1
|
Chen W, Yang Y, Zhang Y, Sun C, Ji C, Shen J, Li F, Xiao Y, Wen Y, Liu Q, Zou C. Metabolic profiling reveals altered amino acid and fatty acid metabolism in children with Williams Syndrome. Sci Rep 2024; 14:31467. [PMID: 39733135 DOI: 10.1038/s41598-024-83146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored. This study employs targeted metabolomics to investigate the metabolic characteristics of children with WS. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified significant dysregulation of 15 metabolites, with 11 upregulated and 4 downregulated. Notably, amino acids such as alanine, proline, and arginine were significantly elevated. Fatty acid metabolism showed pronounced upregulation of long-chain saturated fatty acids (C18:0, C20:0, C22:0, C24:0, C26:0, and C28:0) and downregulation of long-chain unsaturated fatty acids (C18:2 LA, C22:6 DHA, C16:1 PLA, and t-C18:1 EA), except for upregulated nervonic acid (C24:1) and arachidonic acid (C20:4). Metabolic pathway analysis highlighted disruptions in arginine synthesis, arginine/proline metabolism, alanine, aspartate and glutamate metabolism, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, and arachidonic acid metabolism. This study provides the first comprehensive analysis of amino acid and fatty acid metabolism in children with WS, offering insights into the disorder's complex metabolic landscape. Further validation in larger cohorts is essential to confirm these findings and their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Weijun Chen
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China
| | - Yang Yang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Yu Zhang
- R&D Department, Zhejiang Biosan Biochemical Technologies Co. Ltd, 859 Shixiang West Rd, Hangzhou, 310007, Zhejiang Province, China
| | - Changxuan Sun
- Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, 215123, Jiangshu Province, P. R. China
| | - Chai Ji
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China
| | - Jiyang Shen
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China
| | - Fangfang Li
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Liu
- Medical Department, Zhejiang Biosan Biochemical Technologies Co. Ltd, 859 Shixiang West Rd, Hangzhou, 310007, Zhejiang Province, China.
| | - Chaochun Zou
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
| |
Collapse
|
2
|
Ren Q, Zhu X, Pan J, Li K, Zhou Y, Lyu Y, Xie Q, Xu Y. A combination of phospholipids and long chain polyunsaturated fatty acids supports neurodevelopmental outcomes in infants: a randomized, double-blind, controlled clinical trial. Front Nutr 2024; 11:1358651. [PMID: 38938667 PMCID: PMC11208465 DOI: 10.3389/fnut.2024.1358651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Phospholipids (PLs) and long-chain polyunsaturated fatty acids (LCPUFAs) are naturally present in breast milk and play important roles in promoting the growth of the infant. Several studies have investigated the effects of the combination of PLs and LCPUFAs on neurodevelopment. However, data on the effectiveness of infant formula containing both PLs and LCPUFAs on the neurodevelopment of infants is still scarce. This randomized, double-blind, controlled clinical study was designed to evaluate the effect of an infant formula enriched with PLs and LCPUFAs on growth parameters and neurodevelopmental outcomes in term infants up to 365 days of age. Infants were enrolled within 30 days of birth who were then randomly assigned to either a control group (n = 150) or an investigational group (n = 150). Both groups consist of cow's milk-based formula which were generally identical in terms of composition, except that the investigational formula was additionally supplemented with PLs and LCPUFAs. The infants were followed for the first year of life. Breastfed infants were the reference (n = 150). Bayley Scales of Infant Development [3rd edition (Bayley-III)], Carey Toddler Temperament Scales (TTS), MacArthur-Bates Communicative Development Inventories (CDI), Single Object Attention and Free Play Tasks were used to evaluate neurodevelopmental outcomes of infant at 365 days of age. In addition, Ages and Stages Questionnaires (ASQ) were also conducted at 120, 180, and 275 days of age. Compared to breastfeeding, both infant formulas were well-tolerated and provided adequate growth, with no adverse events being reported throughout the study. Infants of the investigational group showed higher mean scores in Bayley-III cognitive performance (104.3 vs. 99.0, p < 0.05), language (106.9 vs. 104.5, p < 0.05), and motor skills (109.2 vs. 103.9, p < 0.05) compared the control group. Similar results were being reported for other developmental scales including TTS and ASQ. Notably, the test scores of infants fed the investigational formula were similar to those who were breastfed. Our results indicate that PL and LCPUFA supplementation may be beneficial for neurodevelopment of infants throughout the first year of life. Further studies are needed to investigation long-term effects PL and LCPUFA on neurodevelopment in early life.
Collapse
Affiliation(s)
- Qiqi Ren
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Xiaoyu Zhu
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Jiancun Pan
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Kaifeng Li
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Yalin Zhou
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Ying Lyu
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Yajun Xu
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| |
Collapse
|
3
|
Volkert D, Beck AM, Faxén-Irving G, Frühwald T, Hooper L, Keller H, Porter J, Rothenberg E, Suominen M, Wirth R, Chourdakis M. ESPEN guideline on nutrition and hydration in dementia - Update 2024. Clin Nutr 2024; 43:1599-1626. [PMID: 38772068 DOI: 10.1016/j.clnu.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND & AIMS Dementia is accompanied by a variety of changes that result in an increased risk of malnutrition and low-intake dehydration. This guideline update aims to give evidence-based recommendations for nutritional care of persons with dementia in order to prevent and treat these syndromes. METHODS The previous guideline version was reviewed and expanded in accordance with the standard operating procedure for ESPEN guidelines. Based on a systematic search in three databases, strength of evidence of appropriate literature was graded by use of the SIGN system. The original recommendations were reviewed and reformulated, and new recommendations were added, which all then underwent a consensus process. RESULTS 40 recommendations for nutritional care of older persons with dementia were developed and agreed, seven at institutional level and 33 at individual level. As a prerequisite for good nutritional care, organizations caring for persons with dementia are recommended to employ sufficient qualified staff and offer attractive food and drinks with choice in a functional and appealing environment. Nutritional care should be based on a written care concept with standardized operating procedures. At the individual level, routine screening for malnutrition and dehydration, nutritional assessment and close monitoring are unquestionable. Oral nutrition may be supported by eliminating potential causes of malnutrition and dehydration, and adequate social and nursing support (including assistance, utensils, training and oral care). Oral nutritional supplements are recommended to improve nutritional status but not to correct cognitive impairment or prevent cognitive decline. Routine use of dementia-specific ONS, ketogenic diet, omega-3 fatty acid supplementation and appetite stimulating agents is not recommended. Enteral and parenteral nutrition and hydration are temporary options in patients with mild or moderate dementia, but not in severe dementia or in the terminal phase of life. In all stages of the disease, supporting food and drink intake and maintaining or improving nutrition and hydration status requires an individualized, comprehensive approach. Due to a lack of appropriate studies, most recommendations are good practice points. CONCLUSION Nutritional care should be an integral part of dementia management. Numerous interventions are available that should be implemented in daily practice. Future high-quality studies are needed to clarify the evidence.
Collapse
Affiliation(s)
- Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.
| | - Anne Marie Beck
- Dietetic and Nutritional Research Unit, Herlev and Gentofte University Hospital, Herlev, Denmark
| | - Gerd Faxén-Irving
- Division of Clinical Geriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Frühwald
- Department of Geriatric Acute Care, Hietzing Municipal Hospital, Vienna, Austria
| | - Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Heather Keller
- Department of Kinesiology & Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Canada; Schlegel-UW Research Institute for Aging, Waterloo, Canada
| | - Judi Porter
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Elisabet Rothenberg
- Department of Nursing and Integrated Health Sciences, Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden
| | - Merja Suominen
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Rainer Wirth
- Department of Geriatric Medicine, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Michael Chourdakis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
4
|
Khan I, Hussain M, Jiang B, Zheng L, Pan Y, Hu J, Khan A, Ashraf A, Zou X. Omega-3 long-chain polyunsaturated fatty acids: Metabolism and health implications. Prog Lipid Res 2023; 92:101255. [PMID: 37838255 DOI: 10.1016/j.plipres.2023.101255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Recently, omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have gained substantial interest due to their specific structure and biological functions. Humans cannot naturally produce these fatty acids (FAs), making it crucial to obtain them from our diet. This comprehensive review details n-3 LC-PUFAs and their role in promoting and maintaining optimal health. The article thoroughly analyses several sources of n-3 LC-PUFAs and their respective bioavailability, covering marine, microbial and plant-based sources. Furthermore, we provide an in-depth analysis of the biological impacts of n-3 LC-PUFAs on health conditions, with particular emphasis on cardiovascular disease (CVD), gastrointestinal (GI) cancer, diabetes, depression, arthritis, and cognition. In addition, we highlight the significance of fortification and supplementation of n-3 LC-PUFAs in both functional foods and dietary supplements. Additionally, we conducted a detailed analysis of the several kinds of n-3 LC-PUFAs supplements currently available in the market, including an assessment of their recommended intake, safety, and effectiveness. The dietary guidelines associated with n-3 LC-PUFAs are also highlighted, focusing on the significance of maintaining a well-balanced intake of n-3 PUFAs to enhance health benefits. Lastly, we highlight future directions for further research in this area and their potential implications for public health.
Collapse
Affiliation(s)
- Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Azqa Ashraf
- School of Food Science and Engineering, Ocean University of China, Qingdao 2666100, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
5
|
Andriambelo B, Stiffel M, Roke K, Plourde M. New perspectives on randomized controlled trials with omega-3 fatty acid supplements and cognition: A scoping review. Ageing Res Rev 2023; 85:101835. [PMID: 36603691 DOI: 10.1016/j.arr.2022.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Long chain polyunsaturated omega-3 fatty acids (n-3 FA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to be important components in a healthy diet and contribute to healthy functioning of the heart and the brain, among other organs. Although there are epidemiological studies on the strong relationship between fish or n-3 FA consumption and lower risk of cognitive decline, results from randomized controlled trials (RCTs) are less consistent. Here, we performed a scoping review on RCTs with n-3 FA supplementation where cognition was evaluated. Seventy-eight RCTs published before April 2022 were included in this review. Among these RCTs, 43.6% reported a positive cognitive outcome after the consumption of n-3 FA compared to the placebo. However, there was a large diversity of populations studied (age ranges and health status), wide range of doses of EPA + DHA supplemented (79 mg/day - 5200 mg/day) and a multitude of tests evaluating cognition, mainly diagnostic tests, that were used to assess cognitive scores and overall cognitive status. RCTs were thereafter categorized into non-cognitively impaired middle-aged adults (n = 24), non-cognitively impaired older adults (n = 24), adults with subjective memory complaints (n = 14), adults with mild cognitive impairments (MCI, n = 9) and people with diagnosed dementia or other cognitive changes (n = 7). Among these categories, 66.7% of RCTs conducted with MCI adults reported a positive cognitive outcome when supplemented with n-3 FA vs. the placebo. Therefore, this scoping review provides rationale and questions to a) strengthen the design of future RCTs with n-3 FA for cognitive outcomes, and b) generate more informative data to support clinicians in their practice in assessing cognition before and after a nutritional intervention.
Collapse
Affiliation(s)
- B Andriambelo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - M Stiffel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - K Roke
- GOED- Global Organization for EPA and DHA Omega-3, Salt Lake City, UT, United States
| | - M Plourde
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada.
| |
Collapse
|
6
|
Fadó R, Molins A, Rojas R, Casals N. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients 2022; 14:nu14194137. [PMID: 36235789 PMCID: PMC9572450 DOI: 10.3390/nu14194137] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
In recent decades, traditional eating habits have been replaced by a more globalized diet, rich in saturated fatty acids and simple sugars. Extensive evidence shows that these dietary factors contribute to cognitive health impairment as well as increase the incidence of metabolic diseases such as obesity and diabetes. However, how these nutrients modulate synaptic function and neuroplasticity is poorly understood. We review the Western, ketogenic, and paleolithic diets for their effects on cognition and correlations with synaptic changes, focusing mainly (but not exclusively) on animal model studies aimed at tracing molecular alterations that may contribute to impaired human cognition. We observe that memory and learning deficits mediated by high-fat/high-sugar diets, even over short exposure times, are associated with reduced arborization, widened synaptic cleft, narrowed post-synaptic zone, and decreased activity-dependent synaptic plasticity in the hippocampus, and also observe that these alterations correlate with deregulation of the AMPA-type glutamate ionotropic receptors (AMPARs) that are crucial to neuroplasticity. Furthermore, we explored which diet-mediated mechanisms modulate synaptic AMPARs and whether certain supplements or nutritional interventions could reverse deleterious effects, contributing to improved learning and memory in older people and patients with Alzheimer’s disease.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Cerdanyola del Vallès, Spain
- Correspondence: ; Tel.: +34-93-504-20-00
| | - Anna Molins
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rocío Rojas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
7
|
Yang K, Chen C, Yan Q, Shen X, Jiang L, Ma R, Lu L, Zhu J, Tian Y, Cai W, D'Alton ME, Zhang J, Kahe K. Combined association of early exposure to long-chain n-3 polyunsaturated fatty acids, mercury and selenium with cognitive performance in 1-year-old infants. ENVIRONMENTAL RESEARCH 2022; 207:112186. [PMID: 34627802 DOI: 10.1016/j.envres.2021.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous studies on long-chain n-3 polyunsaturated fatty acids (LCn3PUFAs) and infant neurodevelopment did not consider effect modifications of mercury (Hg) and selenium (Se). OBJECTIVES To examine the joint association of prenatal LCn3PUFAs, Hg and Se with infant cognitive performance, and to explore whether DNA methylation may explain this potential association. METHODS A total of 484 newborns were enrolled from the Shanghai Birth Cohort with available data on cord blood LCn3PUFA, nail Hg and Se during 2015-2016. Cord blood LCn3PUFA concentrations were assessed by gas chromatography, and nail Hg and Se concentrations were measured using clippings collected within 6 months of birth by inductively coupled plasma mass spectrometry. Five aspects of infant neurodevelopment (communication, gross motor, fine motor, problem-solving, and personal-social skills) were assessed using the Age and Stage Questionnaire (ASQ) at ages 6 and 12 months. Multivariable-adjusted generalized estimating equations models were performed to examine the associations between cord blood LCn3PUFA concentrations and ASQ test scores, and these associations were stratified by nail Hg and Se levels. Epigenome-wide DNA methylation in cord blood was compared in a random subgroup consisting of 19 infants from the highest and 21 from the lowest decile of LCn3PUFA concentrations. RESULTS LCn3PUFAs were not significantly associated with any ASQ test scores. However, in the subgroup with lower Hg (<median 0.13 ppm) and higher Se (≥median 0.87 ppm) levels, infants with higher LCn3PUFA concentrations had higher ASQ scores indicating better performance in gross motor skills [quartile 4 vs. 1: mean difference = 7.78; 95% confidence interval=(3.47, 12.09); Ptrend<0.01; Pinteraction = 0.03]. Additionally, twenty CpG sites were differentially methylated when comparing high to low LCn3PUFA groups. CONCLUSION The association of prenatal LCn3PUFA concentrations with infant neurodevelopment, particularly gross motor skills, may be observed among infants with high Se and low Hg levels.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Cheng Chen
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Qi Yan
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Xiuhua Shen
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Linlei Jiang
- Instrumental Analysis Platform, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Ma
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Lu
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Mary E D'Alton
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA.
| |
Collapse
|
8
|
Nevins JEH, Donovan SM, Snetselaar L, Dewey KG, Novotny R, Stang J, Taveras EM, Kleinman RE, Bailey RL, Raghavan R, Scinto-Madonich SR, Venkatramanan S, Butera G, Terry N, Altman J, Adler M, Obbagy JE, Stoody EE, de Jesus J. Omega-3 Fatty Acid Dietary Supplements Consumed During Pregnancy and Lactation and Child Neurodevelopment: A Systematic Review. J Nutr 2021; 151:3483-3494. [PMID: 34383914 PMCID: PMC8764572 DOI: 10.1093/jn/nxab238] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Maternal nutrition during pregnancy and lactation has profound effects on the development and lifelong health of the child. Long-chain PUFAs are particularly important for myelination and the development of vision during the perinatal period. OBJECTIVES We conducted a systematic review to examine the relationship between supplementation with omega-3 fatty acids during pregnancy and/or lactation and neurodevelopment in children, to inform the Scientific Report of the 2020 Dietary Guidelines Advisory Committee. METHODS We identified articles on omega-3 fatty acid supplementation in pregnant and lactating women that included measures of neurodevelopment in their children (0-18 y) by searching PubMed, CENTRAL, Embase, and CINAHL Plus. After dual screening articles for inclusion, we qualitatively synthesized and graded the strength of evidence using pre-established criteria for assessing risk of bias, consistency, directness, precision, and generalizability. RESULTS We included 33 articles from 15 randomized controlled trials (RCTs) and 1 prospective cohort study. Of the 8 RCTs that delivered omega-3 fatty acid dietary supplements during pregnancy alone (200-2200 mg/d DHA and 0-1100 mg/d EPA for approximately 20 wk), 5 studies reported ≥1 finding that supplementation improved measures of cognitive development in the infant or child by 6%-11% (P < 0.05), but all 8 studies also reported ≥1 nonsignificant (P > 0.05) result. There was inconsistent or insufficient evidence for other outcomes (language, social-emotional, physical, motor, or visual development; academic performance; risks of attention deficit disorder, attention-deficit/hyperactivity disorder, autism spectrum disorder, anxiety, or depression) and for supplementation during lactation or both pregnancy and lactation. Populations with a lower socioeconomic status and adolescents were underrepresented and studies lacked racial and ethnic diversity. CONCLUSIONS Limited evidence suggests that omega-3 fatty acid supplementation during pregnancy may result in favorable cognitive development in the child. There was insufficient evidence to evaluate the effects of omega-3 fatty acid supplementation during pregnancy and/or lactation on other developmental outcomes.
Collapse
Affiliation(s)
- Julie E H Nevins
- Panum Group, Bethesda, MD, USA
- Nutrition Evidence Systematic Review team, Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA
| | - Linda Snetselaar
- Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| | - Kathryn G Dewey
- Department of Nutrition, University of California, Davis, CA, USA
| | - Rachel Novotny
- Department of Human Nutrition, Food and Animal Science, University of Hawaii at Manoa, Manoa, HI, USA
| | - Jamie Stang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Elsie M Taveras
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Ronald E Kleinman
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Ramkripa Raghavan
- Panum Group, Bethesda, MD, USA
- Nutrition Evidence Systematic Review team, Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | - Sara R Scinto-Madonich
- Panum Group, Bethesda, MD, USA
- Nutrition Evidence Systematic Review team, Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | - Sudha Venkatramanan
- Panum Group, Bethesda, MD, USA
- Nutrition Evidence Systematic Review team, Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | - Gisela Butera
- Panum Group, Bethesda, MD, USA
- Nutrition Evidence Systematic Review team, Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | | | - Jean Altman
- Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | - Meghan Adler
- Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | - Julie E Obbagy
- Nutrition Evidence Systematic Review team, Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | - Eve E Stoody
- Office of Nutrition Guidance and Analysis, Center for Nutrition Policy and Promotion, Food and Nutrition Service, USDA, Alexandria, VA, USA
| | - Janet de Jesus
- Office of Disease Prevention and Health Promotion, HHS, United States Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Alexandria, VA, USA
| |
Collapse
|
9
|
Kleinloog JPD, Tischmann L, Mensink RP, Adam TC, Joris PJ. Longer-term soy nut consumption improves cerebral blood flow and psychomotor speed: results of a randomized, controlled crossover trial in older men and women. Am J Clin Nutr 2021; 114:2097-2106. [PMID: 34510189 PMCID: PMC8634607 DOI: 10.1093/ajcn/nqab289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Effects of soy foods on cerebral blood flow (CBF)-a marker of cerebrovascular function-may contribute to the beneficial effects of plant-based diets on cognitive performance. OBJECTIVES We aimed to investigate longer-term effects of soy nut consumption on CBF in older adults. Changes in 3 different domains of cognitive performance were also studied. METHODS Twenty-three healthy participants (age: 60-70 y; BMI: 20-30 kg/m2) participated in a randomized, controlled, single-blinded crossover trial with an intervention (67 g/d of soy nuts providing ∼25.5 g protein and 174 mg isoflavones) and control period (no nuts) of 16 wk, separated by an 8-wk washout period. Adults followed the Dutch food-based dietary guidelines. At the end of each period, CBF was assessed with arterial spin labeling MRI. Psychomotor speed, executive function, and memory were assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). RESULTS No serious adverse events were reported, and soy nut intake was well tolerated. Body weights remained stable during the study. Serum isoflavone concentrations increased (daidzein mean difference ± SD: 128 ± 113 ng/mL, P < 0.001; genistein: 454 ± 256 ng/mL, P < 0.001), indicating excellent compliance. Regional CBF increased in 4 brain clusters located in the left occipital and temporal lobes (mean ± SD increase: 11.1 ± 12.4 mL · 100 g-1 · min-1, volume: 11,296 mm3, P < 0.001), bilateral occipital lobe (12.1 ± 15.0 mL · 100 g-1 · min-1, volume: 2632 mm3, P = 0.002), right occipital and parietal lobes (12.7 ± 14.3 mL · 100 g-1 · min-1, volume: 2280 mm3, P = 0.005), and left frontal lobe (12.4 ± 14.5 mL · 100 g-1 · min-1, volume: 2120 mm3, P = 0.009) which is part of the ventral network. These 4 regions are involved in psychomotor speed performance, which improved as the movement time reduced by (mean ± SD) 20 ± 37 ms (P = 0.005). Executive function and memory did not change. CONCLUSIONS Longer-term soy nut consumption may improve cerebrovascular function of older adults, because regional CBF increased. Effects may underlie observed improvements in psychomotor speed.This trial was registered at clinicaltrials.gov as NCT03627637.
Collapse
Affiliation(s)
- Jordi P D Kleinloog
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lea Tischmann
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
10
|
Franco-Juárez B, Gómez-Manzo S, Hernández-Ochoa B, Cárdenas-Rodríguez N, Arreguin-Espinosa R, Pérez de la Cruz V, Ortega-Cuellar D. Effects of High Dietary Carbohydrate and Lipid Intake on the Lifespan of C. elegans. Cells 2021; 10:cells10092359. [PMID: 34572007 PMCID: PMC8465757 DOI: 10.3390/cells10092359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Health and lifespan are influenced by dietary nutrients, whose balance is dependent on the supply or demand of each organism. Many studies have shown that an increased carbohydrate–lipid intake plays a critical role in metabolic dysregulation, which impacts longevity. Caenorhabditis elegans has been successfully used as an in vivo model to study the effects of several factors, such as genetic, environmental, diet, and lifestyle factors, on the molecular mechanisms that have been linked to healthspan, lifespan, and the aging process. There is evidence showing the causative effects of high glucose on lifespan in different diabetic models; however, the precise biological mechanisms affected by dietary nutrients, specifically carbohydrates and lipids, as well as their links with lifespan and longevity, remain unknown. Here, we provide an overview of the deleterious effects caused by high-carbohydrate and high-lipid diets, as well as the molecular signals that affect the lifespan of C. elegans; thus, understanding the detailed molecular mechanisms of high-glucose- and lipid-induced changes in whole organisms would allow the targeting of key regulatory factors to ameliorate metabolic disorders and age-related diseases.
Collapse
Affiliation(s)
- Berenice Franco-Juárez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Ciudad de México 04510, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico
- Correspondence: ; Tel.: +52-55-1084-0900
| |
Collapse
|
11
|
Patan MJ, Kennedy DO, Husberg C, Hustvedt SO, Calder PC, Khan J, Forster J, Jackson PA. Supplementation with oil rich in eicosapentaenoic acid, but not in docosahexaenoic acid, improves global cognitive function in healthy, young adults: results from randomized controlled trials. Am J Clin Nutr 2021; 114:914-924. [PMID: 34113957 PMCID: PMC8408864 DOI: 10.1093/ajcn/nqab174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Evidence regarding the effects of the omega-3 (ɷ-3) PUFAs (n-3 PUFAs) DHA and EPA on cognition is lacking. OBJECTIVES We investigated whether supplementation with oils rich in EPA or DHA improves cognition, prefrontal cortex (PFC) hemoglobin (Hb) oxygenation, and memory consolidation. METHODS Healthy adults (n = 310; age range: 25-49 y) completed a 26-wk randomized controlled trial in which they consumed either 900 mg DHA/d and 270 mg EPA/d (DHA-rich oil), 360 mg DHA/d and 900 mg EPA/d (EPA-rich oil), or 3000 mg/d refined olive oil (placebo). Cognitive performance and memory consolidation were assessed via computerized cognitive test battery. PFC Hb oxygenation was measured using near infrared spectroscopy (NIRS). RESULTS Both global accuracy and speed improved with EPA-rich oil compared with placebo and DHA-rich oil [EPA vs. placebo accuracy: estimated marginal mean (EMM) = 0.17 (95% CI: 0.09, 0.24) vs. EMM = 0.03 (95% CI = -0.04, 0.11); P = 0.044; EPA vs. placebo speed: EMM = -0.15 (95% CI: -0.22, -0.07) vs. EMM = 0.03 (95% CI: -0.05, 0.10); P = 0.003]. Accuracy of memory was improved with EPA compared with DHA [EMM = 0.66 (95% CI: 0.26, 1.06) vs. EMM = -0.08 (95% CI: -0.49, 0.33); P = 0.034]. Both EPA- and DHA-rich oils showed trends towards reduced PFC oxygenated Hb (oxy-Hb) compared with placebo [placebo: EMM = 27.36 µM (95% CI: 25.73, 28.98); DHA: EMM = 24.62 µM (95% CI: 22.75, 26.48); P = 0.060; EPA: EMM = 24.97 µM (95% CI: 23.35, 26.59); P = 0.082]. CONCLUSIONS EPA supplementation improved global cognitive function and was superior to the oil enriched with DHA. Interpreted within a neural efficiency framework, reduced PFC oxygenated Hb suggests that n-3 PUFAs may be associated with increased efficiency.These trials were registered in the clinical trials registry (https://clinicaltrials.gov/) as NCT03158545, NCT03592251, NCT02763514.
Collapse
Affiliation(s)
- Michael J Patan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - David O Kennedy
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute of Health Research Southampton Biomedical Research Centre, University Hospital Southampton National Health Service Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Julie Khan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Joanne Forster
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Philippa A Jackson
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
12
|
Dorman G, Flores I, Gutiérrez C, Castaño RF, Aldecoa M, Kim L. Medicinal herbs and nutritional supplements for dementia therapy: potential therapeutic targets and clinical evidence. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:26-51. [PMID: 34370647 DOI: 10.2174/1871527320666210809121230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Spices and herbs have been used for medicinal purposes for centuries. Also, in the last decades, the use of different nutritional supplements has been implemented to treat all kinds of diseases, including those that present an alteration in cognitive functioning. Dementia is a clinical syndrome in which a person's mental and cognitive capacities gradually decline. As the disease progresses, the person's autonomy diminishes. As there is not an effective treatment to prevent progressive deterioration in many of these pathologies, nutritional interventions have been, and still are, one of the most widely explored therapeutic possibilities. In this review, we have discussed a great number of potentially interesting plants, nutritional derivatives and probiotics for the treatment of dementia around the world. Their action mechanisms generally involve neuroprotective effects via anti-inflammatory, antioxidant, anti-apoptotic, b-amyloid and tau anti-aggregate actions; brain blood flow improvement, and effects on synaptic cholinergic and dopaminergic neurotransmission, which may optimize cognitive performance in patients with cognitive impairment. As for their efficacy in patients with cognitive impairment and/or dementias, evidence is still scarce and/or their outcomes are controversial. We consider that many of these substances have promising therapeutic properties. Therefore, the scientific community has to continue with a more complete research focused on both identifying possible action mechanisms and carrying out clinical trials, preferably randomized double-blind ones, with a greater number of patients, a long-term follow-up, dose standardization and the use of current diagnosis criteria.
Collapse
Affiliation(s)
- Guido Dorman
- Division of Neurology, Ramos Mejia Hospital. Argentina
| | - Ignacio Flores
- Neuroscience Institute, Favaloro Foundation Hospital. Argentina
| | | | | | - Mayra Aldecoa
- Division of Neurology, Ramos Mejia Hospital. Argentina
| | - Leandro Kim
- Division of Neurology, Ramos Mejia Hospital. Argentina
| |
Collapse
|
13
|
Lecerf JM. [Nutritional advices for postmenopausal woman. Postmenopausal women management: CNGOF and GEMVi clinical practice guidelines]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2021; 49:349-357. [PMID: 33753299 DOI: 10.1016/j.gofs.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Menopause is a key period for health due to physiological changes, particularly of body composition (with decrease of lean mass and increase of fat mass) and of body fat distribution, leading to a higher risk for bone and muscular health and cardiometabolic health. Nutritional advices, associated to physical activity advices, may partially prevent these effects. The energy balance will be moderately negative if there is a weight gain, while the protein intake will be preserved and a regular physical activity will be increased. A Mediterranean style diet will be beneficial on cardiovascular health. Dairy products will be preserved, but restrictive and dietary exclusion will be avoided.
Collapse
Affiliation(s)
- J-M Lecerf
- Service de nutrition et activité physique, institut Pasteur de Lille, 1, rue du Professeur-Calmette, 59019 Lille cedex, France; Service de médecine interne, CHRU Lille, Lille, France.
| |
Collapse
|
14
|
van Soest APM, van de Rest O, Witkamp RF, de Groot LCPGM. Positive effects of folic acid supplementation on cognitive aging are dependent on ω-3 fatty acid status: a post hoc analysis of the FACIT trial. Am J Clin Nutr 2021; 113:801-809. [PMID: 33564824 DOI: 10.1093/ajcn/nqaa373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although epidemiological studies suggest a protective role of B vitamins and omega-3 (ω-3) fatty acids in cognitive decline, findings from intervention studies are conflicting. Mechanistic studies suggest that the ω-3 (n-3) fatty acid status can modulate the effects of B vitamins on cognitive decline. OBJECTIVES We investigated the interaction between baseline ω-3 fatty acid statuses and folic acid treatment on cognitive decline in a placebo-controlled trial [FACIT (Folic Acid and Carotid Intima-media Thickness)]. METHODS This post hoc analysis included 791 older adults aged 50-70 y with plasma total homocysteine ≥13 µmol/L and ≤26 µmol/L and serum vitamin B12 ≥200 pmol/L. Participants received 800 µg folic acid or placebo daily for 3 y. Global cognitive functioning and domain-specific functioning (episodic memory, information processing speed, executive functioning) were assessed at baseline and after 3 y. The effect of the folic acid supplementation was analyzed according to tertiles of baseline ω-3 fatty acid concentrations using linear multiple regression. RESULTS The mean ± SD age of the study population was 60.2 ± 5.6 y, and the mean ± SD Mini-Mental State Examination score was 28.6 ± 1.5. The treatment effect of folic acid was significantly larger in participants in the low compared to high ω-3 fatty acid tertile for global cognition (difference in z-score: mean ± SE = 0.16 ± 0.059; P < 0.01). Regarding domain-specific functioning, similar results were observed for information processing speed (mean ± SE = 0.167 ± 0.068; P = 0.01). There were no overall interactions between folic acid treatment and ω-3 fatty acid tertiles for episodic memory (P = 0.14) and executive functioning (P = 0.21). CONCLUSIONS This post hoc analysis revealed that the efficacy of folic acid treatment on cognitive functioning is dependent on the ω-3 fatty acid status. Individuals with a lower ω-3 fatty acid status at baseline benefited from folic acid treatment, while individuals with a higher ω-3 fatty acid status did not. The results potentially explain the inconsistency in outcomes of B-vitamin supplementation trials and emphasize the importance of a personalized approach. This trial was registered at clinicaltrials.gov as NCT00110604.
Collapse
Affiliation(s)
- Annick P M van Soest
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Ondine van de Rest
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisette C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Peiffer G, Underner M, Perriot J, Fond G. [COPD, anxiety-depression and cognitive disorders: Does inflammation play a major role?]. Rev Mal Respir 2021; 38:357-371. [PMID: 33820658 DOI: 10.1016/j.rmr.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
COPD is a chronic respiratory disease, often associated with extrapulmonary manifestations. Co-morbidities, including anxiety, depression and cognitive impairment, worsen its progression and quality of life. The prevalence of these disorders is high, yet they are often poorly understood and inadequately managed. In the development of psychological disorders, there is accumulated evidence highlighting the major role of systemic inflammation, as well as chronic disease, genetics, the consequences of smoking, hypoxaemia, oxidative stress, and the gut microbiome In addition to traditional treatments such as bronchodilatator medications, respiratory rehabilitation and smoking cessation, systemic inflammation is an interesting therapeutic target, with the use of anti-inflammatory drugs, anti-cytokines, and nutritional interventions.
Collapse
Affiliation(s)
- G Peiffer
- Service de pneumologie - tabacologie, CHR Metz-Thionville, 57085 Metz cedex 3, France.
| | - M Underner
- Unité de recherche clinique, université de Poitiers, centre hospitalier Henri-Laborit, 86021 Poitiers, France
| | - J Perriot
- Dispensaire Émile-Roux, CLAT 63, centre de tabacologie, 63100 Clermont-Ferrand, France
| | - G Fond
- CEReSS, hôpital de la Conception, Marseille Université, Assistance publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
16
|
Racey M, MacFarlane A, Carlson SE, Stark KD, Plourde M, Field CJ, Yates AA, Wells G, Grantham A, Bazinet RP, Ma DWL. Dietary Reference Intakes based on chronic disease endpoints: outcomes from a case study workshop for omega 3's EPA and DHA. Appl Physiol Nutr Metab 2021; 46:530-539. [PMID: 33583256 DOI: 10.1139/apnm-2020-0994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Given the focus on developing Dietary Reference Intakes (DRIs) based on chronic disease risk reduction and recent research for omega-3 long chain PUFA since the last DRI review, the Canadian Nutrition Society convened a panel of stakeholders for a 1-day workshop in late 2019. Attendees discussed the new NASEM guidelines for establishing DRI values based on chronic disease risk endpoints and the strength of current evidence for EPA and DHA as it relates to the new guidelines. Novelty: Summarizes evidence and expert opinions regarding the potential for reviewing DRI values for EPA and DHA and cardiovascular disease risk and early development.
Collapse
Affiliation(s)
- Megan Racey
- School of Nursing, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Amanda MacFarlane
- Bureau of Nutritional Sciences, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ken D Stark
- Department of Kinesiology, Faculty of Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mélanie Plourde
- Faculté de Médecine et des Sciences de la Santé, Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Catherine J Field
- Faculty of Agricultural, Life and Environmental Sciences, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2H5, Canada
| | - Allison A Yates
- Food and Nutrition Board, Institute of Medicine, and USDA/ARS Beltsville (retired), Johnson City, TN 37615, USA
| | - George Wells
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Andrea Grantham
- Canadian Nutrition Society, 867 La Chapelle Street, Ottawa, ON K1C 6A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David W L Ma
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
17
|
Romanenko M, Kholin V, Koliada A, Vaiserman A. Nutrition, Gut Microbiota, and Alzheimer's Disease. Front Psychiatry 2021; 12:712673. [PMID: 34421687 PMCID: PMC8374099 DOI: 10.3389/fpsyt.2021.712673] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Nutrition is known to play an important role in the pathogenesis of Alzheimer's disease. Evidence is obtained that the gut microbiota is a key player in these processes. Dietary changes (both adverse and beneficial) may influence the microbiome composition, thereby affecting the gut-brain axis and the subsequent risk for Alzheimer's disease progression. In this review, the research findings that support the role of intestinal microbiota in connection between nutritional factors and the risk for Alzheimer's disease onset and progression are summarized. The mechanisms potentially involved in these processes as well as the potential of probiotics and prebiotics in therapeutic modulation of contributed pathways are discussed.
Collapse
Affiliation(s)
- Mariana Romanenko
- Laboratory of Dietetics, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | - Victor Kholin
- Department of Age Physiology and Pathology of the Nervous System, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | | | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
18
|
Barreiro R, Regal P, López-Racamonde O, Cepeda A, Fente C. Evolution of breast milk fatty acids in Spanish mothers after one year of uninterrupted lactation. Prostaglandins Leukot Essent Fatty Acids 2020; 159:102141. [PMID: 32505121 DOI: 10.1016/j.plefa.2020.102141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
The WHO recommends exclusive breastfeeding of infants for the first sixth months of life and advises that it shall continue for up to two years of age or beyond in combination with complementary foods. However, the image of a woman breastfeeding a toddler or a preschooler is unusual in western societies. Exploring the nutritional properties of milk during prolonged lactation can help normalizing prolonged breastfeeding. Human milk fatty acid composition was determined in sixteen lactating mothers practicing prolonged lactation (≥12 months) and sixteen women on their first twelve months of lactation. Breast milk after one year is richer in saturated fatty acids, particularly lauric and myristic, showing a tendency towards lower levels of oleic acid, and higher of arachidonic, α-linolenic and docosahexaenoic acids, in comparison to early milk (< 1 year). The age and body condition of the mother, parity, sex of the baby, and diet influence also the fattyacidome of milk.
Collapse
Affiliation(s)
- R Barreiro
- Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain
| | - P Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain.
| | - O López-Racamonde
- Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain; Midwifery Service at San Roque Health Center, SERGAS (Servizo Galego de Saúde), Lugo, Spain
| | - A Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain
| | - C Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
19
|
Dietary Sources of Omega-3 Fatty Acids Versus Omega-3 Fatty Acid Supplementation Effects on Cognition and Inflammation. Curr Nutr Rep 2020; 9:264-277. [DOI: 10.1007/s13668-020-00329-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Nieman DH, Chavez-Baldini U, Vulink NC, Smit DJA, van Wingen G, de Koning P, Sutterland AL, Mocking RJT, Bockting C, Verweij KJH, Lok A, Denys D. Protocol Across study: longitudinal transdiagnostic cognitive functioning, psychiatric symptoms, and biological parameters in patients with a psychiatric disorder. BMC Psychiatry 2020; 20:212. [PMID: 32393362 PMCID: PMC7216345 DOI: 10.1186/s12888-020-02624-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Patients with psychiatric disorders, such as major depressive disorder, schizophrenia or obsessive-compulsive disorder, often suffer from cognitive dysfunction. The nature of these dysfunctions and their relation with clinical symptoms and biological parameters is not yet clear. Traditionally, cognitive dysfunction is studied in patients with specific psychiatric disorders, disregarding the fact that cognitive deficits are shared across disorders. The Across study aims to investigate cognitive functioning and its relation with psychiatric symptoms and biological parameters transdiagnostically and longitudinally. METHODS The study recruits patients diagnosed with a variety of psychiatric disorders and has a longitudinal cohort design with an assessment at baseline and at one-year follow-up. The primary outcome measure is cognitive functioning. The secondary outcome measures include clinical symptoms, electroencephalographic, genetic and blood markers (e.g., fatty acids), and hair cortisol concentration levels. DISCUSSION The Across study provides an opportunity for a transdiagnostic, bottom-up, data-driven approach of investigating cognition in relation to symptoms and biological parameters longitudinally in patients with psychiatric disorders. The study may help to find new clusters of symptoms, biological markers, and cognitive dysfunctions that have better prognostic value than the current diagnostic categories. Furthermore, increased insight into the relationship among cognitive deficits, biological parameters, and psychiatric symptoms can lead to new treatment possibilities. TRIAL REGISTRATION Netherlands Trial Register (NTR): NL8170.
Collapse
Affiliation(s)
- Dorien H. Nieman
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - UnYoung Chavez-Baldini
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Nienke C. Vulink
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Dirk J. A. Smit
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Guido van Wingen
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Pelle de Koning
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Arjen L. Sutterland
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Roel J. T. Mocking
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Claudi Bockting
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Karin J. H. Verweij
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Anja Lok
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| | - Damiaan Denys
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
21
|
Jackson PA, Husberg C, Hustvedt SO, Calder PC, Khan J, Avery H, Forster J, Kennedy DO. Diurnal rhythm of plasma EPA and DHA in healthy adults. Prostaglandins Leukot Essent Fatty Acids 2020; 154:102054. [PMID: 32018166 DOI: 10.1016/j.plefa.2020.102054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Knowledge of the diurnal variation in circulating omega-3 polyunsaturated fatty acids (n-3 PUFAs) may be an important consideration for the development of dosing protocols designed to optimise tissue delivery of these fatty acids. The objective of the current study was to examine the variation in plasma concentrations of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) over a 24-h period in healthy adults under eating and sleeping conditions generally approximate to a free-living environment. Twenty-one healthy participants aged 25-44 years took part in a single laboratory visit encompassing an overnight stay. EPA and DHA were measured in plasma samples collected every two hours from 22:00 until 22:00 the following day, with all meals being provided at conventional times. Cosinor analysis was used to estimate the diurnal variation in each fatty acid from pooled data across all participants. A significant diurnal variation in the pooled plasma concentrations of both fatty acids was detected. However, evidence of distinct rhythmicity was strongest for DHA. The timing of the peak concentration of DHA was 17:43 with a corresponding nadir at 05:43. In comparison, the observed acrophase for EPA was delayed by three hours, occurring at 20:41, with a nadir at 08:41. This is the first time that the diurnal variation in these important bioactive fatty acids has been described in a sample of healthy adults following a normal pattern of eating and sleeping. In the absence of any dietary intake of EPA and DHA, circulating levels of these fatty acids fall during the overnight period and reach their lowest point in the morning. Consumption of n-3 PUFAs at night time, which counteracts this pattern, may have functional significance.
Collapse
Affiliation(s)
- Philippa A Jackson
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom.
| | | | | | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton., Southampton SO16 6YD, United Kingdom; National Institute of Health Research Southampton Biomedical Research Centre, University Hospital Southampton National Health Service Foundation Trust and University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Julie Khan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| | - Hannah Avery
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| | - Joanne Forster
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| | - David O Kennedy
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
22
|
Daimiel L, Martínez-González MA, Corella D, Salas-Salvadó J, Schröder H, Vioque J, Romaguera D, Martínez JA, Wärnberg J, Lopez-Miranda J, Estruch R, Cano-Ibáñez N, Alonso-Gómez A, Tur JA, Tinahones FJ, Serra-Majem L, Micó-Pérez RM, Lapetra J, Galdón A, Pintó X, Vidal J, Micó V, Colmenarejo G, Gaforio JJ, Matía P, Ros E, Buil-Cosiales P, Vázquez-Ruiz Z, Sorlí JV, Graniel IP, Cuenca-Royo A, Gisbert-Sellés C, Galmes-Panades AM, Zulet MA, García-Ríos A, Díaz-López A, de la Torre R, Galilea-Zabalza I, Ordovás JM. Physical fitness and physical activity association with cognitive function and quality of life: baseline cross-sectional analysis of the PREDIMED-Plus trial. Sci Rep 2020; 10:3472. [PMID: 32103064 PMCID: PMC7044289 DOI: 10.1038/s41598-020-59458-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Physical activity (PA) has been hypothesized to be effective to maintaining cognitive function and delay cognitive decline in the elderly, but physical fitness (PF) could be a better predictor of cognitive function. We aimed to study the association between PA and PF with cognitive function and quality of life using cross-sectional data from 6874 participants of the PREDIMED-Plus trial (64.9 ± 4.9 years, 48.5% female). PF and PA were measured with a Chair Stand Test, the REGICOR and Rapid Assessment Physical Activity questionnaires. Cognitive function was measured with Mini-mental State Examination, Control Oral Word Association Test, Trail Making Test and Digit Span tests; whereas health-related quality of life was assessed with the SF36-HRQL test. Cognitive and quality of life scores were compared among PF quartiles and PA levels (low, moderate and high) with ANCOVA and with Chair Stand repetitions and energy expenditure from total PA with multivariable linear regression adjusted for confounding factors. PF associated with higher scores in phonemic and semantic verbal fluency tests and with lower TMT A time. However, PA was not associated with the neurocognitive parameters evaluated. Both PF and PA levels were strongly associated with a better quality of life. We concluded that PF, but not PA, is associated with a better cognitive function. This trial was retrospectively registered at the International Standard Randomized Controlled Trial (ISRCTN89898870, https://www.isrctn.com/ISRCTN89898870?q=ISRCTN89898870&filters=&sort=&offset=1&totalResults=1&page=1&pageSize=10&searchType=basic-search) on 07/24/2014.
Collapse
Grants
- Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- Instituto de Salud Carlos III PI13/00673, PI13/00492, PI13/00272, PI13/01123, PI13/00462, PI13/00233, PI13/02184, PI13/00728, PI13/01090, PI13/01056, PI14/01722, PI14/00636, PI14/00618, PI14/00696, PI14/01206, PI14/01919, PI14/00853, PI14/01374, PI16/00473, PI16/00662, PI16/01873, PI16/01094, PI16/00501, PI16/00533, PI16/00381, PI16/00366, PI16/01522, PI16/01120, PI17/00764, PI17/01183, PI17/00855, PI17/01347, PI17/00525, PI17/01827, PI17/00532, PI17/00215, PI17/01441, PI17/00508, PI17/01732, PI17/00926
Collapse
Affiliation(s)
- Lidia Daimiel
- Nutritional Genomics and Epigenomics Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain.
| | - Miguel A Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, Pamplona, Spain
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Jordi Salas-Salvadó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició. Hospital Universitari San Joan de Reus, Institut d'Investigació Pere Virgili (IISPV), Reus, Spain
| | - Helmut Schröder
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), Barcelona, Spain
| | - Jesús Vioque
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL, Alicante, Spain
| | - Dora Romaguera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - J Alfredo Martínez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Julia Wärnberg
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nursing, School of Health Sciences, University of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Jose Lopez-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Ramón Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Naomi Cano-Ibáñez
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Granada, Granada, Spain
| | - Angel Alonso-Gómez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Josep A Tur
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria Hospital, Department of Endocrinology, University of Málaga, Málaga, Spain
| | - Lluis Serra-Majem
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service., Las Palmas, Spain
| | | | - José Lapetra
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Alba Galdón
- Department of Endocrinology, Fundación Jiménez-Díaz, Madrid, Spain
| | - Xavier Pintó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y enfermedades metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Victor Micó
- Nutritional Genomics and Epigenomics Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - José J Gaforio
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, Jaén, Spain
| | - Pilar Matía
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Pilar Buil-Cosiales
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Primary Health Care. Servicio Navarro de Salud, Pamplona, Spain
| | - Zenaida Vázquez-Ruiz
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, Pamplona, Spain
| | - José V Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Indira Paz Graniel
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició. Hospital Universitari San Joan de Reus, Institut d'Investigació Pere Virgili (IISPV), Reus, Spain
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neurosciences Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), Barcelona, Spain
| | - Cristina Gisbert-Sellés
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), Barcelona, Spain
- Primary Health Care Center San Vicente del Raspeig, Alicante, Spain
| | - Aina M Galmes-Panades
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - M Angeles Zulet
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Antonio García-Ríos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Andrés Díaz-López
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició. Hospital Universitari San Joan de Reus, Institut d'Investigació Pere Virgili (IISPV), Reus, Spain
| | - Rafael de la Torre
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), Barcelona, Spain
| | | | - José M Ordovás
- Nutritional Genomics and Epigenomics Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Nutrition and Genomics Laboratory, JM_USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, 02111, USA
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
23
|
Favorable effects of omega-3 polyunsaturated fatty acids in attentional control and conversion rate to psychosis in 22q11.2 deletion syndrome. Neuropharmacology 2020; 168:107995. [PMID: 32057798 DOI: 10.1016/j.neuropharm.2020.107995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
Omega-3-polyunsaturated-fatty-acids were suggested against cognitive dysfunctions and conversion to psychosis. However, a recent multicenter trial found no effect in reducing conversion rates in individuals at risk of developing schizophrenia. Patients' genetic heterogeneity and the timing of treatment might influence omega-3 efficacy. Here, we addressed the impact of omega-3 early treatment in both mice and human subjects with a 22q11.2 genetic hemi-deletion (22q11DS), characterized by cognitive dysfunctions and high penetrance of schizophrenia. We first tested the behavioural and cognitive consequences of adolescent exposure to normal or omega-3-enriched diets in wild-type and 22q11DS (LgDel/+) mice. We then contrasted mouse data with those gathered from sixty-two patients with 22q11DS exposed to a normal diet or supplemented with omega-3 during pre-adolescence/adolescence. Adolescent omega-3 exposure had no effects in wild-type mice. However, this treatment ameliorated distractibility deficits revealed in LgDel/+ mice by the Five Choice Serial Reaction Time Task (5CSRTT). The omega-3 improvement in LgDel/+ mice was selective, as no other generalized cognitive and non-cognitive effects were evident. Similarly, omega-3-exposed 22q11DS patients showed long-lasting improvements on distractibility as revealed by the continuous performance test (CPT). Moreover, omega-3-exposed 22q11DS patients showed less risk of developing an Ultra High Risk status and lower conversion rate to psychosis. Our convergent mouse-human findings represent a first analysis on the effects of omega-3 early treatment in 22q11DS. The beneficial effects in attentional control and transition to psychosis could support the early use of omega-3 supplementation in the 22q11DS population.
Collapse
|
24
|
Alex A, Abbott KA, McEvoy M, Schofield PW, Garg ML. Long-chain omega-3 polyunsaturated fatty acids and cognitive decline in non-demented adults: a systematic review and meta-analysis. Nutr Rev 2019; 78:563-578. [DOI: 10.1093/nutrit/nuz073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
Context
Long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFAs) are widely considered as nootropic agents that may be beneficial in reversing cognitive impairment.
Objective
The present systematic review of randomized controlled trials was conducted to determine the changes in cognitive function after intervention with LCn-3PUFA supplementation in non-demented adults, including those with mild cognitive impairment.
Data Sources
Five databases (MEDLINE, CINAHL, Scopus, EMBASE, and the Cochrane Library) were searched systematically along with reference lists of selected articles.
Study Selection
Studies were eligible for inclusion if they measured the effect of LCn-3PUFA supplementation on cognition in non-demented adults.
Data Extraction
A total of 787 records were screened, of which 25 studies were eligible for inclusion. Treatment effects were summarized as global cognitive function for primary outcome and measured using the Mini-Mental State Examination and individual cognitive domains for secondary outcome. The pooled effect sizes were estimated using Hedge’s g and random-effects modeling.
Data Analysis
Results from randomized controlled trials indicate that LCn-3PUFAs have no effect on global cognitive function (Hedge’s g = 0.02; 95% confidence interval, −0.12 to 0.154), and among the specific cognitive domains, only memory function showed a mild benefit (Hedge’s g = 0.31; P = 0.003; z = 2.945).
Conclusion
The existing literature suggests that LCn-3PUFA supplementation could provide a mild benefit in improving memory function in non-demented older adults.
Systematic Review Registration
PROSPERO registration no. CRD42017078664.
Collapse
Affiliation(s)
- Anu Alex
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy
| | - Kylie A Abbott
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy
| | - Mark McEvoy
- School of Medicine and Public Health
- Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Peter W Schofield
- School of Medicine and Public Health
- Neuropsychiatry Service, Hunter New England Local Health District, NSW, Australia
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy
| |
Collapse
|
25
|
Zhang X, Han H, Ge X, Liu L, Wang T, Yu H. Effect of n-3 long-chain polyunsaturated fatty acids on mild cognitive impairment: a meta-analysis of randomized clinical trials. Eur J Clin Nutr 2019; 74:548-554. [PMID: 31804628 DOI: 10.1038/s41430-019-0544-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/09/2022]
Abstract
N-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have positive effect on cognitive function with mild cognitive impairment (MCI) is still controversial. The aim for this meta-analysis was to assess the scientific evidence published in the last 10 years on the effects of n-3 LC-PUFAs intake on MCI patients to explore whether n-3 LC-PUFAs have positive effective. A comprehensive literature search was developed using the Google Scholar, EMBASE, and PubMed database. The pooled effect for all studies was calculated using random-effects model. And the terms of weighted mean difference (WMD) with 95% confidence interval (CI) was pooled and indicated the effects. Heterogeneity was assessed by I2 statistics. A total of seven randomized clinical trials involving 213 cases of intervention and 221 cases of placebo were included in this analysis. Compared with placebo, n-3 LC-PUFAs supplements effectively improved cognition in elders with MCI (WMD = 0.85, 95% CI: 0.04-1.67, Z = 2.05, P = 0.04). Slight heterogeneity was detected across studies. Our results provided further evidence that n-3 LC-PUFAs may have beneficial effect in elderly with MCI.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China
| | - Hongjuan Han
- Department of Mathematics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Ge
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China. .,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China.
| |
Collapse
|
26
|
Cook RL, Parker HM, Donges CE, O'Dwyer NJ, Cheng HL, Steinbeck KS, Cox EP, Franklin JL, Garg ML, O'Connor HT. Omega-3 polyunsaturated fatty acids status and cognitive function in young women. Lipids Health Dis 2019; 18:194. [PMID: 31694658 PMCID: PMC6836340 DOI: 10.1186/s12944-019-1143-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background Research indicates that low omega-3 polyunsaturated fatty acid (n-3 PUFA) may be associated with decreased cognitive function. This study examined the association between n-3 PUFA status and cognitive function in young Australian women. Methods This was a secondary outcome analysis of a cross-sectional study that recruited 300 healthy women (18–35 y) of normal weight (NW: BMI 18.5–24.9 kg/m2) or obese weight (OB: BMI ≥30.0 kg/m2). Participants completed a computer-based cognition testing battery (IntegNeuro™) evaluating the domains of impulsivity, attention, information processing, memory and executive function. The Omega-3 Index (O3I) was used to determine n-3 PUFA status (percentage of EPA (20:5n-3) plus DHA (22:6n3) in the red cell membrane) and the participants were divided into O3I tertile groups: T1 < 5.47%, T2 = 5.47–6.75%, T3 > 6.75%. Potential confounding factors of BMI, inflammatory status (C-reactive Protein), physical activity (total MET-min/wk), alpha1-acid glycoprotein, serum ferritin and hemoglobin, were assessed. Data reported as z-scores (mean ± SD), analyses via ANOVA and ANCOVA. Results Two hundred ninety-nine women (26.9 ± 5.4 y) completed the study (O3I data, n = 288). The ANOVA showed no overall group differences but a significant group × cognition domain interaction (p < 0.01). Post hoc tests showed that participants in the low O3I tertile group scored significantly lower on attention than the middle group (p = 0.01; ES = 0.45 [0.15–0.74]), while the difference with the high group was borderline significant (p = 0.052; ES = 0.38 [0.09–0.68]). After confounder adjustments, the low group had lower attention scores than both the middle (p = 0.01) and high (p = 0.048) groups. These findings were supported by univariate analyses which found significant group differences for the attention domain only (p = 0.004). Conclusions Cognitive function in the attention domain was lower in women with lower O3I, but still within normal range. This reduced but normal level of cognition potentially provides a lower baseline from which cognition would decline with age. Further investigation of individuals with low n-3 PUFA status is warranted.
Collapse
Affiliation(s)
- Rebecca L Cook
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia
| | - Helen M Parker
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Cheyne E Donges
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - Nicholas J O'Dwyer
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia.,School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - Hoi Lun Cheng
- Academic Department of Adolescent Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | - Katharine S Steinbeck
- Academic Department of Adolescent Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | - Eka P Cox
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia
| | - Janet L Franklin
- Metabolism and Obesity Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Helen T O'Connor
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
27
|
Deák F, Anderson RE, Fessler JL, Sherry DM. Novel Cellular Functions of Very Long Chain-Fatty Acids: Insight From ELOVL4 Mutations. Front Cell Neurosci 2019; 13:428. [PMID: 31616255 PMCID: PMC6763723 DOI: 10.3389/fncel.2019.00428] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ferenc Deák
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Robert E Anderson
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jennifer L Fessler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David M Sherry
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
28
|
Couce ML, de Castro MJ, de Lamas C, Leis R. Effects of LC-PUFA Supplementation in Patients with Phenylketonuria: A Systematic Review of Controlled Trials. Nutrients 2019; 11:nu11071537. [PMID: 31284588 PMCID: PMC6682937 DOI: 10.3390/nu11071537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 01/13/2023] Open
Abstract
Evidence suggests a role of long chain polyunsaturated fatty acids (LC-PUFA), in which animal foods are especially rich, in optimal neural development. The LC-PUFAs docosahexaenoic acid (DHA) and arachidonic acid, found in high concentrations in the brain and retina, have potential beneficial effects on cognition, and motor and visual functions. Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism. The treatment of PKU consists of a phenylalanine-free diet, which limits the intake of natural proteins of high biological value. In this systematic review, we summarize the available evidence supporting a role for LC-PUFA supplementation as an effective means of increasing LC-PUFA levels and improving visual and neurocognitive functions in PKU patients. Data from controlled trials of children and adults (up to 47 years of age) were obtained by searching the MEDLINE and SCOPUS databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. For each selected study, the risk of bias was assessed applying the methodology of the Cochrane Collaboration. The findings indicate that DHA supplementation in PKU patients from 2 weeks to 47 years of age improves DHA status and decreases visual evoked potential P100 wave latency in PKU children from 1 to 11 years old. Neurocognitive data are inconclusive.
Collapse
Affiliation(s)
- María Luz Couce
- Department of Pediatrics, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain.
- IDIS-Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain.
- CIBERER, Pabellón 11, 28029 Madrid, Spain.
- Universidade de Santiago de Compostela, 15704 Santiago de Compostela, Spain.
| | - María José de Castro
- Department of Pediatrics, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- IDIS-Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBERER, Pabellón 11, 28029 Madrid, Spain
| | - Carmela de Lamas
- CIBERER, Pabellón 11, 28029 Madrid, Spain
- Universidade de Santiago de Compostela, 15704 Santiago de Compostela, Spain
- Department of Pediatrics, Pediatric Metabolism and Research Unit, Reina Sofia University Hospital, IMIBIC, 14004 Cordoba, Spain
| | - Rosaura Leis
- Department of Pediatrics, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- IDIS-Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBERER, Pabellón 11, 28029 Madrid, Spain
- Universidade de Santiago de Compostela, 15704 Santiago de Compostela, Spain
| |
Collapse
|
29
|
[Early prevention and nutritional education]. SOINS; LA REVUE DE RÉFÉRENCE INFIRMIÈRE 2019; 64:25-28. [PMID: 30771844 DOI: 10.1016/j.soin.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To be effective, prevention must not remain a theoretical concept and its implementation must not be perceived negatively. Ignorance and prejudices need to be overcome. From conception to adolescence, simple and easy-to-follow nutritional education measures, as well as practical and concrete advice, can be easily applied. Caregivers have an important role to play in communicating these guidelines.
Collapse
|
30
|
O' Donovan F, Carney S, Kennedy J, Hayes H, Pender N, Boland F, Stanton A. Associations and effects of omega-3 polyunsaturated fatty acids on cognitive function and mood in healthy adults: a protocol for a systematic review of observational and interventional studies. BMJ Open 2019; 9:e027167. [PMID: 31230010 PMCID: PMC6596976 DOI: 10.1136/bmjopen-2018-027167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION The association between long-chain omega-3 polyunsaturated fatty acids (PUFAs), brain health, cognitive function and mood has been the subject of intensive research. Marine-derived omega-3 PUFAs, such as docosahexaenoic acid and eicosapentaenoic acid, are highly concentrated in neuronal membranes and affect brain function. Many studies have found that consumption of omega-3 PUFAs is associated with lower risk of cognitive or mood dysfunction. However, other studies have demonstrated no beneficial effects. There appears to be inconsistent findings from both epidemiological and randomised controlled trial (RCT) studies. The aim of this review is to compile the previous literature and establish the efficacy of omega-3 PUFAs in enhancing cognitive performance and mood in healthy adults. METHODS AND ANALYSIS Prospective cohort studies, RCTs, controlled clinical trials, controlled before and after studies, interrupted time series with a minimum of 3 months duration will be eligible for inclusion. Studies on healthy adults over the age of 18, where the intervention/exposure of interest is omega-3 PUFAs will be included. The outcomes of interest are cognition and mood. Studies will be eligible for inclusion if they measure changes in cognitive function or mood, or the risk of developing cognitive or mood disorders using validated tools and assessments. Relevant search terms and keywords will be used to generate a systematic search in Cochrane Library, MEDLINE, EMBASE, PsycINFO, Cumulative Index to Nursing and Allied Health Literature, Web of Science, Scopus and the grey literature. Two independent reviewers will screen studies for eligibility. Risk of bias in cohort and non-randomised studies will be assessed using the ROBINS-I tool. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials will be used for RCTs. If there are sufficient data, a meta-analysis will be conducted. ETHICS AND DISSEMINATION This systematic review does not involve primary data collection and therefore formal ethical approval is not required. Results will be disseminated through peer reviewed publications, conference presentations and the popular press. PROSPERO REGISTRATION NUMBER CRD42018080800.
Collapse
Affiliation(s)
- Fiona O' Donovan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Food Innovation Department, Devenish Nutrition Ltd, Belfast, UK
- Department of Psychology, Beaumont Hospital, Dublin, Ireland
| | - Síle Carney
- Department of Psychology, Beaumont Hospital, Dublin, Ireland
- Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Jean Kennedy
- Food Innovation Department, Devenish Nutrition Ltd, Belfast, UK
| | - Heather Hayes
- Food Innovation Department, Devenish Nutrition Ltd, Belfast, UK
| | - Niall Pender
- Department of Psychology, Beaumont Hospital, Dublin, Ireland
| | - Fiona Boland
- Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Food Innovation Department, Devenish Nutrition Ltd, Belfast, UK
| |
Collapse
|
31
|
Mao X, Chen C, Xun P, Daviglus M, Steffen LM, Jacobs DR, Van Horn L, Sidney S, Zhu N, He K. Effects of seafood consumption and toenail mercury and selenium levels on cognitive function among American adults: 25 y of follow up. Nutrition 2019; 61:77-83. [PMID: 30703573 PMCID: PMC6422693 DOI: 10.1016/j.nut.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The aim of this study was to examine the longitudinal association between seafood and intake of long-chain ω-3 polyunsaturated fatty acids (LCω-3 PUFA) and cognitive function and to explore the possible effect modifications owing to mercury (Hg) and selenium (Se) levels. METHODS Participants (N = 3231) from the CARDIA (Coronary Artery Risk Development in Young Adults) study underwent baseline examination and were reexamined in eight follow-up visits. Diet was assessed at baseline and in exam years 7 and 20. Toenail Hg and Se were measured at exam year 2. Cognitive function was measured at exam year 25 using three tests: Rey Auditory Verbal Learning Test (RAVLT), Digit Symbol Substitution Test (DSST), and the Stroop test. The general linear regression model was used to examine cumulative average intakes of LCω-3 PUFA and seafood in relation to the cognitive test scores; and to explore the possible effect modifications caused by Hg and Se. RESULTS LCω-3 PUFA intake was significantly associated with better performance in the DSST test (quintile 5 versus quintile 1; mean difference = 1.74; 95% confidence interval, 0.19-3.29; Ptrend, 0.048]), but not in the RAVLT and Stroop tests. Similar results were observed for intakes of eicosapentaenoic acid, docosahexaenoic acid, and non-fried seafood. The observed associations were more pronounced in participants with body mass index ≥25 kg/m2, but not significantly modified by toenail Hg or Se. CONCLUSION This longitudinal study supported the hypothesis that LCω-3 PUFA or non-fried seafood intake is associated with better cognitive performance in psychomotor speed among US adults, especially those who are overweight or obese.
Collapse
Affiliation(s)
- Xuanxia Mao
- Department of Clinical Nutrition, School of Medicine, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China; Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Chen
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Martha Daviglus
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Na Zhu
- Indiana University Health Arnett Hospital, Lafayette, Indiana, USA
| | - Ka He
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
32
|
Perinatal nutrition impacts on the functional development of the visual tract in infants. Pediatr Res 2019; 85:72-78. [PMID: 30237571 DOI: 10.1038/s41390-018-0161-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE We investigated the associations of maternal diet and serum fatty acids during pregnancy and in early infancy on infantile neurodevelopment. METHODS Pattern-reversal visual evoked potentials (pVEP) as depictors of central nervous system maturation were recorded from 56 children when they were 2 years old. Maternal nutrient intakes were calculated from food diaries and fish consumption from questionnaires collected during pregnancy. Serum phospholipid fatty acids were determined by gas chromatography in late pregnancy and from infants at 1 month of age. RESULTS The children of the women who consumed fish three or more times per week during the last trimester of pregnancy had a higher pVEP component P100 amplitude for 60' (mean 23.4, SD 8.1) and 30' (mean 20.4, SD 6.7) of arcminute check sizes compared to those who consumed fish 0-2 times per week (mean 15.0, SD 4.8, p = 0.023, adjusted for birth weight and gender p = 0.058 and mean 13.4, SD 2.0, respectively, p = 0.028, adjusted p = 0.072). Maternal and child serum phospholipid fatty acids correlated with child pVEP measurements. CONCLUSION The results of this small-scale study suggest that fish consumption during pregnancy and perinatal serum fatty acid status may associate with neurodevelopment within visual system during infancy.
Collapse
|
33
|
Reimers A, Ljung H. The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Ther Adv Psychopharmacol 2019; 9:2045125319858901. [PMID: 31258889 PMCID: PMC6591664 DOI: 10.1177/2045125319858901] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of neurologic and psychiatric diseases has been increasing for decades and, given the moderate therapeutic efficacy and safety profile of existing pharmacological treatments, there is an urgent need for new therapeutic approaches. Nutrition has recently been recognized as an important factor for the prevention and treatment of neuropsychiatric disorders. The omega-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play critical roles in neuronal cell function and neurotransmission as well as inflammatory and immune reactions that are involved in neuropsychiatric disease states. A large number of experimental and epidemiological studies provide a strong basis for interventional clinical trials that assessed the clinical efficacy of n-3 PUFAs in various neurological and psychiatric disorders. Most of these trials found beneficial effects of dietary supplementation with EPA and DHA, and no serious safety concerns have emerged. This review gives an introduction to recent findings on the clinical efficacy of n-3 PUFAs in various neuropsychiatric disorders and the underlying biochemical mechanisms. In addition, the reader will be enabled to identify common methodological weaknesses of clinical studies on n-3 PUFAs, and suggestions for the design of future studies are given.
Collapse
Affiliation(s)
- Arne Reimers
- Department of Clinical Chemistry and Pharmacology, Division of Laboratory Medicine, Klinikgatan 17, Lund, 22185, Sweden
| | - Hanna Ljung
- Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
34
|
Demmelmair H, MacDonald A, Kotzaeridou U, Burgard P, Gonzalez-Lamuno D, Verduci E, Ersoy M, Gokcay G, Alyanak B, Reischl E, Müller-Felber W, Faber FL, Handel U, Paci S, Koletzko B. Determinants of Plasma Docosahexaenoic Acid Levels and Their Relationship to Neurological and Cognitive Functions in PKU Patients: A Double Blind Randomized Supplementation Study. Nutrients 2018; 10:nu10121944. [PMID: 30544518 PMCID: PMC6316534 DOI: 10.3390/nu10121944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023] Open
Abstract
Children with phenylketonuria (PKU) follow a protein restricted diet with negligible amounts of docosahexaenoic acid (DHA). Low DHA intakes might explain subtle neurological deficits in PKU. We studied whether a DHA supply modified plasma DHA and neurological and intellectual functioning in PKU. In a double-blind multicentric trial, 109 PKU patients were randomized to DHA doses from 0 to 7 mg/kg&day for six months. Before and after supplementation, we determined plasma fatty acid concentrations, latencies of visually evoked potentials, fine and gross motor behavior, and IQ. Fatty acid desaturase genotypes were also determined. DHA supplementation increased plasma glycerophospholipid DHA proportional to dose by 0.4% DHA per 1 mg intake/kg bodyweight. Functional outcomes were not associated with DHA status before and after intervention and remained unchanged by supplementation. Genotypes were associated with plasma arachidonic acid levels and, if considered together with the levels of the precursor alpha-linolenic acid, also with DHA. Functional outcomes and supplementation effects were not significantly associated with genotype. DHA intakes up to 7 mg/kg did not improve neurological functions in PKU children. Nervous tissues may be less prone to low DHA levels after infancy, or higher doses might be required to impact neurological functions. In situations of minimal dietary DHA, endogenous synthesis of DHA from alpha-linolenic acid could relevantly contribute to DHA status.
Collapse
Affiliation(s)
- Hans Demmelmair
- Division Metabolic and Nutritional Medicine, LMU-Ludwig-Maximilians-Universität Munich, Dr. von Hauner Children's Hospital, 80337 Munich, Germany.
| | | | - Urania Kotzaeridou
- Division of Neuropediatrics and Metabolic Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Peter Burgard
- Division of Neuropediatrics and Metabolic Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | | | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital Milano, 20142 Milano, Italy.
| | - Melike Ersoy
- Department of Pediatric Nutrition and Metabolism, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey.
| | - Gulden Gokcay
- Department of Pediatric Nutrition and Metabolism, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey.
| | - Behiye Alyanak
- Department of Child Psychiatry, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey.
| | - Eva Reischl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Wolfgang Müller-Felber
- Division Metabolic and Nutritional Medicine, LMU-Ludwig-Maximilians-Universität Munich, Dr. von Hauner Children's Hospital, 80337 Munich, Germany.
| | - Fabienne Lara Faber
- Division Metabolic and Nutritional Medicine, LMU-Ludwig-Maximilians-Universität Munich, Dr. von Hauner Children's Hospital, 80337 Munich, Germany.
| | - Uschi Handel
- Division Metabolic and Nutritional Medicine, LMU-Ludwig-Maximilians-Universität Munich, Dr. von Hauner Children's Hospital, 80337 Munich, Germany.
| | - Sabrina Paci
- Department of Pediatrics, San Paolo Hospital Milano, 20142 Milano, Italy.
| | - Berthold Koletzko
- Division Metabolic and Nutritional Medicine, LMU-Ludwig-Maximilians-Universität Munich, Dr. von Hauner Children's Hospital, 80337 Munich, Germany.
| |
Collapse
|
35
|
Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev 2018; 11:CD003402. [PMID: 30480773 PMCID: PMC6516961 DOI: 10.1002/14651858.cd003402.pub3] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Higher intakes of foods containing omega-3 long-chain polyunsaturated fatty acids (LCPUFA), such as fish, during pregnancy have been associated with longer gestations and improved perinatal outcomes. This is an update of a review that was first published in 2006. OBJECTIVES To assess the effects of omega-3 LCPUFA, as supplements or as dietary additions, during pregnancy on maternal, perinatal, and neonatal outcomes and longer-term outcomes for mother and child. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (16 August 2018), and reference lists of retrieved studies. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing omega-3 fatty acids (as supplements or as foods, stand-alone interventions, or with a co-intervention) during pregnancy with placebo or no omega-3, and studies or study arms directly comparing omega-3 LCPUFA doses or types. Trials published in abstract form were eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently assessed study eligibility, extracted data, assessed risk of bias in trials and assessed quality of evidence for prespecified birth/infant, maternal, child/adult and health service outcomes using the GRADE approach. MAIN RESULTS In this update, we included 70 RCTs (involving 19,927 women at low, mixed or high risk of poor pregnancy outcomes) which compared omega-3 LCPUFA interventions (supplements and food) compared with placebo or no omega-3. Overall study-level risk of bias was mixed, with selection and performance bias mostly at low risk, but there was high risk of attrition bias in some trials. Most trials were conducted in upper-middle or high-income countries; and nearly half the trials included women at increased/high risk for factors which might increase the risk of adverse maternal and birth outcomes.Preterm birth < 37 weeks (13.4% versus 11.9%; risk ratio (RR) 0.89, 95% confidence interval (CI) 0.81 to 0.97; 26 RCTs, 10,304 participants; high-quality evidence) and early preterm birth < 34 weeks (4.6% versus 2.7%; RR 0.58, 95% CI 0.44 to 0.77; 9 RCTs, 5204 participants; high-quality evidence) were both lower in women who received omega-3 LCPUFA compared with no omega-3. Prolonged gestation > 42 weeks was probably increased from 1.6% to 2.6% in women who received omega-3 LCPUFA compared with no omega-3 (RR 1.61 95% CI 1.11 to 2.33; 5141 participants; 6 RCTs; moderate-quality evidence).For infants, there was a possibly reduced risk of perinatal death (RR 0.75, 95% CI 0.54 to 1.03; 10 RCTs, 7416 participants; moderate-quality evidence: 62/3715 versus 83/3701 infants) and possibly fewer neonatal care admissions (RR 0.92, 95% CI 0.83 to 1.03; 9 RCTs, 6920 participants; moderate-quality evidence - 483/3475 infants versus 519/3445 infants). There was a reduced risk of low birthweight (LBW) babies (15.6% versus 14%; RR 0.90, 95% CI 0.82 to 0.99; 15 trials, 8449 participants; high-quality evidence); but a possible small increase in large-for-gestational age (LGA) babies (RR 1.15, 95% CI 0.97 to 1.36; 6 RCTs, 3722 participants; moderate-quality evidence, for omega-3 LCPUFA compared with no omega-3. Little or no difference in small-for-gestational age or intrauterine growth restriction (RR 1.01, 95% CI 0.90 to 1.13; 8 RCTs, 6907 participants; moderate-quality evidence) was seen.For the maternal outcomes, there is insufficient evidence to determine the effects of omega-3 on induction post-term (average RR 0.82, 95% CI 0.22 to 2.98; 3 trials, 2900 participants; low-quality evidence), maternal serious adverse events (RR 1.04, 95% CI 0.40 to 2.72; 2 trials, 2690 participants; low-quality evidence), maternal admission to intensive care (RR 0.56, 95% CI 0.12 to 2.63; 2 trials, 2458 participants; low-quality evidence), or postnatal depression (average RR 0.99, 95% CI 0.56 to 1.77; 2 trials, 2431 participants; low-quality evidence). Mean gestational length was greater in women who received omega-3 LCPUFA (mean difference (MD) 1.67 days, 95% CI 0.95 to 2.39; 41 trials, 12,517 participants; moderate-quality evidence), and pre-eclampsia may possibly be reduced with omega-3 LCPUFA (RR 0.84, 95% CI 0.69 to 1.01; 20 trials, 8306 participants; low-quality evidence).For the child/adult outcomes, very few differences between antenatal omega-3 LCPUFA supplementation and no omega-3 were observed in cognition, IQ, vision, other neurodevelopment and growth outcomes, language and behaviour (mostly low-quality to very low-quality evidence). The effect of omega-3 LCPUFA on body mass index at 19 years (MD 0, 95% CI -0.83 to 0.83; 1 trial, 243 participants; very low-quality evidence) was uncertain. No data were reported for development of diabetes in the children of study participants. AUTHORS' CONCLUSIONS In the overall analysis, preterm birth < 37 weeks and early preterm birth < 34 weeks were reduced in women receiving omega-3 LCPUFA compared with no omega-3. There was a possibly reduced risk of perinatal death and of neonatal care admission, a reduced risk of LBW babies; and possibly a small increased risk of LGA babies with omega-3 LCPUFA.For our GRADE quality assessments, we assessed most of the important perinatal outcomes as high-quality (e.g. preterm birth) or moderate-quality evidence (e.g. perinatal death). For the other outcome domains (maternal, child/adult and health service outcomes) GRADE ratings ranged from moderate to very low, with over half rated as low. Reasons for downgrading across the domain were mostly due to design limitations and imprecision.Omega-3 LCPUFA supplementation during pregnancy is an effective strategy for reducing the incidence of preterm birth, although it probably increases the incidence of post-term pregnancies. More studies comparing omega-3 LCPUFA and placebo (to establish causality in relation to preterm birth) are not needed at this stage. A further 23 ongoing trials are still to report on over 5000 women, so no more RCTs are needed that compare omega-3 LCPUFA against placebo or no intervention. However, further follow-up of completed trials is needed to assess longer-term outcomes for mother and child, to improve understanding of metabolic, growth and neurodevelopment pathways in particular, and to establish if, and how, outcomes vary by different types of omega-3 LCPUFA, timing and doses; or by characteristics of women.
Collapse
Affiliation(s)
- Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Judith C Gomersall
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Jacqueline F Gould
- The University of AdelaideSchool of PsychologyNorth Terrace, AdelaideAdelaideSouth AustraliaAustralia5001
| | - Emily Shepherd
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Sjurdur F Olsen
- Statens Serum InstitutCentre for Fetal Programming, Department of EpidemiologyCopenhagenDenmark
| | - Maria Makrides
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideAustraliaAustralia
- Women's and Children's Health Research InstituteNorth AdelaideAustralia
| | | |
Collapse
|
36
|
Checa-Ros A, Haro-García A, Seiquer I, Molina-Carballo A, Uberos-Fernández J, Muñoz-Hoyos A. Early monitoring of fatty acid profile in children with attention deficit and/or hyperactivity disorder under treatment with omega-3 polyunsaturated fatty acids. Minerva Pediatr 2018; 71:313-325. [PMID: 30419741 DOI: 10.23736/s0026-4946.18.04975-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cognitive effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) might make them helpful in attention deficit/hyperactivity disorder (ADHD). However, the results derived from supplementation studies in children depend on the respective combinations and the study period. We aimed to investigate the serum fatty acid profile, attention scores and the tolerability in a group of ADHD children after receiving methylphenidate (MPH) and ω-3 PUFAs for 1 month. METHODS A combination of MPH (1 mg/kg/day) and eicosapentaenoic (EPA, 70 mg/day) + docosahexaenoic acids (DHA, 250 mg/day) was administered to 40 ADHD children (7-15 years). An analysis of serum fatty acids by gas chromatography and an assessment of attention by using the Magallanes Scale of Visual Attention (MSVA) were carried out before and after 1 month of treatment. RESULTS Our data revealed significant decreases of several ω-6 PUFAs, like arachidonic acid (P<0.0259). EPA and DHA concentrations increased by 27% and 3% respectively, and the ω-6/ω-3 index slightly decreased. The quality of attention significantly increased (P<0.026) and an improvement of ADHD core symptoms was reported both by parents and by teachers. No severe side effects occurred. CONCLUSIONS Results demonstrate that the combination of MPH and EPA+DHA at the tested doses has positive clinical effects and an adequate safety profile. Therefore, our study suggests that ω-3 PUFAs may represent a feasible and a safe adjuvant therapy in children with ADHD and might enhance the effects of MPH. Further long-term follow-up studies are required to confirm these initial findings.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Department of Pediatrics, School of Medicine, San Cecilio University Hospital, University of Granada, Granada, Spain - .,Aston Brain Centre, Aston University, Birmingham, UK -
| | - Ana Haro-García
- Department of Physiology and Biochemistry of Animal Nutrition (EEZ-CSIC), Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Isabel Seiquer
- Department of Physiology and Biochemistry of Animal Nutrition (EEZ-CSIC), Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Antonio Molina-Carballo
- Department of Pediatrics, School of Medicine, San Cecilio University Hospital, University of Granada, Granada, Spain
| | - José Uberos-Fernández
- Department of Pediatrics, School of Medicine, San Cecilio University Hospital, University of Granada, Granada, Spain
| | - Antonio Muñoz-Hoyos
- Department of Pediatrics, School of Medicine, San Cecilio University Hospital, University of Granada, Granada, Spain
| |
Collapse
|
37
|
Pelgrim CE, Peterson JD, Gosker HR, Schols AMWJ, van Helvoort A, Garssen J, Folkerts G, Kraneveld AD. Psychological co-morbidities in COPD: Targeting systemic inflammation, a benefit for both? Eur J Pharmacol 2018; 842:99-110. [PMID: 30336140 DOI: 10.1016/j.ejphar.2018.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
COPD is a chronic lung disease characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar abnormalities. Furthermore, COPD is often characterized by extrapulmonary manifestations and comorbidities worsening COPD progression and quality of life. A neglected comorbidity in COPD management is mental health impairment defined by anxiety, depression and cognitive problems. This paper summarizes the evidence for impaired mental health in COPD and focuses on current pharmacological intervention strategies. In addition, possible mechanisms in impaired mental health in COPD are discussed with a central role for inflammation. Many comorbidities are associated with multi-organ-associated systemic inflammation in COPD. Considering the accumulative evidence for a major role of systemic inflammation in the development of neurological disorders, it can be hypothesized that COPD-associated systemic inflammation also affects the function of the brain and is an interesting therapeutic target for nutra- and pharmaceuticals.
Collapse
Affiliation(s)
- Charlotte E Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Julia D Peterson
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Harry R Gosker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands
| | - Annemie M W J Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands
| | - Ardy van Helvoort
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands; Nutrition, Metabolism and Muscle Sciences, Nutricia Research, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Platform Immunology, Nutricia Research, Utrecht, the Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Veterinary Pharmacology & Therapeutics, Institute of Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|