’ clinical data and daily air quality data to assess the environmental risk factors of BBT in Taiwan.Daily air quality data were categorized into quartiles (Q1 to Q4). The adjusted hazard ratio (aHR) was evaluated by comparing the BBT incidence rate of the subjects in Q2–Q4 with that of the subjects in Q1 (the lowest concentration of air pollutants). A total of 161,213 subjects were enrolled in the study. Among the air pollutants tested, the aHR of BBT was significantly higher in the subjects who were exposed to the highest level (Q4) of CO (aHR 1.37, 95% CI 1.08–1.74), NO2 (aHR 1.40, 95% CI 1.09–1.78), and PM2.5 (aHR 1.30, 95% CI 1.02–1.65) than that in the subjects who were exposed to the lowest level (Q1). No significant risk association of BBT with SO2 and PM10 exposure was observed. The results revealed that long-term exposure to air pollutants, particularly CO, NO2, and PM2.5, is associated with the risk of BBT.
Collapse
|
28
|
Yu P, Guo S, Xu R, Ye T, Li S, Sim MR, Abramson MJ, Guo Y. Cohort studies of long-term exposure to outdoor particulate matter and risks of cancer: A systematic review and meta-analysis. Innovation (N Y) 2021; 2:100143. [PMID: 34557780 PMCID: PMC8454739 DOI: 10.1016/j.xinn.2021.100143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/11/2021] [Indexed: 11/11/2022] Open
Abstract
Robust evidence is needed for the hazardous effects of outdoor particulate matter (PM) on mortality and morbidity from all types of cancers. To summarize and meta-analyze the association between PM and cancer, published articles reporting associations between outdoor PM exposure and any type of cancer with individual outcome assessment that provided a risk estimate in cohort studies were identified via systematic searches. Of 3,256 records, 47 studies covering 13 cancer sites (30 for lung cancer, 12 for breast cancer, 11 for other cancers) were included in the quantitative evaluation. The pooled relative risks (RRs) for lung cancer incidence or mortality associated with every 10-μg/m3 PM2.5 or PM10 were 1.16 (95% confidence interval [CI], 1.10–1.23; I2 = 81%) or 1.22 (95% CI, 1.02–1.45; I2 = 96%), respectively. Increased but non-significant risks were found for breast cancer. Other cancers were shown to be associated with PM exposure in some studies but not consistently and thus warrant further investigation. Updated evidence for the association between PM and lung cancer risk has been provided Associations between PM and cancer risks from 13 sites were summarized Further studies should be conducted to fill the research gaps
Collapse
Affiliation(s)
- Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Suying Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai 200025, China
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Malcolm R Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
29
|
Tseng CH. Metformin and Risk of Malignant Brain Tumors in Patients with Type 2 Diabetes Mellitus. Biomolecules 2021; 11:biom11081226. [PMID: 34439890 PMCID: PMC8391370 DOI: 10.3390/biom11081226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/29/2022] Open
Abstract
The risk of malignant brain tumors associated with metformin use has rarely been investigated in humans. This retrospective cohort study investigated such an association. Patients with new-onset type 2 diabetes mellitus diagnosed from 1999 to 2005 in the nationwide database of Taiwan’s national health insurance were used to enroll study subjects. We first identified an unmatched cohort of 153,429 ever users and 16,222 never users of metformin. A cohort of 16,222 ever users and 16,222 never users matched on propensity score was then created from this unmatched cohort. All patients were followed up from 1 January 2006 until 31 December 2011. The incidence density was calculated and hazard ratios were derived from Cox regression incorporated with the inverse probability of treatment weighting using a propensity score. The results showed that 27 never users and 155 ever users developed malignant brain tumors in the unmatched cohort. The incidence rate was 37.11 per 100,000 person-years in never users and 21.39 per 100,000 person-years in ever users. The overall hazard ratio comparing ever users versus never users was 0.574 (95% confidence interval: 0.381–0.863). The respective hazard ratios comparing the first (<27.13 months), second (27.13–58.33 months), and third (>58.33 months) tertiles of cumulative duration of metformin therapy versus never users were 0.897 (0.567–1.421), 0.623 (0.395–0.984), and 0.316 (0.192–0.518). In the matched cohort, the overall hazard ratio was 0.317 (0.149–0.673) and the respective hazard ratios were 0.427 (0.129–1.412), 0.509 (0.196–1.322), and 0.087 (0.012–0.639) for the first, second, and third tertile of cumulative duration of metformin therapy. In conclusion, this study shows a risk reduction of malignant brain tumors associated with metformin use in a dose–response pattern. The risk reduction is more remarkable when metformin has been used for approximately 2–5 years.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| |
Collapse
|
30
|
Santos BL, Oliveira AMP, Oliveira HA, Amorim RLOD. Primary central nervous system tumors in Sergipe, Brazil: descriptive epidemiology between 2010 and 2018. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:S0004-282X2021005014201. [PMID: 34231652 PMCID: PMC9394575 DOI: 10.1590/0004-282x-anp-2020-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/21/2024]
Abstract
BACKGROUND Central nervous system (CNS) tumors are a heterogeneous group with high morbidity and mortality. OBJECTIVES To describe the epidemiology of primary CNS tumors diagnosed in the state of Sergipe from 2010 to 2018. METHODS We evaluated histopathological and immunohistochemical reports on primary CNS tumors diagnosed in Sergipe, Brazil, between 2010 and 2018 and collected data regarding age, sex, location, World Health Organization (WHO) classification and histology. RESULTS Altogether, 861 primary CNS tumors were found. Tumors in brain locations occurred most frequently (50.8%; n=437). The neoplasms observed were most prevalent in the age range 45‒54 years (20.4%; n=176). Grade I tumors occurred most frequently, corresponding to 38.8% of the cases (n=38) in the age group of 0‒14 years, and 44.6% (n=340) in the population ≥15 years old. Between 0 and 14 years of age, other astrocytic tumors were the most prevalent (29.6%; n=29). In the age group between 15 and 34, gliomas were the most frequent (32.7%; n=54). Meningiomas predominated in the age group of 35 years and above, comprising 47.5% of cases (n=206) in the 35‒74 age group; and 61.2% (n=30) among patients over 75 years old. CONCLUSION The epidemiology of primary CNS tumors in Sergipe between 2010 and 2018 is consistent with data in other current studies on the subject. Studies on the epidemiological evolution of these entities in Sergipe are needed.
Collapse
Affiliation(s)
- Bárbara Loiola Santos
- Universidade Federal de Sergipe, Departamento de Medicina de Lagarto, Lagarto SE, Brazil
| | - Arthur Maynart Pereira Oliveira
- Universidade Federal de Sergipe, Departamento de Medicina, Aracaju SE, Brazil
- Fundação de Beneficência Hospital de Cirurgia, Serviço de Neurocirurgia, Aracaju SE, Brazil
| | | | | |
Collapse
|
31
|
Bytnar JA, Lin J, Eaglehouse YL, Enewold L, Shriver CD, Zhu K. Brain cancer incidence: a comparison of active-duty military and general populations. Eur J Cancer Prev 2021; 30:328-333. [PMID: 32898014 DOI: 10.1097/cej.0000000000000625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND In the USA, brain cancer disproportionately affects young adults. The US military has a younger age structure than the general population and may have differential exposures related to brain cancer. This study aimed to compare the incidence rates of brain cancer in the active-duty military and general populations to provide clues for future etiologic research. The rates between military service branches were also compared. METHODS The data for this study were from the Department of Defense's Automated Central Tumor Registry (ACTUR) and the National Cancer Institute's Surveillance, Epidemiology, and End Results 9 (SEER-9) registries. Age- and sex-adjusted incidence rates of malignant neuroepithelial brain cancer among adults 20-54 years of age from 1990-2013 were calculated and compared between the two populations, given as incidence rate ratios (IRRs) with 95% confidence intervals (CIs). RESULTS The age and sex-adjusted incidence rate for malignant neuroepithelial brain cancer was significantly lower in the active-duty population than in the US general population (IRR = 0.62, 95% CI, 0.56-0.68). The reduced incidence rate in the active-duty population was observed in men, all races, individuals 20-44 of age, and for all histological subtypes and time periods assessed. There were no significant differences in rates between the military service branches. CONCLUSION The incidence rates of neuroepithelial brain cancer were lower in the active-duty military population than the US general population. This study highlights the need for more research to enhance our understanding of variations in brain cancer incidence between these two populations.
Collapse
Affiliation(s)
- Julie A Bytnar
- John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockledge Drive
| | - Jie Lin
- John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockledge Drive
- Department of Surgery, Uniformed Services University of the Health Sciences
| | - Yvonne L Eaglehouse
- John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockledge Drive
- Department of Surgery, Uniformed Services University of the Health Sciences
| | - Lindsey Enewold
- Division of Cancer Control and Population Sciences, National Cancer Institute, Medical Center Drive
| | - Craig D Shriver
- John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda
- Department of Surgery, Uniformed Services University of the Health Sciences
| | - Kangmin Zhu
- John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockledge Drive
- Department of Surgery, Uniformed Services University of the Health Sciences
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Wu AH, Fruin S, Larson TV, Tseng CC, Wu J, Yang J, Jain J, Shariff-Marco S, Inamdar PP, Setiawan VW, Porcel J, Stram DO, Le Marchand L, Ritz B, Cheng I. Association between Airport-Related Ultrafine Particles and Risk of Malignant Brain Cancer: A Multiethnic Cohort Study. Cancer Res 2021; 81:4360-4369. [PMID: 34167950 DOI: 10.1158/0008-5472.can-21-1138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Ultrafine particles (UFP; diameter less than or equal to 100 nm) may reach the brain via systemic circulation or the olfactory tract and have been implicated in the risk of brain tumors. The effects of airport-related UFP on the risk of brain tumors are not known. Here we determined the association between airport-related UFP and risk of incident malignant brain cancer (n = 155) and meningioma (n = 420) diagnosed during 16.4 years of follow-up among 75,936 men and women residing in Los Angeles County from the Multiethnic Cohort study. UFP exposure from aircrafts was estimated for participants who lived within a 53 km × 43 km grid area around the Los Angeles International Airport (LAX) from date of cohort entry (1993-1996) through December 31, 2013. Cox proportional hazards models were used to estimate the effects of time-varying, airport-related UFP exposure on risk of malignant brain cancer and meningioma, adjusting for sex, race/ethnicity, education, and neighborhood socioeconomic status. Malignant brain cancer risk in all subjects combined increased 12% [95% confidence interval (CI), 0.98-1.27] per interquartile range (IQR) of airport-related UFP exposure (∼6,700 particles/cm3) for subjects with any address in the grid area surrounding the LAX airport. In race/ethnicity-stratified analyses, African Americans, the subgroup who had the highest exposure, showed a HR of 1.32 (95% CI, 1.07-1.64) for malignant brain cancer per IQR in UFP exposure. UFP exposure was not related to risk of meningioma overall or by race/ethnicity. These results support the hypothesis that airport-related UFP exposure may be a risk factor for malignant brain cancers. SIGNIFICANCE: Malignant brain cancer risk increases with airport-related UFP exposure, particularly among African Americans, suggesting UFP exposure may be a modifiable risk factor for malignant brain cancer.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Scott Fruin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Timothy V Larson
- Department of Civil & Environmental Engineering, University of Washington, Seattle, Washington
| | - Chiu-Chen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of Irvine, Irvine, California
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | | | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Pushkar P Inamdar
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Veronica W Setiawan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jacqueline Porcel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
33
|
Mesenchymal Stromal Cell-derived Extracellular Vesicles in Preclinical Animal Models of Tumor Growth: Systematic Review and Meta-analysis. Stem Cell Rev Rep 2021; 18:993-1006. [PMID: 33860455 DOI: 10.1007/s12015-021-10163-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) have been implicated in the regulation of tumor growth. Studies remain preclinical with effects ranging from inhibition of tumor growth to cancer progression. A systematic review and meta-analysis is needed to clarify the effect of MSC-EVs on tumor growth to facilitate potential translation to clinical trials. METHODS A systematic search of the literature (MEDLINE, Embase, and BIOSIS databases to June 1, 2019) identified all pre-clinical controlled studies investigating the effect of MSC-EVs on tumor growth. Study selection and data extraction were performed in duplicate. Potential risk of bias was assessed using the SYRCLE tool. A random effects meta-analysis of reduction in tumor weight/volume (primary outcome) was performed. RESULTS We identified 29 articles and 22 reported data on tumor responses that were included for meta-analysis. Studies were associated with unclear risk of bias in a large proportion of domains in accordance with the SYRCLE tool for determining risk of bias in preclinical studies. A high risk of bias was not identified in any study. MSC-EVs had a mixed response on tumor progression with some studies reporting inhibition of tumor growth and others reporting tumor progression. Overall, MSC-EVs exerted a non-significant reduction in tumor growth compared to controls (standardized mean difference (SMD) -0.80, 95 % CI -1.64 to 0.03, p = 0.06, I2 = 87 %). Some studies reported increased tumor growth which aligned with their stated hypothesis and some interrogated mechanisms in cancer biology. EVs isolated from MSCs that overexpressed anti-tumor RNAs were associated with significant tumor reduction in meta-analysis (SMD - 2.40, 95 % CI -3.36 to -1.44, p < 0.001). Heterogeneity between studies was observed and included aspects of study design such as enrichment of MSC-EVs with specific anti-tumor molecules, tissue source of MSCs, method of EV isolation, characterization of MSCs and EVs, dosage and administration schedules, and tissue type and source of tumor cells studied. CONCLUSIONS MSC-EVs are associated with mixed effects on tumor growth in animal models of cancer. In studies where anti-tumor RNAs are packaged in EVs, a significant reduction in tumor growth was observed. Reducing heterogeneity in study design may accelerate our understanding of the potential effects of MSC-EVs on cancer. [274 words] Forest plot of MSC-EV effect on tumor growth accordinggenetic modification of EVs in animal studies identified from a systematicreview of the literature. All cohorts from studies with multiple interventiongroups are presented separately with control groups divided equally among thegroups. M, modified; H, hypoxia.
Collapse
|
34
|
Within-city Spatial Variations in Ambient Ultrafine Particle Concentrations and Incident Brain Tumors in Adults. Epidemiology 2021; 31:177-183. [PMID: 31714401 PMCID: PMC7004474 DOI: 10.1097/ede.0000000000001137] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ambient ultrafine particles (UFPs, <0.1 µm) can reach the human brain, but to our knowledge, epidemiologic studies have yet to evaluate the relation between UFPs and incident brain tumors. METHODS We conducted a cohort study of within-city spatial variations in ambient UFPs across Montreal and Toronto, Canada, among 1.9 million adults included in multiple cycles of the Canadian Census Health and Environment Cohorts (1991, 1996, 2001, and 2006). UFP exposures (3-year moving averages) were assigned to residential locations using land-use regression models with exposures updated to account for residential mobility within and between cities. We followed cohort members for malignant brain tumors (ICD-10 codes C71.0-C71.9) between 2001 and 2016; Cox proportional hazards models (stratified by age, sex, immigration status, and census cycle) were used to estimate hazard ratios (HRs) adjusting for fine particle mass concentrations (PM2.5), nitrogen dioxide (NO2), and various sociodemographic factors. RESULTS In total, we identified 1,400 incident brain tumors during the follow-up period. Each 10,000/cm increase in UFPs was positively associated with brain tumor incidence (HR = 1.112, 95% CI = 1.042, 1.188) after adjusting for PM2.5, NO2, and sociodemographic factors. Applying an indirect adjustment for cigarette smoking and body mass index strengthened this relation (HR = 1.133, 95% CI = 1.032, 1.245). PM2.5 and NO2 were not associated with an increased incidence of brain tumors. CONCLUSIONS Ambient UFPs may represent a previously unrecognized risk factor for incident brain tumors in adults. Future studies should aim to replicate these results given the high prevalence of UFP exposures in urban areas.
Collapse
|
35
|
Zhang S, Zhang J, Guo D, Peng C, Tian M, Pei D, Wang Q, Yang F, Cao J, Chen Y. Biotoxic effects and gene expression regulation of urban PM 2.5 in southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141774. [PMID: 33207436 DOI: 10.1016/j.scitotenv.2020.141774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric fine particulate matter (PM2.5) causes severe haze in China and is regarded as a threat to human health. The health effects of PM2.5 vary location by location due to the variation in size distribution, chemical composition, and sources. In this study, the cytotoxicity effect, oxidative stress, and gene expression regulation of PM2.5 in Chengdu and Chongqing, two typical urban areas in southern China, were evaluated. Urban PM2.5 in summer and winter significantly inhibited cell viability and increased reactive oxygen species (ROS) levels in A549 cells. Notably, PM2.5 in winter exhibited higher cytotoxicity and ROS level than summer. Moreover, in this study, PM2.5 commonly induced cancer-related gene expression such as cell adhesion molecule 1 (PECAM1), interleukin 24 (IL24), and cytochrome P450 (CYP1A1); meanwhile, PM2.5 commonly acted on cancer-related biological functions such as cell-substrate junction, cell-cell junction, and focal adhesion. In particular, PM2.5 in Chengdu in summer had the highest carcinogenic potential among PM2.5 at the two sites in summer and winter. Importantly, cancer-related genes were uniquely targeted by PM2.5, such as epithelial splicing regulatory protein 1 (ESRP1) and membrane-associated ring-CH-type finger 1 (1-Mar) by Chengdu summer PM2.5; collagen type IX alpha 3 chain (COL9A3) by Chengdu winter PM2.5; SH2 domain-containing 1B (SH2D1B) by Chongqing summer PM2.5; and interleukin 1 receptor-like 1 (IL1RL1) and zinc finger protein 42 (ZNF423) by Chongqing winter PM2.5. Meanwhile, important cancer-related biological functions were specially induced by PM2.5, such as cell cycle checkpoint by Chengdu summer PM2.5; macromolecule methylation by Chengdu winter PM2.5; endoplasmic reticulum-Golgi intermediate compartment membrane by Chongqing summer PM2.5; and cellular lipid catabolic process by Chongqing winter PM2.5. Conclusively, in the typical urban areas of southern China, both summer and winter PM2.5 illustrated significant gene regulation effects. This study contributes to evaluating the adverse health effects of PM2.5 in southern China and providing public health suggestions for policymakers.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jingping Zhang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Dongmei Guo
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Chao Peng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Mi Tian
- School of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China
| | - Desheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
36
|
Kończak B, Cempa M, Pierzchała Ł, Deska M. Assessment of the ability of roadside vegetation to remove particulate matter from the urban air. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115465. [PMID: 33152599 DOI: 10.1016/j.envpol.2020.115465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 05/06/2023]
Abstract
The development of urbanised areas together with the growing transport infrastructure and traffic volume are the main cause of air quality deterioration due to the increasing concentrations of particulate matter. Dust pollution is a threat to human health. It can cause the development of lung, larynx or circulatory system cancer. Due to the ability to accumulate dust particles on the leaf surface, the contribution of trees in the process of phytoremediation of air pollution has started to be appreciated. An analysis of the elemental composition of particulate matter (PM) stored on the leaves surface was also carried out, which showed high average concentration of: C > O > Si > Fe (above 8wt.%). It was also observed single particles with a high concentration of heavy metals: Ti, Mn, Ba, Zn, Cr, Pb, Sn, Ni and REE (rare earth elements). The major origin of PM are vehicular emissions, soil and re-suspended road dust. This paper presents also a comparison of selected tree, shrub and vine species differing in their ability to accumulate particulate matter. It was experimentally determined the average leaf surface of individual plant species and established the amount of particulate matter with aerodynamic diameter between 10 and 100 μm, 2.5 and 10 μm, and 0.2 and 2.5 μm deposited on the leaf surface and in waxes. Some species of vines (Parthenocissus quinquefolia), shrubs (Forsythia x intermediata) and coniferous trees, such as Betula pendula 'Youngii', Quercus rubra, Cratageus monogyna, Acer pseduoplatanus, Tilia cordata Mill. or Platanus orientalis turned out to be the most efficient in the process of phylloremediation.
Collapse
Affiliation(s)
- B Kończak
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland.
| | - M Cempa
- Department of Environmental Monitoring, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| | - Ł Pierzchała
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| | - M Deska
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| |
Collapse
|
37
|
Kim H, Kim WH, Kim YY, Park HY. Air Pollution and Central Nervous System Disease: A Review of the Impact of Fine Particulate Matter on Neurological Disorders. Front Public Health 2020; 8:575330. [PMID: 33392129 PMCID: PMC7772244 DOI: 10.3389/fpubh.2020.575330] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background: It is widely known that the harmful effects of fine dust can cause various diseases. Research on the correlation between fine dust and health has been mainly focused on lung and cardiovascular diseases. By contrast, the effects of air pollution on the central nervous system (CNS) are not broadly recognized. Findings: Air pollution can cause diverse neurological disorders as the result of inflammation of the nervous system, oxidative stress, activation of microglial cells, protein condensation, and cerebral vascular-barrier disorders, but uncertainty remains concerning the biological mechanisms by which air pollution produces neurological disease. Neuronal cell damage caused by fine dust, especially in fetuses and infants, can cause permanent brain damage or lead to neurological disease in adulthood. Conclusion: It is necessary to study the air pollution–CNS disease connection with particular care and commitment. Moreover, the epidemiological and experimental study of the association between exposure to air pollution and CNS damage is critical to public health and quality of life. Here, we summarize the correlations between fine dust exposure and neurological disorders reported so far and make suggestions on the direction future research should take.
Collapse
Affiliation(s)
- Hyunyoung Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Young-Youl Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Hyun-Young Park
- Department of Precision Medicine, Korea National Institute of Health, Cheongju-si, South Korea
| |
Collapse
|
38
|
Altuwayjiri A, Pirhadi M, Taghvaee S, Sioutas C. Long-term trends in the contribution of PM 2.5 sources to organic carbon (OC) in the Los Angeles basin and the effect of PM emission regulations. Faraday Discuss 2020; 226:74-99. [PMID: 33241815 DOI: 10.1039/d0fd00074d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to investigate the long-term variations in the contributions of emission sources to ambient PM2.5 organic carbon (OC) in central Los Angeles (CELA) and Riverside using the Chemical Speciation Network (CSN) database in the 2005-2015 period, during which several federal and state PM-based regulations were implemented to reduce tailpipe emissions in the region. The measured concentrations of OC, OC volatility fractions (i.e., OC1, OC2, and OC3), elemental carbon (EC), ozone (O3), sulfate, the ratio of potassium ion to potassium (K+/K), and selected metal elements were used as the input to the positive matrix factorization (PMF) model. PMF resolved tailpipe emissions, non-tailpipe emissions, secondary organic aerosols (SOA), biomass burning, and local industrial activities as the main sources contributing to ambient OC at both sampling sites. Vehicular exhaust emissions, non-tailpipe emissions, and SOA were dominant sources of OC across our sampling sites, accounting cumulatively for more than 80% of total OC mass throughout the study period. Our findings showed a significant reduction in the absolute and relative contributions of tailpipe emissions to the ambient OC levels in CELA and Riverside over the time period of 2005-2015. The contribution of exhaust emissions to total OC in CELA decreased from 3.5 µg m-3 (49%) in 2005 to 1.5 µg m-3 (34%) in 2015, while similar trends were observed at Riverside during this period. These reductions are mainly attributed to the implementation of several federal, state, and local air quality regulations targeting tailpipe emissions in the area. The implementation of these regulations furthermore reduced the emissions of primary organic precursors of secondary aerosols, resulting in an overall decrease (although not statistically significant, P values ranging from 0.4 to 0.6) in SOA mass concentration in both locations over the study period. In contrast to the tailpipe emissions, we observed an increasing trend (by ∼4 to 14%) in the relative contribution of non-tailpipe emissions to OC over this time period at both sites. Our results demonstrated the effectiveness of air quality regulations in reducing direct tailpipe emissions in the area, but also underpinned the need to develop equally effective mitigation policies targeting non-tailpipe PM emissions.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- University of Southern California, Department of Civil and Environmental Engineering, 3620 S. Vermont Ave. KAP210, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
39
|
Yoon SJ, Noh J, Son HY, Moon JH, Kim EH, Park SW, Kim SH, Chang JH, Huh YM, Kang SG. Ambient carbon monoxide exposure and elevated risk of mortality in the glioblastoma patients: A double-cohort retrospective observational study. Cancer Med 2020; 9:9018-9026. [PMID: 33161654 PMCID: PMC7724304 DOI: 10.1002/cam4.3572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023] Open
Abstract
An increasing number of studies indicate air pollutants infiltrate into the brain. We aimed to find the association of cumulative air pollution exposure in the main body of primary brain tumor: glioblastoma (GBM). In this double-cohort, retrospective analysis study with a protocol, we compared the health effect of air pollution on the GBM patients from the SEER (Surveillance, Epidemiology, and End Results Program) in 27 U.S. counties from 10 states and GBM patients of Severance cohort of Korea. From 2000 to 2015, 10621 GBM patients of the SEER were individually evaluated for the cumulative average exposure for each pollutant, and 9444 (88.9%) mortality events were reported. From 2011 to 2018, 398 GBM patients of the Severance with the same protocol showed 259 (65.1%) mortality events. The multi-pollutant models show that the association level of risk with CO is increased in the SEER (HR 1.252; 95% CI 1.141-1.373) with an increasing linear trend of relative death rate in the spline curve. The Severance GBM data showed such a statistically significant result of the health impact of CO on GBM patients. The overall survival gain of the less exposure group against CO was 2 and 3 months in the two cohorts. Perioperative exposure to CO may increase the risk of shorter survival of GBM patients of the SEER and the Severance cohort.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Juhwan Noh
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Young Son
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Min Huh
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,YUHS-KRIBB Medical Convergence Research Institute, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Medical Science, Yonsei University Graduate School, Seoul, Korea
| |
Collapse
|
40
|
Pourvakhshoori N, Khankeh HR, Stueck M, Farrokhi M. The association between air pollution and cancers: controversial evidence of a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38491-38500. [PMID: 32767014 DOI: 10.1007/s11356-020-10377-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
There are inconsistent reports on the association between air pollution and cancers. This systematic review was, therefore, conducted to ascertain the relationship between air pollution and some cancers. This is a systematic review study, which all articles published in this area were extracted from January 1, 1950 to December 31, 2018 from Web of Science, PubMed, Scopus, Cochrane Library, MEDLINE, EMBASE, Science Direct, Google scholar. Searching was performed independently by two search-method experts. The required data were extracted from the articles by an author-made questionnaire. Forty-eight articles were investigated. Evidence linking air pollution to some cancers is limited. Leukemia had the highest association with exposure to various air pollutants and bladder cancer had the lowest association. It is noteworthy that the specific type of pollutants in all studies was not specified. Based on the findings, the results are contradictory, and the role of air pollution in some cancers cannot be supported. Accordingly, studies are recommended to be performed at the individual level or multifactorial studies to specifically investigate the relationship between air pollution and these types of cancers. In this way, the role of air pollution in the incidence of these cancers can be determined more accurately.
Collapse
Affiliation(s)
- Negar Pourvakhshoori
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Reza Khankeh
- Department of Clinical Science and Education, Karolinska Institute, Stockholm, Sweden
| | - Marcus Stueck
- DFPA Academy of Work and Health, Leipzig, Germany
- International Research Academy BIONET, Leipzig, Germany
| | - Mehrdad Farrokhi
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Harbo Poulsen A, Arthur Hvidtfeldt U, Sørensen M, Puett R, Ketzel M, Brandt J, Christensen JH, Geels C, Raaschou-Nielsen O. Components of particulate matter air-pollution and brain tumors. ENVIRONMENT INTERNATIONAL 2020; 144:106046. [PMID: 32858469 DOI: 10.1016/j.envint.2020.106046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Air pollution is an established carcinogen. Evidence for an association with brain tumors is, however, inconclusive. We investigated if individual particulate matter constituents were associated with brain tumor risk. METHODS From comprehensive national registers, we identified all (n = 12 928) brain tumor cases, diagnosed in Denmark in the period 1989-2014, and selected 22 961 controls, matched on age, sex and year of birth. We established address histories and estimated 10-year mean residential outdoor concentrations of particulate matter < 2.5 µm, primarily emitted black carbon (BC) and organic carbon (OC), and combined carbon (OC/BC), as well as secondary inorganic and organic PM air pollutants from a detailed dispersion model. We used conditional logistic regression to calculate odds ratios (OR) per inter quartile range (IQR) exposure. We adjusted for income, marital and employment status as well as area-level socio-demographic characteristics. RESULTS Total tumors of the brain were associated with OC/BC (OR: 1.053, 95%CI: 1.005-1.103, per IQR). The data suggested strongest associations for malignant tumors with ORs per IQR for OC/BC, BC and OC of 1.063 (95% CI: 1.007-1.123), 1.036 (95% CI: 1.006-1.067) and 1.030 (95%CI: 0.979-1.085), respectively. The results did not indicate adverse effects of other PM components. CONCLUSIONS This large, population based study showed associations between primary emitted carbonaceous particles and risk for malignant brain tumors. As the first of its kind, this study needs replication.
Collapse
Affiliation(s)
| | | | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Robin Puett
- Danish Cancer Society Research Center, Copenhagen, Denmark; Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, MD, USA
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE) Department of Civil and Environmental Engineering University of Surrey, Guildford, United Kingdom
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
42
|
Bansal N, Dawande P, Shukla S, Acharya S. Effect of lifestyle and dietary factors in the development of brain tumors. J Family Med Prim Care 2020; 9:5200-5204. [PMID: 33409188 PMCID: PMC7773078 DOI: 10.4103/jfmpc.jfmpc_640_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/20/2019] [Accepted: 03/06/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: A brain tumor occurs when neurons are mutated and thus abnormal cells are formed. Glioma and meningioma are the two most common types, comprising approximately 75% of all brain tumors. The incidence rate of all primary brain tumors was 15.80/100,000 person-years in females and 14.33/100,000 person-years in males. An association of higher risk of brain tumors in adults with cured meat and fruit/vegetable consumption, the primary source of dietary N-nitroso compounds, is seen. Cigarette smoking is a major source of chemical carcinogens. The present study aimed at determining the effects of lifestyle and dietary habits in the development of brain tumor. Methods: The study aimed at the assessment of various dietary factors, lifestyle, and occupational and personal habits in patients diagnosed with brain tumor in a rural tertiary health-care hospital, using a structured questionnaire and statistical analysis. Results: It was observed that – (1) people with stressful, sedentary lifestyle and wrong diet and those addicted to alcohol consumption and the habit of cigarette smoking have higher risk of brain tumors; (2) males are more prone to brain tumors; and (3) among subtypes, majority had glioblastoma and the least had meningioma and opdivoglioblastoma and according to location, majority had cerebellopontine angle tumor and the least had left thalamic glioma and multicentric glioma. Primary care to preoperative brain tumor patients should be given in terms of preventing exposure to radiations, avoiding cigarette smoking, providing healthy diet, and avoiding chronic stress and environmental pollution and postoperative patients should be taken care including avoiding infections by maintaining proper hygiene and providing healthy diet for their speedy recovery. Conclusion: People with stressful life condition, wrong diet, and sedentary lifestyle and those addicted to alcohol, with the habit of cigarette smoking, have higher risk of brain tumors. Males are more prone to brain tumors.
Collapse
Affiliation(s)
- Nandini Bansal
- Medical Intern, Department of Medicine, Jawaharlal Nehru Medical College, Sawangi, Wardha, Maharashtra, India
| | - Pratibha Dawande
- Associate Professor, Department of Pathology, Jawaharlal Nehru Medical College, Sawangi, Wardha, Maharashtra, India
| | - Samarth Shukla
- Professor, Department of Pathology, Jawaharlal Nehru Medical College, Sawangi, Wardha, Maharashtra, India
| | - Sourya Acharya
- Professor, Department of Medicine, Jawaharlal Nehru Medical College, Sawangi, Wardha, Maharashtra, India
| |
Collapse
|
43
|
The Inducible Role of Ambient Particulate Matter in Cancer Progression via Oxidative Stress-Mediated Reactive Oxygen Species Pathways: A Recent Perception. Cancers (Basel) 2020; 12:cancers12092505. [PMID: 32899327 PMCID: PMC7563781 DOI: 10.3390/cancers12092505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Particulate matter, especially the fine fraction PM2.5, is officially stated as carcinogenic to human. There are compelling evidences on the association between PM2.5 exposure and lung cancer, and there are also some preliminary data reporting the significant links between this fraction with non-lung cancers. The underlying mechanisms remain unclear. Further studies related to such scope are highly required. The purpose of this work is to systemically analyze recent findings concerning the relationship between PM2.5 and cancer, and to thoroughly present the oxidative stress pathways mediated by reactive oxygen species as the key mechanism for carcinogenesis induced by PM2.5. This will provide a more comprehensive and updated knowledge regarding carcinogenic capacity of PM2.5 to both clinicians and public health workers, contributing to preventive and therapeutic strategies to fight against cancer in human. Abstract Cancer is one of the leading causes of premature death and overall death in the world. On the other hand, fine particulate matter, which is less than 2.5 microns in aerodynamic diameter, is a global health problem due to its small diameter but high toxicity. Accumulating evidence has demonstrated the positive associations between this pollutant with both lung and non-lung cancer processes. However, the underlying mechanisms are yet to be elucidated. The present review summarizes and analyzes the most recent findings on the relationship between fine particulate matter and various types of cancer along with the oxidative stress mechanisms as its possible carcinogenic mechanisms. Also, promising antioxidant therapies against cancer induced by this poison factor are discussed.
Collapse
|
44
|
Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, Prada D, Samet J, Thurston G, Cohen A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J Clin 2020; 70:10.3322/caac.21632. [PMID: 32964460 PMCID: PMC7904962 DOI: 10.3322/caac.21632] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Outdoor air pollution is a major contributor to the burden of disease worldwide. Most of the global population resides in places where air pollution levels, because of emissions from industry, power generation, transportation, and domestic burning, considerably exceed the World Health Organization's health-based air-quality guidelines. Outdoor air pollution poses an urgent worldwide public health challenge because it is ubiquitous and has numerous serious adverse human health effects, including cancer. Currently, there is substantial evidence from studies of humans and experimental animals as well as mechanistic evidence to support a causal link between outdoor (ambient) air pollution, and especially particulate matter (PM) in outdoor air, with lung cancer incidence and mortality. It is estimated that hundreds of thousands of lung cancer deaths annually worldwide are attributable to PM air pollution. Epidemiological evidence on outdoor air pollution and the risk of other types of cancer, such as bladder cancer or breast cancer, is more limited. Outdoor air pollution may also be associated with poorer cancer survival, although further research is needed. This report presents an overview of outdoor air pollutants, sources, and global levels, as well as a description of epidemiological evidence linking outdoor air pollution with cancer incidence and mortality. Biological mechanisms of air pollution-derived carcinogenesis are also described. This report concludes by summarizing public health/policy recommendations, including multilevel interventions aimed at individual, community, and regional scales. Specific roles for medical and health care communities with regard to prevention and advocacy and recommendations for further research are also described.
Collapse
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Zorana J. Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, United States
| | - W. Ryan Diver
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, United States
| | - Susan M. Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, United States
| | - C. Arden Pope
- Department of Economics, Brigham Young University, Provo, Utah, United States
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, United States
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Jonathan Samet
- Colorado School of Public Health, Aurora, Colorado, United States
| | - George Thurston
- New York University School of Medicine, New York, New York, United States
| | - Aaron Cohen
- Health Effects Institute, Boston, Massachusetts, United States
- Institute for Health Metrics and Evaluation, Seattle, Washington, United States
| |
Collapse
|
45
|
Poulsen AH, Hvidtfeldt UA, Sørensen M, Puett R, Ketzel M, Brandt J, Geels C, Christensen JH, Raaschou-Nielsen O. Intracranial tumors of the central nervous system and air pollution - a nationwide case-control study from Denmark. Environ Health 2020; 19:81. [PMID: 32641060 PMCID: PMC7346389 DOI: 10.1186/s12940-020-00631-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/24/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Inconclusive evidence has suggested a possible link between air pollution and central nervous system (CNS) tumors. We investigated a range of air pollutants in relation to types of CNS tumors. METHODS We identified all (n = 21,057) intracranial tumors in brain, meninges and cranial nerves diagnosed in Denmark between 1989 and 2014 and matched controls on age, sex and year of birth. We established personal 10-year mean residential outdoor exposure to particulate matter < 2.5 μm (PM2.5), nitrous oxides (NOX), primary emitted black carbon (BC) and ozone. We used conditional logistic regression to calculate odds ratios (OR) linearly (per interquartile range (IQR)) and categorically. We accounted for personal income, employment, marital status, use of medication as well as socio-demographic conditions at area level. RESULTS Malignant tumors of the intracranial CNS was associated with BC (OR: 1.034, 95%CI: 1.005-1.065 per IQR. For NOx the OR per IQR was 1.026 (95%CI: 0.998-1.056). For malignant non-glioma tumors of the brain we found associations with PM2.5 (OR: 1.267, 95%CI: 1.053-1.524 per IQR), BC (OR: 1.049, 95%CI: 0.996-1.106) and NOx (OR: 1.051, 95% CI: 0.996-1.110). CONCLUSION Our results suggest that air pollution is associated with malignant intracranial CNS tumors and malignant non-glioma of the brain. However, additional studies are needed.
Collapse
Affiliation(s)
- Aslak Harbo Poulsen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Arthur Hvidtfeldt
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Mette Sørensen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Robin Puett
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE) Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
46
|
Chiu PF, Chang CH, Wu CL, Chang TH, Tsai CC, Kor CT, Li JR, Kuo CL, Huang CS, Chu CC, Chang CC. High particulate matter 2.5 levels and ambient temperature are associated with acute lung edema in patients with nondialysis Stage 5 chronic kidney disease. Nephrol Dial Transplant 2020; 34:1354-1360. [PMID: 29939300 DOI: 10.1093/ndt/gfy144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/22/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Numerous studies have shown that exposure to air pollution, especially particulate matter (PM) with a diameter <2.5 μm (PM2.5), was associated with various diseases. We tried to determine the impact of PM2.5 and other weather factors on acute lung edema in patients with Stage 5 nondialysis chronic kidney disease (CKD Stage 5-ND). METHODS In total, 317 CKD Stage 5-ND (estimated glomerular filtration rate 6.79 ± 4.56 mL/min) patients residing in central Taiwan who developed acute lung edema and initiated long-term dialysis were included in this case-crossover study. Pearson's correlation test was used to examine the relationship of acute lung edema cases with PM2.5 levels and ambient temperature separately. RESULTS The average PM2.5 level within the 7-day period correlated with acute lung edema incidence in the fall [adjusted odds ratio (OR) 3.23, P = 0.047] and winter (adjusted OR 1.99, P < 0.001). In winter, even a 3-day exposure to PM2.5 was associated with increased risk (adjusted OR 1.55, P < 0.001). The average temperatures within 3 days in spring and summer were correlated positively with the risk (adjusted OR 2.77 P < 0.001 and adjusted OR 2.72, P < 0.001, respectively). In the fall and winter, temperatures were correlated negatively with the risk (adjusted OR 0.36, P < 0.001 and adjusted OR 0.54, P < 0.001, respectively). CONCLUSIONS A high PM2.5 level was associated with an increased risk of acute lung edema. High ambient temperature in hot seasons and low ambient temperature in cold seasons were also associated with increased risk. It is essential to educate these patients to avoid areas with severe air pollution and extreme ambient temperature.
Collapse
Affiliation(s)
- Ping-Fang Chiu
- Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Center of General Education, Tunghai University, Taichung, Taiwan
| | - Chin-Hua Chang
- Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Lin Wu
- Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Teng-Hsiang Chang
- Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Chieh Tsai
- Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chew-Teng Kor
- Internal Medicine Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Jhao-Rong Li
- Internal Medicine Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Ling Kuo
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Shan Huang
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng Chung Chu
- Department of computer science, Tunghai University, Taichung, Taiwan
| | - Chia-Chu Chang
- Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Nutrition, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
47
|
Karalexi MA, Dessypris N, Georgakis MK, Ryzhov A, Jakab Z, Zborovskaya A, Dimitrova N, Zivkovic S, Trojanowski M, Sekerija M, Antunes L, Zagar T, Eser S, Bastos J, Demetriou A, Agius D, Coza D, Gheorghiu R, Kantzanou M, Ntzani EE, Petridou ET. Birth seasonality of childhood central nervous system tumors: Analysis of primary data from 16 Southern-Eastern European population-based registries. Int J Cancer 2020; 147:1252-1263. [PMID: 31957026 DOI: 10.1002/ijc.32875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Season of birth, a surrogate of seasonal variation of environmental exposures, has been associated with increased risk of several cancers. In the context of a Southern-Eastern Europe (SEE) consortium, we explored the potential association of birth seasonality with childhood (0-14 years) central nervous system (CNS) tumors. Primary CNS tumor cases (n = 6,014) were retrieved from 16 population-based SEE registries (1983-2015). Poisson regression and meta-analyses on birth season were performed in nine countries with available live birth data (n = 4,987). Subanalyses by birth month, age, gender and principal histology were also conducted. Children born during winter were at a slightly increased risk of developing a CNS tumor overall [incidence rate ratio (IRR): 1.06, 95% confidence intervals (CI): 0.99-1.14], and of embryonal histology specifically (IRR: 1.13, 95% CI: 1.01-1.27). The winter peak of embryonal tumors was higher among boys (IRR: 1.24, 95% CI: 1.05-1.46), especially during the first 4 years of life (IRR: 1.33, 95% CI: 1.03-1.71). In contrast, boys <5 years born during summer seemed to be at a lower risk of embryonal tumors (IRR: 0.73, 95% CI: 0.54-0.99). A clustering of astrocytomas was also found among girls (0-14 years) born during spring (IRR: 1.23, 95% CI: 1.03-1.46). Although the present exploratory results are by no means definitive, they provide some indications for age-, gender- and histology-related seasonal variations of CNS tumors. Expansion of registration and linkage with cytogenetic reports could refine if birth seasonality is causally associated with CNS tumors and shed light into the complex pathophysiology of this lethal disease.
Collapse
Affiliation(s)
- Maria A Karalexi
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nick Dessypris
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios K Georgakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anton Ryzhov
- National Cancer Registry of Ukraine, National Cancer Institute & Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Zsuzsanna Jakab
- OGYR, Hun Childhood Cancer Registry, Semmelweis University, Budapest, Hungary
| | - Anna Zborovskaya
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Childhood Cancer Sub-registry of Belarus, Minsk, Belarus
| | - Nadya Dimitrova
- Bulgarian National Cancer Registry, National Oncology Hospital, Sofia, Bulgaria
| | - Snezana Zivkovic
- Central Serbia Cancer Registry, Institute of Public Health of Serbia, Belgrade, Serbia
| | - Maciej Trojanowski
- Greater Poland Cancer Registry, Greater Poland Cancer Center, Poznan, Poland
| | - Mario Sekerija
- Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia.,Croatian National Cancer Registry, Croatian Institute of Public Health, Zagreb, Croatia
| | - Luis Antunes
- North Region Cancer Registry of Portugal (RORENO), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Tina Zagar
- Cancer Registry of Slovenia, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Sultan Eser
- Izmir Cancer Registry, Izmir Hub, Izmir & Hacettepe University Institute of Public Health, Ankara, Turkey
| | - Joana Bastos
- Registo Oncológico Regional do Centro (ROR-Centro), Instituto Português de Oncologia de Coimbra Francisco Gentil, E.P.E., Coimbra, Portugal
| | - Anna Demetriou
- Health Monitoring Unit, Ministry of Health, Nicosia, Cyprus
| | - Domenic Agius
- Department for Policy in Health Information and Research, Malta National Cancer Registry, Pieta, Malta
| | - Daniela Coza
- Cluj Regional Cancer Registry, The Oncology Institute "Prof. Dr. Ion Chiricuţă", Cluj-Napoca, Romania
| | - Raluca Gheorghiu
- Regional Cancer Registry, National Institute of Public Health, Iasi, Romania
| | | | - Maria Kantzanou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia E Ntzani
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Brown University School of Public Health, Providence, RI
| | - Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Clinical Epidemiology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
Wu AH, Wu J, Tseng C, Yang J, Shariff-Marco S, Fruin S, Larson T, Setiawan VW, Masri S, Porcel J, Jain J, Chen TC, Stram DO, Marchand LL, Ritz B, Cheng I. Association Between Outdoor Air Pollution and Risk of Malignant and Benign Brain Tumors: The Multiethnic Cohort Study. JNCI Cancer Spectr 2020; 4:pkz107. [PMID: 32211584 PMCID: PMC7083235 DOI: 10.1093/jncics/pkz107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background There are increasing concerns about the potential impact of air pollution on chronic brain inflammation and microglia cell activation, but evidence of its carcinogenic effects is limited. Methods We used kriging interpolation and land use regression models to estimate long-term air pollutant exposures of oxides of nitrogen (NOx, NO2), kriging interpolation for ozone (O3), carbon monoxide, and particulate matter (PM2.5, PM10), and nearest monitoring station measurements for benzene for 103 308 men and women from the Multiethnic Cohort, residing largely in Los Angeles County from recruitment (1993–1996) through 2013. We used Cox proportional hazards models to examine the associations between time-varying pollutants and risk of malignant brain cancer (94 men, 116 women) and meningioma (130 men, 425 women) with adjustment for sex, race and ethnicity, neighborhood socioeconomic status, smoking, occupation, and other covariates. Stratified analyses were conducted by sex and race and ethnicity. Results Brain cancer risk in men increased in association with exposure to benzene (hazard ratio [HR] = 3.52, 95% confidence interval [CI] = 1.55 to 7.55) and PM10 (HR = 1.80, 95% CI = 1.00 to 3.23). Stronger associations with PM10 (HR = 3.02, 95% CI = 1.26 to 7.23), O3 (HR = 2.93, 95% CI = 1.09 to 7.88), and benzene (HR = 4.06, 95% CI = 1.17 to 18.2) were observed among Latino men. Air pollution was unrelated to risk of meningioma except that O3 exposure was associated with risk in men (HR = 1.77, 95% CI = 1.02 to 3.06). Brain cancer risk in women was unrelated to air pollution exposures. Conclusions Confirmation of these sex differences in air pollution–brain cancer associations and the stronger findings in Latino men in additional diverse populations is warranted.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Rm 4443, Los Angeles, CA 90089, USA
| | - Jun Wu
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Anteater Instruction & Research Bldg (AIRB) # 2034, 653 East Peltason Drive, Irvine, CA 92697-3957, USA
| | - Chiuchen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Rm 4443, Los Angeles, CA 90089, USA
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, Box 0560, San Francisco, CA 94158, USA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, Box 0560, San Francisco, CA 94158, USA
| | - Scott Fruin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Rm 4443, Los Angeles, CA 90089, USA
| | - Timothy Larson
- Department of Civil & Environmental Engineering, University of Washington, 269 Wilcox Hall Box352700, School of Public Health, Seattle, WA 98195, USA
| | - Veronica W Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Rm 4443, Los Angeles, CA 90089, USA
| | - Shahir Masri
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Anteater Instruction & Research Bldg (AIRB) # 2034, 653 East Peltason Drive, Irvine, CA 92697-3957, USA
| | - Jacqueline Porcel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Rm 4443, Los Angeles, CA 90089, USA
| | - Jennifer Jain
- Frontdoor Inc, 150 Peabody Place, Memphis, TN 38103, USA
| | - Thomas C Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, GNH 3300, Mail code, Los Angeles, CA 90089-9314, USA
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Rm 4443, Los Angeles, CA 90089, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street. Honolulu, HI 96813, USA
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, 650 Charles Young Dr. South, Los Angeles, CA 90095-1772, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, Box 0560, San Francisco, CA 94158, USA
| |
Collapse
|
49
|
Forastiere F, Ancona C. Air pollution and health: Evidence from epidemiological studies and population impact. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024600016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Outdoor air pollution —in particular particulate matter, nitrogen dioxide and ozone— can exert its effects on health after acute (short-term) and chronic (long-term) exposures. Short-term exposures increase the probability of the onset of acute diseases within a few days, such as myocardial infarction or stroke, or even death in the case of susceptible individuals. Long-term exposures are associated with decreased survival and incidence of several non-communicable diseases, including cardiorespiratory conditions and lung cancer. In Europe, the large ESCAPE project (European Study of Cohorts for Air Pollution Effects — www.escapeproject.eu) evaluated the chronic effects of air pollution in the cohorts of adult subjects. The results of ESCAPE show an association between chronic exposure to air pollutants and natural mortality, cardiovascular events, lung, brain, breast and digestive tract cancer. The recent joint statement of the European Respiratory Society and the American Respiratory Society clarifies the wide spectrum of adverse effects of pollution, including “new” diseases such as neurological and metabolic syndrome previously not studied. The estimates by the Global Burden of Disease provide nowadays indications that air pollution causes illness and mortality, just after diet, smoking, hypertension and diabetes: 4.2 million premature deaths a year worldwide. Ischemic heart disease, stroke, chronic obstructive pulmonary disease, acute lower respiratory infections are the main conditions associated with air-pollution–related mortality.
Collapse
|
50
|
Kim HB, Shim JY, Park B, Lee YJ. Long-term exposure to air pollution and the risk of non-lung cancer: a meta-analysis of observational studies. Perspect Public Health 2019; 140:222-231. [PMID: 31813335 DOI: 10.1177/1757913919891751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Several meta-analyses of observational studies report a long-term correlation between air pollution and the risk of cancer, particularly lung carcinoma. The aim of this study was to review and quantify evidence for an association between air pollution and the risk of developing non-lung cancers. METHODS We searched PubMed, EMBASE, Cochrane Library, and the reference lists of the included studies as well as those recorded in previous meta-analyses conducted before January 2019. A random-effects model was used to derive overall risk estimates per pollutant. RESULTS A total of 20 studies, including 5 case-control and 15 prospective cohort studies, were used in the final analysis. The risk of developing non-lung cancer was 1.09 (95% confidence interval (CI): 1.01-1.18, I2 = 72.9%) per NO2 increases of 10 µg/m3. There was also a significant association between exposure to PM2.5 and PM10 and the risk of non-lung cancer when the male and female populations were combined (pooled odds ratio/relative risk (OR/RR) = 1.22, 95% CI: 1.11-1.34; I2 = 0.0% and pooled OR/RR = 1.26, 95% CI: 1.05-1.52; I2 = 43.9%, respectively). Regarding the type of cancer, significant harmful effects of PM2.5 were observed for liver cancer populations (pooled OR/RR = 1.21, 95% CI: 1.10-1.32; I2 = 0.0%). Different types of cancer were positively associated with the incidence of non-lung cancer and PM10 in the random-effect meta-regression analysis. CONCLUSIONS Long-term exposure to air pollutants appears to be associated with an increased risk of non-lung cancer. Care should be taken in interpretation, because the results for specific cancers were restricted.
Collapse
Affiliation(s)
- H-B Kim
- Department of Family Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea.,Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - J-Y Shim
- Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea.,Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - B Park
- Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea.,Department of Family Medicine, Yongin Severance Hospital, Yongin, Republic of Korea
| | - Y-J Lee
- Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea.,Department of Family Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|