1
|
Guo X, Zhang Z, Li J, Zhang S, Sun W, Xiao X, Sun Z, Xue X, Wang Z, Zhang Y. Phenotypic and transcriptome profiling of spikes reveals the regulation of light regimens on spike growth and fertile floret number in wheat. PLANT, CELL & ENVIRONMENT 2024; 47:1575-1591. [PMID: 38269615 DOI: 10.1111/pce.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The spike growth phase is critical for the establishment of fertile floret (grain) numbers in wheat (Triticum aestivum L.). Then, how to shorten the spike growth phase and increase grain number synergistically? Here, we showed high-resolution analyses of floret primordia (FP) number, morphology and spike transcriptomes during the spike growth phase under three light regimens. The development of all FP in a spike could be divided into four distinct stages: differentiation (Stage I), differentiation and morphology development concurrently (Stage II), morphology development (Stage III), and polarization (Stage IV). Compared to the short photoperiod, the long photoperiod shortened spike growth and stimulated early flowering by shortening Stage III; however, this reduced assimilate accumulation, resulting in fertile floret loss. Interestingly, long photoperiod supplemented with red light shortened the time required to complete Stages I-II, then raised assimilates supply in the spike and promoted anther development before polarization initiation, thereby increasing fertile FP number during Stage III, and finally maintained fertile FP development during Stage IV until they became fertile florets via a predicted dynamic gene network. Our findings proposed a light regimen, critical stages and candidate regulators that achieved a shorter spike growth phase and a higher fertile floret number in wheat.
Collapse
Affiliation(s)
- Xiaolei Guo
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- Department of Agronomy, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junyan Li
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Siqi Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Wan Sun
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuechen Xiao
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhencai Sun
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuzhang Xue
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Zhimin Wang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Nogueira M, Enfissi EMA, Price EJ, Menard GN, Venter E, Eastmond PJ, Bar E, Lewinsohn E, Fraser PD. Ketocarotenoid production in tomato triggers metabolic reprogramming and cellular adaptation: The quest for homeostasis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:427-444. [PMID: 38032727 PMCID: PMC10826984 DOI: 10.1111/pbi.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Plants are sessile and therefore have developed an extraordinary capacity to adapt to external signals. Here, the focus is on the plasticity of the plant cell to respond to new intracellular cues. Ketocarotenoids are high-value natural red pigments with potent antioxidant activity. In the present study, system-level analyses have revealed that the heterologous biosynthesis of ketocarotenoids in tomato initiated a series of cellular and metabolic mechanisms to cope with the formation of metabolites that are non-endogenous to the plant. The broad multilevel changes were linked to, among others, (i) the remodelling of the plastidial membrane, where the synthesis and storage of ketocarotenoids occurs; (ii) the recruiting of core metabolic pathways for the generation of metabolite precursors and energy; and (iii) redox control. The involvement of the metabolites as regulators of cellular processes shown here reinforces their pivotal role suggested in the remodelled 'central dogma' concept. Furthermore, the role of metabolic reprogramming to ensure cellular homeostasis is proposed.
Collapse
Affiliation(s)
- Marilise Nogueira
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| | | | - Elliott J. Price
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
- Present address:
RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | | | - Eudri Venter
- Plant Sciences for the Bioeconomy, Rothamsted ResearchHarpendenUK
| | | | - Einat Bar
- Department of Aromatic PlantsNewe Ya'ar Research Center Agricultural Research OrganizationRamat YishayIsrael
| | - Efraim Lewinsohn
- Department of Aromatic PlantsNewe Ya'ar Research Center Agricultural Research OrganizationRamat YishayIsrael
| | - Paul D. Fraser
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| |
Collapse
|
3
|
Li H, Lv CT, Li YT, Gao GY, Meng YF, You YL, Tian Q, Liang KQ, Chen Y, Chen H, Xia C, Rui XY, Zheng HL, Wei MY. RNA-sequencing transcriptome analysis of Avicennia marina (Forsk.) Vierh. leaf epidermis defines tissue-specific transcriptional response to salinity treatment. Sci Rep 2023; 13:7614. [PMID: 37165000 PMCID: PMC10172313 DOI: 10.1038/s41598-023-34095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Avicennia marina (Forsk.) Vierh. is a typical mangrove plant. Its epidermis contains salt glands, which can secrete excess salts onto the leaf surfaces, improving the salt tolerance of the plants. However, knowledge on the epidermis-specific transcriptional responses of A. marina to salinity treatment is lacking. Thus, physiological and transcriptomic techniques were applied to unravel the salt tolerance mechanism of A. marina. Our results showed that 400 mM NaCl significantly reduced the plant height, leaf area, leaf biomass and photosynthesis of A. marina. In addition, 1565 differentially expressed genes were identified, of which 634 and 931 were up- and down-regulated. Based on Kyoto Encyclopedia of Genes and Genomes metabolic pathway enrichment analysis, we demonstrated that decreased gene expression, especially that of OEE1, PQL2, FDX3, ATPC, GAPDH, PRK, FBP and RPE, could explain the inhibited photosynthesis caused by salt treatment. Furthermore, the ability of A. marina to cope with 400 mM NaCl treatment was dependent on appropriate hormone signalling and potential sulfur-containing metabolites, such as hydrogen sulfide and cysteine biosynthesis. Overall, the present study provides a theoretical basis for the adaption of A. marina to saline habitats and a reference for studying the salt tolerance mechanism of other mangrove plants.
Collapse
Affiliation(s)
- Huan Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao-Tian Lv
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yun-Tao Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Guo-Yv Gao
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Ya-Fei Meng
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yv-Le You
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Qi Tian
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Kun-Qi Liang
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yu Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Hao Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao Xia
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Xiang-Yun Rui
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China.
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Ming-Yue Wei
- School of Ecology, Resources and Environment, Dezhou University, DeZhou, Shandong, 253000, People's Republic of China.
| |
Collapse
|
4
|
Li L, Jin Z, Huang R, Zhou J, Song F, Yao L, Li P, Lu W, Xiao L, Quan M, Zhang D, Du Q. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. PLANT, CELL & ENVIRONMENT 2023; 46:150-170. [PMID: 36285358 DOI: 10.1111/pce.14471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Collapse
Affiliation(s)
- Lianzheng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhuoying Jin
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Rui Huang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liangchen Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Peng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang Xiao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
5
|
Xia Y, Du K, Ling A, Wu W, Li J, Kang X. Overexpression of PagSTOMAGEN, a Positive Regulator of Stomatal Density, Promotes Vegetative Growth in Poplar. Int J Mol Sci 2022; 23:ijms231710165. [PMID: 36077563 PMCID: PMC9456429 DOI: 10.3390/ijms231710165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Poplar is an important fast-growing tree, and its photosynthetic capacity directly affects its vegetative growth. Stomatal density is closely related to photosynthetic capacity and growth characteristics in plants. Here, we isolated PagSTOMAGEN from the hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its biological function in vegetative growth. PagSTOMAGEN was expressed predominantly in young tissues and localized in the plasma membrane. Compared with wild-type 84K poplars, PagSTOMAGEN-overexpressing plants displayed an increased plant height, leaf area, internode number, basal diameter, biomass, IAA content, IPR content, and stomatal density. Higher stomatal density improved the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate in transgenic poplar. The differential expression of genes related to stomatal development showed a diverged influence of PagSTOMAGEN at different stages of stomatal development. Finally, transcriptomic analysis showed that PagSTOMAGEN affected vegetative growth by affecting the expression of photosynthesis and plant hormone-related genes (such as SAUR75, PQL2, PSBX, ERF1, GNC, GRF5, and ARF11). Taken together, our data indicate that PagSTOMAGEN could positively regulate stomatal density and increase the photosynthetic rate and plant hormone content, thereby promoting vegetative growth in poplar. Our study is of great significance for understanding the relationship between stoma, photosynthesis, and yield breeding in poplar.
Collapse
Affiliation(s)
- Yufei Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Aoyu Ling
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Li
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| |
Collapse
|
6
|
Imaizumi K, Ifuku K. Binding and functions of the two chloride ions in the oxygen-evolving center of photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 153:135-156. [PMID: 35698013 DOI: 10.1007/s11120-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Light-driven water oxidation in photosynthesis occurs at the oxygen-evolving center (OEC) of photosystem II (PSII). Chloride ions (Cl-) are essential for oxygen evolution by PSII, and two Cl- ions have been found to specifically bind near the Mn4CaO5 cluster in the OEC. The retention of these Cl- ions within the OEC is critically supported by some of the membrane-extrinsic subunits of PSII. The functions of these two Cl- ions and the mechanisms of their retention both remain to be fully elucidated. However, intensive studies performed recently have advanced our understanding of the functions of these Cl- ions, and PSII structures from various species have been reported, aiding the interpretation of previous findings regarding Cl- retention by extrinsic subunits. In this review, we summarize the findings to date on the roles of the two Cl- ions bound within the OEC. Additionally, together with a short summary of the functions of PSII membrane-extrinsic subunits, we discuss the mechanisms of Cl- retention by these extrinsic subunits.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
7
|
Su X, Cao D, Pan X, Shi L, Liu Z, Dall'Osto L, Bassi R, Zhang X, Li M. Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. MOLECULAR PLANT 2022; 15:454-467. [PMID: 35123031 DOI: 10.1016/j.molp.2022.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Cyclic electron transport/flow (CET/CEF) in chloroplasts is a regulatory process essential for the optimization of plant photosynthetic efficiency. A crucial CEF pathway is catalyzed by a membrane-embedded NADH dehydrogenase-like (NDH) complex that contains at least 29 protein subunits and associates with photosystem I (PSI) to form the NDH-PSI supercomplex. Here, we report the 3.9 Å resolution structure of the Arabidopsis thaliana NDH-PSI (AtNDH-PSI) supercomplex. We constructed structural models for 26 AtNDH subunits, among which 11 are unique to chloroplasts and stabilize the core part of the NDH complex. In the supercomplex, one NDH can bind up to two PSI-light-harvesting complex I (PSI-LHCI) complexes at both sides of its membrane arm. Two minor LHCIs, Lhca5 and Lhca6, each present in one PSI-LHCI, interact with NDH and contribute to supercomplex formation and stabilization. Collectively, our study reveals the structural details of the AtNDH-PSI supercomplex assembly and provides a molecular basis for further investigation of the regulatory mechanism of CEF in plants.
Collapse
Affiliation(s)
- Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Science, Capital Normal University, Beijing 100101, P.R. China.
| | - Lifang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China; Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| |
Collapse
|
8
|
Architecture of the chloroplast PSI-NDH supercomplex in Hordeum vulgare. Nature 2022; 601:649-654. [PMID: 34879391 DOI: 10.1038/s41586-021-04277-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/23/2021] [Indexed: 11/09/2022]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex is composed of at least 29 subunits and has an important role in mediating photosystem I (PSI) cyclic electron transport (CET)1-3. The NDH complex associates with PSI to form the PSI-NDH supercomplex and fulfil its function. Here, we report cryo-electron microscopy structures of a PSI-NDH supercomplex from barley (Hordeum vulgare). The structures reveal that PSI-NDH is composed of two copies of the PSI-light-harvesting complex I (LHCI) subcomplex and one NDH complex. Two monomeric LHCI proteins, Lhca5 and Lhca6, mediate the binding of two PSI complexes to NDH. Ten plant chloroplast-specific NDH subunits are presented and their exact positions as well as their interactions with other subunits in NDH are elucidated. In all, this study provides a structural basis for further investigations on the functions and regulation of PSI-NDH-dependent CET.
Collapse
|
9
|
Yamamoto H, Sato N, Shikanai T. Critical Role of NdhA in the Incorporation of the Peripheral Arm into the Membrane-Embedded Part of the Chloroplast NADH Dehydrogenase-Like Complex. PLANT & CELL PHYSIOLOGY 2021; 62:1131-1145. [PMID: 33169158 DOI: 10.1093/pcp/pcaa143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex mediates ferredoxin-dependent plastoquinone reduction in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and further forms a supercomplex with photosystem I (PSI). Subcomplex A (SubA) mediates the electron transport and consists of eight subunits encoded by both plastid and nuclear genomes. The assembly of SubA in the stroma has been extensively studied, but it is unclear how SubA is incorporated into the membrane-embedded part of the NDH complex. Here, we isolated a novel Arabidopsis mutant chlororespiratory reduction 16 (crr16) defective in NDH activity. CRR16 encodes a chloroplast-localized P-class pentatricopeptide repeat protein conserved in angiosperms. Transcript analysis of plastid-encoded ndh genes indicated that CRR16 was responsible for the efficient splicing of the group II intron in the ndhA transcript, which encodes a membrane-embedded subunit localized to the connecting site between SubA and the membrane subcomplex (SubM). To analyze the roles of NdhA in the assembly and stability of the NDH complex, the homoplastomic knockout plant of ndhA (ΔndhA) was generated in tobacco (Nicotiana tabacum). Biochemical analyses of crr16 and ΔndhA plants indicated that NdhA was essential for stabilizing SubA and SubE but not for the accumulation of the other three subcomplexes. Furthermore, the crr16 mutant accumulated the SubA assembly intermediates in the stroma more than that in the wild type. These results suggest that NdhA biosynthesis is essential for the incorporation of SubA into the membrane-embedded part of the NDH complex at the final assembly step of the NDH-PSI supercomplex.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nozomi Sato
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
10
|
Li Q, Shah N, Zhou X, Wang H, Yu W, Luo J, Liu Y, Li G, Liu C, Zhang C, Chen P. Identification of Micro Ribonucleic Acids and Their Targets in Response to Plasmodiophora brassicae Infection in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:734419. [PMID: 34777417 PMCID: PMC8585624 DOI: 10.3389/fpls.2021.734419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 05/24/2023]
Abstract
Clubroot disease, which is caused by the soil-borne pathogen Plasmodiophora brassicae War (P. brassicae), is one of the oldest and most destructive diseases of Brassica and cruciferous crops in the world. Plant microRNAs [micro ribonucleic acids (miRNAs)] play important regulatory roles in several developmental processes. Although the role of plant miRNAs in plant-microbe interaction has been extensively studied, there are only few reports on the specific functions of miRNAs in response to P. brassicae. This study investigated the roles of miRNAs and their targets during P. brassicae infection in a pair of Brassica napus near-isogenic lines (NILs), namely clubroot-resistant line 409R and clubroot-susceptible line 409S. Small RNA sequencing (sRNA-seq) and degradome-seq were performed on root samples of 409R and 409S with or without P. brassicae inoculation. sRNA-seq identified a total of 48 conserved and 72 novel miRNAs, among which 18 had a significant differential expression in the root of 409R, while only one miRNA was differentially expressed in the root of 409S after P. brassicae inoculation. The degradome-seq analysis identified 938 miRNA target transcripts, which are transcription factors, enzymes, and proteins involved in multiple biological processes and most significantly enriched in the plant hormone signal transduction pathway. Between 409R and 409S, we found eight different degradation pathways in response to P. brassicae infection, such as those related to fatty acids. By combining published transcriptome data, we identified a total of six antagonistic miRNA-target pairs in 409R that are responsive to P. brassicae infection and involved in pathways associated with root development, hypersensitive cell death, and chloroplast metabolic synthesis. Our results reveal that P. brassicae infection leads to great changes in miRNA pool and target transcripts. More interestingly, these changes are different between 409R and 409S. Clarification of the crosstalk between miRNAs and their targets may shed new light on the possible mechanisms underlying the pathogen resistance against P. brassicae.
Collapse
Affiliation(s)
- Qian Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadil Shah
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiying Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiajie Luo
- Agricultural Technology Extension Station of Linxiang, Lincang, China
| | - Yajun Liu
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Genze Li
- Industrial Crops Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Characterization of the Free and Membrane-Associated Fractions of the Thylakoid Lumen Proteome in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22158126. [PMID: 34360890 PMCID: PMC8346976 DOI: 10.3390/ijms22158126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.
Collapse
|
12
|
Evolution of an assembly factor-based subunit contributed to a novel NDH-PSI supercomplex formation in chloroplasts. Nat Commun 2021; 12:3685. [PMID: 34140516 PMCID: PMC8211685 DOI: 10.1038/s41467-021-24065-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Chloroplast NADH dehydrogenase-like (NDH) complex is structurally related to mitochondrial Complex I and forms a supercomplex with two copies of Photosystem I (the NDH-PSI supercomplex) via linker proteins Lhca5 and Lhca6. The latter was acquired relatively recently in a common ancestor of angiosperms. Here we show that NDH-dependent Cyclic Electron Flow 5 (NDF5) is an NDH assembly factor in Arabidopsis. NDF5 initiates the assembly of NDH subunits (PnsB2 and PnsB3) and Lhca6, suggesting that they form a contact site with Lhca6. Our analysis of the NDF5 ortholog in Physcomitrella and angiosperm genomes reveals the subunit PnsB2 to be newly acquired via tandem gene duplication of NDF5 at some point in the evolution of angiosperms. Another Lhca6 contact subunit, PnsB3, has evolved from a protein unrelated to NDH. The structure of the largest photosynthetic electron transport chain complex has become more complicated by acquiring novel subunits and supercomplex formation with PSI. The chloroplast NDH complex interacts with Photosystem I to form the NDH-PSI supercomplex. Here the authors show that Arabidopsis NDF5 shares a common ancestor with the NDH subunit PnsB2 and acts as an NDH assembly factor initiating the assembly of PnsB2 and the evolutionarily distinct PnsB3.
Collapse
|
13
|
Pshenichnikova TA, Osipova SV, Smirnova OG, Leonova IN, Permyakova MD, Permyakov AV, Rudikovskaya EG, Konstantinov DK, Verkhoturov VV, Lohwasser U, Börner A. Regions of Chromosome 2A of Bread Wheat ( Triticum aestivum L.) Associated with Variation in Physiological and Agronomical Traits under Contrasting Water Regimes. PLANTS (BASEL, SWITZERLAND) 2021; 10:1023. [PMID: 34065351 PMCID: PMC8161357 DOI: 10.3390/plants10051023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
Understanding the genetic architecture of drought tolerance is of great importance for overcoming the negative impact of drought on wheat yield. Earlier, we discovered the critical role of chromosome 2A for the drought-tolerant status of wheat spring cultivar Saratovskaya 29. A set of 92 single-chromosome recombinant double haploid (SCRDH) lines were obtained in the genetic background of Saratovskaya 29. The lines carry fragments of chromosome 2A from the drought-sensitive cultivar Yanetzkis Probat. The SCRDH lines were used to identify regions on chromosome 2A associated with the manifestation of physiological and agronomical traits under distinct water supply, and to identify candidate genes that may be associated with adaptive gene networks in wheat. Genotyping was done with Illumina Infinium 15k wheat array using 590 SNP markers with 146 markers being polymorphic. In four identified regions of chromosome 2A, 53 out of 58 QTLs associated with physiological and agronomic traits under contrasting water supply were mapped. Thirty-nine candidate genes were identified, of which 18 were transcription factors. The region 73.8-78.1 cM included the largest number of QTLs and candidate genes. The variation in SNPs associated with agronomical and physiological traits revealed among the SCRDH lines may provide useful information for drought related marker-assisted breeding.
Collapse
Affiliation(s)
| | - Svetlana V. Osipova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia; (S.V.O.); (M.D.P.); (A.V.P.); (E.G.R.)
- Faculty of Biology and Soil Science, Irkutsk State University, 664003 Irkutsk, Russia
| | - Olga G. Smirnova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (O.G.S.); (I.N.L.); (D.K.K.)
| | - Irina N. Leonova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (O.G.S.); (I.N.L.); (D.K.K.)
| | - Marina D. Permyakova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia; (S.V.O.); (M.D.P.); (A.V.P.); (E.G.R.)
| | - Alexey V. Permyakov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia; (S.V.O.); (M.D.P.); (A.V.P.); (E.G.R.)
| | - Elena G. Rudikovskaya
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia; (S.V.O.); (M.D.P.); (A.V.P.); (E.G.R.)
| | - Dmitrii K. Konstantinov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (O.G.S.); (I.N.L.); (D.K.K.)
| | - Vasiliy V. Verkhoturov
- Institute of Food Engineering and Biotechnology, National Research Irkutsk State Technical University, 664074 Irkutsk, Russia;
| | - Ulrike Lohwasser
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; (U.L.); (A.B.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; (U.L.); (A.B.)
| |
Collapse
|
14
|
Song H, Huang Y, Gu B. QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria). PLoS One 2020; 15:e0227663. [PMID: 33170849 PMCID: PMC7654804 DOI: 10.1371/journal.pone.0227663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Heat is a major abiotic stress that seriously affects watermelon (Citrullus lanatus) production. However, its effects may be mitigated through grafting watermelon to heat tolerant bottle gourd (Lagenaria siceraria) rootstocks. Understanding the genetic basis of heat tolerance and development of reliable DNA markers to indirectly select for the trait are necessary in breeding for new varieties with heat tolerance. The objectives of this study were to investigate the inheritance of heat tolerance and identify molecular markers associated with heat tolerance in bottle gourd. A segregating F2 population was developed from a cross between two heat tolerant and sensitive inbred lines. The population was phenotyped for relative electrical conductivity (REC) upon high temperature treatment which was used as an indicator for heat tolerance. QTL-seq was performed to identify regions associated with heat tolerance. We found that REC-based heat tolerance in this population exhibited recessive inheritance. Seven heat-tolerant quantitative trait loci (qHT1.1, qHT2.1, qHT2.2, qHT5.1, qHT6.1, qHT7.1, and qHT8.1) were identified with qHT2.1 being a promising major-effect QTL. In the qHT2.1 region, we identified three non-synonymous SNPs that were potentially associated with heat tolerance. These SNPs were located in the genes that may play roles in pollen sterility, intracellular transport, and signal recognition. Association of the three SNPs with heat tolerance was verified in segregating F2 populations, which could be candidate markers for marker assisted selection for heat tolerance in bottle gourd. The qHT2.1 region is an important finding that may be used for fine mapping and discovery of novel genes associated with heat tolerance in bottle gourd.
Collapse
Affiliation(s)
- Hui Song
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
- * E-mail:
| | - Yunping Huang
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| | - Binquan Gu
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Vessal S, Arefian M, Siddique KHM. Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings. BMC Genomics 2020; 21:523. [PMID: 32727351 PMCID: PMC7392671 DOI: 10.1186/s12864-020-06930-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype. Results Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g− 1 FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins—including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein—may play a functional role in drought tolerance in chickpea. Conclusions This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.
Collapse
Affiliation(s)
- Saeedreza Vessal
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Arefian
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
16
|
Ishikawa N, Yokoe Y, Nishimura T, Nakano T, Ifuku K. PsbQ-Like Protein 3 Functions as an Assembly Factor for the Chloroplast NADH Dehydrogenase-Like Complex in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:1252-1261. [PMID: 32333781 DOI: 10.1093/pcp/pcaa050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Angiosperms have three PsbQ-like (PQL) proteins in addition to the PsbQ subunit of the oxygen-evolving complex of photosystem II. Previous studies have shown that two PQL proteins, PnsL2 and PnsL3, are subunits of the chloroplast NADH dehydrogenase-like (NDH) complex involved in the photosystem I (PSI) cyclic electron flow. In addition, another PsbQ homolog, PQL3, is required for the NDH activity; however, the molecular function of PQL3 has not been elucidated. Here, we show that PQL3 is an assembly factor, particularly for the accumulation of subcomplex B (SubB) of the chloroplast NDH. In the pql3 mutant of Arabidopsis thaliana, the amounts of NDH subunits in SubB, PnsB1 and PsnB4, were decreased, causing a severe reduction in the NDH-PSI supercomplex. Analysis using blue native polyacrylamide gel electrophoresis suggested that the incorporation of PnsL3 into SubB was affected in the pql3 mutant. Unlike other PsbQ homologs, PQL3 was weakly associated with thylakoid membranes and was only partially protected from thermolysin digestion. Consistent with the function as an assembly factor, PQL3 accumulated independently in other NDH mutants, such as pnsl1-3. Furthermore, PQL3 accumulated in young leaves in a manner similar to the accumulation of CRR3, an assembly factor for SubB. These results suggest that PQL3 has developed a distinct function as an assembly factor for the NDH complex during evolution of the PsbQ protein family in angiosperms.
Collapse
Affiliation(s)
- Noriko Ishikawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Yokoe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taishi Nishimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Nakano
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Vangelisti A, Guidi L, Cavallini A, Natali L, Lo Piccolo E, Landi M, Lorenzini G, Malorgio F, Massai R, Nali C, Pellegrini E, Rallo G, Remorini D, Vernieri P, Giordani T. Red versus green leaves: transcriptomic comparison of foliar senescence between two Prunus cerasifera genotypes. Sci Rep 2020; 10:1959. [PMID: 32029804 PMCID: PMC7005320 DOI: 10.1038/s41598-020-58878-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 11/08/2022] Open
Abstract
The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Fernando Malorgio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Rallo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
18
|
Zhang M, Fu MM, Qiu CW, Cao F, Chen ZH, Zhang G, Wu F. Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. Int J Mol Sci 2019; 20:E791. [PMID: 30759829 PMCID: PMC6387302 DOI: 10.3390/ijms20030791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/23/2022] Open
Abstract
Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, H⁺K⁺-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghai⁻Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.
Collapse
Affiliation(s)
- Mian Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China.
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Campus, University of Western Sydney, Penrith, NSW 2751, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
19
|
Kato Y, Odahara M, Fukao Y, Shikanai T. Stepwise evolution of supercomplex formation with photosystem I is required for stabilization of chloroplast NADH dehydrogenase-like complex: Lhca5-dependent supercomplex formation in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:937-948. [PMID: 30176081 DOI: 10.1111/tpj.14080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 05/25/2023]
Abstract
In angiosperms, such as Arabidopsis and barley, the chloroplast NADH dehydrogenase-like (NDH) complex associates with two copies of photosystem I (PSI) supercomplex to form an NDH-PSI supercomplex for the stabilization of the NDH complex. Two linker proteins, Lhca5 and Lhca6, are members of the light-harvesting complex I (LHCI) family and mediate this supercomplex formation. The liverwort Marchantia polymorpha has branched from the basal land plant lineage and has neither Lhca5 nor Lhca6. Consequently, the NDH complex does not form a supercomplex with PSI in this plant. The Lhca6 gene does not seem to exist also in the moss Physcomitrella patens (Physcomitrella). Conversely, the Lhca5 gene has been found in Physcomitrella, although experimental evidence is still lacking for its contribution to NDH-PSI supercomplex formation as a linker. Here, we biochemically characterized the Lhca5 knock-out mutant (lhca5) in Physcomitrella. The NDH-PSI supercomplex observed in wild-type Physcomitrella was absent in the lhca5 mutant. Lhca5 protein was detected in this NDH-PSI supercomplex. Some PSI and NDH subunits were co-immunoprecipitated with Lhca5-HA. These results indicate that the Physcomitrella gene is the functional ortholog of Lhca5 reported in Arabidopsis. Between Physcomitrella and Arabidopsis, the stromal loop region is highly conserved in Lhca5 proteins but not in other LHCI members. We found that Lhca5 contributed to the stable accumulation of the NDH complex, but part of the NDH complex was still sensitive to high light intensity, even in the wild-type. We considered that angiosperms acquired another linker protein, Lhca6, to further stabilize the NDH complex.
Collapse
Affiliation(s)
- Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
20
|
Photosystem II Extrinsic Proteins and Their Putative Role in Abiotic Stress Tolerance in Higher Plants. PLANTS 2018; 7:plants7040100. [PMID: 30441780 PMCID: PMC6313935 DOI: 10.3390/plants7040100] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
Abstract
Abiotic stress remains one of the major challenges in managing and preventing crop loss. Photosystem II (PSII), being the most susceptible component of the photosynthetic machinery, has been studied in great detail over many years. However, much of the emphasis has been placed on intrinsic proteins, particularly with respect to their involvement in the repair of PSII-associated damage. PSII extrinsic proteins include PsbO, PsbP, PsbQ, and PsbR in higher plants, and these are required for oxygen evolution under physiological conditions. Changes in extrinsic protein expression have been reported to either drastically change PSII efficiency or change the PSII repair system. This review discusses the functional role of these proteins in plants and indicates potential areas of further study concerning these proteins.
Collapse
|
21
|
Ma J, Zhang D, Cao Y, Wang L, Li J, Lübberstedt T, Wang T, Li Y, Li H. Heterosis-related genes under different planting densities in maize. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5077-5087. [PMID: 30085089 DOI: 10.1093/jxb/ery282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/23/2018] [Indexed: 05/23/2023]
Abstract
Heterosis and increasing planting density have contributed to improving maize grain yield (GY) for several decades. As planting densities increase, the GY per plot also increases, whereas the contribution of heterosis to GY decreases. There are trade-offs between heterosis and planting density, and the transcriptional characterization of heterosis may explain the mechanism involved. In this study, 48 transcriptome libraries were sequenced from four inbred Chinese maize lines and their F1 hybrids. They were planted at densities of 45000 and 67500 plants ha-1. Maternal-effect differentially expressed genes (DEGs) played important roles in processes related to photosynthesis and carbohydrate biosynthesis and metabolism. Paternal-effect DEGs participated in abiotic/biotic stress response and plant hormone production under high planting density. Weighted gene co-expression network analysis revealed that high planting density induced heterosis-related genes regulating abiotic/biotic stress response, plant hormone biosynthesis, and ubiquitin-mediated proteolysis, but repressed other genes regulating energy formation. Under high planting density, maternal genes were mainly enriched in the photosynthesis reaction center, while paternal genes were mostly concentrated in the peripheral antenna system. Four important genes were identified in maize heterosis and high planting density, all with functions in photosynthesis, starch biosynthesis, auxin metabolism, gene silencing, and RNAi.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China
| | - Lifeng Wang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China
| | - Jingjing Li
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China
| | | | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Huiyong Li
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China
| |
Collapse
|
22
|
Otani T, Kato Y, Shikanai T. Specific substitutions of light-harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase-like complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:122-130. [PMID: 29385648 DOI: 10.1111/tpj.13846] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, the chloroplast NADH-dehydrogenase-like (NDH) complex is sandwiched between two copies of photosystem I (PSI) supercomplex, consisting of a PSI core and four light-harvesting complex I (LHCI) proteins (PSI-LHCI) to form the NDH-PSI supercomplex. Two minor LHCI proteins, Lhca5 and Lhca6, contribute to the interaction of each PSI-LHCI copy with the NDH complex. Here, large-pore blue-native gel electrophoresis revealed that, in addition to this complex, there were at least two types of higher-order association of more LHCI copies with the NDH complex. In single-particle images, this higher-order association of PSI-LHCI preferentially occurs at the left side of the NDH complex when viewed from the stromal side, placing subcomplex A at the top (Yadav et al., Biochim. Biophys. Acta - Bioenerg., 1858, 2017, 12). The association was impaired in the lhca6 mutant but not in the lhca5 mutant, suggesting that the left copy of PSI-LHCI was linked to the NDH complex via Lhca6. From an analysis of subunit compositions of the NDH-PSI supercomplex in lhca5 and lhca6 mutants, we propose that Lhca6 substitutes for Lhca2 in the left copy of PSI-LHCI, whereas Lhca5 substitutes for Lhca4 in the right copy. In the lhca2 mutant, Lhca3 was specifically stabilized in the NDH-PSI supercomplex through heterodimer formation with Lhca6. In the left copy of PSI-LHCI, subcomplex B, Lhca6 and NdhD likely formed the core of the supercomplex interaction. In contrast, a larger protein complex, including at least subcomplexes B and L and NdhB, was needed to form the contact site with Lhca5 in the right copy of PSI-LHCI.
Collapse
Affiliation(s)
- Takuto Otani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
23
|
Shikanai T. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1015-22. [DOI: 10.1016/j.bbabio.2015.10.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/28/2022]
|
24
|
Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis. PLoS Genet 2016; 12:e1006027. [PMID: 27138552 PMCID: PMC4854396 DOI: 10.1371/journal.pgen.1006027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 01/17/2023] Open
Abstract
Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. Compared to cold acclimation (enhancement of freezing tolerance by a prior exposure to low non-freezing temperature), the tolerance mechanism to non-freezing chilling temperatures is not well understood. Here, we performed a genome-wide mutant screen for chilling sensitive phenotype and identified 49 candidate genes important for chilling tolerance in Arabidopsis. Among the proteins encoded by these 49 genes, 16 are annotated as having chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. We further studied RBD1, one of the four RNA-binding proteins localized to chloroplast. RBD1 is only expressed in the green photosynthetic tissues and is localized to nucleoid of chloroplasts. Furthermore, RBD1 is found to be a regulator of 23S rRNA processing likely through direct binding to the precursor of 23S rRNA in a temperature dependent manner. Our study thus reveals the importance of chloroplast function especially protein translation in chilling tolerance at genome-wide scale and suggests an adaptive mechanism involving low temperature enhanced activities from proteins such as RBD1 in chilling tolerance.
Collapse
|
25
|
Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:55-80. [PMID: 26735062 DOI: 10.1146/annurev-arplant-043014-114752] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome b6f, and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial ndh genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.
Collapse
Affiliation(s)
- Gilles Peltier
- Institute of Environmental Biology and Biotechnology, CEA, CNRS, Aix-Marseille University, CEA Cadarache, 13018 Saint-Paul-lès-Durance, France;
| | - Eva-Mari Aro
- Department of Biochemistry, University of Turku, 20014 Turku, Finland;
| | | |
Collapse
|
26
|
Suorsa M. Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages. FRONTIERS IN PLANT SCIENCE 2015; 6:800. [PMID: 26442093 PMCID: PMC4585005 DOI: 10.3389/fpls.2015.00800] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/14/2015] [Indexed: 05/03/2023]
Abstract
Photosynthetic electron flow operates in two modes, linear and cyclic. In cyclic electron flow (CEF), electrons are recycled around photosystem I. As a result, a transthylakoid proton gradient (ΔpH) is generated, leading to the production of ATP without concomitant production of NADPH, thus increasing the ATP/NADPH ratio within the chloroplast. At least two routes for CEF exist: a PROTON GRADIENT REGULATION5-PGRL1-and a chloroplast NDH-like complex mediated pathway. This review focuses on recent findings concerning the characteristics of both CEF routes in higher plants, with special emphasis paid on the crucial role of CEF in under challenging environmental conditions and developmental stages.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
27
|
Ifuku K. Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Biosci Biotechnol Biochem 2015; 79:1223-31. [DOI: 10.1080/09168451.2015.1031078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The extrinsic proteins of PSII shield the catalytic Mn4CaO5 cluster from exogenous reductants and serve to optimize oxygen evolution at physiological ionic conditions. These proteins include PsbO, found in all oxygenic organisms, PsbP and PsbQ, specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP in cyanobacteria. Furthermore, red algal PSII has PsbQ′ in addition to PsbO, PsbV, and PsbU, and diatoms have Psb31 in supplement to red algal-type extrinsic proteins, exemplifying the functional divergence of these proteins during evolution. This review provides an updated summary of recent findings on PSII extrinsic proteins and discusses their binding, function, and evolution within various photosynthetic organisms.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
28
|
Fan X, Zhang J, Li W, Peng L. The NdhV subunit is required to stabilize the chloroplast NADH dehydrogenase-like complex in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:221-31. [PMID: 25728844 DOI: 10.1111/tpj.12807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 05/06/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex is involved in cyclic electron transport around photosystem I (PSI) and chlororespiration. Although the NDH complex was discovered more than 20 years ago, its low abundance and fragile nature render it recalcitrant to analysis, and it is thought that some of its subunits remain to be identified. Here, we identified the NDH subunit NdhV that readily disassociates from the NDH complex in the presence of detergent, salt and alkaline solutions. The Arabidopsis ndhv mutant is partially defective in the accumulation of NDH subcomplex A (SubA) and SubE, resulting in impaired NDH activity. NdhV was mainly detected in the wild-type thylakoid membrane, and its accumulation in thylakoids strictly depended on the presence of the NDH complex. Quantitative immunoblot analysis revealed that NdhV and NdhN occur at close to equimolar concentrations. Furthermore, several NDH subunits were co-immunopurified with NdhV using a combination of chemical crosslinking and an affinity chromatography assay. These data indicate that NdhV is an intrinsic subunit of NDH. We found that NdhV did not directly affect NDH activity, but that NDH SubA and SubE were more rapidly degraded in ndhv than in the wild type under high-light treatment. We propose that NdhV is an NDH subunit that stabilizes this complex, especially under high-light conditions.
Collapse
Affiliation(s)
- Xiangyuan Fan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | |
Collapse
|
29
|
Ma W, Ogawa T. Oxygenic photosynthesis-specific subunits of cyanobacterial NADPH dehydrogenases. IUBMB Life 2015; 67:3-8. [DOI: 10.1002/iub.1341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Weimin Ma
- Department of Biology; College of Life and Environment Sciences; Shanghai Normal University; Shanghai China
| | - Teruo Ogawa
- Bioscience Center; Nagoya University; Chikusa Nagoya Japan
| |
Collapse
|
30
|
Liang C, Zhang Y, Cheng S, Osorio S, Sun Y, Fernie AR, Cheung CYM, Lim BL. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:922. [PMID: 26579168 PMCID: PMC4623399 DOI: 10.3389/fpls.2015.00922] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 05/19/2023]
Abstract
Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE) of AtPAP2 in A. thaliana accelerates plant growth and promotes flowering, seed yield, and biomass at maturity. Measurement of ADP/ATP/NADP(+)/NADPH contents in the leaves of 20-day-old OE and wild-type (WT) lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome, and metabolome profiles of the high ATP transgenic line were examined and compared with those of WT plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. OE of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data reflect that the transcription and translation of organellar genomes are tightly coupled with the energy status. This study thus provides comprehensive information on the impact of high ATP level on plant physiology, from organellar biology to primary and secondary metabolism.
Collapse
Affiliation(s)
- Chao Liang
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Yuzhe Sun
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | | | - C. Y. M. Cheung
- Department of Chemical and Biomolecular Engineering, National University of SingaporeSingapore, Singapore
| | - Boon L. Lim
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong KongShatin, Hong Kong
- *Correspondence: Boon L. Lim,
| |
Collapse
|
31
|
Michoux F, Boehm M, Bialek W, Takasaka K, Maghlaoui K, Barber J, Murray JW, Nixon PJ. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. PHOTOSYNTHESIS RESEARCH 2014; 122:57-67. [PMID: 24838684 PMCID: PMC4180030 DOI: 10.1007/s11120-014-0010-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/28/2014] [Indexed: 05/23/2023]
Abstract
The PsbQ-like protein, termed CyanoQ, found in the cyanobacterium Synechocystis sp. PCC 6803 is thought to bind to the lumenal surface of photosystem II (PSII), helping to shield the Mn4CaO5 oxygen-evolving cluster. CyanoQ is, however, absent from the crystal structures of PSII isolated from thermophilic cyanobacteria raising the possibility that the association of CyanoQ with PSII might not be a conserved feature. Here, we show that CyanoQ (encoded by tll2057) is indeed expressed in the thermophilic cyanobacterium Thermosynechococcus elongatus and provide evidence in support of its assignment as a lipoprotein. Using an immunochemical approach, we show that CyanoQ co-purifies with PSII and is actually present in highly pure PSII samples used to generate PSII crystals. The absence of CyanoQ in the final crystal structure is possibly due to detachment of CyanoQ during crystallisation or its presence in sub-stoichiometric amounts. In contrast, the PsbP homologue, CyanoP, is severely depleted in isolated PSII complexes. We have also determined the crystal structure of CyanoQ from T. elongatus to a resolution of 1.6 Å. It lacks bound metal ions and contains a four-helix up-down bundle similar to the ones found in Synechocystis CyanoQ and spinach PsbQ. However, the N-terminal region and extensive lysine patch that are thought to be important for binding of PsbQ to PSII are not conserved in T. elongatus CyanoQ.
Collapse
Affiliation(s)
- Franck Michoux
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
- Present Address: Alkion Biopharma, 4 rue Pierre Fontaine, 91000 Evry, France
| | - Marko Boehm
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Wojciech Bialek
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Kenji Takasaka
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Karim Maghlaoui
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - James Barber
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - James W. Murray
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Peter J. Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
32
|
Ifuku K. The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:108-14. [PMID: 24477118 DOI: 10.1016/j.plaphy.2014.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/03/2014] [Indexed: 05/06/2023]
Abstract
The PsbP and PsbQ proteins are extrinsic subunits of the photosystem II in eukaryotic photosynthetic organisms including higher plants, green algae and euglena. It has been suggested that PsbP and PsbQ have evolved from their cyanobacterial homologs, while considerable genetic and functional modifications have occurred to generate the eukaryote-type proteins. In addition, number of PsbP and PsbQ homologs exist in the thylakoid lumen of chloroplasts. These homologs are nuclear-encoded and likely diverged by gene duplication, and recent studies have elucidated their various functions in the photosynthetic machinery. In this short review, recent findings and new idea about these components will be discussed.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
33
|
Zhang J, Gao F, Zhao J, Ogawa T, Wang Q, Ma W. NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803. J Biol Chem 2014; 289:18770-81. [PMID: 24847053 PMCID: PMC4081920 DOI: 10.1074/jbc.m114.553404] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/05/2014] [Indexed: 12/22/2022] Open
Abstract
Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1 and NdhF1, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, cyclic electron transport around photosystem I, and CO2 acquisition. Two mutants sensitive to high light for growth and impaired in NDH-1-mediated cyclic electron transfer were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in sml0013 encoding NdhP, a single transmembrane small subunit of the NDH-1 complex. During prolonged incubation of the wild type thylakoid membrane with n-dodecyl β-d-maltoside (DM), about half of the NDH-1L was disassembled to NDH-1M and the rest decomposed completely without forming NDH-1M. In the ndhP deletion mutant (ΔndhP), disassembling of NDH-1L to NDH-1M occurred even on ice, and decomposition to a small piece occurred at room temperature much faster than in the wild type. Deletion of the C-terminal tail of NdhP gave the same result. The C terminus of NdhP was tagged by YFP-His6. Blue native gel electrophoresis of the DM-treated thylakoid membrane of this strain and Western analysis using the antibody against GFP revealed that NdhP-YFP-His6 was exclusively confined to NDH-1L. During prolonged incubation of the thylakoid membrane of the tagged strain with DM at room temperature, NDH-1L was partially disassembled to NDH-1M and the 160-kDa band containing NdhP-YFP-His6 and possibly NdhD1 and NdhF1. We therefore conclude that NdhP, especially its C-terminal tail, is essential to assemble NdhD1 and NdhF1 and stabilize the NDH-1L complex.
Collapse
Affiliation(s)
- Jingsong Zhang
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Fudan Gao
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Jiaohong Zhao
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Teruo Ogawa
- the Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Quanxi Wang
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Weimin Ma
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| |
Collapse
|
34
|
Järvi S, Gollan PJ, Aro EM. Understanding the roles of the thylakoid lumen in photosynthesis regulation. FRONTIERS IN PLANT SCIENCE 2013; 4:434. [PMID: 24198822 PMCID: PMC3813922 DOI: 10.3389/fpls.2013.00434] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/12/2013] [Indexed: 05/20/2023]
Abstract
It has been known for a long time that the thylakoid lumen provides the environment for oxygen evolution, plastocyanin-mediated electron transfer, and photoprotection. More recently lumenal proteins have been revealed to play roles in numerous processes, most often linked with regulating thylakoid biogenesis and the activity and turnover of photosynthetic protein complexes, especially the photosystem II and NAD(P)H dehydrogenase-like complexes. Still, the functions of the majority of lumenal proteins in Arabidopsis thaliana are unknown. Interestingly, while the thylakoid lumen proteome of at least 80 proteins contains several large protein families, individual members of many protein families have highly divergent roles. This is indicative of evolutionary pressure leading to neofunctionalization of lumenal proteins, emphasizing the important role of the thylakoid lumen for photosynthetic electron transfer and ultimately for plant fitness. Furthermore, the involvement of anterograde and retrograde signaling networks that regulate the expression and activity of lumen proteins is increasingly pertinent. Recent studies have also highlighted the importance of thiol/disulfide modulation in controlling the functions of many lumenal proteins and photosynthetic regulation pathways.
Collapse
Affiliation(s)
| | | | - Eva-Mari Aro
- *Correspondence: Eva-Mari Aro, Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland e-mail:
| |
Collapse
|
35
|
Bricker TM, Roose JL, Zhang P, Frankel LK. The PsbP family of proteins. PHOTOSYNTHESIS RESEARCH 2013; 116:235-50. [PMID: 23564479 DOI: 10.1007/s11120-013-9820-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/24/2013] [Indexed: 05/06/2023]
Abstract
The PsbP family of proteins consists of 11 evolutionarily related thylakoid lumenal components. These include the archetypal PsbP protein, which is an extrinsic subunit of eukaryotic photosystem II, three PsbP-like proteins (CyanoP of the prokaryotic cyanobacteria and green oxyphotobacteria, and the PPL1 and PPL2 proteins found in many eukaryotes), and seven PsbP-domain (PPD) proteins (PPD1-PPD7, most of which are found in the green plant lineage). All of these possess significant sequence and structural homologies while having very diverse functions. While the PsbP protein has been extensively studied and plays a functional role in the optimization of photosynthetic oxygen evolution at physiological calcium and chloride concentrations, the molecular functions of the other family members are poorly understood. Recent investigations have begun to illuminate the roles that these proteins play in membrane protein complex assembly/stability, hormone biosynthesis, and other metabolic processes. In this review we have examined this functional information within the context of recent advances examining the structure of these components.
Collapse
Affiliation(s)
- Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | | | | | |
Collapse
|
36
|
Queval G, Foyer CH. Redox regulation of photosynthetic gene expression. Philos Trans R Soc Lond B Biol Sci 2013; 367:3475-85. [PMID: 23148274 DOI: 10.1098/rstb.2012.0068] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.
Collapse
Affiliation(s)
- Guillaume Queval
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
37
|
Oh S, Warnasooriya SN, Montgomery BL. Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 81:627-40. [PMID: 23456246 PMCID: PMC3597320 DOI: 10.1007/s11103-013-0029-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/14/2013] [Indexed: 05/04/2023]
Abstract
Arabidopsis, like most plants, exhibits tissue-specific, light-dependent growth responses. Cotyledon and leaf growth and the accumulation of photosynthetic pigments are promoted by light, whereas hypocotyl growth is inhibited. The identification and characterization of distinct phytochrome-dependent molecular effectors that are associated with these divergent tissue-specific, light-dependent growth responses are limited. To identify phytochrome-dependent factors that impact the photoregulation of hypocotyl length, we conducted comparative gene expression studies using Arabidopsis lines exhibiting distinct patterns of phytochrome chromophore inactivation and associated disparate hypocotyl elongation responses under far-red (FR) light. A large number of genes was misregulated in plants lacking mesophyll-specific phytochromes relative to constitutively-deficient phytochrome lines. We identified and characterized genes whose expression is impacted by light and by phyA and phyB that have roles in the photoregulation of hypocotyl length. We characterized the functions of several identified target genes by phenotyping of T-DNA mutants. Among these genes is a previously uncharacterized LHE (LIGHT-INDUCED HYPOCOTYL ELONGATION) gene, which we show impacts light- and phytochrome-mediated regulation of hypocotyl elongation under red (R) and FR illumination. We describe a new approach for identifying genes involved in light- and phytochrome-dependent, tissue-specific growth regulation and confirmed the roles of three such genes in the phytochrome-dependent photoregulation of hypocotyl length.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Color
- Cotyledon/genetics
- Cotyledon/growth & development
- Cotyledon/metabolism
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- Genotyping Techniques
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Hypocotyl/genetics
- Hypocotyl/growth & development
- Hypocotyl/metabolism
- Hypocotyl/radiation effects
- Light
- Oligonucleotide Array Sequence Analysis/methods
- Phenotype
- Phytochrome A/genetics
- Phytochrome A/metabolism
- Phytochrome B/genetics
- Phytochrome B/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/radiation effects
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Sookyung Oh
- Department of Energy-Plant Research Laboratory, Michigan State University Plant Biology Laboratories, 612 Wilson Road, Rm. 106, East Lansing, MI 48824-1312 USA
| | - Sankalpi N. Warnasooriya
- Department of Energy-Plant Research Laboratory, Michigan State University Plant Biology Laboratories, 612 Wilson Road, Rm. 106, East Lansing, MI 48824-1312 USA
- Present Address: Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132 USA
| | - Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University Plant Biology Laboratories, 612 Wilson Road, Rm. 106, East Lansing, MI 48824-1312 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, East Lansing, MI 48824-1319 USA
| |
Collapse
|
38
|
Ueda M, Kuniyoshi T, Yamamoto H, Sugimoto K, Ishizaki K, Kohchi T, Nishimura Y, Shikanai T. Composition and physiological function of the chloroplast NADH dehydrogenase-like complex in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:683-93. [PMID: 22862786 DOI: 10.1111/j.1365-313x.2012.05115.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex mediates cyclic electron transport and chloro-respiration and consists of five sub-omplexes, which in angiosperms further associate with photosystem I (PSI) to form a super-complex. In Marchantia polymorpha, 11 plastid-encoded subunits and all the nuclear-encoded subunits of the A, B, membrane and ferredoxin-binding sub-complexes are conserved. However, it is unlikely that the genome of this liverwort encodes Lhca5 and Lhca6, both of which mediate NDH-PSI super-complex formation. It is also unlikely that the subunits of the lumen sub-complex, PnsL1-L4, are encoded by the genome. Consistent with this in silico prediction, the results of blue-native gel electrophoresis showed that NDH subunits were detected in a protein complex with lower molecular mass in Marchantia than the NDH-PSI super-complex in Arabidopsis. Using the plastid transformation technique, we knocked out the ndhB gene in Marchantia. Although the wild-type genome copies were completely segregated out, the ΔndhB lines grew like the wild-type photoautotrophically. A post-illumination transient increase in chlorophyll fluorescence, which reflects NDH activity in vivo in angiosperms, was absent in the thalli of the ΔndhB lines. In ruptured chloroplasts, antimycin A-insensitive, and ferredoxin-dependent plastoquinone reduction was impaired, suggesting that chloroplast NDH mediates similar electron transport in Marchantia and Arabidopsis, despite its possible difference in structure. As in angiosperms, linear electron transport was not strongly affected in the ΔndhB lines. However, the plastoquinone pool was slightly more reduced at low light intensity, suggesting that chloroplast NDH functions in redox balancing of the inter system, especially under low light conditions.
Collapse
Affiliation(s)
- Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan CREST, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bradbury LMT, Shumskaya M, Tzfadia O, Wu SB, Kennelly EJ, Wurtzel ET. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms. Proc Natl Acad Sci U S A 2012; 109:E1888-97. [PMID: 22706644 PMCID: PMC3390835 DOI: 10.1073/pnas.1206002109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.
Collapse
Affiliation(s)
- Louis M. T. Bradbury
- Department of Biological Sciences, Lehman College, City University of New York, West, Bronx, NY 10468; and
| | - Maria Shumskaya
- Department of Biological Sciences, Lehman College, City University of New York, West, Bronx, NY 10468; and
| | - Oren Tzfadia
- Department of Biological Sciences, Lehman College, City University of New York, West, Bronx, NY 10468; and
- Graduate School and University Center, City University of New York, New York, NY 10016-4309
| | - Shi-Biao Wu
- Department of Biological Sciences, Lehman College, City University of New York, West, Bronx, NY 10468; and
| | - Edward J. Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, West, Bronx, NY 10468; and
- Graduate School and University Center, City University of New York, New York, NY 10016-4309
| | - Eleanore T. Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York, West, Bronx, NY 10468; and
- Graduate School and University Center, City University of New York, New York, NY 10016-4309
| |
Collapse
|
40
|
Wang Y, Peng X, Xu W, Luo Y, Zhao W, Hao J, Liang Z, Zhang Y, Huang K. Transcript and protein profiling analysis of OTA-induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2171-87. [PMID: 22207617 PMCID: PMC3295405 DOI: 10.1093/jxb/err447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ochratoxin A (OTA) is a toxic isocoumarin derivative produced by various species of mould which mainly grow on grain, coffee, and nuts. Recent studies have suggested that OTA induces cell death in plants. To investigate possible mechanisms of OTA phytotoxicity, both digital gene expression (DGE) transcriptomic and two-dimensional electrophoresis proteomic analyses were used, through which 3118 genes and 23 proteins were identified as being up- or down-regulated at least 2-fold in Arabidopsis leaf in response to OTA treatment. First, exposure of excised Arabidopsis thaliana leaves to OTA rapidly causes the hypersensitive reponse, significantly accelerates the increase of reactive oxygen species and malondialdehyde, and enhances antioxidant enzyme defence responses and xenobiotic detoxification. Secondly, OTA stimulation causes dynamic changes in transcription factors and activates the membrane transport system dramatically. Thirdly, a concomitant persistence of compromised photosynthesis and photorespiration is indicative of a metabolic shift from a highly active to a weak state. Finally, the data revealed that ethylene, salicylic acid, jasmonic acid, and mitogen-activated protein kinase signalling molecules mediate the process of toxicity caused by OTA. Profiling analyses on Arabidopsis in response to OTA will provide new insights into signalling transduction that modulates the OTA phytotoxicity mechanism, facilitate mapping of regulatory networks, and extend the ability to improve OTA tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiaoli Peng
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentao Xu
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
- To whom correspondence should be addressed. E-mail: or
| | - YunBo Luo
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Weiwei Zhao
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Junran Hao
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zhihong Liang
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Yu Zhang
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Kunlun Huang
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
41
|
Ifuku K, Endo T, Shikanai T, Aro EM. Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. PLANT & CELL PHYSIOLOGY 2011; 52:1560-8. [PMID: 21785130 DOI: 10.1093/pcp/pcr098] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The chloroplast NADH dehydrogenase-like complex (NDH) was first discovered based on its similarity to complex I in respiratory electron transport, and is involved in electron transport from photoproduced stromal reductants such as NADPH and ferredoxin to the intersystem plastoqunone pool. However, a recent study suggested that it is a ferredoxin-dependent plastoquinone reductase rather than an NAD(P)H dehydrogenase. Furthermore, recent advances in subunit analysis of NDH have revealed the presence of a novel hydrophilic subcomplex on the stromal side of the thylakoid membrane, as well as an unexpected lumenal subcomplex. This review discusses these new studies on the structure of NDH, and proposes a unified nomenclature for newly discovered NDH subunits.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502 Japan
| | | | | | | |
Collapse
|
42
|
Peng L, Shikanai T. Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1629-39. [PMID: 21278308 PMCID: PMC3091109 DOI: 10.1104/pp.110.171264] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/23/2011] [Indexed: 05/18/2023]
Abstract
In higher plants, the chloroplast NADH dehydrogenase-like complex (NDH) interacts with photosystem I (PSI) to form the NDH-PSI supercomplex via two minor light-harvesting complex I (LHCI) proteins, Lhca5 and Lhca6. Previously, we showed that in lhca5 and lhca6, NDH still associates with PSI to form smaller versions of the NDH-PSI supercomplex, although their molecular masses are far smaller than that of the full-size NDH-PSI supercomplex. In this study, we show that the NDH complex is present in the monomeric form in Arabidopsis (Arabidopsis thaliana) lhca5 lhca6, implying that NDH interacts with multiple copies of PSI. NDH subunit levels were slightly reduced in immature leaves and more drastically (approximately 50%) in mature leaves of the lhca5 lhca6 double mutant compared with the wild type. Chlorophyll fluorescence analyses detected NDH activity of lhca5 lhca6, suggesting that the supercomplex formation is not essential for NDH activity. However, the severe phenotypes of the lhca5 lhca6 proton gradient regulation5 triple mutant in both plant growth rate and photosynthesis suggest that the function of NDH was impaired in this mutant in vivo. Accumulation of NDH subunits was drastically reduced in lhca5 lhca6 when the light intensity was shifted from 50 to 500 μmol photons m(-2) s(-1). Furthermore, the half-life of NDH subunits, especially that of NDH18, was shorter in monomeric NDH than in the NDH-PSI supercomplex under the high-light conditions. We propose that NDH-PSI supercomplex formation stabilizes NDH and that the process is especially required under stress conditions.
Collapse
|
43
|
Ifuku K, Ido K, Sato F. Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:158-64. [PMID: 21376623 DOI: 10.1016/j.jphotobiol.2011.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/26/2011] [Accepted: 02/04/2011] [Indexed: 11/20/2022]
Abstract
The PsbP and PsbQ proteins are extrinsic subunits of the photosystem II (PSII) supercomplex, which are found in green plants including higher plants and green algae. These proteins are thought to have evolved from their cyanobacterial homologs; cyanoP and cyanoQ respectively. It has been suggested that the functions of PsbP and PsbQ have largely changed from those of cyanoP and cyanoQ. In addition, multiple isoforms and homologs of PsbP and PsbQ were found in green plants, indicating that the acquisition of PsbP and PsbQ in PSII is not a direct path but a result of intensive functional divergence during evolution from cyanobacterial endosymbiont to chloroplast. In this review, we highlight newly introduced topics related to the functions and structures of both PsbP and PsbQ proteins. The present data suggest that PsbP together with PsbQ have specific and important roles in coordinating the activity of the donor and acceptor sides of PSII and stabilizing the active form of the PSII-light-harvesting complex II (LHCII) supercomplex.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
44
|
Fagerlund RD, Eaton-Rye JJ. The lipoproteins of cyanobacterial photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:191-203. [PMID: 21349737 DOI: 10.1016/j.jphotobiol.2011.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/16/2022]
Abstract
Photosystem II (PSII) complexes from cyanobacteria and plants perform water splitting and plastoquinone reduction and yet have a different complement of lumenal extrinsic proteins. Whereas PSII from all organisms has the PsbO extrinsic protein, crystal structures of PSII from cyanobacteria have PsbV and PsbU while green algae and higher plants instead contain the extrinsic PsbP and PsbQ subunits. Proteomic studies in Synechocystis sp. PCC 6803 identified three further extrinsic proteins in the thylakoid lumen that are associated with cyanobacterial PSII and these are predicted to attach to the thylakoid membrane via a lipidated N-terminus. These proteins are cyanobacterial homologues to the PsbP and PsbQ subunits as well as to Psb27, an additional extrinsic protein associated with "inactive" photosystems that lack the other extrinsic polypeptides. The PsbQ homologue is not present in Prochlorococcus species but otherwise these proteins have been identified in most cyanobacteria although our phylogenetic analyses identified some strains that lack an apparent motif for lipidation in one or other of these subunits. Over the past decade the physiological function of these additional lipoproteins has been investigated in several cyanobacterial strains and recently the structures for each have been solved. This review will evaluate the physiological and structural results obtained for these lipid-attached extrinsic proteins and in silico protein docking of these proteins to PSII centers will be presented.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
45
|
Peng L, Yamamoto H, Shikanai T. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:945-53. [PMID: 21029720 DOI: 10.1016/j.bbabio.2010.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/15/2010] [Accepted: 10/17/2010] [Indexed: 11/19/2022]
Abstract
Eleven genes (ndhA-ndhK) encoding proteins homologous to the subunits of bacterial and mitochondrial NADH dehydrogenase (complex I) were found in the plastid genome of most land plants. These genes encode subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex involved in photosystem I (PSI) cyclic electron transport and chlororespiration. Although the chloroplast NDH is believed to be closely and functionally related to the cyanobacterial NDH-1L complex, extensive proteomic, genetic and bioinformatic studies have discovered many novel subunits that are specific to higher plants. On the basis of extensive mutant characterization, the chloroplast NDH complex is divided into four parts, the A, B, membrane and lumen subcomplexes, of which subunits in the B and lumen subcomplexes are specific to higher plants. These results suggest that the structure of NDH has been drastically altered during the evolution of land plants. Furthermore, chloroplast NDH interacts with multiple copies of PSI to form the unique NDH-PSI supercomplex. Two minor light-harvesting-complex I (LHCI) proteins, Lhca5 and Lhca6, are required for the specific interaction between NDH and PSI. The evolution of chloroplast NDH in land plants may be required for development of the function of NDH to alleviate oxidative stress in chloroplasts. In this review, we summarize recent progress on the subunit composition and structure of the chloroplast NDH complex, as well as the information on some factors involved in its assembly. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Lianwei Peng
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
46
|
Birungi M, Folea M, Battchikova N, Xu M, Mi H, Ogawa T, Aro EM, Boekema EJ. Possibilities of subunit localization with fluorescent protein tags and electron microscopy examplified by a cyanobacterial NDH-1 study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1681-6. [DOI: 10.1016/j.bbabio.2010.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/26/2022]
|
47
|
Ifuku K, Ishihara S, Sato F. Molecular functions of oxygen-evolving complex family proteins in photosynthetic electron flow. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:723-34. [PMID: 20666928 DOI: 10.1111/j.1744-7909.2010.00976.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oxygen-evolving complex (OEC) protein is the original name for membrane-peripheral subunits of photosystem (PS) II. Recently, multiple isoforms and homologs for OEC proteins have been identified in the chloroplast thylakoid lumen, indicating that functional diversification has occurred in the OEC family. Gene expression profiles suggest that the Arabidopsis OEC proteins are roughly categorized into three groups: the authentic OEC group, the stress-responsive group, and the group including proteins related to the chloroplast NAD(P)H dehydrogenase (NDH) complex involved in cyclic electron transport around PSI. Based on the above gene expression profiles, molecular functions of the OEC family proteins are discussed together with our current knowledge about their functions.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | |
Collapse
|
48
|
|