1
|
Schulze M, Coghill D, Lux S, Philipsen A, Silk T. Assessing brain iron and its relationship to cognition and comorbidity in children with ADHD with quantitative susceptibility mapping (QSM). BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00250-7. [PMID: 39218036 DOI: 10.1016/j.bpsc.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a neuroimaging technique that detects local changes in magnetic susceptibility induced by brain iron. Brain iron and the dopaminergic system are linked since iron is an important cofactor for dopamine synthesis. ADHD is associated with dysregulation of dopaminergic transmission. Therefore, we applied QSM on subcortical structures, to study potential alterations in brain iron and its impact on cognition and mental health in children with ADHD. METHODS 3 Tesla QSM-data of 111 participants (nADHD= 58, mean age: 13.2 (0.63); nControls=53, mean age: 13.2 (0.51)) were analyzed. Subcortical regional brain iron values were extracted. ANOVAs examined group differences for each region of interest. For dimensional approaches, Pearson correlation analysis was performed across the cohort examining the association with symptoms, mental health, and cognition. RESULTS No significant differences were found in iron susceptibility between ADHD and control, between persistent and remitted ADHD, or between medication use. An unexpected finding was that children with internalising disorder had significantly higher iron susceptibility, but the result did not survive multiple comparison corrections. Higher brain iron was associated with sustained attention, but not on inhibition, IQ, and working memory. CONCLUSION This is the first study addressing brain iron susceptibility and its association with comorbidities and cognition in ADHD. Alterations in brain iron may not account for the full diagnosis of ADHD but may be an indicator of internalising problems in children. Alterations in brain iron content in children were linked to detrimental sustained attention and may represent developmental variation in cognition.
Collapse
Affiliation(s)
- Marcel Schulze
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - David Coghill
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, VIC, Australia; Department of Mental Health, The Royal Children's Hospital, Parkville, VIC, Australia; Neurodevelopment and Disability Research, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tim Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong VIC 3220, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia.
| |
Collapse
|
2
|
McWilliams S, Hill O, Ipsiroglu OS, Clemens S, Weber AM, Chen M, Connor J, Felt BT, Manconi M, Mattman A, Silvestri R, Simakajornboon N, Smith SM, Stockler S. Iron Deficiency and Sleep/Wake Behaviors: A Scoping Review of Clinical Practice Guidelines-How to Overcome the Current Conundrum? Nutrients 2024; 16:2559. [PMID: 39125438 PMCID: PMC11314179 DOI: 10.3390/nu16152559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Current evidence suggests that iron deficiency (ID) plays a key role in the pathogenesis of conditions presenting with restlessness such as attention deficit hyperactivity disorder (ADHD) and restless legs syndrome (RLS). In clinical practice, ID and iron supplementation are not routinely considered in the diagnostic work-up and/or as a treatment option in such conditions. Therefore, we conducted a scoping literature review of ID guidelines. Of the 58 guidelines included, only 9 included RLS, and 3 included ADHD. Ferritin was the most frequently cited biomarker, though cutoff values varied between guidelines and depending on additional factors such as age, sex, and comorbidities. Recommendations surrounding measurable iron biomarkers and cutoff values varied between guidelines; moreover, despite capturing the role of inflammation as a concept, most guidelines often did not include recommendations for how to assess this. This lack of harmonization on the interpretation of iron and inflammation biomarkers raises questions about the applicability of current guidelines in clinical practice. Further, the majority of ID guidelines in this review did not include the ID-associated disorders, ADHD and RLS. As ID can be associated with altered movement patterns, a novel consensus is needed for investigating and interpreting iron status in the context of different clinical phenotypes.
Collapse
Affiliation(s)
- Scout McWilliams
- H-Behaviours Research Lab (Previously Sleep/Wake-Behaviours Research Lab), BC Children’s Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (S.M.); (O.H.); (S.S.)
| | - Olivia Hill
- H-Behaviours Research Lab (Previously Sleep/Wake-Behaviours Research Lab), BC Children’s Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (S.M.); (O.H.); (S.S.)
| | - Osman S. Ipsiroglu
- H-Behaviours Research Lab (Previously Sleep/Wake-Behaviours Research Lab), BC Children’s Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (S.M.); (O.H.); (S.S.)
- Divisions of Developmental Pediatrics, Child and Adolescent Psychiatry and Respirology, BC Children’s Hospital, Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Alexander Mark Weber
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Michael Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.C.); (A.M.)
| | - James Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA;
| | - Barbara T. Felt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Department of Neurology, University of Bern, 3012 Bern, Switzerland
| | - Andre Mattman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.C.); (A.M.)
| | - Rosalia Silvestri
- Department of Clinical and Experimental Medicine, Sleep Medicine Center, University of Messina, Azienda Ospedaliera Universitaria “Gaetano Martino”, 98122 Messina, Italy;
| | - Narong Simakajornboon
- Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Susan M. Smith
- Department of Nutrition, UNC-Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA;
| | - Sylvia Stockler
- H-Behaviours Research Lab (Previously Sleep/Wake-Behaviours Research Lab), BC Children’s Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (S.M.); (O.H.); (S.S.)
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Division of Biochemical Diseases, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Yackobovitch-Gavan M, Ben-Hefer D, Feldhamer I, Meyerovitch J. The association between infantile microcytic anemia and attention deficit hyperactivity disorder, a case-control study. Heliyon 2024; 10:e33430. [PMID: 39015811 PMCID: PMC11250855 DOI: 10.1016/j.heliyon.2024.e33430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Background Microcytic anemia due to iron deficiency is the most common type of anemia in children in Israel and many parts of the world, and has been shown to have negative consequences for the cognitive performance. We aimed to examine the association between microcytic anemia at age 9-18 months and ADHD during childhood. Methods This case-control study included healthy children aged 6-18 years at data collection (April 2020), insured by Clalit-Health-Services, and aged 9-18 months between June 2004 and December 2013, when a blood-count was performed. The study group included children diagnosed with ADHD based on the medical documentation of at least two consecutive stimulant prescriptions. A control group without any stimulant prescriptions was matched in a ratio of 1-3:1, by year of birth, sex and cultural background. Any microcytic anemia was defined as Hb < 10.5 g/dl and MCV 60-75 fl. Moderate microcytic anemia as Hb 7-9.9 g/dl. We performed a conditional-logistic-regression analysis, adjusted by socioeconomic status (SES) and year of birth. Sensitivity analysis examined this association stratified by sex, cultural background, SES and age at data collection quintiles. Results Any microcytic anemia prevalence was lower in the ADHD group (n = 19,467) as compared to the controls (n = 39,004) (3.4 % and 4.0 %, respectively), adjusted-OR = 0.86 (95%CI: 0.78, 0.98). The prevalence of moderate microcytic anemia was similar (0.9 % vs. 1.0 %). Lower any microcytic anemia prevalence in the ADHD group was found in boys, secular-traditional Jews, and in the 4th quintile of age (12.1-13.5 years). Conclusions We found a small inverse association between microcytic anemia at 9-18-months and ADHD during childhood, thus rejecting our hypothesis that microcytic anemia at infancy is associated with a higher prevalence of ADHD. Further studies are warranted, to examine the effects of ID and brain iron concentration on the development of ADHD in childhood.
Collapse
Affiliation(s)
- Michal Yackobovitch-Gavan
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Dept. of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Ben-Hefer
- Dept. of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Feldhamer
- Clalit Health Services, Research and Information Department, Strategy and Planning Wing, Israel
| | - Joseph Meyerovitch
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Xiao G, Shi H, Lan Q, Hu J, Guan J, Liang Z, Zhou C, Huang Z, Chen Y, Zhou B. Association among attention-deficit hyperactivity disorder, restless legs syndrome, and peripheral iron status: a two-sample Mendelian randomization study. Front Psychiatry 2024; 15:1310259. [PMID: 38779543 PMCID: PMC11109751 DOI: 10.3389/fpsyt.2024.1310259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
Background Epidemiological evidence indicates a high correlation and comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and Restless Legs Syndrome (RLS). Objective We aimed to investigate the causal relationship and shared genetic architecture between ADHD and RLS, as well as explore potential causal associations between both disorders and peripheral iron status. Methods We performed two-sample Mendelian randomization (MR) analyses using summary statistics from genome-wide meta-analyses of ADHD, RLS, and peripheral iron status (serum iron, ferritin, transferrin saturation, and total iron binding capacity). Additionally, we employed linkage disequilibrium score regression (LDSC) to assess genetic correlations between ADHD and RLS using genetic data. Results Our MR results supports a causal effect from ADHD (as exposure) to RLS (as outcome) (inverse variance weighted OR = 1.20, 95% CI: 1.08-1.34, p = 0.001). Conversely, we found no a causal association from RLS to ADHD (inverse variance weighted OR = 1.04, 95% CI: 0.99-1.09, p = 0.11). LDSC analysis did not detect a significant genetic correlation between RLS and ADHD (Rg = 0.3, SE = 0.16, p = 0.068). Furthermore, no evidence supported a causal relationship between peripheral iron deficiency and the RLS or ADHD onset. However, RLS may have been associated with a genetic predisposition to reduced serum ferritin levels (OR = 1.20, 95% CI: 1.00-1.04, p = 0.047). Conclusion This study suggests that ADHD is an independent risk factor for RLS, while RLS may confer a genetic predisposition to reduced serum ferritin levels. Limitations The GWAS summary data utilized originated from populations of European ancestry, limiting the generalizability of conclusions to other populations. Clinical implications The potential co-occurrence of RLS in individuals with ADHD should be considered during diagnosis and treatment. Moreover, iron supplementation may be beneficial for alleviating RLS symptoms.
Collapse
Affiliation(s)
- Guoqiang Xiao
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongting Shi
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaoyu Lan
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajia Hu
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincheng Guan
- Department of Neurology, Longhua District People’s Hospital, Shenzhen, China
| | - Zhuoji Liang
- Department of Neurology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chumeng Zhou
- Medical Administration College, Guangzhou Medical University, Guangzhou, China
| | - Zitong Huang
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongyuan Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Borong Zhou
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Morandini HAE, Watson PA, Barbaro P, Rao P. Brain iron concentration in childhood ADHD: A systematic review of neuroimaging studies. J Psychiatr Res 2024; 173:200-209. [PMID: 38547742 DOI: 10.1016/j.jpsychires.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Iron deficiency may play a role in the pathophysiology of Attention Deficit/Hyperactivity Disorder (ADHD). Due to its preponderant function in monoamine catecholamine and myelin synthesis, brain iron concentration may be of primary interest in the investigation of iron dysregulation in ADHD. This study reviewed current evidence of brain iron abnormalities in children and adolescents with ADHD using magnetic resonance imaging methods, such as relaxometry and quantitative susceptibility mapping, to assess brain iron estimates. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search was performed for studies published between January 1, 2008 and July 7, 2023 in Medline, Scopus and Proquest. Regions of interest, brain iron index values and phenotypical information were extracted from the relevant studies. Risk of bias was assessed using a modified version of the National Heart, Lung, and Blood Institute quality assessment tool. Seven cross-sectional studies comparing brain iron estimates in children with ADHD with neurotypical children were included. Significantly reduced brain iron content in medication-naïve children with ADHD was a consistent finding. Two studies found psychostimulant use may increase and normalize brain iron concentration in children with ADHD. The findings were consistent across the studies despite differing methodologies and may lay the early foundation for the recognition of a potential biomarker in ADHD, although longitudinal prospective neuroimaging studies using larger sample sizes are required. Lastly, the effects of iron supplementation on brain iron concentration in children with ADHD need to be elucidated.
Collapse
Affiliation(s)
- Hugo A E Morandini
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia.
| | - Prue A Watson
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Parma Barbaro
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Pradeep Rao
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia; Telethon Kids Institute, Perth, Australia
| |
Collapse
|
6
|
Lukovac T, Hil OA, Popović M, Jovanović V, Savić T, Pavlović AM, Pavlović D. Serum Biomarker Analysis in Pediatric ADHD: Implications of Homocysteine, Vitamin B12, Vitamin D, Ferritin, and Iron Levels. CHILDREN (BASEL, SWITZERLAND) 2024; 11:497. [PMID: 38671715 PMCID: PMC11048887 DOI: 10.3390/children11040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
The current diagnosis of attention deficit hyperactivity disorder (ADHD) is based on history, clinical observation, and behavioral tests. There is a high demand to find biomarkers for the diagnosis of ADHD. The aim of this study is to analyze the serum profiles of several biomarkers, including homocysteine (Hcy), vitamin B12, vitamin D, ferritin, and iron, in a cohort of 133 male subjects (6.5-12.5 years), including 67 individuals with an ADHD diagnosis based on DSM-V criteria and 66 age-matched healthy boys (healthy controls, HC). Assessments for ADHD included the Iowa Conners' Teacher Rating Scale (CPRS) and the ADHDT test, as well as cognitive assessments using the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the TROG-2 language comprehension test. Hcy and iron were quantified using spectrophotometry, while vitamin B12 and total 25-hydroxy vitamin D levels were determined using an electrochemiluminescence immunoassay (ECLIA) and ferritin was measured using a particle-enhanced immunoturbidimetric assay. The results showed significantly increased Hcy levels and decreased vitamin B12 levels in ADHD patients compared to HCs. Multiple logistic regression analysis indicated that Hcy is a potential prognostic indicator for ADHD. These results suggest that elevated homocysteine and decreased vitamin B12 may serve as markers for the diagnosis and prognosis of ADHD.
Collapse
Affiliation(s)
- Tanja Lukovac
- Center for Speech and Language Pathology Higia Logos, Mirijevski Bulevar 17 b, 11060 Belgrade, Serbia
| | | | - Milka Popović
- Beo-Lab Laboratories, Resavska 58-60, 11000 Belgrade, Serbia;
| | - Vitomir Jovanović
- Faculty of Philosophy, University of Belgrade, Čika-Ljubina 18-20, 11102 Belgrade, Serbia;
| | - Tatjana Savić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 142 Despot Stefan Boulevard, 11000 Belgrade, Serbia;
| | - Aleksandra M. Pavlović
- Faculty of Special Education and Rehabilitation, University of Belgrade, Visokog Stevana 2, 11102 Belgrade, Serbia; (A.M.P.); (D.P.)
| | - Dragan Pavlović
- Faculty of Special Education and Rehabilitation, University of Belgrade, Visokog Stevana 2, 11102 Belgrade, Serbia; (A.M.P.); (D.P.)
| |
Collapse
|
7
|
Voltin J, Nunn LM, Watson Z, Brasher ZE, Adisetiyo V, Hanlon CA, Nietert PJ, McRae-Clark AL, Jensen JH. Comparison of three magnetic resonance imaging measures of brain iron in healthy and cocaine use disorder participants. NMR IN BIOMEDICINE 2024; 37:e5072. [PMID: 38009303 PMCID: PMC10922943 DOI: 10.1002/nbm.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
Several magnetic resonance imaging (MRI) measures for quantifying endogenous nonheme brain iron have been proposed. These correspond to distinct physical properties with varying sensitivities and specificities to iron. Moreover, they may depend not only on tissue iron concentration, but also on the intravoxel spatial pattern of iron deposition, which is complex in many brain regions. Here, the three MRI brain iron measures of R 2 * , magnetic field correlation (MFC), and magnetic susceptibility are compared in several deep gray matter regions for both healthy participants (HPs) and individuals with cocaine use disorder (CUD). Their concordance is assessed from their correlations with each other and their relative dependencies on age. In addition, associations between the iron measures and microstructure in adjacent white matter regions are investigated by calculating their correlations with diffusion MRI measures from the internal capsule, and associations with cognition are determined by using results from a battery of standardized tests relevant to CUD. It is found that all three iron measures are strongly correlated with each other for the considered gray matter regions, but with correlation coefficients substantially less than one indicating important differences. The age dependencies of all three measures are qualitatively similar in most regions, except for the red nucleus, where the susceptibility has a significantly stronger correlation with age than R 2 * . Weak to moderate correlations are seen for the iron measures with several of the diffusion and cognitive measures, with the strongest correlations being obtained for R 2 * . The iron measures differ little between the HP and CUD groups, although susceptibility is significantly lower in the red nucleus for the CUD group. For the comparisons made, the iron measures behave similarly in most respects, but with notable quantitative differences. It is suggested that these differences may be, in part, attributable to a higher sensitivity to the spatial pattern of iron deposition for R 2 * and MFC than for susceptibility. This is supported most strongly by a sharp contrast between the values of the iron measures in the globus pallidus relative to those in the red nucleus. The observed correlations of the iron measures with diffusion and cognitive scores point to possible connections between gray matter iron, white matter microstructure, and cognition.
Collapse
Affiliation(s)
- Joshua Voltin
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Lisa M. Nunn
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Zoe Watson
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Zoe E. Brasher
- Department of Behavioral Science and Neuroscience, Duke University Medical Center, Durham, North Carolina
| | - Vitria Adisetiyo
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Colleen A. Hanlon
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aimee L. McRae-Clark
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Jens H. Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
8
|
Chaulagain A, Lyhmann I, Halmøy A, Widding-Havneraas T, Nyttingnes O, Bjelland I, Mykletun A. A systematic meta-review of systematic reviews on attention deficit hyperactivity disorder. Eur Psychiatry 2023; 66:e90. [PMID: 37974470 PMCID: PMC10755583 DOI: 10.1192/j.eurpsy.2023.2451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND There are now hundreds of systematic reviews on attention deficit hyperactivity disorder (ADHD) of variable quality. To help navigate this literature, we have reviewed systematic reviews on any topic on ADHD. METHODS We searched MEDLINE, PubMed, PsycINFO, Cochrane Library, and Web of Science and performed quality assessment according to the Joanna Briggs Institute Manual for Evidence Synthesis. A total of 231 systematic reviews and meta-analyses met the eligibility criteria. RESULTS The prevalence of ADHD was 7.2% for children and adolescents and 2.5% for adults, though with major uncertainty due to methodological variation in the existing literature. There is evidence for both biological and social risk factors for ADHD, but this evidence is mostly correlational rather than causal due to confounding and reverse causality. There is strong evidence for the efficacy of pharmacological treatment on symptom reduction in the short-term, particularly for stimulants. However, there is limited evidence for the efficacy of pharmacotherapy in mitigating adverse life trajectories such as educational attainment, employment, substance abuse, injuries, suicides, crime, and comorbid mental and somatic conditions. Pharmacotherapy is linked with side effects like disturbed sleep, reduced appetite, and increased blood pressure, but less is known about potential adverse effects after long-term use. Evidence of the efficacy of nonpharmacological treatments is mixed. CONCLUSIONS Despite hundreds of systematic reviews on ADHD, key questions are still unanswered. Evidence gaps remain as to a more accurate prevalence of ADHD, whether documented risk factors are causal, the efficacy of nonpharmacological treatments on any outcomes, and pharmacotherapy in mitigating the adverse outcomes associated with ADHD.
Collapse
Affiliation(s)
- Ashmita Chaulagain
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Lyhmann
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anne Halmøy
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tarjei Widding-Havneraas
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olav Nyttingnes
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ingvar Bjelland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Arnstein Mykletun
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Centre for Work and Mental Health, Nordland Hospital, Bodø, Norway
| |
Collapse
|
9
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
10
|
Kanaan AS, Yu D, Metere R, Schäfer A, Schlumm T, Bilgic B, Anwander A, Mathews CA, Scharf JM, Müller-Vahl K, Möller HE. Convergent imaging-transcriptomic evidence for disturbed iron homeostasis in Gilles de la Tourette syndrome. Neurobiol Dis 2023; 185:106252. [PMID: 37536382 DOI: 10.1016/j.nbd.2023.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric movement disorder with reported abnormalities in various neurotransmitter systems. Considering the integral role of iron in neurotransmitter synthesis and transport, it is hypothesized that iron exhibits a role in GTS pathophysiology. As a surrogate measure of brain iron, quantitative susceptibility mapping (QSM) was performed in 28 patients with GTS and 26 matched controls. Significant susceptibility reductions in the patients, consistent with reduced local iron content, were obtained in subcortical regions known to be implicated in GTS. Regression analysis revealed a significant negative association of tic scores and striatal susceptibility. To interrogate genetic mechanisms that may drive these reductions, spatially specific relationships between susceptibility and gene-expression patterns from the Allen Human Brain Atlas were assessed. Correlations in the striatum were enriched for excitatory, inhibitory, and modulatory neurochemical signaling mechanisms in the motor regions, mitochondrial processes driving ATP production and iron‑sulfur cluster biogenesis in the executive subdivision, and phosphorylation-related mechanisms affecting receptor expression and long-term potentiation in the limbic subdivision. This link between susceptibility reductions and normative transcriptional profiles suggests that disruptions in iron regulatory mechanisms are involved in GTS pathophysiology and may lead to pervasive abnormalities in mechanisms regulated by iron-containing enzymes.
Collapse
Affiliation(s)
- Ahmad Seif Kanaan
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Dongmei Yu
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Riccardo Metere
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Schäfer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research and Development, Erlangen, Germany
| | - Torsten Schlumm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Berkin Bilgic
- Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carol A Mathews
- Department of Psychiatry, Center for OCD, Anxiety, and Related Disorders, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
11
|
Lange KW, Lange KM, Nakamura Y, Reissmann A. Nutrition in the Management of ADHD: A Review of Recent Research. Curr Nutr Rep 2023; 12:383-394. [PMID: 37505402 PMCID: PMC10444659 DOI: 10.1007/s13668-023-00487-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW Various nutrients and diet quality have been suggested to be involved in the pathophysiology of ADHD. The purpose of this review was to examine data from recent cohort studies and dietary interventions to determine whether nutrition may play a role in the management of ADHD. RECENT FINDINGS Preliminary evidence suggests that minerals might have beneficial effects on ADHD symptomatology. Probiotics might offer novel strategies to prevent or treat ADHD. Inverse associations between adherence to "healthy" diets and ADHD symptoms have been observed. Children with ADHD responding to the few-foods diet (or oligoantigenic diet) with an elimination of individually identified food items show substantially improved behavior and cognitive functioning. Evidence from recent research does not allow any recommendations regarding the use of micronutrients or probiotics in the management of ADHD. The few-foods diet may become an additional therapeutic option for children with ADHD.
Collapse
Affiliation(s)
- Klaus W. Lange
- Faculty of Human Sciences, University of Regensburg, 93040 Regensburg, Bavaria, Germany
| | | | - Yukiko Nakamura
- Faculty of Human Sciences, University of Regensburg, 93040 Regensburg, Bavaria, Germany
| | - Andreas Reissmann
- Faculty of Human Sciences, University of Regensburg, 93040 Regensburg, Bavaria, Germany
| |
Collapse
|
12
|
Kanaan AS, Yu D, Metere R, Schäfer A, Schlumm T, Bilgic B, Anwander A, Mathews CA, Scharf JM, Müller-Vahl K, Möller HE. Convergent imaging-transcriptomic evidence for disturbed iron homeostasis in Gilles de la Tourette syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.15.23289978. [PMID: 37292704 PMCID: PMC10246056 DOI: 10.1101/2023.05.15.23289978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric movement disorder with reported abnormalities in various neurotransmitter systems. Considering the integral role of iron in neurotransmitter synthesis and transport, it is hypothesized that iron exhibits a role in GTS pathophysiology. As a surrogate measure of brain iron, quantitative susceptibility mapping (QSM) was performed in 28 patients with GTS and 26 matched controls. Significant susceptibility reductions in the patient cohort, consistent with reduced local iron content, were obtained in subcortical regions known to be implicated in GTS. Regression analysis revealed a significant negative association of tic scores and striatal susceptibility. To interrogate genetic mechanisms that may drive these reductions, spatially specific relationships between susceptibility and gene-expression patterns extracted from the Allen Human Brain Atlas were assessed. Correlations in the striatum were enriched for excitatory, inhibitory, and modulatory neurochemical signaling mechanisms in the motor regions, mitochondrial processes driving ATP production and iron-sulfur cluster biogenesis in the executive subdivision, and phosphorylation-related mechanisms that affect receptor expression and long-term potentiation. This link between susceptibility reductions and normative transcriptional profiles suggests that disruptions in iron regulatory mechanisms are involved in GTS pathophysiology and may lead to pervasive abnormalities in mechanisms regulated by iron-containing enzymes.
Collapse
Affiliation(s)
- Ahmad Seif Kanaan
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Dongmei Yu
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Riccardo Metere
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Schäfer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research and Development, Erlangen, Germany
| | - Torsten Schlumm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Berkin Bilgic
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carol A. Mathews
- Department of Psychiatry, Center for OCD, Anxiety, and Related Disorders, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jeremiah M. Scharf
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Harald E. Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
13
|
Abstract
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| |
Collapse
|
14
|
Reduced basal ganglia tissue-iron concentration in school-age children with attention-deficit/hyperactivity disorder is localized to limbic circuitry. Exp Brain Res 2022; 240:3271-3288. [PMID: 36301336 DOI: 10.1007/s00221-022-06484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Dopamine-related abnormalities in the basal ganglia have been implicated in attention-deficit/hyperactivity disorder (ADHD). Iron plays a critical role in supporting dopaminergic function, and reduced brain iron and serum ferritin levels have been linked to ADHD symptom severity in children. Furthermore, the basal ganglia is a central brain region implicated in ADHD psychopathology and involved in motor and reward functions as well as emotional responding. The present study repurposed diffusion tensor imaging (DTI) to examine effects of an ADHD diagnosis and sex on iron deposition within the basal ganglia in children ages 8-12 years. We further explored associations between brain iron levels and ADHD symptom severity and affective symptoms. We observed reduced iron levels in children with ADHD in the bilateral limbic region of the striatum, as well as reduced levels of iron-deposition in males in the sensorimotor striatal subregion, regardless of diagnosis. Across the whole sample, iron-deposition increased with age in all regions. Brain-behavior analyses revealed that, across diagnostic groups, lower tissue-iron levels in bilateral limbic striatum correlated with greater ADHD symptom severity, whereas lower tissue-iron levels in the left limbic striatum only correlated with anxious, depressive and affective symptom severity. This study sheds light on the neurobiological underpinnings of ADHD, specifically highlighting the localization of tissue-iron deficiency in limbic regions, and providing support for repurposing DTI for brain iron analyses. Our findings highlight the need for further investigation of iron as a biomarker in the diagnosis and treatment of ADHD and sex differences.
Collapse
|
15
|
McWilliams S, Singh I, Leung W, Stockler S, Ipsiroglu OS. Iron deficiency and common neurodevelopmental disorders—A scoping review. PLoS One 2022; 17:e0273819. [PMID: 36173945 PMCID: PMC9522276 DOI: 10.1371/journal.pone.0273819] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Background A wealth of human and experimental studies document a causal and aggravating role of iron deficiency in neurodevelopmental disorders. While pre-, peri-, and early postnatal iron deficiency sets the stage for the risk of developing neurodevelopmental disorders, iron deficiency acquired at later ages aggravates pre-existing neurodevelopmental disorders. Yet, the association of iron deficiency and neurodevelopmental disorders in childhood and adolescence has not yet been explored comprehensively. In this scoping review, we investigate 1) the association of iron deficiency in children and adolescents with the most frequent neurodevelopmental disorders, ADHD, ASD, and FASD, and 2) whether iron supplementation improves outcomes in these disorders. Method Scoping review of studies published between 1994 and 2021 using “iron deficiency / iron deficiency anemia” AND “ADHD” OR “autism” OR “FASD” in four biomedical databases. The main inclusion criterion was that articles needed to have quantitative determination of iron status at any postnatal age with primary iron markers such as serum ferritin being reported in association with ADHD, ASD, or FASD. Results For ADHD, 22/30 studies and 4/4 systematic reviews showed an association of ADHD occurrence or severity with iron deficiency; 6/6 treatment studies including 2 randomized controlled trials demonstrated positive effects of iron supplementation. For ASD, 3/6 studies showed an association with iron deficiency, while 3/6 and 1/1 systematic literature review did not; 4 studies showed a variety of prevalence rates of iron deficiency in ASD populations; 1 randomized controlled trial found no positive effect of iron supplementation on behavioural symptoms of ASD. For FASD, 2/2 studies showed an association of iron deficiency with growth retardation in infants and children with prenatal alcohol exposure. Conclusion Evidence in favor of screening for iron deficiency and using iron supplementation for pediatric neurodevelopmental disorders comes primarily from ADHD studies and needs to be further investigated for ASD and FASD. Further analysis of study methodologies employed and populations investigated is needed to compare studies against each other and further substantiate the evidence created.
Collapse
Affiliation(s)
- Scout McWilliams
- H-Behaviours Research Lab (previously Sleep/Wake-Behaviour Research Lab), BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Ishmeet Singh
- H-Behaviours Research Lab (previously Sleep/Wake-Behaviour Research Lab), BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Wayne Leung
- H-Behaviours Research Lab (previously Sleep/Wake-Behaviour Research Lab), BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Sylvia Stockler
- H-Behaviours Research Lab (previously Sleep/Wake-Behaviour Research Lab), BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Division of Biochemical Diseases, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- * E-mail:
| | - Osman S. Ipsiroglu
- H-Behaviours Research Lab (previously Sleep/Wake-Behaviour Research Lab), BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Divisions of Child & Adolescent Psychiatry, Developmental Pediatrics and Respirology, Department of Pediatrics, Sleep/Wake-Behaviour Clinic at Sleep Program, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Szklarz M, Gontarz-Nowak K, Matuszewski W, Bandurska-Stankiewicz E. Can Iron Play a Crucial Role in Maintaining Cardiovascular Health in the 21st Century? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11990. [PMID: 36231287 PMCID: PMC9565681 DOI: 10.3390/ijerph191911990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In the 21st century the heart is facing more and more challenges so it should be brave and iron to meet these challenges. We are living in the era of the COVID-19 pandemic, population aging, prevalent obesity, diabetes and autoimmune diseases, environmental pollution, mass migrations and new potential pandemic threats. In our article we showed sophisticated and complex regulations of iron metabolism. We discussed the impact of iron metabolism on heart diseases, treatment of heart failure, diabetes and obesity. We faced the problems of constant stress, climate change, environmental pollution, migrations and epidemics and showed that iron is really essential for heart metabolism in the 21st century.
Collapse
|
17
|
Sobolewski M, Conrad K, Marvin E, Eckard M, Goeke CM, Merrill AK, Welle K, Jackson BP, Gelein R, Chalupa D, Oberdörster G, Cory-Slechta DA. The potential involvement of inhaled iron (Fe) in the neurotoxic effects of ultrafine particulate matter air pollution exposure on brain development in mice. Part Fibre Toxicol 2022; 19:56. [PMID: 35945578 PMCID: PMC9364598 DOI: 10.1186/s12989-022-00496-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.
Collapse
Affiliation(s)
- Marissa Sobolewski
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Katherine Conrad
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Elena Marvin
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Matthew Eckard
- grid.262333.50000000098205004Department of Psychology, Radford University, Radford, VA 24142 USA
| | - Calla M. Goeke
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Alyssa K. Merrill
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Kevin Welle
- grid.412750.50000 0004 1936 9166Proteomics Core, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Brian P. Jackson
- grid.254880.30000 0001 2179 2404Department of Earth Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Robert Gelein
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - David Chalupa
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Günter Oberdörster
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Deborah A. Cory-Slechta
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
18
|
Tang CY, Wen F. Serum ferritin levels in children with attention deficit hyperactivity disorder and tic disorder. World J Clin Cases 2022; 10:7749-7759. [PMID: 36158507 PMCID: PMC9372851 DOI: 10.12998/wjcc.v10.i22.7749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Iron plays an important role in neurodevelopmental functions in the brain. Serum ferritin levels are different in children with attention deficit hyperactivity disorder and tic disorder than in healthy children.
AIM To explore the current status of iron deficiency in children with neurodevelopmental disorders and its sex and age effects.
METHODS A total of 1565 children with attention deficit hyperactivity disorder (ADHD), 1694 children with tic disorder (TD), 93 children with ASD and 1997 healthy control children were included between January 1, 2020, and December 31, 2021 at Beijing Children's Hospital. We describe the differences in age levels and ferritin levels between different disease groups and their sex differences. The differences between the sexes in each disease were analyzed using the t test. The incidence rate of low serum ferritin was used to describe the differences between different diseases and different age groups. A chi-square test was used to analyze the difference in the incidence of low serum ferritin between the disease group and the control group. Analysis of variance was used for comparisons between subgroups, and regression analysis was used for confounding factor control.
RESULTS A total of 1565 ADHD patients aged 5-12 years were included in this study, and the average serum ferritin levels of male and female children were 36.82 ± 20.64 μg/L and 35.64 ± 18.56 μg/L, respectively. A total of 1694 TD patients aged 5-12 years were included in this study, and the average serum ferritin levels of male and female children were 35.72 ± 20.15 μg/L and 34.54 ± 22.12 μg/L, respectively. As age increased, the incidence of low serum ferritin in ADHD and TD first decreased and then increased, and 10 years old was the turning point of rising levels. The incidence of ADHD with low serum ferritin was 8.37%, the incidence of TD with low serum ferritin was 11.04%, and the incidence of the healthy control group with low serum ferritin was 8.61%, among which male children with TD accounted for 9.25% and female children with TD accounted for 11.62%. There was a significant difference among the three groups (P < 0.05). In addition, there were 93 children with ASD with an average serum ferritin level of 30.99 ± 18.11 μg/L and a serum ferritin incidence of 15.05%.
CONCLUSION In conclusion, low serum ferritin is not a risk factor for ADHD or TD. The incidence of low serum ferritin levels in children with ADHD and TD between 5 and 12 years old decreases first and then increases with age.
Collapse
Affiliation(s)
- Cai-Yun Tang
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Fang Wen
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| |
Collapse
|
19
|
Quantitative susceptibility mapping reveals brain iron deficiency in children with attention-deficit/hyperactivity disorder: a whole-brain analysis. Eur Radiol 2022; 32:3726-3733. [DOI: 10.1007/s00330-021-08516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
|
20
|
Anand B, Sireesha C. Lower serum ferritin levels and higher inattentiveness in attention deficit hyperactivity disorder in a case–control study. ARCHIVES OF MENTAL HEALTH 2022. [DOI: 10.4103/amh.amh_19_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Bahn GH, Lee SM, Hong M, Lee SY. Preliminary Study of ADHD Biomarkers in Adults with Focus on Serum Iron and Transcranial Sonography of the Substantia Nigra. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094875. [PMID: 34063655 PMCID: PMC8125298 DOI: 10.3390/ijerph18094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022]
Abstract
As previous studies have reported abnormalities in the iron indices of peripheral blood and hyperechogenicity of the substantia nigra (SN) in children and adolescents with attention-deficit/hyperactivity disorder (ADHD), we aimed to examine the same in adults with ADHD using transcranial Doppler sonography (TCS). In addition, we compared the iron indices and TCS findings before and after methylphenidate (MPH) treatment. A total of 39 participants aged ≥19 years (13 patients and 26 healthy controls) were recruited from Kyung Hee University Hospital between October 2018 and September 2019. All subjects were clinically evaluated based on the ADHD diagnostic criteria in the DSM-5, the Adult ADHD Self-Report Scale, and the Diagnostic Interview for ADHD in Adults (DIVA-5). Further, the iron indices including serum iron, ferritin, and mean platelet volume were determined. Additionally, TCS focused on the midbrain and echogenicity of the SN was conducted. Follow-up for all items was conducted for five ADHD patients after MPH treatment. Patients with ADHD had significantly lower education levels (number of years) than controls. There were no statistically significant differences in serum iron indices or the echogenic area between ADHD and control groups. Further, there were no significant changes in iron indices or TCS findings after MPH medication. Unlike previous studies, this study showed no differences between patients with ADHD and controls. Therefore, it is important to determine if these null findings were due to different target populations (children vs. adults) or other factors, including ADHD subtypes.
Collapse
Affiliation(s)
- Geon-Ho Bahn
- Department of Psychiatry, Kyung Hee University College of Medicine, Seoul 20447, Korea; (G.-H.B.); (S.-Y.L.)
| | - Sang-Min Lee
- Department of Psychiatry, Kyung Hee University College of Medicine, Seoul 20447, Korea; (G.-H.B.); (S.-Y.L.)
- Correspondence:
| | - Minha Hong
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang 10475, Korea;
| | - Seung-Yup Lee
- Department of Psychiatry, Kyung Hee University College of Medicine, Seoul 20447, Korea; (G.-H.B.); (S.-Y.L.)
| |
Collapse
|