1
|
Huang LK, Huang YC, Chen PC, Lee CH, Lin SM, Hsu YHH, Pan RL. Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H +-Translocating Pyrophosphatases Through Hydrogen-Deuterium Exchange Mass Spectrometry. J Membr Biol 2023; 256:443-458. [PMID: 37955797 DOI: 10.1007/s00232-023-00295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Vigna radiata H+-translocating pyrophosphatases (VrH+-PPases, EC 3.6.1.1) are present in various endomembranes of plants, bacteria, archaea, and certain protozoa. They transport H+ into the lumen by hydrolyzing pyrophosphate, which is a by-product of many essential anabolic reactions. Although the crystal structure of H+-PPases has been elucidated, the H+ translocation mechanism of H+-PPases in the solution state remains unclear. In this study, we used hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (MS) to investigate the dynamics of H+-PPases between the previously proposed R state (resting state, Apo form), I state (intermediate state, bound to a substrate analog), and T state (transient state, bound to inorganic phosphate). When hydrogen was replaced by proteins in deuterium oxide solution, the backbone hydrogen atoms, which were exchanged with deuterium, were identified through MS. Accordingly, we used deuterium uptake to examine the structural dynamics and conformational changes of H+-PPases in solution. In the highly conserved substrate binding and proton exit regions, HDX-MS revealed the existence of a compact conformation with deuterium exchange when H+-PPases were bound with a substrate analog and product. Thus, a novel working model was developed to elucidate the in situ catalytic mechanism of pyrophosphate hydrolysis and proton transport. In this model, a proton is released in the I state, and the TM5 inner wall serves as a proton piston.
Collapse
Affiliation(s)
- Li-Kun Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Yi-Cyuan Huang
- Department of Chemistry, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 40704, Taiwan, Republic of China
| | - Pin-Chuan Chen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Ching-Hung Lee
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 40704, Taiwan, Republic of China.
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China.
| |
Collapse
|
2
|
Onuh AF, Miwa K. Mutations in type II Golgi-localized proton pyrophosphatase AVP2;1/VHP2;1 affect pectic polysaccharide rhamnogalacturonan-II and alter root growth under low boron condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1255486. [PMID: 37662170 PMCID: PMC10469939 DOI: 10.3389/fpls.2023.1255486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
The essential plant nutrient boron is required for the crosslinking of the pectin polysaccharide, rhamnogalacturonan II (RG-II). The synthesis of the pectic polysaccharides takes place in the Golgi apparatus, acidified by proton pumps. AVP2;1/VHP2;1 is a type II proton pyrophosphatase localized in the Golgi apparatus, which possesses proton pumping activity coupled with pyrophosphate hydrolysis. Its activity and expression patterns have been previously revealed but its role in plants remains unknown. The aim of the present work therefore was to explore the physiological role of AVP2;1 in Arabidopsis thaliana. In the screening of mutants under low boron, a mutant carrying a missense mutation in AVP2;1 was isolated. This mutant showed increased primary root growth under low boron conditions but no significant difference under normal boron condition compared to wild type plants. T-DNA insertion caused similar growth, suggesting that reduced function of AVP2;1 was responsible. Root cell observation revealed an increase in meristematic zone length, cell number in meristem and length of matured cell in avp2;1 mutants compared to wild type under low boron. Calcium concentration was reduced in mutant root cell wall under low boron. RG-II specific sugars also tended to be decreased in mutant root cell wall under low and normal boron conditions. These results suggest that changes in cell wall component by mutations in AVP2;1 may possibly explain the increased root length of mutants under low boron. This supports the idea that AVP2;1 plays a role in pH homoeostasis in Golgi apparatus for pectin synthesis.
Collapse
Affiliation(s)
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants' Response Mechanisms to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2253. [PMID: 37375879 DOI: 10.3390/plants12122253] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Collapse
Affiliation(s)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Nardana Esmaeili
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
4
|
Tojo H, Tabeta H, Gunji S, Hirai MY, David P, Javot H, Ferjani A. Roles of type II H +-PPases and PPsPase1/PECP2 in early developmental stages and PPi homeostasis of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1031426. [PMID: 36778688 PMCID: PMC9911876 DOI: 10.3389/fpls.2023.1031426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The regulation of intracellular pyrophosphate (PPi) level is crucial for proper morphogenesis across all taxonomic kingdoms. PPi is released as a byproduct from ~200 metabolic reactions, then hydrolyzed by either membrane-bound (H+-PPase) or soluble pyrophosphatases (PPases). In Arabidopsis, the loss of the vacuolar H+-PPase/FUGU5, a key enzyme in PPi homeostasis, results in delayed growth and a number of developmental defects, pointing to the importance of PPi homeostasis in plant morphogenesis. The Arabidopsis genome encodes several PPases in addition to FUGU5, such as PPsPase1/PECP2, VHP2;1 and VHP2;2, although their significance regarding PPi homeostasis remains elusive. Here, to assess their contribution, phenotypic analyses of cotyledon aspect ratio, palisade tissue cellular phenotypes, adaxial side pavement cell complexity, stomatal distribution, and etiolated seedling length were performed, provided that they were altered due to excess PPi in a fugu5 mutant background. Overall, our analyses revealed that the above five traits were unaffected in ppspase1/pecp2, vhp2;1 and vhp2;2 loss-of-function mutants, as well as in fugu5 mutant lines constitutively overexpressing PPsPase1/PECP2. Furthermore, metabolomics revealed that ppspase1/pecp2, vhp2;1 and vhp2;2 etiolated seedlings exhibited metabolic profiles comparable to the wild type. Together, these results indicate that the contribution of PPsPase1/PECP2, VHP2;1 and VHP2;2 to PPi levels is negligible in comparison to FUGU5 in the early stages of seedling development.
Collapse
Affiliation(s)
- Hiroshi Tojo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Masami Y. Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Hélène Javot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Aix Marseille Univ, CEA, CNRS, BIAM, Marseille, France
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| |
Collapse
|
5
|
Pyrophosphate as an alternative energy currency in plants. Biochem J 2021; 478:1515-1524. [PMID: 33881486 DOI: 10.1042/bcj20200940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
In the conditions of [Mg2+] elevation that occur, in particular, under low oxygen stress and are the consequence of the decrease in [ATP] and increase in [ADP] and [AMP], pyrophosphate (PPi) can function as an alternative energy currency in plant cells. In addition to its production by various metabolic pathways, PPi can be synthesized in the combined reactions of pyruvate, phosphate dikinase (PPDK) and pyruvate kinase (PK) by so-called PK/PPDK substrate cycle, and in the reverse reaction of membrane-bound H+-pyrophosphatase, which uses the energy of electrochemical gradients generated on tonoplast and plasma membrane. The PPi can then be consumed in its active forms of MgPPi and Mg2PPi by PPi-utilizing enzymes, which require an elevated [Mg2+]. This ensures a continuous operation of glycolysis in the conditions of suppressed ATP synthesis, keeping metabolism energy efficient and less dependent on ATP.
Collapse
|
6
|
Molecular characterization and transcriptional regulation of two types of H +-pyrophosphatases in the scuticociliate parasite Philasterides dicentrarchi. Sci Rep 2021; 11:8519. [PMID: 33875762 PMCID: PMC8055999 DOI: 10.1038/s41598-021-88102-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Proton-translocating inorganic pyrophosphatases (H+-PPases) are an ancient family of membrane bound enzymes that couple pyrophosphate (PPi) hydrolysis to H+ translocation across membranes. In this study, we conducted a molecular characterization of two isoenzymes (PdVP1 and PdVP2) located in respectively the alveolar sacs and in the membranes of the intracellular vacuoles of a scuticociliate parasite (Philasterides dicentrarchi) of farmed turbot. We analyzed the genetic expression of the isoenzymes after administration of antiparasitic drugs and after infection in the host. PdVP1 and PdVP2 are encoded by two genes of 2485 and 3069 bp, which respectively contain 3 and 11 exons and express proteins of 746 and 810 aa of molecular mass 78.9 and 87.6 kDa. Topological predictions from isoenzyme sequences indicate the formation of thirteen transmembrane regions (TMRs) for PdVP1 and seventeen TMRs for PdVP2. Protein structure modelling indicated that both isoenzymes are homodimeric, with three Mg2+ binding sites and an additional K+ binding site in PdVP2. The levels of identity and similarity between the isoenzyme sequences are respectively 33.5 and 51.2%. The molecular weights of the native proteins are 158 kDa (PdVP1) and 178 kDa (PdVP2). The isoenzyme sequences are derived from paralogous genes that form a monophyletic grouping with other ciliate species. Genetic expression of the isoenzymes is closely related to the acidification of alveolar sacs (PdVP1) and intracellular vacuoles (PdVP2): antiparasitic drugs inhibit transcription, while infection increases transcription of both isoenzymes. The study findings show that P. dicentrarchi possesses two isoenzymes with H+-PPase activity which are located in acidophilic cell compartment membranes and which are activated during infection in the host and are sensitive to antiparasitic drugs. The findings open the way to using molecular modelling to design drugs for the treatment of scuticociliatosis.
Collapse
|
7
|
Cosse M, Seidel T. Plant Proton Pumps and Cytosolic pH-Homeostasis. FRONTIERS IN PLANT SCIENCE 2021; 12:672873. [PMID: 34177988 PMCID: PMC8220075 DOI: 10.3389/fpls.2021.672873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
Proton pumps create a proton motif force and thus, energize secondary active transport at the plasma nmembrane and endomembranes of the secretory pathway. In the plant cell, the dominant proton pumps are the plasma membrane ATPase, the vacuolar pyrophosphatase (V-PPase), and the vacuolar-type ATPase (V-ATPase). All these pumps act on the cytosolic pH by pumping protons into the lumen of compartments or into the apoplast. To maintain the typical pH and thus, the functionality of the cytosol, the activity of the pumps needs to be coordinated and adjusted to the actual needs. The cellular toolbox for a coordinated regulation comprises 14-3-3 proteins, phosphorylation events, ion concentrations, and redox-conditions. This review combines the knowledge on regulation of the different proton pumps and highlights possible coordination mechanisms.
Collapse
|
8
|
Hussain SB, Shi CY, Guo LX, Du W, Bai YX, Kamran HM, Fernie AR, Liu YZ. Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5935-5947. [PMID: 32589717 DOI: 10.1093/jxb/eraa298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to evaluate the general role of the vacuolar pyrophosphatase proton pump (V-PPase) in sucrose accumulation in citrus species. First, three citrus V-PPase genes, designated CsVPP-1, CsVPP-2, and CsVPP-4, were identified in the citrus genome. CsVPP-1 and CsVPP-2 belonging to citrus type I V-PPase genes are targeted to the tonoplast, and CsVPP-4 belonging to citrus type II V-PPase genes is located in the Golgi bodies. Moreover, there was a significantly positive correlation between transcript levels of type I V-PPase genes and sucrose, rather than hexose, content in fruits of seven citrus cultivars. Drought and abscisic acid treatments significantly induced the CsVPP-1 and CsVPP-2 transcript levels, as well as the sucrose content. The overexpression of type I V-PPase genes significantly increased PPase activity, decreased pyrophosphate contents, and increased sucrose contents, whereas V-PPase inhibition produced the opposite effect in both citrus fruits and leaves. Furthermore, altering the expression levels of type I V-PPase genes significantly influenced the transcript levels of sucrose transporter genes. Taken together, this study demonstrated that CsVPP-1 and CsVPP-2 play key roles in sucrose storage in the vacuole by regulating pyrophosphate homeostasis, ultimately the sucrose biosynthesis and transcript levels of sucrose transport genes, providing a novel lead for engineering or breeding modified taste in citrus and other fruits.
Collapse
Affiliation(s)
- Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Cai-Yun Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Ling-Xia Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Wei Du
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Ying-Xing Bai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Hafiz Muhammad Kamran
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
9
|
Lim SD, Mayer JA, Yim WC, Cushman JC. Plant tissue succulence engineering improves water-use efficiency, water-deficit stress attenuation and salinity tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1049-1072. [PMID: 32338788 DOI: 10.1111/tpj.14783] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 05/25/2023]
Abstract
Tissue succulence (ratio of tissue water/leaf area or dry mass) or the ability to store water within living tissues is among the most successful adaptations to drought in the plant kingdom. This taxonomically widespread adaptation helps plants avoid the damaging effects of drought, and is often associated with the occupancy of epiphytic, epilithic, semi-arid and arid environments. Tissue succulence was engineered in Arabidopsis thaliana by overexpression of a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape involved in the cell expansion phase of berry development. VvCEB1opt -overexpressing lines displayed significant increases in cell size, succulence and decreased intercellular air space. VvCEB1opt -overexpressing lines showed increased instantaneous and integrated water-use efficiency (WUE) due to reduced stomatal conductance caused by reduced stomatal aperture and density resulting in increased attenuation of water-deficit stress. VvCEB1opt -overexpressing lines also showed increased salinity tolerance due to reduced salinity uptake and dilution of internal Na+ and Cl- as well as other ions. Alterations in transporter activities were further suggested by media and apoplastic acidification, hygromycin B tolerance and changes in relative transcript abundance patterns of various transporters with known functions in salinity tolerance. Engineered tissue succulence might provide an effective strategy for improving WUE, drought avoidance or attenuation, salinity tolerance, and for crassulacean acid metabolism biodesign.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA
| |
Collapse
|
10
|
Zhang Y, Feng X, Wang L, Su Y, Chu Z, Sun Y. The structure, functional evolution, and evolutionary trajectories of the H +-PPase gene family in plants. BMC Genomics 2020; 21:195. [PMID: 32122295 PMCID: PMC7053079 DOI: 10.1186/s12864-020-6604-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The H+-PPase (pyrophosphatase) gene family is an important class of proton transporters that play key roles in plant development and stress resistance. Although the physiological and biochemical functions of H+-PPases are well characterized, the structural evolution and functional differentiation of this gene family remain unclear. RESULTS We identified 124 H+-PPase members from 27 plant species using complete genomic data obtained from algae to angiosperms. We found that all analyzed plants carried H+-PPase genes, and members were not limited to the two main types (type I and II). Differentiation of this gene family occurred early in evolutionary history, probably prior to the emergence of algae. The type I and II H+-PPase genes were retained during the subsequent evolution of higher plants, and their copy numbers increased rapidly in some angiosperms following whole-genome duplication (WGD) events, with obvious expression pattern differentiation among the new copies. We found significant functional divergence between type I and II H+-PPase genes, with both showing evidence for positive selection pressure. We classified angiosperm type I H+-PPases into subtypes Ia and non-Ia, which probably differentiated at an early stage of angiosperm evolution. Compared with non-Ia subtype, the Ia subtype appears to confer some advantage in angiosperms, as it is highly conserved and abundantly expressed, but shows no evidence for positive selection. CONCLUSIONS We hypothesized that there were many types of H+-PPase genes in the plant ancestral genome, and that different plant groups retained different types of these genes. In the early stages of angiosperm evolution, the type I H+-PPase genes differentiated into various subtypes. In addition, the expression pattern varied not only among genes of different types or subtypes, but also among copies of the same subtype. Based on the expression patterns and copy numbers of H+-PPase genes in higher plants, we propose two possible evolutionary trajectories for this gene family.
Collapse
Affiliation(s)
- Yiming Zhang
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Xue Feng
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Lihui Wang
- College of Plant Protection, Fujian Agricultural and Forestry University, Fuzhou, 350000, China
| | - Yanping Su
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Zhuodong Chu
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Yanxiang Sun
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China.
| |
Collapse
|
11
|
Jiang YT, Tang RJ, Zhang YJ, Xue HW, Ferjani A, Luan S, Lin WH. Two tonoplast proton pumps function in Arabidopsis embryo development. THE NEW PHYTOLOGIST 2020; 225:1606-1617. [PMID: 31569267 DOI: 10.1111/nph.16231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Two types of tonoplast proton pumps, H+ -pyrophosphatase (V-PPase) and the H+ -ATPase (V-ATPase), establish the proton gradient that powers molecular traffic across the tonoplast thereby facilitating turgor regulation and nutrient homeostasis. However, how proton pumps regulate development remains unclear. In this study, we investigated the function of two types of proton pumps in Arabidopsis embryo development and pattern formation. While disruption of either V-PPase or V-ATPase had no obvious effect on plant embryo development, knocking out both resulted in severe defects in embryo pattern formation from the early stage. While the first division in wild-type zygote was asymmetrical, a nearly symmetrical division occurred in the mutant, followed by abnormal pattern formation at all stages of embryo development. The embryonic defects were accompanied by dramatic differences in vacuole morphology and distribution, as well as disturbed localisation of PIN1. The development of mutant cotyledons and root, and the auxin response of mutant seedlings supported the hypothesis that mutants lacking tonoplast proton pumps were defective in auxin transport and distribution. Taking together, we proposed that two tonoplast proton pumps are required for vacuole morphology and PIN1 localisation, thereby controlling vacuole and auxin-related developmental processes in Arabidopsis embryos and seedlings.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yan-Jie Zhang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hong-Wei Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, 184-8501, Koganei-shi, Japan
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
12
|
Kuang L, Chen S, Guo Y, Ma H. Quantitative Proteome Analysis Reveals Changes in the Protein Landscape During Grape Berry Development With a Focus on Vacuolar Transport Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:641. [PMID: 31156689 PMCID: PMC6530609 DOI: 10.3389/fpls.2019.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
The vacuole plays a central role in fruit growth and quality formation, yet its proteomic landscape is largely unknown. In the present study, a protocol for isolating intact vacuoles from grape flesh tissue was successfully established. Quantitative proteome analysis identified 2533 proteins from five sampling dates along Cabernet Sauvignon berry development from stage I to III; among them, 1443 proteins were identified on all five sampling dates in at least two biological replicates per sample and were designated core proteome, and 1820 were recruited as differentially abundant proteins (DAPs) by sequential pairwise comparisons using arbitrary fold change of >1.5 and P < 0.05. Metabolism consistently constituted the largest category of identified proteins for both core proteome and DAPs, together with a consistently high proportion of protein-fate category proteins, indicating that the classic lytic functions of vegetative cell vacuoles are maintained throughout berry development; accumulation of metabolites involved in high sugar and other berry qualities in the late developmental stage added to the conventional lytic role of the flesh cell vacuoles. Overall increases in abundance of the DAPs were seen in the transporter proteins, membrane fusion/vesicle trafficking, and protein-fate categories, and decreased abundance was seen for DAPs in the stress, energy and cytoskeleton categories as berry development progressed. A very pronounced proteomic change was revealed between late stage I and mid stage II, with 915 increased and 114 decreased DAPs, demonstrating a significant surge of the vacuolar proteome underlying the rather static phenotypical and physiological phase. We identified 161 transport proteins with differential abundance, including proton pumps, aquaporins, sugar transporters, ATP-binding cassette transporters and ion transport proteins, together with organic compound transport proteins, the highest number and variety of berry tonoplast transporters found in grape proteome efforts to date. We further found a pre-positive increment of 96 transport proteins from the middle of stage II, before the berry undergoes its dramatic physiological changes at and following véraison. Our results are the first to describe the proteome of a vacuole-enriched preparation, toward understanding the functions of the largest compartment in berry cells during grape growth and ripening.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Guo J, Dong X, Han G, Wang B. Salt-Enhanced Reproductive Development of Suaeda salsa L. Coincided With Ion Transporter Gene Upregulation in Flowers and Increased Pollen K + Content. FRONTIERS IN PLANT SCIENCE 2019; 10:333. [PMID: 30984214 PMCID: PMC6449877 DOI: 10.3389/fpls.2019.00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/04/2019] [Indexed: 05/06/2023]
Abstract
Halophytes are adapted to saline environments and demonstrate optimal reproductive growth under high salinity. To gain insight into the salt tolerance mechanism and effects of salinity in the halophyte Suaeda salsa, the number of flowers and seeds, seed size, anther development, ion content, and flower transcript profiles, as well as the relative expression levels of genes involved in ion transport, were analyzed in S. salsa plants treated with 0 or 200 mM NaCl. The seed size, flower number, seed number per leaf axil, and anther fertility were all significantly increased by 200 mM NaCl treatment. The Na+ and Cl- contents in the leaves, stems, and pollen of NaCl-treated plants were all markedly higher, and the K+ content in the leaves and stems was significantly lower, than those in untreated control plants. By contrast, the K+ content in pollen grains did not decrease, but rather increased, upon NaCl treatment. Genes related to Na+, K+ and, Cl- transport, such as SOS1, KEA, AKT1, NHX1, and CHX, showed increased expression in the flowers of NaCl-treated plants. These results suggest that ionic homeostasis in reproductive organs, especially in pollen grains under salt-treated conditions, involves increased expression of ion transport-related genes.
Collapse
Affiliation(s)
| | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Patir-Nebioglu MG, Andrés Z, Krebs M, Fink F, Drzewicka K, Stankovic-Valentin N, Segami S, Schuck S, Büttner M, Hell R, Maeshima M, Melchior F, Schumacher K. Pyrophosphate modulates plant stress responses via SUMOylation. eLife 2019; 8:44213. [PMID: 30785397 PMCID: PMC6382351 DOI: 10.7554/elife.44213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.
Collapse
Affiliation(s)
- M Görkem Patir-Nebioglu
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Zaida Andrés
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Melanie Krebs
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Fabian Fink
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Katarzyna Drzewicka
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Frauke Melchior
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Karin Schumacher
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Graus D, Konrad KR, Bemm F, Patir Nebioglu MG, Lorey C, Duscha K, Güthoff T, Herrmann J, Ferjani A, Cuin TA, Roelfsema MRG, Schumacher K, Neuhaus HE, Marten I, Hedrich R. High V-PPase activity is beneficial under high salt loads, but detrimental without salinity. THE NEW PHYTOLOGIST 2018; 219:1421-1432. [PMID: 29938800 PMCID: PMC6099232 DOI: 10.1111/nph.15280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 05/03/2023]
Abstract
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.
Collapse
Affiliation(s)
- Dorothea Graus
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Kai R. Konrad
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Felix Bemm
- Institute of BioinformaticsCenter for Computational and Theoretical, BiologyUniversity of WürzburgAm HublandWürzburgD‐97218Germany
| | - Meliha Görkem Patir Nebioglu
- Centre for Organismal StudiesDevelopmental Biology of PlantsRuprecht‐Karls‐University of HeidelbergIm Neuenheimer Feld 230Heidelberg69120Germany
| | - Christian Lorey
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Kerstin Duscha
- Plant PhysiologyUniversity KaiserslauternPostfach 3049KaiserslauternD‐67653Germany
| | - Tilman Güthoff
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Johannes Herrmann
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Ali Ferjani
- Department of BiologyTokyo Gakugei UniversityNukui Kitamachi 4‐1‐1Koganei‐shiTokyo184‐8501Japan
| | - Tracey Ann Cuin
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTAS7001Australia
| | - M. Rob G. Roelfsema
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Karin Schumacher
- Centre for Organismal StudiesDevelopmental Biology of PlantsRuprecht‐Karls‐University of HeidelbergIm Neuenheimer Feld 230Heidelberg69120Germany
| | - H. Ekkehard Neuhaus
- Plant PhysiologyUniversity KaiserslauternPostfach 3049KaiserslauternD‐67653Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| |
Collapse
|
16
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
17
|
Lee YK, Rhee JY, Lee SH, Chung GC, Park SJ, Segami S, Maeshima M, Choi G. Functionally redundant LNG3 and LNG4 genes regulate turgor-driven polar cell elongation through activation of XTH17 and XTH24. PLANT MOLECULAR BIOLOGY 2018; 97:23-36. [PMID: 29616436 DOI: 10.1007/s11103-018-0722-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/25/2018] [Indexed: 05/03/2023]
Abstract
In this work, we genetically characterized the function of Arabidopsis thaliana, LONGIFOLIA (LNG1), LNG2, LNG3, LNG4, their contribution to regulate vegetative architecture in plant. We used molecular and biophysical approaches to elucidate a gene function that regulates vegetative architecture, as revealed by the leaf phenotype and later effects on flowering patterns in Arabidopsis loss-of-function mutants. As a result, LNG genes play an important role in polar cell elongation by turgor pressure controlling the activation of XTH17 and XTH24. Plant vegetative architecture is related to important traits that later influence the floral architecture involved in seed production. Leaf morphology is the primary key trait to compose plant vegetative architecture. However, molecular mechanism on leaf shape determination is not fully understood even in the model plant A. thaliana. We previously showed that LONGIFOLIA (LNG1) and LONGIFOLIA2 (LNG2) genes regulate leaf morphology by promoting longitudinal cell elongation in Arabidopsis. In this study, we further characterized two homologs of LNG1, LNG3, and LNG4, using genetic, biophysical, and molecular approaches. Single loss-of-function mutants, lng3 and lng4, do not show any phenotypic difference, but mutants of lng quadruple (lngq), and lng1/2/3 and lng1/2/4 triples, display reduced leaf length, compared to wild type. Using the paradermal analysis, we conclude that the reduced leaf size of lngq is due to decreased cell elongation in the direction of longitudinal leaf growth, and not decreased cell proliferation. This data indicate that LNG1/2/3/4 are functionally redundant, and are involved in polar cell elongation in Arabidopsis leaf. Using a biophysical approach, we show that the LNGs contribute to maintain high turgor pressure, thus regulating turgor pressure-dependent polar cell elongation. In addition, gene expression analysis showed that LNGs positively regulate the expression of the cell wall modifying enzyme encoded by a multi-gene family, xyloglucan endotransglucosylase/hydrolase (XTH). Taking all of these together, we propose that LNG related genes play an important role in polar cell elongation by changing turgor pressure and controlling the activation of XTH17 and XTH24.
Collapse
Affiliation(s)
- Young Koung Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea.
- Division of Biological Sciences and Institute for Basic Science/Division of Biological Sciences and Research Institute for Glycoscience, Wonkwang University, Iksan, 54538, South Korea.
| | - Ji Ye Rhee
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Seong Hee Lee
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Gap Chae Chung
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Soon Ju Park
- Division of Biological Sciences and Institute for Basic Science/Division of Biological Sciences and Research Institute for Glycoscience, Wonkwang University, Iksan, 54538, South Korea
| | - Shoji Segami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Masayohi Maeshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
18
|
Sun T, Xu L, Sun H, Yue Q, Zhai H, Yao Y. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal. FRONTIERS IN PLANT SCIENCE 2017; 8:1811. [PMID: 29104582 PMCID: PMC5655013 DOI: 10.3389/fpls.2017.01811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/05/2017] [Indexed: 05/14/2023]
Abstract
In this work, four vacuolar H+-PPase (VHP) genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated berry pigmentation. On the other hand, RNA-Seq analysis of WT and transgenic berry skins revealed that carbohydrate metabolism, flavonoid metabolism and regulation and solute carrier family expression were the most clearly altered biological processes. Further experiments elucidated that VvVHP1; 2 overexpression up-regulated the expression of the genes related to anthocyanin biosynthesis and transport via hexokinase-mediated glucose signal and thereby promoted anthocyanin accumulation in berry skins and Arabidopsis leaves. Additionally, modifications of sugar status caused by enhanced hexokinase activities likely play a key role in VvVHP1; 2-induced sugar signaling.
Collapse
|
19
|
Hernández A, Herrera-Palau R, Madroñal JM, Albi T, López-Lluch G, Perez-Castiñeira JR, Navas P, Valverde F, Serrano A. Vacuolar H(+)-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast. FRONTIERS IN PLANT SCIENCE 2016; 7:85. [PMID: 26904057 PMCID: PMC4746327 DOI: 10.3389/fpls.2016.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/17/2016] [Indexed: 05/12/2023]
Abstract
Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.
Collapse
Affiliation(s)
- Agustín Hernández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSevilla, Spain
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão Paulo, Brazil
| | - Rosana Herrera-Palau
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSevilla, Spain
| | - Juan M. Madroñal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSevilla, Spain
| | - Tomás Albi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo and Centre of Biomedical Research in Rare Diseases, ISCIII, Consejo Superior de Investigaciones Científicas, Universidad Pablo de OlavideSevilla, Spain
| | - José R. Perez-Castiñeira
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and Centre of Biomedical Research in Rare Diseases, ISCIII, Consejo Superior de Investigaciones Científicas, Universidad Pablo de OlavideSevilla, Spain
| | - Federico Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSevilla, Spain
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSevilla, Spain
| |
Collapse
|
20
|
Shabala S, Bose J, Fuglsang AT, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1015-31. [PMID: 26507891 DOI: 10.1093/jxb/erv465] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Igor Pottosin
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, México
| |
Collapse
|
21
|
Asaoka M, Segami S, Ferjani A, Maeshima M. Contribution of PPi-Hydrolyzing Function of Vacuolar H(+)-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes. FRONTIERS IN PLANT SCIENCE 2016; 7:415. [PMID: 27066051 PMCID: PMC4814480 DOI: 10.3389/fpls.2016.00415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/17/2016] [Indexed: 05/06/2023]
Abstract
The vacuolar-type H(+)-pyrophosphatase (H(+)-PPase) catalyzes a coupled reaction of pyrophosphate (PPi) hydrolysis and active proton translocation across the tonoplast. Overexpression of H(+)-PPase improves growth in various plant species, and loss-of-function mutants (fugu5s) of H(+)-PPase in Arabidopsis thaliana have post-germinative developmental defects. Here, to further clarify the physiological significance of this important enzyme, we newly generated three varieties of H(+)-PPase overexpressing lines with different levels of activity that we analyzed together with the loss-of-function mutant fugu5-3. The H(+)-PPase overexpressors exhibited enhanced activity of H(+)-PPase during vegetative growth, but no change in the activity of vacuolar H(+)-ATPase. Overexpressors with high enzymatic activity grew more vigorously with fresh weight increased by more than 24 and 44%, compared to the wild type and fugu5-3, respectively. Consistently, the overexpressors had larger rosette leaves and nearly 30% more cells in leaves than the wild type. When uncoupling mutated variants of H(+)-PPase, that could hydrolyze PPi but could not translocate protons, were introduced into the fugu5-3 mutant background, shoot growth defects recovered to the same levels as when a normal H(+)-PPase was introduced. Taken together, our findings clearly demonstrate that additional expression of H(+)-PPase improves plant growth by increasing cell number, predominantly as a consequence of the PPi-hydrolyzing activity of the enzyme.
Collapse
Affiliation(s)
- Mariko Asaoka
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei UniversityTokyo, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
- *Correspondence: Masayoshi Maeshima,
| |
Collapse
|
22
|
Fukuda M, Segami S, Tomoyama T, Asaoka M, Nakanishi Y, Gunji S, Ferjani A, Maeshima M. Lack of H(+)-pyrophosphatase Prompts Developmental Damage in Arabidopsis Leaves on Ammonia-Free Culture Medium. FRONTIERS IN PLANT SCIENCE 2016; 7:819. [PMID: 27375667 PMCID: PMC4901044 DOI: 10.3389/fpls.2016.00819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 05/25/2016] [Indexed: 05/06/2023]
Abstract
The plant vacuolar H(+)-pyrophosphatase (H(+)-PPase) functions as a proton pump coupled with the hydrolysis of pyrophosphate (PPi). Loss-of-function mutants (fugu5s and vhp1) of the H(+)-PPase of Arabidopsis thaliana show clear morphological phenotypes in the cotyledons, caused by inhibition of gluconeogenesis from seed storage lipids due to excessive accumulation of PPi. In this study, we investigated the phenotypes of the fugu5 and vhp1 mutants during vegetative growth under a specific nitrogen nutritional regime. When nitrate in the culture medium was the sole nitrogen source, growth of the mutant rosette leaves was severely compromised. Interestingly, trypan blue staining revealed notable cell death at the leaf blade-petiole junctions of young leaves, a region known to have meristematic features. Physical contact of the leaf tip with the culture medium also triggered leaf atrophy, suggesting that absorption of some elements through the hydathodes was probably involved in this phenotype. Prevention of such leaf-medium contact resulted in a marked decrease in phosphate content in the shoots, and suppressed leaf atrophy. Furthermore, fugu5 necrotic symptoms were rescued completely by heterologous expression of yeast cytosolic soluble pyrophosphatase IPP1 or uncoupling-type H(+)-PPases that retained only PPi-hydrolysis activity, indicating that the damage of actively proliferating cells was caused by the loss of the PPi-hydrolyzing function of H(+)-PPase. Importantly, cell death and growth defects of the fugu5 leaves were suppressed completely by the simple addition of ammonium (>1 mM) to the culture medium. The PPi content in the shoots of fugu5 grown on ammonium-free medium was 70% higher than that of the wild type, and PPi levels were restored to normal upon growth on ammonium-supplemented medium. Together, these findings suggest that the PPi-hydrolyzing activity of H(+)-PPase is essential to maintain the PPi contents at optimal levels when grown on ammonium-free culture medium, and any direct contact of the leaves with the culture medium may raise PPi levels in the leaves through increased phosphate uptake.
Collapse
Affiliation(s)
- Mayu Fukuda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
- *Correspondence: Shoji Segami, ; Masayoshi Maeshima,
| | - Takaaki Tomoyama
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Mariko Asaoka
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
- Department of Biology, Tokyo Gakugei University, KoganeiTokyo, Japan
| | - Yoichi Nakanishi
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, KoganeiTokyo, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, KoganeiTokyo, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
- *Correspondence: Shoji Segami, ; Masayoshi Maeshima,
| |
Collapse
|
23
|
Molecular Cloning, Expression Analysis, and Functional Characterization of the H(+)-Pyrophosphatase from Jatropha curcas. Appl Biochem Biotechnol 2015; 178:1273-85. [PMID: 26643082 DOI: 10.1007/s12010-015-1944-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
H(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any correlated studies pointing to the elite energy plant, Jatropha curcas. Herein, we cloned the full length of J. curcas H(+)-PPase (JcVP1) complementary DNA (cDNA) by reverse transcription PCR, based on the assembled sequence of its ESTs highly matched to Hevea brasiliensis H(+)-PPase. This gene encodes a polypeptide of 765 amino acids that was predicted as a K(+)-dependent H(+)-PPase evolutionarily closest to those of other Euphorbiaceae plants. Many cis-regulatory elements relevant to environmental stresses, molecular signals, or tissue-specificity were identified by promoter prediction within the 1.5-kb region upstream of JcVP1 coding sequence. Meanwhile, the responses of JcVP1 expression to several common abiotic stresses (salt, drought, heat, cold) were characterized with a considerable accordance with the inherent stress tolerance of J. curcas. Moreover, we found that the heterologous expression of JcVP1 could significantly improve the salt tolerance in both recombinant Escherichia coli and Saccharomyces cerevisiae, and this effect could be further fortified in yeast by N-terminal addition of a vacuole-targeting signal peptide from the H(+)-PPase of Trypanosoma cruzi.
Collapse
|
24
|
Chen Y, Li L, Zong J, Chen J, Guo H, Guo A, Liu J. Heterologous expression of the halophyte Zoysia matrella H⁺-pyrophosphatase gene improved salt tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 91:49-55. [PMID: 25874657 DOI: 10.1016/j.plaphy.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/15/2015] [Accepted: 04/07/2015] [Indexed: 05/27/2023]
Abstract
A number of vacuolar H(+)-pyrophosphatase (VP) family genes play important roles in plant growth under salt stress condition. Despite their biological importance in plant salt-stress regulation, there is no report about VP in the halophytic turfgrass Zoysia matrella. Here, we isolated ZmVP1, a type I VP homologues gene encoding 768 amino acids by using the degenerated PCR and RACE PCR methods from Zoysia matrella. The expression level of ZmVP1 was significantly induced by salinity, drought and cold, but not by heat. ZmVP1 can restore the salt-tolerant ability of a salt-sensitive yeast strain. Overexpression of ZmVP1 in Arabidopsis thaliana resulted in more vigorous growth under salt stress. Moreover, the transgenic Arabidopsis accumulated more Na(+) and K(+) in the leaves compared to that of wild type plants under salt stress, had higher activities of V-ATPase and V-PPase, and showed higher relative gene expression levels of 5 stress-related genes (AtNHX1, AtLEA, AtP5CS, AtMn-SOD, AtAPX1). These results demonstrated that ZmVP1 from Z. matrella was a functional tonoplast H(+)-pyrophosphatase contributing to salt tolerance potentially through regulating the Na(+) compartment in vacuole, K(+) assimilation, osmotic regulation and antioxidant response.
Collapse
Affiliation(s)
- Yu Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Lanlan Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Junqin Zong
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Jingbo Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Hailin Guo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Aigui Guo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Jianxiu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
25
|
Tanaka N, Fujiwara T, Tomioka R, Krämer U, Kawachi M, Maeshima M. Characterization of the histidine-rich loop of Arabidopsis vacuolar membrane zinc transporter AtMTP1 as a sensor of zinc level in the cytosol. PLANT & CELL PHYSIOLOGY 2015; 56:510-519. [PMID: 25516571 DOI: 10.1093/pcp/pcu194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The vacuolar Zn(2+)/H(+) antiporter of Arabidopsis thaliana, AtMTP1, has a long cytosolic histidine-rich loop. A mutated AtMTP1 in which the first half of the loop (His-half) was deleted exhibited a 11-fold higher transport velocity in yeast cells. Transgenic lines overexpressing the His-half-deleted AtMTP1 in the loss-of-function mutant were evaluated for growth and metal content in the presence of various zinc concentrations. These overexpressing lines (35S-AtMTP1 and 35S-His-half lines) showed high tolerance to excess concentrations of zinc at 150 µM, as did the wild type, compared with the loss-of-function line. The His-half AtMTP1 transported cobalt in a heterologous expression assay in yeast, but the cumulative amount of cobalt in 35S-His-half plants was not increased. Moreover, the accumulation of calcium and iron was not changed in plants. Under zinc-deficient conditions, growth of 35S-His-half lines was markedly suppressed. Under the same conditions, the 35S-His-half lines accumulated larger amounts of zinc in roots and smaller amounts of zinc in shoots compared with the other lines, suggesting an abnormal accumulation of zinc in the roots of 35S-His-half lines. As a result, the shoots may exhibit zinc deficiency. Taken together, these results suggest that the His-loop acts as a sensor of cytosolic zinc to maintain an essential level in the cytosol and that the dysfunction of the loop results in an uncontrolled accumulation of zinc in the vacuoles of root cells.
Collapse
Affiliation(s)
- Natsuki Tanaka
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Takashi Fujiwara
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Rie Tomioka
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Ute Krämer
- Department of Plant Physiology, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Miki Kawachi
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
26
|
Schumacher K. pH in the plant endomembrane system-an import and export business. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:71-76. [PMID: 25282587 DOI: 10.1016/j.pbi.2014.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 05/06/2023]
Abstract
pH homeostasis is an essential process in all plant cells and the maintenance of correct luminal pH in the compartments of the endomembrane system is important not only for secondary active transport but also for a variety of cellular functions including protein modification, sorting, and trafficking. Due to their electrogenicity primary H(+)-pumps cannot establish and control the often large proton-gradients single-handedly but require the co-action of other ion transporters that serve as either shunt conductances or proton-leaks. Here, I will thus focus on recent results that highlight the interplay of proton-pumps and proton-coupled transporters in controlling pH in the compartments of the plant endomembrane system.
Collapse
Affiliation(s)
- Karin Schumacher
- Dep. of Cell Biology, Centre for Organismal Studies (COS), Universität Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Segami S, Makino S, Miyake A, Asaoka M, Maeshima M. Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures. THE PLANT CELL 2014; 26:3416-34. [PMID: 25118245 PMCID: PMC4371836 DOI: 10.1105/tpc.114.127571] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We prepared Arabidopsis thaliana lines expressing a functional green fluorescent protein (GFP)-linked vacuolar H(+)-pyrophosphatase (H(+)-PPase) under the control of its own promoter to investigate morphological dynamics of vacuoles and tissue-specific expression of H(+)-PPase. The lines obtained had spherical structures in vacuoles with strong fluorescence, which are referred to as bulbs. Quantitative analyses revealed that the occurrence of the bulbs correlated with the amount of GFP. Next, we prepared a construct of H(+)-PPase linked with a nondimerizing GFP (mGFP); we detected no bulbs. These results indicate that the membranes adhere face-to-face by antiparallel dimerization of GFP, resulting in the formation of bulbs. In plants expressing H(+)-PPase-mGFP, intravacuolar spherical structures with double membranes, which differed from bulbs in fluorescence intensity and intermembrane spacing, were still observed in peripheral endosperm, pistil epidermis and hypocotyls. Four-dimensional imaging revealed the dynamics of formation, transformation, and disappearance of intravacuolar spherical structures and transvacuolar strands in living cells. Visualization of H(+)-PPase-mGFP revealed intensive accumulation of the enzyme, not only in dividing and elongating cells but also in mesophyll, phloem, and nectary cells, which may have high sugar content. Dynamic morphological changes including transformation of vacuolar structures between transvacuolar strands, intravacuolar sheet-like structures, and intravacuolar spherical structures were also revealed.
Collapse
Affiliation(s)
- Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Sachi Makino
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ai Miyake
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mariko Asaoka
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
28
|
Regulation of PPi Levels Through the Vacuolar Membrane H+-Pyrophosphatase. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Kabała K, Janicka-Russak M, Reda M, Migocka M. Transcriptional regulation of the V-ATPase subunit c and V-PPase isoforms in Cucumis sativus under heavy metal stress. PHYSIOLOGIA PLANTARUM 2014; 150:32-45. [PMID: 23718549 DOI: 10.1111/ppl.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 05/11/2023]
Abstract
Two electrogenic proton pumps, vacuolar H(+) transporting ATPase (V-ATPase, EC 3.6.3.14) and vacuolar H(+) transporting inorganic pyrophosphatase (V-PPase, EC 3.6.1.1), co-exist in the vacuolar membrane of plant cells. In this work, all CsVHA and CsVHP genes encoding V-ATPase and V-PPase, respectively, were identified in the cucumber genome. Among them, three CsVHA-c genes for V-ATPase subunit c and two CsVHP1 genes for type I V-PPase were analyzed in detail. Individual isogenes were differentially regulated in plant tissues and during plant development as well as under changing environmental conditions. CsVHA-c1 and CsVHA-c2 showed similar tissue-specific expression patterns with the highest levels in stamens and old leaves. CsVHP1;1 was predominantly expressed in roots and female flowers. In contrast, both CsVHA-c3 and CsVHP1;2 remained in a rather constant ratio in all examined cucumber organs. Under heavy metal stress, the transcript amount of CsVHA-c1 and CsVHP1;1 showed a pronounced stress-dependent increase after copper and nickel treatment. CsVHA-c3 was upregulated by nickel only whereas CsVHA-c2 was induced by all metals with the most visible effect of copper. Additionally, CsVHP1;2 showed a tendency to be upregulated by copper and zinc. We propose that CsVHA-c1, CsVHA-c2 and CsVHP1;1 are essential elements of mechanisms involved in adaptation of cucumber plants to copper toxicity.
Collapse
Affiliation(s)
- Katarzyna Kabała
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, 50-328 , Wrocław, Poland
| | | | | | | |
Collapse
|
30
|
Gamboa MC, Baltierra F, Leon G, Krauskopf E. Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:99-105. [PMID: 24080396 DOI: 10.1016/j.plaphy.2013.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/10/2013] [Indexed: 05/07/2023]
Abstract
Vacuolar solute accumulation has been shown to be a mechanism by which plants are capable of increasing drought and salt tolerance. The exposure of plants to NaCl induces H+ transport into the vacuole by specialized pumps. One of them corresponds to the vacuolar H+-pyrophosphatase, which generates a H+ gradient across the vacuolar membrane. In our laboratory we isolated the first cDNA sequence of a vacuolar pyrophosphatase type I (EVP1) from Eucalyptus globulus. Using real-time PCR we confirmed that EVP1 participates in Eucalyptus plants' response to drought and salt stress through an ABA independent pathway. Additionally, the overexpression of EVP1 in transgenic Arabidopsis resulted in an enhancement of drought and salt tolerance. Interestingly we established that the transgenic plants had a higher number of root hairs, which may have a positive effect on the plant's response to drought and salt stress. These results suggest that EVP1 plays an active role in abiotic stress tolerance in E. globulus, and that it may be potentially used to enhance drought and stress tolerance of plants.
Collapse
Affiliation(s)
- M C Gamboa
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Republica 239, Santiago, Chile
| | | | | | | |
Collapse
|
31
|
Viotti C, Krüger F, Krebs M, Neubert C, Fink F, Lupanga U, Scheuring D, Boutté Y, Frescatada-Rosa M, Wolfenstetter S, Sauer N, Hillmer S, Grebe M, Schumacher K. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. THE PLANT CELL 2013; 25:3434-49. [PMID: 24014545 PMCID: PMC3809542 DOI: 10.1105/tpc.113.114827] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 05/18/2023]
Abstract
Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H(+)-pyrophosphatase and the vacuolar H(+)-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)-Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.
Collapse
Affiliation(s)
- Corrado Viotti
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Falco Krüger
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Neubert
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Fink
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Upendo Lupanga
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - David Scheuring
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yohann Boutté
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Márcia Frescatada-Rosa
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Susanne Wolfenstetter
- Molecular Plant Physiology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stefan Hillmer
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
- Address correspondence to
| |
Collapse
|
32
|
Mottaleb SA, Rodríguez-Navarro A, Haro R. Knockouts of Physcomitrella patens CHX1 and CHX2 Transporters Reveal High Complexity of Potassium Homeostasis. ACTA ACUST UNITED AC 2013; 54:1455-68. [DOI: 10.1093/pcp/pct096] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Mohammed SA, Nishio S, Takahashi H, Shiratake K, Ikeda H, Kanahama K, Kanayama Y. Role of Vacuolar H+-inorganic pyrophosphatase in tomato fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5613-21. [PMID: 22915738 PMCID: PMC3444275 DOI: 10.1093/jxb/ers213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
cDNA corresponding to two type-I vacuolar H(+)-inorganic pyrophosphatases (V-PPases) (SlVP1, SlVP2) and one type-II V-PPase (SlVP3) was isolated from tomato fruit to investigate their role in fruit development. Southern analysis revealed that type-I V-PPase genes form a multigene family, whereas there is only one type-II V-PPase gene in the tomato genome. Although SlVP1 and SlVP2 were differentially expressed in leaves and mature fruit, the highest levels of both SlVP1 and SlVP2 mRNA were observed in fruit at 2-4 days after anthesis. The expression pattern of type-II SlVP3 was similar to that of SlVP2, and the highest levels of SlVP3 mRNA were also observed in fruit at 2-4 days after anthesis, thus suggesting that SlVP3 plays a role in early fruit development. Because SlVP1 and SlVP2 mRNA was more abundant than SlVP3 mRNA, expression of type-I V-PPases was analysed further. Type-I V-PPase mRNA was localized in ovules and their vicinities and in vascular tissue at an early stage of fruit development. Tomato RNAi lines in which the expression of type-I V-PPase genes was repressed using the fruit-specific promoter TPRP-F1 exhibited fruit growth retardation at an early stage of development. Although the major function of V-PPases in fruit has been believed to be the accumulation of materials such as sugars and organic acids in the vacuole during cell expansion and ripening, these results show that specific localization of V-PPase mRNA induced by pollination has a novel role in the cell division stage.
Collapse
Affiliation(s)
- Seedahmed A Mohammed
- Graduate School of Life Sciences, Tohoku UniversitySendai 980-8577Japan
- These authors contributed equally to this work
| | - Sogo Nishio
- Graduate School of Agricultural Science, Tohoku UniversitySendai 981-8555Japan
- These authors contributed equally to this work
- Present address: National Institute of Fruit Tree ScienceTsukuba 305-8605Japan
| | | | - Katsuhiro Shiratake
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya 464-8601Japan
| | - Hiroki Ikeda
- Graduate School of Agricultural Science, Tohoku UniversitySendai 981-8555Japan
| | - Koki Kanahama
- Graduate School of Agricultural Science, Tohoku UniversitySendai 981-8555Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku UniversitySendai 981-8555Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Gaxiola RA, Sanchez CA, Paez-Valencia J, Ayre BG, Elser JJ. Genetic manipulation of a "vacuolar" H(+)-PPase: from salt tolerance to yield enhancement under phosphorus-deficient soils. PLANT PHYSIOLOGY 2012; 159:3-11. [PMID: 22434041 PMCID: PMC3375966 DOI: 10.1104/pp.112.195701] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Roberto A Gaxiola
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-1501, USA.
| | | | | | | | | |
Collapse
|
35
|
Pittman JK. Multiple Transport Pathways for Mediating Intracellular pH Homeostasis: The Contribution of H(+)/ion Exchangers. FRONTIERS IN PLANT SCIENCE 2012; 3:11. [PMID: 22645567 PMCID: PMC3355781 DOI: 10.3389/fpls.2012.00011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/11/2012] [Indexed: 05/21/2023]
Abstract
Intracellular pH homeostasis is an essential process in all plant cells. The transport of H(+) into intracellular compartments is critical for providing pH regulation. The maintenance of correct luminal pH in the vacuole and in compartments of the secretory/endocytic pathway is important for a variety of cellular functions including protein modification, sorting, and trafficking. It is becoming increasingly evident that coordination between primary H(+) pumps, most notably the V-ATPase, and secondary ion/H(+) exchangers allows this endomembrane pH maintenance to occur. This article describes some of the recent insights from the studies of plant cation/H(+) exchangers and anion/H(+) exchangers that demonstrate the fundamental roles of these transporters in pH homeostasis within intracellular compartments.
Collapse
Affiliation(s)
- Jon K. Pittman
- Faculty of Life Sciences, University of ManchesterManchester, UK
- *Correspondence: Jon K. Pittman, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK. e-mail:
| |
Collapse
|
36
|
Ferjani A, Segami S, Horiguchi G, Sakata A, Maeshima M, Tsukaya H. Regulation of pyrophosphate levels by H+-PPase is central for proper resumption of early plant development. PLANT SIGNALING & BEHAVIOR 2012; 7:38-42. [PMID: 22301965 PMCID: PMC3357364 DOI: 10.4161/psb.7.1.18573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The synthesis of DNA, RNA, and de novo proteins is fundamental for early development of the seedling after germination, but such processes release pyrophosphate (PPi) as a byproduct of ATP hydrolysis. The over-accumulation of the inhibitory metabolite PPi in the cytosol hinders these biosynthetic reactions. All living organisms possess ubiquitous enzymes collectively called inorganic pyrophosphatases (PPases), which catalyze the hydrolysis of PPi into two orthophosphate (Pi) molecules. Defects in PPase activity cause severe developmental defects and/or growth arrest in several organisms. In higher plants, a proton-translocating vacuolar PPase (H+-PPase) uses the energy of PPi hydrolysis to acidify the vacuole. However, the biological implications of PPi hydrolysis are vague due to the widespread belief that the major role of H+-PPase in plants is vacuolar acidification. We have shown that the Arabidopsis fugu5 mutant phenotype, caused by a defect in H+-PPase activity, is rescued by complementation with the yeast cytosolic PPase IPP1. In addition, our analyses have revealed that increased cytosolic PPi levels impair postgerminative development in fugu5 by inhibiting gluconeogenesis. This led us to the conclusion that the role of H+-PPase as a proton-pump is negligible. Here, we present further evidence of the growth-boosting effects of removing PPi in later stages of plant vegetative development, and briefly discuss the biological role of PPases and their potential applications in different disciplines and in various organisms.
Collapse
Affiliation(s)
- Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Ferjani A, Segami S, Horiguchi G, Muto Y, Maeshima M, Tsukaya H. Keep an eye on PPi: the vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis. THE PLANT CELL 2011; 23:2895-908. [PMID: 21862707 PMCID: PMC3180799 DOI: 10.1105/tpc.111.085415] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Postgerminative growth of seed plants requires specialized metabolism, such as gluconeogenesis, to support heterotrophic growth of seedlings until the functional photosynthetic apparatus is established. Here, we show that the Arabidopsis thaliana fugu5 mutant, which we show to be defective in AVP1 (vacuolar H(+)-pyrophosphatase), failed to support heterotrophic growth after germination. We found that exogenous supplementation of Suc or the specific removal of the cytosolic pyrophosphate (PPi) by the heterologous expression of the cytosolic inorganic pyrophosphatase1 (IPP1) gene from budding yeast (Saccharomyces cerevisiae) rescued fugu5 phenotypes. Furthermore, compared with the wild-type and AVP1(Pro):IPP1 transgenic lines, hypocotyl elongation in the fugu5 mutant was severely compromised in the dark but recovered upon exogenous supply of Suc to the growth media. Measurements revealed that the peroxisomal β-oxidation activity, dry seed contents of storage lipids, and their mobilization were unaffected in fugu5. By contrast, fugu5 mutants contained ~2.5-fold higher PPi and ~50% less Suc than the wild type. Together, these results provide clear evidence that gluconeogenesis is inhibited due to the elevated levels of cytosolic PPi. This study demonstrates that the hydrolysis of cytosolic PPi, rather than vacuolar acidification, is the major function of AVP1/FUGU5 in planta. Plant cells optimize their metabolic function by eliminating PPi in the cytosol for efficient postembryonic heterotrophic growth.
Collapse
Affiliation(s)
- Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Paez-Valencia J, Patron-Soberano A, Rodriguez-Leviz A, Sanchez-Lares J, Sanchez-Gomez C, Valencia-Mayoral P, Diaz-Rosas G, Gaxiola R. Plasma membrane localization of the type I H(+)-PPase AVP1 in sieve element-companion cell complexes from Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:23-30. [PMID: 21600394 DOI: 10.1016/j.plantsci.2011.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 05/22/2023]
Abstract
Previous literature has shown the presence of a plasma membrane (PM) localized type I H(+)-PPase in sieve elements of Ricinus communis. Unfortunately, the physiological relevance of these findings remains obscure due to the lack of genetic and molecular reagents to study R. communis. The availability of H(+)-PPase gain and loss-of-function mutants in Arabidopsis thaliana makes this plant an attractive genetic model to address the question, but data on the PM localization of this H(+)-PPase in A. thaliana are limited to two proteomic approaches. Here we present the first report on the localization of the type I H(+)-PPase AVP1 in sieve element-companion cell complexes (SE-CCc) from A. thaliana. Double epifluorescence and immunogold labeling experiments are consistent with the co-localization of AVP1 and PIP1 (a bona fide PM maker) in PM of SE-CCc from A. thaliana.
Collapse
Affiliation(s)
- Julio Paez-Valencia
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-1501, USA
| | | | | | | | | | | | | | | |
Collapse
|