1
|
Ysbæk-Nielsen AT, Gogolu RF, Tranter M, Obel ZK. Structural brain differences in patients with schizophrenia spectrum disorders with and without auditory verbal hallucinations. Psychiatry Res Neuroimaging 2024; 344:111863. [PMID: 39151331 DOI: 10.1016/j.pscychresns.2024.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/14/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Schizophrenia spectrum disorders (SSD) are debilitating, with auditory verbal hallucinations (AVHs) being a core characteristic. While gray matter volume (GMV) reductions are commonly replicated in SSD populations, the neural basis of AVHs remains unclear. Using previously published data, this study comprises two main analyses, one of GMV dissimilarities between SSD and healthy controls (HC), and one of GMV differences specifically associated with AVHs. Structural brain images from 71 adults with (n = 46) and without (n = 25) SSD were employed. Group differences in GMVs of the cortex, anterior cingulate (ACC), superior temporal gyrus (STG), hippocampi, and thalami were assessed. Additionally, volumes of left Heschl's gyrus (HG) in a subgroup experiencing AVHs (AVH+, n = 23) were compared with those of patients who did not (AVH-, n = 23). SSD patients displayed reduced GMVs of the cortex, ACC, STG, hippocampi, and thalami compared to HC. AVH+ had significantly reduced left HG volume when compared to AVH-. Finally, a right-lateralized ventral prefrontal cluster was found to be uniquely associated with AVH severity. This study corroborates previous findings of GMV reductions in SSD cohorts. Chiefly, our secondary analysis suggests that AVHs are associated with language areas and their contralateral homologues.
Collapse
Affiliation(s)
| | | | - Maya Tranter
- Department of Psychology, University of Copenhagen, Denmark
| | | |
Collapse
|
2
|
Humpston CS, Woodward TS. Soundless voices, silenced selves: are auditory verbal hallucinations in schizophrenia truly perceptual? Lancet Psychiatry 2024; 11:658-664. [PMID: 38631367 DOI: 10.1016/s2215-0366(24)00061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024]
Abstract
In much contemporary psychiatric training and practice, there is a strong emphasis on the audible or perceptual quality and externality of auditory verbal hallucinations in clinical assessments. A typical question during clinical assessment is asking whether the voices that a person hears sound identical to the way the clinician's voice is heard. In this Personal View, we argue that the most important factor in auditory verbal hallucinations in schizophrenia spectrum psychoses is a loss of first-person authority, and that a perceptual quality is not required for it to be this kind of hallucination. We draw on evidence from cognitive neuroscience showing that the activation of brain networks retrieved during capture of auditory verbal hallucinations that were experienced when a patient was in a functional MRI scanner does not match activation of networks retrieved during auditory perception. We propose that, despite early writings by Esquirol and Schneider that defined auditory verbal hallucinations as beliefs in perception rather than true perception, cognitive neuroscience, psychiatric training and practice, and patients adopting clinical vocabulary have been strongly influenced by the progression of the diagnostic criteria for schizophrenia, which increasingly place emphasis on language, such as the "full force" of a true perception. We hold that this change has resulted in an unhelpful top-down influence on the field, imposing perceptual qualities on auditory verbal hallucinations, and leading to misunderstandings and inaccuracies in clinical practice and patients' self-reports, and misinterpretations in cognitive neuroscience. We encourage a revision of the definition of auditory verbal hallucinations to move away from the necessity for auditory perception, and towards beliefs in perception due to the loss of first-person authority.
Collapse
Affiliation(s)
- Clara S Humpston
- Department of Psychology, University of York, York, UK; School of Psychology, University of Birmingham, Birmingham, UK.
| | - Todd S Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| |
Collapse
|
3
|
Morfini F, Bauer CCC, Zhang J, Whitfield-Gabrieli S, Shinn AK, Niznikiewicz MA. Targeting the superior temporal gyrus with real-time fMRI neurofeedback: A pilot study of the indirect effects on self-referential processes in schizophrenia. Schizophr Res 2024; 270:358-365. [PMID: 38968807 PMCID: PMC11531859 DOI: 10.1016/j.schres.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Individuals with schizophrenia (SZ) and auditory hallucinations (AHs) display a distorted sense of self and self-other boundaries. Alterations of activity in midline cortical structures such as the prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) during self-reference as well as in the superior temporal gyrus (STG) have been proposed as neuromarkers of SZ and AHs. METHODS In this randomized, participant-blinded, sham-controlled trial, 22 adults (18 males) with SZ spectrum disorders (SZ or schizoaffective disorder) and frequent medication-resistant AHs received one session of real-time fMRI neurofeedback (NFB) either from the STG (n = 11; experimental group) or motor cortex (n = 11; control group). During NFB, participants were instructed to upregulate their STG activity by attending to pre-recorded sentences spoken in their own voice and downregulate it by ignoring unfamiliar voices. Before and after NFB, participants completed a self-reference task where they evaluated if trait adjectives referred to themselves (self condition), Abraham Lincoln (other condition), or whether adjectives had a positive valence (semantic condition). FMRI activation analyses of self-reference task data tested between-group changes after NFB (self>semantic, post>pre-NFB, experimental>control). Analyses were pre-masked within a self-reference network. RESULTS Activation analyses revealed significantly (p < 0.001) greater activation increase in the experimental, compared to the control group, after NFB within anterior regions of the self-reference network (mPFC, ACC, superior frontal cortex). CONCLUSIONS STG-NFB was associated with activity increase in the mPFC, ACC, and superior frontal cortex during self-reference. Modulating the STG is associated with activation changes in other, not-directly targeted, regions subserving higher-level cognitive processes associated with self-referential processes and AHs psychopathology in SZ. CLINICALTRIALS GOV: Rt-fMRI Neurofeedback and AH in Schizophrenia; https://clinicaltrials.gov/study/NCT03504579.
Collapse
Affiliation(s)
- Francesca Morfini
- Northeastern University, Department of Psychology, Boston, MA 02115, USA.
| | - Clemens C C Bauer
- Northeastern University, Department of Psychology, Boston, MA 02115, USA; Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
| | - Jiahe Zhang
- Northeastern University, Department of Psychology, Boston, MA 02115, USA
| | - Susan Whitfield-Gabrieli
- Northeastern University, Department of Psychology, Boston, MA 02115, USA; Harvard Medical School, Department of Psychiatry, Boston, MA 02115, USA; Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA; Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, MA 02139, USA
| | - Ann K Shinn
- Harvard Medical School, Department of Psychiatry, Boston, MA 02115, USA; McLean Hospital, Psychotic Disorders Division, Belmont, MA 02478, USA
| | - Margaret A Niznikiewicz
- Harvard Medical School, Department of Psychiatry, Boston, MA 02115, USA; Veterans Affairs Boston Healthcare System, Department of Psychiatry, Brockton, MA 02301, USA; Boston VA Research Institute, Boston, MA 02130, USA
| |
Collapse
|
4
|
Ren H, Li J, Zhou J, Chen X, Tang J, Li Z, Wang Q. Grey matter volume reduction in the frontotemporal cortex associated with persistent verbal auditory hallucinations in Chinese patients with chronic schizophrenia: Insights from a 3 T magnetic resonance imaging study. Schizophr Res 2024; 269:123-129. [PMID: 38772324 DOI: 10.1016/j.schres.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Persistent auditory verbal hallucinations (pAVHs) are a fundamental manifestation of schizophrenia (SCZ), yet the exact connection between pAVHs and brain structure remains contentious. This study aims to explore the potential correlation between pAVHs and alterations in grey matter volume (GMV) within specific brain regions among individuals diagnosed with SCZ. METHODS 76 SCZ patients with pAVHs (pAVH group), 57 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) were investigated using 3 T magnetic resonance imaging. The P3 hallucination item of the Positive and Negative Syndrome Scale was used to assess the severity of pAVHs. Voxel-based morphometry was used to analyze the GMV profile between the three groups. RESULTS Compared to the non-AVH and HC groups, the pAVH group exhibited extensive reduction in GMV within the frontotemporal cortex. Conversely, no significant difference in GMV was observed between the non-AVH and HC groups. The severity of pAVHs showed a negative correlation with GMV in several regions, including the right fusiform, right inferior temporal, right medial orbitofrontal, right superior frontal, and right temporal pole (p = 0.0036, Bonferroni correction). Stepwise linear regression analysis revealed that GMV in the right temporal pole (β = -0.29, p = 0.001) and right fusiform (β = -0.21, p = 0.01) were significantly associated with the severity of pAVHs. CONCLUSIONS Widespread reduction in GMV is observed within the frontotemporal cortex, particularly involving the right temporal pole and right fusiform, which potentially contribute to the pathogenesis of pAVHs in individuals with chronic SCZ.
Collapse
Affiliation(s)
- Honghong Ren
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Qianjin Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
5
|
Besso L, Larivière S, Roes M, Sanford N, Percival C, Damascelli M, Momeni A, Lavigne K, Menon M, Aleman A, Ćurčić-Blake B, Woodward TS. Hypoactivation of the language network during auditory imagery contributes to hallucinations in Schizophrenia. Psychiatry Res Neuroimaging 2024; 341:111824. [PMID: 38754348 DOI: 10.1016/j.pscychresns.2024.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Auditory verbal hallucinations (AVHs) involve perceptions, often voices, in the absence of external stimuli, and rank among the most common symptoms of schizophrenia. Metrical stress evaluation requires determination of the stronger syllable in words, and therefore requires auditory imagery, of interest for investigation of hallucinations in schizophrenia. The current functional magnetic resonance imaging study provides an updated whole-brain network analysis of a previously published study on metrical stress, which showed reduced directed connections between Broca's and Wernicke's regions of interest (ROIs) for hallucinations. Three functional brain networks were extracted, with the language network (LN) showing an earlier and shallower blood-oxygen-level dependent (BOLD) response for hallucinating patients, in the auditory imagery condition only (the reduced activation for hallucinations observed in the original ROI-based results were not specific to the imagery condition). This suggests that hypoactivation of the LN during internal auditory imagery may contribute to the propensity to hallucinate. This accords with cognitive accounts holding that an impaired balance between internal and external linguistic processes (underactivity in networks involved in internal auditory imagery and overactivity in networks involved in speech perception) contributes to our understanding of the biological underpinnings of hallucinations.
Collapse
Affiliation(s)
- Luca Besso
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Sara Larivière
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meighen Roes
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Sanford
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Percival
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matteo Damascelli
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ava Momeni
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Katie Lavigne
- Douglas Research Centre, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Todd S Woodward
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. The efficacy of low frequency repetitive transcial magnetic stimulation for treating auditory verbal hallucinations in schizophrenia: Insights from functional gradient analyses. Heliyon 2024; 10:e30194. [PMID: 38707410 PMCID: PMC11066630 DOI: 10.1016/j.heliyon.2024.e30194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Background Auditory Verbal Hallucinations (AVH) constitute a prominent feature of schizophrenia. Although low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated therapeutic benefits in ameliorating AVH, the underlying mechanisms of its efficacy necessitate further elucidation. Objective This study investigated the cortical gradient characteristics and their associations with clinical responses in schizophrenia patients with AVH, mediated through 1 Hz rTMS targeting the left temporoparietal junction. Method Functional gradient metrics were employed to examine the hierarchy patterns of cortical organization, capturing whole-brain functional connectivity profiles in patients and controls. Results The 1 Hz rTMS treatment effectively ameliorated the positive symptoms in patients, specifically targeting AVH. Initial evaluations revealed expanded global gradient distribution patterns and specific principal gradient variations in certain brain regions in patients at baseline compared to a control cohort. Following treatment, these divergent global and local patterns showed signs of normalizing. Furthermore, there was observed a closer alignment in between-network dispersion among various networks after treatment, including the somatomotor, attention, and limbic networks, indicating a potential harmonization of brain functionality. Conclusion Low-frequency rTMS induces alternations in principal functional gradient patterns, may serve as imaging markers to elucidate the mechanisms underpinning the therapeutic efficacy of rTMS on AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Mo F, Zhao H, Li Y, Cai H, Song Y, Wang R, Yu Y, Zhu J. Network Localization of State and Trait of Auditory Verbal Hallucinations in Schizophrenia. Schizophr Bull 2024:sbae020. [PMID: 38401526 DOI: 10.1093/schbul/sbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Neuroimaging studies investigating the neural substrates of auditory verbal hallucinations (AVH) in schizophrenia have yielded mixed results, which may be reconciled by network localization. We sought to examine whether AVH-state and AVH-trait brain alterations in schizophrenia localize to common or distinct networks. STUDY DESIGN We initially identified AVH-state and AVH-trait brain alterations in schizophrenia reported in 48 previous studies. By integrating these affected brain locations with large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we then leveraged novel functional connectivity network mapping to construct AVH-state and AVH-trait dysfunctional networks. STUDY RESULTS The neuroanatomically heterogeneous AVH-state and AVH-trait brain alterations in schizophrenia localized to distinct and specific networks. The AVH-state dysfunctional network comprised a broadly distributed set of brain regions mainly involving the auditory, salience, basal ganglia, language, and sensorimotor networks. Contrastingly, the AVH-trait dysfunctional network manifested as a pattern of circumscribed brain regions principally implicating the caudate and inferior frontal gyrus. Additionally, the AVH-state dysfunctional network aligned with the neuromodulation targets for effective treatment of AVH, indicating possible clinical relevance. CONCLUSIONS Apart from unifying the seemingly irreproducible neuroimaging results across prior AVH studies, our findings suggest different neural mechanisms underlying AVH state and trait in schizophrenia from a network perspective and more broadly may inform future neuromodulation treatment for AVH.
Collapse
Affiliation(s)
- Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yifan Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Song
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| |
Collapse
|
8
|
Le Bihan D. From Black Holes Entropy to Consciousness: The Dimensions of the Brain Connectome. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1645. [PMID: 38136525 PMCID: PMC10743094 DOI: 10.3390/e25121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
It has been shown that the theory of relativity can be applied physically to the functioning brain, so that the brain connectome should be considered as a four-dimensional spacetime entity curved by brain activity, just as gravity curves the four-dimensional spacetime of the physical world. Following the most recent developments in modern theoretical physics (black hole entropy, holographic principle, AdS/CFT duality), we conjecture that consciousness can naturally emerge from this four-dimensional brain connectome when a fifth dimension is considered, in the same way that gravity emerges from a 'flat' four-dimensional quantum world, without gravitation, present at the boundaries of a five-dimensional spacetime. This vision makes it possible to envisage quantitative signatures of consciousness based on the entropy of the connectome and the curvature of spacetime estimated from data obtained by fMRI in the resting state (nodal activity and functional connectivity) and constrained by the anatomical connectivity derived from diffusion tensor imaging.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, Frédéric Joliot Institute for Life Sciences (Commissariat à l’Energie Atomique, CEA), Centre d’Études de Saclay, Paris-Saclay University, Bâtiment 145, 91191 Gif-sur-Yvette, France;
- Human Brain Research Center, Kyoto University, Kyoto 606-8501, Japan
- Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
9
|
Panikratova YR, Lebedeva IS, Akhutina TV, Tikhonov DV, Kaleda VG, Vlasova RM. Executive control of language in schizophrenia patients with history of auditory verbal hallucinations: A neuropsychological and resting-state fMRI study. Schizophr Res 2023; 262:201-210. [PMID: 37923596 DOI: 10.1016/j.schres.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND As demonstrated by a plethora of studies, compromised executive functions (EF) and language are implicated in mechanisms of auditory verbal hallucinations (AVH), but the contribution of their interaction to AVH remains unclear. We hypothesized that schizophrenia patients with history of AVH (AVHh+) vs. without history of AVH (AVHh-) have a specific deficit of executive control of language and alterations in functional connectivity (FC) between the brain regions involved in EF and language, and these neuropsychological and neurophysiological traits are associated with each other. METHODS To explore the executive control of language and its contribution to AVH, we used an integrative approach involving analysis of neuropsychological and resting-state fMRI data of 34 AVHh+, 16 AVHh-, and 40 healthy controls. We identified the neuropsychological and FC measures that differentiated between AVHh+, AVHh-, and HC, and tested the associations between them. RESULTS AVHh+ were characterized by decreased category and phonological verbal fluency, utterance length, productivity in the planning tasks, and poorer retelling. AVHh+ had decreased FC between the left inferior frontal gyrus and the anterior cingulate cortex. Productivity in category verbal fluency was associated with the FC between these regions. CONCLUSIONS Poor executive control of word retrieval and deficient programming of sentence and narrative related to more general deficits of planning may be the neuropsychological traits specific for AVHh+. A neurophysiological trait specific for AVHh+ may be a decreased FC between regions involved in language production and differentiation between alien- vs. self-generated speech and between language production vs. comprehension.
Collapse
Affiliation(s)
- Yana R Panikratova
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 115522, 34 Kashirskoye shosse, Moscow, Russia.
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 115522, 34 Kashirskoye shosse, Moscow, Russia
| | - Tatiana V Akhutina
- Laboratory of Neuropsychology, Faculty of Psychology, Lomonosov Moscow State University, 125009, 11/9 Mokhovaya street, Moscow, Russia
| | - Denis V Tikhonov
- Department of Youth Psychiatry, Mental Health Research Center, 115522, 34 Kashirskoye shosse, Moscow, Russia
| | - Vasilii G Kaleda
- Department of Youth Psychiatry, Mental Health Research Center, 115522, 34 Kashirskoye shosse, Moscow, Russia
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, 101 Manning Dr # 1, Chapel Hill, NC 27514, United States of America
| |
Collapse
|
10
|
Xie Y, Guan M, Wang Z, Ma Z, Fang P, Wang H. Cerebral blood flow changes in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Eur Arch Psychiatry Clin Neurosci 2023; 273:1851-1861. [PMID: 37280358 DOI: 10.1007/s00406-023-01624-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Auditory verbal hallucinations (AVH) are a prominent symptom of schizophrenia. Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been evidenced to improve the treatment of AVH in schizophrenia. Although abnormalities in resting-state cerebral blood flow (CBF) have been reported in schizophrenia, the perfusion alterations specific to schizophrenia patients with AVH during rTMS require further investigation. In this study, we used arterial spin labeling (ASL) to investigate changes in brain perfusion in schizophrenia patients with AVH, and their associations with clinical improvement following low-frequency rTMS treatment applied to the left temporoparietal junction area. We observed improvements in clinical symptoms (e.g., positive symptoms and AVH) and certain neurocognitive functions (e.g., verbal learning and visual learning) following treatment. Furthermore, at baseline, the patients showed reductions in CBF in regions associated with language, sensory, and cognition compared to controls, primarily located in the prefrontal cortices (e.g., left inferior frontal gyrus and left middle frontal gyrus), occipital lobe (e.g., left calcarine cortex), and cingulate cortex (e.g., bilateral middle cingulate cortex), compared to controls. Conversely, we observed increased CBF in the left inferior temporal gyrus and bilateral putamen in patients relative to controls, regions known to be involved in AVH. However, the hypoperfusion or hyperperfusion patterns did not persist and instead were normalized, and were related to clinical response (e.g., AVH) in patients during low-frequency rTMS treatment. Importantly, the changes in brain perfusion were related to clinical response (e.g., AVH) in patients. Our findings suggest that low-frequency rTMS can regulate brain perfusion involving critical circuits by its remote effect in schizophrenia, and may play an important mechanistic role in the treatment of AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- Department of Military Medical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China.
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China.
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
11
|
Hou C, Jiang S, Liu M, Li H, Zhang L, Duan M, Yao G, He H, Yao D, Luo C. Spatiotemporal dynamics of functional connectivity and association with molecular architecture in schizophrenia. Cereb Cortex 2023:7179746. [PMID: 37231204 DOI: 10.1093/cercor/bhad185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Schizophrenia is a self-disorder characterized by disrupted brain dynamics and architectures of multiple molecules. This study aims to explore spatiotemporal dynamics and its association with psychiatric symptoms. Resting-state functional magnetic resonance imaging data were collected from 98 patients with schizophrenia. Brain dynamics included the temporal and spatial variations in functional connectivity density and association with symptom scores were evaluated. Moreover, the spatial association between dynamics and receptors/transporters according to prior molecular imaging in healthy subjects was examined. Patients demonstrated decreased temporal variation and increased spatial variation in perceptual and attentional systems. However, increased temporal variation and decreased spatial variation were revealed in higher order networks and subcortical networks in patients. Specifically, spatial variation in perceptual and attentional systems was associated with symptom severity. Moreover, case-control differences were associated with dopamine, serotonin and mu-opioid receptor densities, serotonin reuptake transporter density, dopamine transporter density, and dopamine synthesis capacity. Therefore, this study implicates the abnormal dynamic interactions between the perceptual system and cortical core networks; in addition, the subcortical regions play a role in the dynamic interaction among the cortical regions in schizophrenia. These convergent findings support the importance of brain dynamics and emphasize the contribution of primary information processing to the pathological mechanism underlying schizophrenia.
Collapse
Affiliation(s)
- Changyue Hou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, 611731, P. R. China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, 611731, P. R. China
| | - Mei Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, 611731, P. R. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, 611731, P. R. China
| | - Lang Zhang
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Gang Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, 611731, P. R. China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
12
|
Hancock F, Rosas FE, McCutcheon RA, Cabral J, Dipasquale O, Turkheimer FE. Metastability as a candidate neuromechanistic biomarker of schizophrenia pathology. PLoS One 2023; 18:e0282707. [PMID: 36952467 PMCID: PMC10035891 DOI: 10.1371/journal.pone.0282707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
The disconnection hypothesis of schizophrenia proposes that symptoms of the disorder arise as a result of aberrant functional integration between segregated areas of the brain. The concept of metastability characterizes the coexistence of competing tendencies for functional integration and functional segregation in the brain, and is therefore well suited for the study of schizophrenia. In this study, we investigate metastability as a candidate neuromechanistic biomarker of schizophrenia pathology, including a demonstration of reliability and face validity. Group-level discrimination, individual-level classification, pathophysiological relevance, and explanatory power were assessed using two independent case-control studies of schizophrenia, the Human Connectome Project Early Psychosis (HCPEP) study (controls n = 53, non-affective psychosis n = 82) and the Cobre study (controls n = 71, cases n = 59). In this work we extend Leading Eigenvector Dynamic Analysis (LEiDA) to capture specific features of dynamic functional connectivity and then implement a novel approach to estimate metastability. We used non-parametric testing to evaluate group-level differences and a naïve Bayes classifier to discriminate cases from controls. Our results show that our new approach is capable of discriminating cases from controls with elevated effect sizes relative to published literature, reflected in an up to 76% area under the curve (AUC) in out-of-sample classification analyses. Additionally, our new metric showed explanatory power of between 81-92% for measures of integration and segregation. Furthermore, our analyses demonstrated that patients with early psychosis exhibit intermittent disconnectivity of subcortical regions with frontal cortex and cerebellar regions, introducing new insights about the mechanistic bases of these conditions. Overall, these findings demonstrate reliability and face validity of metastability as a candidate neuromechanistic biomarker of schizophrenia pathology.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
| | - Fernando E. Rosas
- Department of Informatics, University of Sussex, Brighton, United Kingdom
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Robert A. McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
| |
Collapse
|
13
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
14
|
High levels of childhood trauma associated with changes in hippocampal functional activity and connectivity in young adults during novelty salience. Eur Arch Psychiatry Clin Neurosci 2023:10.1007/s00406-023-01564-3. [PMID: 36738332 PMCID: PMC10359215 DOI: 10.1007/s00406-023-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
Childhood trauma (CT) has been linked to increased risk for psychosis. Moreover, CT has been linked to psychosis phenotypes such as impaired cognitive and sensory functions involved in the detection of novel sensory stimuli. Our objective was to investigate if CT was associated with changes in hippocampal and superior temporal gyrus functional activation and connectivity during a novelty detection task. Fifty-eight young adults were assigned to High-CT (n = 28) and Low-CT (n = 24) groups based on their scores on the childhood trauma questionnaire (CTQ) and underwent functional Magnetic Resonance Imaging during an auditory oddball task (AOT). Relative to the Low CT group, High CT participants showed reduced functional activation in the left hippocampus during the unpredictable tone condition of the AOT. Furthermore, in the High CT group, psychophysiological interaction analysis revealed hypoconnectivity between the hippocampus and temporal and medial regions. The present study indicates both altered hippocampal activation and hippocampal-temporal-prefrontal connectivity during novelty detection in individuals that experienced CT, similarly to that reported in psychosis risk populations. Early stressful experiences and environments may alter hippocampal function during salient events, mediating the relationship between childhood trauma and psychosis risk.
Collapse
|
15
|
Slapø NB, Nerland S, Nordbø Jørgensen K, Mørch-Johnsen L, Pettersen JH, Roelfs D, Parker N, Valstad M, Pentz A, Timpe CMF, Richard G, Beck D, Werner MCF, Lagerberg TV, Melle I, Agartz I, Westlye LT, Steen NE, Andreassen OA, Moberget T, Elvsåshagen T, Jönsson EG. Auditory Cortex Thickness Is Associated With N100 Amplitude in Schizophrenia Spectrum Disorders. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad015. [PMID: 38812720 PMCID: PMC7616042 DOI: 10.1093/schizbullopen/sgad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Background and Hypothesis The auditory cortex (AC) may play a central role in the pathophysiology of schizophrenia and auditory hallucinations (AH). Previous schizophrenia studies report thinner AC and impaired AC function, as indicated by decreased N100 amplitude of the auditory evoked potential. However, whether these structural and functional alterations link to AH in schizophrenia remain poorly understood. Study Design Patients with a schizophrenia spectrum disorder (SCZspect), including patients with a lifetime experience of AH (AH+), without (AH-), and healthy controls underwent magnetic resonance imaging (39 SCZspect, 22 AH+, 17 AH-, and 146 HC) and electroencephalography (33 SCZspect, 17 AH+, 16 AH-, and 144 HC). Cortical thickness of the primary (AC1, Heschl's gyrus) and secondary (AC2, Heschl's sulcus, and the planum temporale) AC was compared between SCZspect and controls and between AH+, AH-, and controls. To examine if the association between AC thickness and N100 amplitude differed between groups, we used regression models with interaction terms. Study Results N100 amplitude was nominally smaller in SCZspect (P = .03, d = 0.42) and in AH- (P = .020, d = 0.61), while AC2 was nominally thinner in AH+ (P = .02, d = 0.53) compared with controls. AC1 thickness was positively associated with N100 amplitude in SCZspect (t = 2.56, P = .016) and AH- (t = 3.18, P = .008), while AC2 thickness was positively associated with N100 amplitude in SCZspect (t = 2.37, P = .024) and in AH+ (t = 2.68, P = .019). Conclusions The novel findings of positive associations between AC thickness and N100 amplitude in SCZspect, suggest that a common neural substrate may underlie AC thickness and N100 amplitude alterations.
Collapse
Affiliation(s)
- Nora Berz Slapø
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Lynn Mørch-Johnsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | | | - Daniel Roelfs
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Valstad
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Atle Pentz
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara M. F. Timpe
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Geneviève Richard
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Maren C. Frogner Werner
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ingrid Melle
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatry, Telemark Hospital, Skien, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Sweden
| | - Lars T. Westlye
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torgeir Moberget
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Romeo Z, Spironelli C. Hearing voices in the head: Two meta-analyses on structural correlates of auditory hallucinations in schizophrenia. Neuroimage Clin 2022; 36:103241. [PMID: 36279752 PMCID: PMC9668662 DOI: 10.1016/j.nicl.2022.103241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Past voxel-based morphometry (VBM) studies demonstrate reduced grey matter volume (GMV) in schizophrenia (SZ) patients' brains in various cortical and subcortical regions. Probably due to SZ symptoms' heterogeneity, these results are often inconsistent and difficult to integrate. We hypothesized that focusing on auditory verbal hallucinations (AVH) - one of the most common SZ symptoms - would allow reducing heterogeneity and discovering further compelling evidence of SZ neural correlates. We carried out two voxel-based meta-analyses of past studies that investigated the structural correlates of AVH in SZ. The review of whole-brain VBM studies published until June 2022 in PubMed and PsychInfo databases yielded (a) 13 studies on correlations between GMV and AVH severity in SZ patients (n = 472; 86 foci), and (b) 11 studies involving comparisons between hallucinating SZ patients (n = 504) and healthy controls (n = 524; 74 foci). Data were analyzed using the Activation Likelihood Estimation method. AVH severity was associated with decreased GMV in patients' left superior temporal gyrus (STG) and left posterior insula. Compared with healthy controls, hallucinating SZ patients showed reduced GMV on the left anterior insula and left inferior frontal gyrus (IFG). Our findings revealed important structural dysfunctions in a left lateralized cluster of brain regions, including the insula and temporo-frontal regions, that significantly contribute to the severity and persistence of AVH. Structural atrophy found in circuits involved in generating and perceiving speech, as well as in auditory signal processing, might reasonably be considered a biological marker of AVH in SZ.
Collapse
Affiliation(s)
- Zaira Romeo
- Department of General Psychology, University of Padova, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
17
|
El Haj M, Robin F. The fabricated past: intentionally fabricated autobiographical memories in Alzheimer's disease. Cogn Neuropsychiatry 2022; 27:273-288. [PMID: 35125060 DOI: 10.1080/13546805.2022.2036114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE We investigated intentionally fabricated autobiographical memories in Alzheimer's Disease (AD). METHOD We invited AD patients and control participants to construct real events as well as fabricated events describing fictitious personal events that occurred in the past. RESULTS Results demonstrated slower retrieval time for intentionally fabricated memories than for real ones in both AD patients and control participants. The analysis also showed similar vividness for intentionally fabricated memories and real ones in AD patients but lower vividness for intentionally fabricated memories than for real ones in control participants. CONCLUSIONS The slow retrieval time of intentionally fabricated memories may be attributed to the cognitive effort required to retrieve elements from autobiographical memory and edit them to construct a new memory. We suggest that the vividness of intentionally fabricated memories observed in AD may induce confusion with real memories. In addition to the experimental approach of our study, we offer a theoretical rationale for intentionally fabricated autobiographical memories by situating them in the wider context of different facets of false memories in AD (e.g. confabulations, source monitoring errors).
Collapse
Affiliation(s)
- Mohamad El Haj
- Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), Nantes Université, Univ Angers, Nantes, France.,Unité de Gériatrie, Centre Hospitalier de Tourcoing, Tourcoing, France.,Institut Universitaire de France, Paris, France
| | - Frédérique Robin
- Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), Nantes Université, Univ Angers, Nantes, France
| |
Collapse
|
18
|
Perez-Rando M, Elvira UKA, García-Martí G, Gadea M, Aguilar EJ, Escarti MJ, Ahulló-Fuster MA, Grasa E, Corripio I, Sanjuan J, Nacher J. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. Neuroimage Clin 2022; 35:103070. [PMID: 35667173 PMCID: PMC9168692 DOI: 10.1016/j.nicl.2022.103070] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Analysis of structural MRI images using a probabilistic atlas for segmentation of several nuclei of the thalamus. Comparison of chronic patients with schizophrenia, with and without auditory hallucinations and matched healthy controls. Volumetric reductions in patients with AH vs controls: Medial geniculate nucleus, anterior pulvinar nucleus and lateral and medial mediodorsal nuclei. In patients without AH we found reductions in the volume of the pulvinar and mediodorsal nuclei, but not in the medial geniculate nucleus. Found also some significant correlations between the volume of these nuclei and the total score of the PSYRATS scale.
The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Uriel K A Elvira
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Institutes of Biomedical Technologies and Neuroscience, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gracian García-Martí
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Marien Gadea
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain
| | - Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy. Faculty of Nursing, Physiotherapy and Podiatry. Universidad Complutense de Madrid, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
19
|
Xie Y, He Y, Guan M, Wang Z, Zhou G, Ma Z, Wang H, Yin H. Low-frequency rTMS treatment alters the topographical organization of functional brain networks in schizophrenia patients with auditory verbal hallucination. Psychiatry Res 2022; 309:114393. [PMID: 35042065 DOI: 10.1016/j.psychres.2022.114393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
Abstract
Auditory verbal hallucinations (AVH) are an important characteristic of schizophrenia. Repeated transcranial magnetic stimulation (rTMS) has been evidence to be effective in treating AVH. We evaluated the topological properties of resting-state functional brain networks in schizophrenia patients with AVH (n = 32) who received 1-Hz rTMS treatment and matched healthy controls (n = 33). The results showed that the psychotic symptoms and certain neurocognitive performances in patients were improved by rTMS treatment. Furthermore, the pretreatment patients showed abnormal global topological metrics compared with the controls, including lower global efficiency (Eglob, represents the relative quality of information transmission between all nodes in the network) and higher characteristic path length (Lp, characterizes the mean shortest distance between any two nodes in the network). The pretreament patients also showed decreased local topological metrics relative to the controls, including the nodal shortest path (NLp, quantifies the mean distance between the given node and the other nodes in the network) and nodal efficiency (Ne, measures the information interchange among the neighbor nodes when one node is removed), mainly located in the prefrontal cortex, occipital cortex, and subcortical regions. While the abnormal global and local topological patterns were normalized in patients after rTMS treatment. The multiple linear regression analysis indicated that the baseline topological metrics could be associated with the clinical responses after treatment in the patient group. The results suggested that the topological organization of the functional brain network was globally and regionally altered in schizophrenia patients with AVH after rTMS treatment and may be a potential therapeutic effect for AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Zhujing Ma
- Department of Military Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Schutte MJL, Voppel A, Collin G, Abramovic L, Boks MPM, Cahn W, van Haren NEM, Hugdahl K, Koops S, Mandl RCW, Sommer IEC. Modular-Level Functional Connectome Alterations in Individuals With Hallucinations Across the Psychosis Continuum. Schizophr Bull 2022; 48:684-694. [PMID: 35179210 PMCID: PMC9077417 DOI: 10.1093/schbul/sbac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Functional connectome alterations, including modular network organization, have been related to the experience of hallucinations. It remains to be determined whether individuals with hallucinations across the psychosis continuum exhibit similar alterations in modular brain network organization. This study assessed functional connectivity matrices of 465 individuals with and without hallucinations, including patients with schizophrenia and bipolar disorder, nonclinical individuals with hallucinations, and healthy controls. Modular brain network organization was examined at different scales of network resolution, including (1) global modularity measured as Qmax and Normalised Mutual Information (NMI) scores, and (2) within- and between-module connectivity. Global modular organization was not significantly altered across groups. However, alterations in within- and between-module connectivity were observed for higher-order cognitive (e.g., central-executive salience, memory, default mode), and sensory modules in patients with schizophrenia and nonclinical individuals with hallucinations relative to controls. Dissimilar patterns of altered within- and between-module connectivity were found bipolar disorder patients with hallucinations relative to controls, including the visual, default mode, and memory network, while connectivity patterns between visual, salience, and cognitive control modules were unaltered. Bipolar disorder patients without hallucinations did not show significant alterations relative to controls. This study provides evidence for alterations in the modular organization of the functional connectome in individuals prone to hallucinations, with schizophrenia patients and nonclinical individuals showing similar alterations in sensory and higher-order cognitive modules. Other higher-order cognitive modules were found to relate to hallucinations in bipolar disorder patients, suggesting differential neural mechanisms may underlie hallucinations across the psychosis continuum.
Collapse
Affiliation(s)
- Maya J L Schutte
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alban Voppel
- To whom correspondence should be addressed; Neuroimaging Center, PO Box 196, 9700 AD, Groningen, The Netherlands; tel: +31 88 75 58672, fax: +31887555487, e-mail:
| | - Guusje Collin
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucija Abramovic
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marco P M Boks
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Neeltje E M van Haren
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,Department of Child and adolescent psychiatry/psychology, Erasmus University Medical Center, Sophia’s Children’s Hospital, Rotterdam, Netherlands
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway,Department of Psychiatry, Haukeland University Hospital, Bergen, Norway,Department of Radiology, Haukeland University Hospital, Bergen, Norway,NORMENT Norwegian Center for the Study of Mental Disorders, Haukeland University hospital, Bergen, Norway
| | - Sanne Koops
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - René C W Mandl
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Fovet T, Yger P, Lopes R, de Pierrefeu A, Duchesnay E, Houenou J, Thomas P, Szaffarczyk S, Domenech P, Jardri R. Decoding Activity in Broca's Area Predicts the Occurrence of Auditory Hallucinations Across Subjects. Biol Psychiatry 2022; 91:194-201. [PMID: 34742546 DOI: 10.1016/j.biopsych.2021.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) capture aims at detecting auditory-verbal hallucinations (AVHs) from continuously recorded brain activity. Establishing efficient capture methods with low computational cost that easily generalize between patients remains a key objective in precision psychiatry. To address this issue, we developed a novel automatized fMRI-capture procedure for AVHs in patients with schizophrenia (SCZ). METHODS We used a previously validated but labor-intensive personalized fMRI-capture method to train a linear classifier using machine learning techniques. We benchmarked the performances of this classifier on 2320 AVH periods versus resting-state periods obtained from SCZ patients with frequent symptoms (n = 23). We characterized patterns of blood oxygen level-dependent activity that were predictive of AVH both within and between subjects. Generalizability was assessed with a second independent sample gathering 2000 AVH labels (n = 34 patients with SCZ), while specificity was tested with a nonclinical control sample performing an auditory imagery task (840 labels, n = 20). RESULTS Our between-subject classifier achieved high decoding accuracy (area under the curve = 0.85) and discriminated AVH from rest and verbal imagery. Optimizing the parameters on the first schizophrenia dataset and testing its performance on the second dataset led to an out-of-sample area under the curve of 0.85 (0.88 for the converse test). We showed that AVH detection critically depends on local blood oxygen level-dependent activity patterns within Broca's area. CONCLUSIONS Our results demonstrate that it is possible to reliably detect AVH states from fMRI blood oxygen level-dependent signals in patients with SCZ using a multivariate decoder without performing complex preprocessing steps. These findings constitute a crucial step toward brain-based treatments for severe drug-resistant hallucinations.
Collapse
Affiliation(s)
- Thomas Fovet
- Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; CURE platform, Psychiatry Department, Fontan Hospital, Centre Hospitalier Universitaire de Lille, Lille, France; Centre National de Ressources et de Résilience Lille-Paris, France
| | - Pierre Yger
- Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; Institut de la Vision, Sorbonne Université, INSERM, Centre national de la recherche scientifique, Paris, France
| | - Renaud Lopes
- Vascular & Cognitive Deficits team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; In-vivo Imaging and Functions core facility, Neuroradiology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | | | | | - Josselin Houenou
- NeuroSpin, Univ Paris Saclay, CEA, Gif-sur-Yvette, France; Neurosurgery, Psychiatry and Addictology Departments, Groupe Hospitalier Universitaire Henri-Mondor, AP-HP, Créteil, France; Faculté de Santé UPEC, Université Paris Est Créteil, Créteil, France
| | - Pierre Thomas
- Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; CURE platform, Psychiatry Department, Fontan Hospital, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Sébastien Szaffarczyk
- Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France
| | - Philippe Domenech
- Institut du Cerveau et de la Moelle épinière, Sorbonne Université, INSERM, Centre national de la recherche scientifique, Paris, France; Neurosurgery, Psychiatry and Addictology Departments, Groupe Hospitalier Universitaire Henri-Mondor, AP-HP, Créteil, France; Faculté de Santé UPEC, Université Paris Est Créteil, Créteil, France
| | - Renaud Jardri
- Plasticity & SubjectivitY team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; CURE platform, Psychiatry Department, Fontan Hospital, Centre Hospitalier Universitaire de Lille, Lille, France.
| |
Collapse
|
22
|
Cao X, Huang H, Zhang B, Jiang Y, He H, Duan M, Jiang S, Tan Y, Yao D, Li C, Luo C. Surface-Based Spontaneous Oscillation in Schizophrenia: A Resting-State Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2021; 15:750879. [PMID: 34938168 PMCID: PMC8685338 DOI: 10.3389/fnhum.2021.750879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia (SZ) is considered as a self-disorder with disordered local synchronous activation. Previous studies have reported widespread dyssynchrony of local activation in patients with SZ, which may be one of the crucial physiological mechanisms of SZ. To further verify this assumption, this work used a surface-based two-dimensional regional homogeneity (2dReHo) approach to compare the local neural synchronous spontaneous oscillation between patients with SZ and healthy controls (HC), instead of the volume-based regional homogeneity approach described in previous study. Ninety-seven SZ patients and 126 HC were recruited to this study, and we found the SZ showed abnormal 2dReHo across the cortical surface. Specifically, at the global level, the SZ patients showed significantly reduced global 2dReHo; at the vertex level, the foci with increased 2dReHo in SZ were located in the default mode network (DMN), frontoparietal network (FPN), and limbic network (LN); however, foci with decreased 2dReHo were located in the somatomotor network (SMN), auditory network (AN), and visual network (VN). Additionally, this work found positive correlations between the 2dReHo of bilateral rectus and illness duration, as well as a significant positive correlation between the 2dReHo of right orbital inferior frontal gyrus (OIFG) with the negative scores of the positive and negative syndrome scale in the SZ patients. Therefore, the 2dReHo could provide some effective features contributed to explore the pathophysiology mechanism of SZ.
Collapse
Affiliation(s)
- Xianyu Cao
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Huang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bei Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchao Jiang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui He
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Duan
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Sisi Jiang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Ying Tan
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Chao Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
23
|
Storchak H, Hudak J, Dresler T, Haeussinger FB, Fallgatter AJ, Ehlis AC. Monitoring Processes and Their Neuronal Correlates as the Basis of Auditory Verbal Hallucinations in a Non-clinical Sample. Front Psychiatry 2021; 12:644052. [PMID: 34707515 PMCID: PMC8542772 DOI: 10.3389/fpsyt.2021.644052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Auditory verbal hallucinations (AVH) are a characteristic symptom of psychosis. An influential cognitive model accounting for the mechanisms in the generation of AVHs describes a defective monitoring of inner speech, leading to the misidentification of internally generated thoughts as externally generated events. In this study, we utilized an inner speech paradigm during a simultaneous measurement with functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI), in order to replicate the findings of neural correlates of inner speech and auditory verbal imagery (AVI) in healthy subjects, reported in earlier studies, and to provide the first validation of the paradigm for fNIRS measurements. To this end, 20 healthy subjects were required to generate and silently recite first and second person sentences in their own voice (inner speech) and imagine the same sentences in a different, alien voice (AVI). Furthermore, questionnaires were deployed to assess the predisposition to acoustic hallucinations and schizotypal traits to investigate their connection to activation patterns associated with inner speech and monitoring processes. The results showed that both methods, fNIRS and fMRI, exhibited congruent activations in key brain areas, claimed to be associated with monitoring processes, indicating that the paradigm seems to be applicable using fNIRS alone. Furthermore, the results showed similar brain areas activated during inner speech and monitoring processes to those from earlier studies. However, our results indicate that the activations were dependent more on the sentence form and less on the imaging condition, showing more active brain areas associated with second person sentences. Integration of the sentence construction into the model of inner speech and deficient monitoring processes as the basis for the formation of AVHs should be considered in further studies. Furthermore, negative correlations between questionnaires' scores and activations in precentral gyrus and premotor cortex indicate a relationship of schizotypal characteristics and a deficient activation pattern.
Collapse
Affiliation(s)
- Helena Storchak
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Justin Hudak
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT, United States
| | - Thomas Dresler
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | - Florian B. Haeussinger
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas J. Fallgatter
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | - Ann-Christine Ehlis
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Devenney EM, Tu S, Caga J, Ahmed RM, Ramsey E, Zoing M, Kwok J, Halliday GM, Piguet O, Hodges JR, Kiernan MC. Neural mechanisms of psychosis vulnerability and perceptual abnormalities in the ALS-FTD spectrum. Ann Clin Transl Neurol 2021; 8:1576-1591. [PMID: 34156763 PMCID: PMC8351398 DOI: 10.1002/acn3.51363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The aims of this study were to (i) explore psychotic experiences across the entire amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) spectrum from a clinical and genetic perspective, (ii) determine the rate of abnormal perceptual experiences across the five sensory modalities and (iii) explore the neurobiological factors that lead to psychosis vulnerability in ALS-FTD. METHODS In a prospective case-controlled study design, 100 participants were enrolled including ALS (n = 37, 24% satisfied criteria for ALS-Plus), ALS-FTD (n = 11), bvFTD (n = 27) and healthy controls (n = 25). Psychotic experiences, perceptual abnormalities and psychosocial factors were determined by means of the clinical interview and carer and patient reports. Voxel-based morphometry analyses determined atrophy patterns in patients experiencing psychosis-like experiences and other perceptual abnormalities. RESULTS The rates of psychotic experiences and abnormalities of perception in each sensory modality were high across the entire ALS-FTD continuum. The rate was highest in those with C9orf72 expansions. Rates were also high in patients with pure ALS including psychosis measured by carer-based reports (18%) and self-report measures of psychotic-like experiences (21%). In an ENTER regression model, social anxiety and ACE-III scores were the best predictors of psychosis proneness, accounting for 44% of the score variance. Psychosis-like experiences and perceptual abnormalities were associated with a predominantly frontal and temporal pattern of atrophy that extended to the cerebellum and centred on the anterior thalamus. INTERPRETATION The model for psychosis proneness in ALS-FTD likely includes complex interactions between cognitive, social and neurobiological factors that determine vulnerability to psychosis and that may have relevance for individualised patient management.
Collapse
Affiliation(s)
- Emma M. Devenney
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health Translational Research CollectiveUniversity of SydneySydneyNSWAustralia
| | - Sicong Tu
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health Translational Research CollectiveUniversity of SydneySydneyNSWAustralia
| | - Jashelle Caga
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health Translational Research CollectiveUniversity of SydneySydneyNSWAustralia
| | - Rebekah M. Ahmed
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Institute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNSWAustralia
| | - Eleanor Ramsey
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
| | - Margie Zoing
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
| | - John Kwok
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health School of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Glenda M. Halliday
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health School of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Olivier Piguet
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Science, School of PsychologyThe University of SydneySydneyNSWAustralia
- Australian Research Council Centre of Excellence in Cognition and its DisordersSydneyNSWAustralia
| | - John R. Hodges
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
| | - Matthew C. Kiernan
- Brain and Mind CentreUniversity of SydneySydneyNSWAustralia
- Faculty of Medicine and Health Translational Research CollectiveUniversity of SydneySydneyNSWAustralia
- Institute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNSWAustralia
| |
Collapse
|
25
|
Hayward M, Jones AM, Strawson WH, Quadt L, Larsson DEO, Silva M, Davies G, Fielding-Smith S, Hazell CM, Critchley HD, Garfinkel SN. A cross-sectional study of auditory verbal hallucinations experienced by people with a diagnosis of borderline personality disorder. Clin Psychol Psychother 2021; 29:631-641. [PMID: 34322956 DOI: 10.1002/cpp.2655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND The presence of auditory verbal hallucinations (AVHs) does not currently feature in the main diagnostic criteria for borderline personality disorder (BPD). However, there is accumulating evidence that a high proportion of BPD patients report longstanding and frequent AVHs which constitute a significant risk factor for suicide plans and attempts, and hospitalization. AIM This study addressed questions about the validity and phenomenology of AVHs in the context of BPD. The longer-term aim is to facilitate the development and translation of treatment approaches to address the unmet need of this population. METHOD This was a cross-sectional study, combining phenomenological and psychological assessments administered in person and online. We explored the experiences of 48 patients with a diagnosis of BPD who were hearing AVHs. RESULTS Participants gave 'consistent' reports on the measure of AVH phenomenology, suggesting that these experiences were legitimate. Similar to AVHs in a psychosis context, AVHs were experienced as distressing and appraised as persecutory. AVHs were found to be weakly associated with BPD symptoms. AVHs were also rated highly as a treatment priority by the majority of participants. CONCLUSION The findings suggest that AVH is a legitimate and distressing symptom of BPD and a treatment priority for some patients. The relative independence of AVHs from other BPD symptoms and emotional states suggests that psychological treatment may need to be targeted specifically at the symptom of AVHs. This treatment could be adapted from cognitive behaviour therapy, the psychological intervention that is recommended for the treatment of AVHs in the context of psychosis.
Collapse
Affiliation(s)
- Mark Hayward
- Sussex Partnership NHS Foundation Trust, Brighton, UK.,Department of Psychology, University of Sussex, Falmer, UK
| | | | - Will H Strawson
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK.,Department of Psychology, University of Sussex, Falmer, UK
| | - Lisa Quadt
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK.,Sackler Centre for Consciousness Science, University of Sussex, Falmer, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Dennis E O Larsson
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK.,Department of Psychology, University of Sussex, Falmer, UK.,Leverhulme Trust, London, UK
| | - Marta Silva
- Cognition and Brain Plasticity Unit, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Geoff Davies
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK.,Department of Psychology, University of Sussex, Falmer, UK
| | | | - Cassie M Hazell
- Social Sciences Department, University of Westminster, London, UK
| | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK.,Sackler Centre for Consciousness Science, University of Sussex, Falmer, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Sarah N Garfinkel
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK.,Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
26
|
Aase I, Langeveld JH, Johannessen JO, Joa I, Dalen I, Ten Velden Hegelstad W. Cognitive predictors of longitudinal positive symptom course in clinical high risk for psychosis. SCHIZOPHRENIA RESEARCH-COGNITION 2021; 26:100210. [PMID: 34381698 PMCID: PMC8340303 DOI: 10.1016/j.scog.2021.100210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
Background Clinical High Risk (CHS) for psychosis is a state in which positive symptoms are predominant but do not reach a level of severity that fulfils the criteria for a psychotic episode. The aim of this study has been to investigate whether cognition in subjects with newly detected CHR affects the longitudinal development of positive symptoms. Methods Fifty-three CHR individuals fulfilling the criteria for attenuated positive syndrome in the Structural Interview for Prodromal Syndromes (SIPS) were included. At inclusion, all participants completed a neurocognitive battery consisting of tests measuring attention, verbal memory, verbal fluency, executive functions and general intelligence. Cognitive domain z-scores were defined by contrasting with observed scores of a group of matched healthy controls (n = 40). Associations between cognitive performance at inclusion and longitudinal measures of positive symptoms were assessed by using generalised linear models including non-linear effects of time. All regression models were adjusted for age and gender. Results Overall, SIPS positive symptoms declined over the time period, with a steeper decline during the first six months. Deficits in executive functions were assossiated witn a higher load of positive symptoms at baseline (p=0.006), but also to a faster improvement (p=0.030), wheras those with poor verbal fluency improved more slowly (p=0.018). Conclusion To our knowledge, this is the first study that follows CHR subjects by means of frequent clinical interviews over a sustained period of time. The study provides evidence of an association between executive functions, including verbal fluency, with the evolvement of positive symptoms.
Collapse
Affiliation(s)
- Ingvild Aase
- TIPS Center for Clinical Research in Psychosis, Clinic for Adult Mental Health Care, Stavanger University Hospital, P.O. 8100, 4068 Stavanger, Norway.,Faculty of Health Sciences, University of Stavanger, 4036 Stavanger, Norway
| | - Johannes Hendrik Langeveld
- TIPS Center for Clinical Research in Psychosis, Clinic for Adult Mental Health Care, Stavanger University Hospital, P.O. 8100, 4068 Stavanger, Norway.,Faculty of Health Sciences, University of Stavanger, 4036 Stavanger, Norway
| | - Jan Olav Johannessen
- TIPS Center for Clinical Research in Psychosis, Clinic for Adult Mental Health Care, Stavanger University Hospital, P.O. 8100, 4068 Stavanger, Norway.,Faculty of Health Sciences, University of Stavanger, 4036 Stavanger, Norway
| | - Inge Joa
- TIPS Center for Clinical Research in Psychosis, Clinic for Adult Mental Health Care, Stavanger University Hospital, P.O. 8100, 4068 Stavanger, Norway.,Faculty of Health Sciences, University of Stavanger, 4036 Stavanger, Norway
| | - Ingvild Dalen
- Faculty of Health Sciences, University of Stavanger, 4036 Stavanger, Norway.,Research Department, Stavanger University Hospital, P. O. 8100, 4068 Stavanger, Norway
| | - Wenche Ten Velden Hegelstad
- TIPS Center for Clinical Research in Psychosis, Clinic for Adult Mental Health Care, Stavanger University Hospital, P.O. 8100, 4068 Stavanger, Norway.,Faculty of Social Sciences, University of Stavanger, 4036 Stavanger, Norway
| |
Collapse
|
27
|
Mohammadi-Nejad AR, Hossein-Zadeh GA, Shahsavand Ananloo E, Soltanian-Zadeh H. The effect of groupness constraint on the sensitivity and specificity of canonical correlation analysis, a multi-modal anatomical and functional MRI study. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Prevalence and clinical demography of hyperhomocysteinemia in Han Chinese patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2021; 271:759-765. [PMID: 32514603 DOI: 10.1007/s00406-020-01150-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that high homocysteine worsens the occurrence, symptoms, and prognosis of patients with schizophrenia. The purpose of this study was to evaluate the prevalence, clinical correlation, and demographic characteristics of hyperhomocysteinemia in Han Chinese schizophrenia patients. In this study, we enrolled 330 schizophrenia patients and 190 healthy controls. Positive and Negative Syndrome Scale (PANSS) was used to evaluate the psychiatric symptoms of patients with schizophrenia. The plasma homocysteine level was measured by the enzyme cycle method and the concentration of homocysteine > 15 μmol/L was defined as hyperhomocysteinemia. The prevalence of hyperhomocysteinemia in Han Chinese schizophrenia patients and healthy controls was 55.05% and 26.98%, respectively. Schizophrenia patients with hyperhomocysteinemia had more male proportion, older age, higher smoking rate, lower HDL level, higher PANSS total score, and higher negative factor than those patients without hyperhomocysteinemia. Binary logical regression result showed that gender and age were the independent risk factors of hyperhomocysteinemia. Han Chinese patients with schizophrenia had high prevalence hyperhomocysteinemia than healthy controls, and elderly male patients have a higher risk of hyperhomocysteinemia. This study was registered in the China Clinical Trial Registration Center (chiCTR 1800017044).
Collapse
|
29
|
Verbal hallucinations in deaf schizophrenia patients. Schizophr Res 2021; 232:31-32. [PMID: 34004384 DOI: 10.1016/j.schres.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022]
|
30
|
Arora M, Knott VJ, Labelle A, Fisher DJ. Alterations of Resting EEG in Hallucinating and Nonhallucinating Schizophrenia Patients. Clin EEG Neurosci 2021; 52:159-167. [PMID: 33074718 DOI: 10.1177/1550059420965385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Auditory hallucinations (AHs) are a common symptom of schizophrenia and contribute significantly to disease burden. Research on schizophrenia and AHs is limited and fails to adequately address the effect of AHs on resting EEG in patients with schizophrenia. This study assessed changes in frequency bands (delta, theta, alpha, beta) of resting EEG taken from hallucinating patients (n = 12), nonhallucinating patients (n = 11), and healthy controls (n = 12). Delta and theta activity were unaffected by AHs but differed between patients with schizophrenia and healthy controls. Alpha activity was affected by AHs: nonhallucinators had more alpha activity than hallucinators and healthy controls. Additionally, beta activity was inversely related to trait measures of AHs. These findings contribute to the literature of resting eyes closed EEG recordings of schizophrenia and AHs, and indicate the role of delta, theta, alpha, and beta as markers for schizophrenia and auditory hallucinations.
Collapse
Affiliation(s)
- Madhav Arora
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
| | - Verner J Knott
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Alain Labelle
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Derek J Fisher
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
31
|
Kubera KM, Wolf ND, Rashidi M, Hirjak D, Northoff G, Schmitgen MM, Romanov DV, Sambataro F, Frasch K, Wolf RC. Functional Decoupling of Language and Self-Reference Networks in Patients with Persistent Auditory Verbal Hallucinations. Neuropsychobiology 2021; 79:345-351. [PMID: 32485705 DOI: 10.1159/000507630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accumulating neuroimaging evidence suggests that abnormal intrinsic neural activity could underlie auditory verbal hallucinations (AVH) in patients with schizophrenia. However, little is known about the functional interplay between distinct intrinsic neural networks and their association with AVH. METHODS We investigated functional network connectivity (FNC) of distinct resting-state networks as well as the relationship between FNC strength and AVH symptom severity. Resting-state functional MRI data at 3 T were obtained for 14 healthy controls and 10 patients with schizophrenia presenting with persistent AVH. The data were analyzed using a spatial group independent component analysis, followed by constrained maximal lag correlations to determine FNC within and between groups. RESULTS Four components of interest, comprising language, attention, executive control networks, as well as the default-mode network (DMN), were selected for subsequent FNC analyses. Patients with persistent AVH showed lower FNC between the language network and the DMN (p < 0.05, corrected for false discovery rate). FNC strength, however, was not significantly related to symptom severity, as measured by the Psychotic Symptom Rating Scale. CONCLUSION These findings suggest that disrupted FNC between a speech-related system and a network subserving self-referential processing is associated with AVH. The data are consistent with a model of disrupted self-attribution of speech generation and perception.
Collapse
Affiliation(s)
- Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Nadine D Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Mahmoud Rashidi
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dmitry V Romanov
- Department of Psychiatry and Psychosomatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Mental Health Research Center, Moscow, Russian Federation
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Karel Frasch
- Department of Psychiatry and Psychotherapy, District Hospital Donauwörth, Donauwörth, Germany.,Department of Psychiatry and Psychotherapy II, District Hospital Günzburg, University of Ulm, Günzburg, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany,
| |
Collapse
|
32
|
Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review. Curr Top Med Chem 2021; 20:540-553. [PMID: 32003690 DOI: 10.2174/1568026620666200131095328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Psychiatric diagnosis has long been perceived as more of an art than a science since its foundations lie within the observation, and the self-report of the patients themselves and objective diagnostic biomarkers are lacking. Furthermore, the diagnostic tools in use not only stray away from the conventional medical framework but also remain invalidated with evidence-based concepts. However, neuroscience, as a source of valid objective knowledge has initiated the process of a paradigm shift underlined by the main concept of psychiatric disorders being "brain disorders". It is also a bridge closing the explanatory gap among the different fields of medicine via the translation of the knowledge within a multidisciplinary framework. The contemporary neuroimaging methods, such as fMRI provide researchers with an entirely new set of tools to reform the current status quo by creating an opportunity to define and validate objective biomarkers that can be translated into clinical practice. Combining multiple neuroimaging techniques with the knowledge of the role of genetic factors, neurochemical imbalance and neuroinflammatory processes in the etiopathophysiology of psychiatric disorders is a step towards a comprehensive biological explanation of psychiatric disorders and a final differentiation of psychiatry as a well-founded medical science. In addition, the neuroscientific knowledge gained thus far suggests a necessity for directional change to exploring multidisciplinary concepts, such as multiple causality and dimensionality of psychiatric symptoms and disorders. A concomitant viewpoint transition of the notion of validity in psychiatry with a focus on an integrative validatory approach may facilitate the building of a collaborative bridge above the wall existing between the scientific fields analyzing the mind and those studying the brain.
Collapse
Affiliation(s)
- Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy St Stoyanov
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
33
|
Sun Q, Fang Y, Shi Y, Wang L, Peng X, Tan L. Inhibitory Top-Down Control Deficits in Schizophrenia With Auditory Verbal Hallucinations: A Go/NoGo Task. Front Psychiatry 2021; 12:544746. [PMID: 34149464 PMCID: PMC8211872 DOI: 10.3389/fpsyt.2021.544746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Auditory verbal hallucinations (AVH), with unclear mechanisms, cause extreme distresses to schizophrenia patients. Deficits of inhibitory top-down control may be linked to AVH. Therefore, in this study, we focused on inhibitory top-down control in schizophrenia patients with AVH. Method: The present study recruited 40 schizophrenia patients, including 20 AVH patients and 20 non-AVH patients, and 23 healthy controls. We employed event-related potentials to investigate the N2 and P3 amplitude and latency differences among these participants during a Go/NoGo task. Results: Relative to healthy controls, the two patient groups observed longer reaction time (RT) and reduced accuracy. The two patient groups had smaller NoGo P3 amplitude than the healthy controls, and the AVH patients showed smaller NoGo P3 amplitude than the non-AVH patients. In all the groups, the parietal area showed smaller NoGo P3 than frontal and central areas. However, no significant difference was found in N2 and Go P3 amplitude between the three groups. Conclusions: AVH patients might have worse inhibitory top-down control, which might be involved in the occurrence of AVH. Hopefully, our results could enhance understanding of the pathology of AVH.
Collapse
Affiliation(s)
- Qiaoling Sun
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yehua Fang
- Department of Clinical Psychology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Yongyan Shi
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Lifeng Wang
- Department of Clinical Psychology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuemei Peng
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Department Psychology, Xiangtan Central Hospital, Xiangtan, China
| | - Liwen Tan
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Brocos-Mosquera I, Gabilondo AM, Meana JJ, Callado LF, Erdozain AM. Spinophilin expression in postmortem prefrontal cortex of schizophrenic subjects: Effects of antipsychotic treatment. Eur Neuropsychopharmacol 2021; 42:12-21. [PMID: 33257116 DOI: 10.1016/j.euroneuro.2020.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Schizophrenia has been associated with alterations in neurotransmission and synaptic dysfunction. Spinophilin is a multifunctional scaffold protein that modulates excitatory synaptic transmission and dendritic spine morphology. Spinophilin can also directly interact with and regulate several receptors for neurotransmitters, such as dopamine D2 receptors, which play a role in the pathophysiology of schizophrenia and are targets of antipsychotics. Several studies have thus suggested an implication of spinophilin in schizophrenia. In the present study spinophilin protein expression was determined by western blot in the postmortem dorsolateral prefrontal cortex of 24 subjects with schizophrenia (12 antipsychotic-free and 12 antipsychotic-treated subjects) and 24 matched controls. Experiments were performed in synaptosomal membranes (SPM) and in postsynaptic density fractions (PSD). As previously reported, two specific bands for this protein were observed: an upper 120-130 kDa band and a lower 80-95 kDa band. The spinophilin lower band showed a significant decrease in schizophrenia subjects compared to matched controls, both in SPM and PSD fractions (-15%, p = 0.007 and -15%, p = 0.039, respectively). When schizophrenia subjects were divided by the presence or absence of antipsychotics in blood at death, the lower band showed a significant decrease in antipsychotic-treated schizophrenia subjects (-24%, p = 0.003 for SPM and -26%, p = 0.014 for PSD), but not in antipsychotic-free subjects, compared to their matched controls. These results suggest that antipsychotics could produce alterations in spinophilin expression that do not seem to be related to schizophrenia per se. These changes may underlie some of the side effects of antipsychotics.
Collapse
Affiliation(s)
- Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Ane M Gabilondo
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
35
|
Waters F, Barnby JM, Blom JD. Hallucination, imagery, dreaming: reassembling stimulus-independent perceptions based on Edmund Parish's classic misperception framework. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190701. [PMID: 33308065 DOI: 10.1098/rstb.2019.0701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Within the broad field of human perception lies the category of stimulus-independent perceptions, which draws together experiences such as hallucinations, mental imagery and dreams. Traditional divisions between medical and psychological sciences have contributed to these experiences being investigated separately. This review aims to examine their similarities and differences at the levels of phenomenology and underlying brain function and thus reassemble them within a common framework. Using Edmund Parish's historical work as a guiding tool and the latest research findings in the cognitive, clinical and computational sciences, we consider how different perspectives may be reconciled and help generate novel hypotheses for future research. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Flavie Waters
- Clinical Research Centre, Graylands Hospital, North Metropolitan Health Service-Mental Health, Perth, Western Australia, Australia.,School of Psychological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Joseph M Barnby
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Jan Dirk Blom
- Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands.,Parnassia Psychiatric Institute, The Hague, The Netherlands.,Department of Psychiatry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Fazekas P. Hallucinations as intensified forms of mind-wandering. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190700. [PMID: 33308066 DOI: 10.1098/rstb.2019.0700] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This paper argues for a novel way of thinking about hallucinations as intensified forms of mind-wandering. Starting from the observation that hallucinations are associated with hyperactive sensory areas underlying the content of hallucinatory experiences and a confusion with regard to the reality of the source of these experiences, the paper first reviews the different factors that might contribute to the impairment of reality monitoring. The paper then focuses on the sensory characteristics determining the vividness of an experience, reviews their relationship to the sensory hyperactivity observed in hallucinations, and investigates under what circumstances they can drive reality judgements. Finally, based on these considerations, the paper presents its main proposal according to which hallucinations are intensified forms of mind-wandering that are amplified along their sensory characteristics, and sketches a possible model of what factors might determine if an internally and involuntarily generated perceptual representation is experienced as a hallucination or as an instance of mind-wandering. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Peter Fazekas
- Centre for Philosophical Psychology, Universiteit Antwerpen, Antwerpen, Belgium.,Cognitive Neuroscience Research Unit, Centre of Functionally Integrative Neuroscience, Aarhus Universitet, Aarhus, Denmark
| |
Collapse
|
37
|
Roes MM, Yin J, Taylor L, Metzak PD, Lavigne KM, Chinchani A, Tipper CM, Woodward TS. Hallucination-Specific structure-function associations in schizophrenia. Psychiatry Res Neuroimaging 2020; 305:111171. [PMID: 32916453 DOI: 10.1016/j.pscychresns.2020.111171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/13/2023]
Abstract
Combining structural (sMRI) and functional magnetic resonance imaging (fMRI) data in schizophrenia patients with and without auditory hallucinations (9 SZ_AVH, 12 SZ_nAVH), 18 patients with bipolar disorder, and 22 healthy controls, we examined whether cortical thinning was associated with abnormal activity in functional brain networks associated with auditory hallucinations. Language-task fMRI data were combined with mean cortical thickness values from 148 brain regions in a constrained principal component analysis (CPCA) to identify brain structure-function associations predictable from group differences. Two components emerged from the multimodal analysis. The "AVH component" highlighted an association of frontotemporal and cingulate thinning with altered brain activity characteristic of hallucinations among patients with AVH. In contrast, the "Bipolar component" distinguished bipolar patients from healthy controls and linked increased activity in the language network with cortical thinning in the left occipital-temporal lobe. Our findings add to a body of evidence of the biological underpinnings of hallucinations and illustrate a method for multimodal data analysis of structure-function associations in psychiatric illness.
Collapse
Affiliation(s)
- Meighen M Roes
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada
| | - John Yin
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Laura Taylor
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Paul D Metzak
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Abhijit Chinchani
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Christine M Tipper
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Todd S Woodward
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
|
39
|
Langland-Hassan P. Inner speech. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 12:e1544. [PMID: 32949083 DOI: 10.1002/wcs.1544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/25/2020] [Accepted: 08/13/2020] [Indexed: 11/07/2022]
Abstract
Inner speech travels under many aliases: the inner voice, verbal thought, thinking in words, internal verbalization, "talking in your head," the "little voice in the head," and so on. It is both a familiar element of first-person experience and a psychological phenomenon whose complex cognitive components and distributed neural bases are increasingly well understood. There is evidence that inner speech plays a variety of cognitive roles, from enabling abstract thought, to supporting metacognition, memory, and executive function. One active area of controversy concerns the relation of inner speech to auditory verbal hallucinations (AVHs) in schizophrenia, with a common proposal being that sufferers of AVH misidentify their own inner speech as being generated by someone else. Recently, researchers have used artificial intelligence to translate the neural and neuromuscular signatures of inner speech into corresponding outer speech signals, laying the groundwork for a variety of new applications and interventions. This article is categorized under: Philosophy > Foundations of Cognitive Science Linguistics > Language in Mind and Brain Philosophy > Consciousness Philosophy > Psychological Capacities.
Collapse
|
40
|
Wong TY, Radua J, Pomarol-Clotet E, Salvador R, Albajes-Eizagirre A, Solanes A, Canales-Rodriguez EJ, Guerrero-Pedraza A, Sarro S, Kircher T, Nenadic I, Krug A, Grotegerd D, Dannlowski U, Borgwardt S, Riecher-Rössler A, Schmidt A, Andreou C, Huber CG, Turner J, Calhoun V, Jiang W, Clark S, Walton E, Spalletta G, Banaj N, Piras F, Ciullo V, Vecchio D, Lebedeva I, Tomyshev AS, Kaleda V, Klushnik T, Filho GB, Zanetti MV, Serpa MH, Penteado Rosa PG, Hashimoto R, Fukunaga M, Richter A, Krämer B, Gruber O, Voineskos AN, Dickie EW, Tomecek D, Skoch A, Spaniel F, Hoschl C, Bertolino A, Bonvino A, Di Giorgio A, Holleran L, Ciufolini S, Marques TR, Dazzan P, Murray R, Lamsma J, Cahn W, van Haren N, Díaz-Zuluaga AM, Pineda-Zapata JA, Vargas C, López-Jaramillo C, van Erp TGM, Gur RC, Nickl-Jockschat T. An overlapping pattern of cerebral cortical thinning is associated with both positive symptoms and aggression in schizophrenia via the ENIGMA consortium. Psychol Med 2020; 50:2034-2045. [PMID: 31615588 DOI: 10.1017/s0033291719002149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Positive symptoms are a useful predictor of aggression in schizophrenia. Although a similar pattern of abnormal brain structures related to both positive symptoms and aggression has been reported, this observation has not yet been confirmed in a single sample. METHOD To study the association between positive symptoms and aggression in schizophrenia on a neurobiological level, a prospective meta-analytic approach was employed to analyze harmonized structural neuroimaging data from 10 research centers worldwide. We analyzed brain MRI scans from 902 individuals with a primary diagnosis of schizophrenia and 952 healthy controls. RESULTS The result identified a widespread cortical thickness reduction in schizophrenia compared to their controls. Two separate meta-regression analyses revealed that a common pattern of reduced cortical gray matter thickness within the left lateral temporal lobe and right midcingulate cortex was significantly associated with both positive symptoms and aggression. CONCLUSION These findings suggested that positive symptoms such as formal thought disorder and auditory misperception, combined with cognitive impairments reflecting difficulties in deploying an adaptive control toward perceived threats, could escalate the likelihood of aggression in schizophrenia.
Collapse
Affiliation(s)
- Ting Yat Wong
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Brain and Behavioral Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ruben C Gur
- Department of Psychiatry, Brain and Behavioral Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
41
|
Montagnese M, Leptourgos P, Fernyhough C, Waters F, Larøi F, Jardri R, McCarthy-Jones S, Thomas N, Dudley R, Taylor JP, Collerton D, Urwyler P. A Review of Multimodal Hallucinations: Categorization, Assessment, Theoretical Perspectives, and Clinical Recommendations. Schizophr Bull 2020; 47:237-248. [PMID: 32772114 PMCID: PMC7825001 DOI: 10.1093/schbul/sbaa101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hallucinations can occur in different sensory modalities, both simultaneously and serially in time. They have typically been studied in clinical populations as phenomena occurring in a single sensory modality. Hallucinatory experiences occurring in multiple sensory systems-multimodal hallucinations (MMHs)-are more prevalent than previously thought and may have greater adverse impact than unimodal ones, but they remain relatively underresearched. Here, we review and discuss: (1) the definition and categorization of both serial and simultaneous MMHs, (2) available assessment tools and how they can be improved, and (3) the explanatory power that current hallucination theories have for MMHs. Overall, we suggest that current models need to be updated or developed to account for MMHs and to inform research into the underlying processes of such hallucinatory phenomena. We make recommendations for future research and for clinical practice, including the need for service user involvement and for better assessment tools that can reliably measure MMHs and distinguish them from other related phenomena.
Collapse
Affiliation(s)
- Marcella Montagnese
- Neuroimaging Department, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Pantelis Leptourgos
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT
| | | | - Flavie Waters
- School of Psychological Sciences, The University of Western Australia, Perth, Australia
| | - Frank Larøi
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium,Norwegian Center of Excellence for Mental Disorders Research, University of Oslo, Oslo, Norway
| | - Renaud Jardri
- University of Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience and Cognition, Lille, France,Laboratoire de Neurosciences Cognitives et Computationnelles, ENS, INSERM U960, PSL Research University, Paris, France
| | | | - Neil Thomas
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia,The Alfred Hospital, Melbourne, Australia
| | - Rob Dudley
- Gateshead Early Intervention in Psychosis Service, Northumberland, Tyne and Wear NHS, Newcastle upon Tyne, UK,School of Psychology, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Collerton
- School of Psychology, Newcastle University, Newcastle upon Tyne, UK
| | - Prabitha Urwyler
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Gerontechnology and Rehabilitation, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland,Department of Neurology, University Neurorehabilitation Unit, University Hospital Bern—Inselspital, Bern, Switzerland,To whom correspondence should be addressed; tel: +41 31 632 76 07, fax: +41 31 632 75 76, e-mail:
| |
Collapse
|
42
|
Humpston C, Garrison J, Orlov N, Aleman A, Jardri R, Fernyhough C, Allen P. Real-Time Functional Magnetic Resonance Imaging Neurofeedback for the Relief of Distressing Auditory-Verbal Hallucinations: Methodological and Empirical Advances. Schizophr Bull 2020; 46:1409-1417. [PMID: 32740661 PMCID: PMC7707074 DOI: 10.1093/schbul/sbaa103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Auditory-verbal hallucinations (AVH) are often associated with high levels of distress and disability in individuals with schizophrenia-spectrum disorders. In around 30% of individuals with distressing AVH and diagnosed with schizophrenia, traditional antipsychotic drugs have little or no effect. Thus, it is important to develop mechanistic models of AVH to inform new treatments. Recently a small number of studies have begun to explore the use of real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) for the treatment of AVH in individuals with schizophrenia. rtfMRI-NF protocols have been developed to provide feedback about brain activation in real time to enable participants to progressively achieve voluntary control over their brain activity. We offer a conceptual review of the background and general features of neurofeedback procedures before summarizing and evaluating existing mechanistic models of AVH to identify feasible neural targets for the application of rtfMRI-NF as a potential treatment. We consider methodological issues, including the choice of localizers and practicalities in logistics when setting up neurofeedback procedures in a clinical setting. We discuss clinical considerations relating to the use of rtfMRI-NF for AVH in individuals distressed by their experiences and put forward a number of questions and recommendations about best practice. Lastly, we conclude by offering suggestions for new avenues for neurofeedback methodology and mechanistic targets in relation to the research and treatment of AVH.
Collapse
Affiliation(s)
- Clara Humpston
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK,Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,To whom correspondence should be addressed; tel: +44 (0)121 414 2942, fax: +44 (0)121 414 3971, e-mail:
| | - Jane Garrison
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Natasza Orlov
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA,Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China,Precision Brain Imaging Lab, Medical University of South Carolina, Charleston, SC
| | - André Aleman
- Faculty of Medical Sciences, University of Groningen, AB Groningen, The Netherlands
| | - Renaud Jardri
- University of Lille, INSERM, CHU Lille, Lille Neuroscience and Cognition Centre (U-1172), Plasticity and Subjectivity (PSY) Team, CURE Platform, Lille, France
| | | | - Paul Allen
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
43
|
Yang H, Wang M, Wu F, Li Q, Zheng Y, Qin P. Diminished self-monitoring in hallucinations - Aberrant anterior insula connectivity differentiates auditory hallucinations in schizophrenia from subjective tinnitus. Asian J Psychiatr 2020; 52:102056. [PMID: 32417745 DOI: 10.1016/j.ajp.2020.102056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Auditory hallucinations in schizophrenia (SCZ-AH) and subjective tinnitus (TN) are two conditions that share a superficial resemblance, namely the presence of phantom sounds produced by the brain. A crucial difference between them lies in the self-processing of the phantom signals, which is intact in TN patients but lost in SCZ-AH. Our study sets out to investigate the potential neural mechanisms for this crucial psychotic symptom of SCZ-AH under the framework of self. We gathered resting-state fMRI data from three participant groups: SCZ-AH, TN and healthy controls. Focusing on predefined self-related regions-of-interest, we found that SCZ-AH had reduced degree centrality in the right anterior insula (rAI) compared to both TN and healthy controls. Further functional connectivity analysis showed a reduced connectivity between the rAI and right superior temporal gyrus. Our finding indicates that compromised self-processing in SCZ-AH could be due to aberrant connectivity in rAI, which interacted with the decreased connectivity between rAI and auditory cortex, and jointly contributed to the misattribution of the source of the phantom sound. Our findings provided preliminary evidence for the neural mechanism of self-disorder underlying SCZ-AH, and could provide implications for investigating other modalities of hallucinations in schizophrenia.
Collapse
Affiliation(s)
- Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Mingxia Wang
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Psychological Applications Research Center, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Fengchun Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.
| | - Pengmin Qin
- Psychological Applications Research Center, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.
| |
Collapse
|
44
|
Altamura M, Prete G, Elia A, Angelini E, Padalino FA, Bellomo A, Tommasi L, Fairfield B. Do patients with hallucinations imagine speech right? Neuropsychologia 2020; 146:107567. [PMID: 32698031 DOI: 10.1016/j.neuropsychologia.2020.107567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
A direct relationship between auditory verbal hallucinations (AVHs) and decreased left-hemispheric lateralization in speech perception has been often described, although it has not been conclusively proven. The specific lateralization of AVHs has been poorly explored. However, patients with verbal hallucinations show a weak Right Ear Advantage (REA) in verbal perception compared to non AVHs listeners suggesting that left-hemispheric language area are involved in AVHs. In the present study, 29 schizophrenia patients with AVHs, 31 patients with psychotic bipolar disorder who experienced frequent AVHs, 27 patients with schizophrenia who had never experienced AVHs and 57 healthy controls were required to imagine hearing a voice in one ear alone. In line with previous evidence healthy controls confirmed the expected REA for auditory imagery, and the same REA was also found in non-hallucinator patients. However, in line with our hypothesis, patients with schizophrenia and psychotic bipolar disorder with AVHs showed no lateral bias. Results extend the relationship between abnormal asymmetry for verbal stimuli and AVHs to verbal imagery, suggesting that atypical verbal imagery may reflect a disruption of inter-hemispheric connectivity between areas implicated in the generation and monitoring of verbal imagery and may be predictive of a predisposition for AVHs. Results also indicate that the relationship between AVHs and hemispheric lateralization for auditory verbal imagery is not specific to schizophrenia but may extend to other disorders as well.
Collapse
Affiliation(s)
- Mario Altamura
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Antonella Elia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Eleonora Angelini
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Flavia A Padalino
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Beth Fairfield
- Department of Psychological, Health and Territorial Sciences, University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
45
|
Brain structural correlates of familial risk for mental illness: a meta-analysis of voxel-based morphometry studies in relatives of patients with psychotic or mood disorders. Neuropsychopharmacology 2020; 45:1369-1379. [PMID: 32353861 PMCID: PMC7297956 DOI: 10.1038/s41386-020-0687-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are heritable psychiatric disorders with partially overlapping genetic liability. Shared and disorder-specific neurobiological abnormalities associated with familial risk for developing mental illnesses are largely unknown. We performed a meta-analysis of structural brain imaging studies in relatives of patients with SCZ, BD, and MDD to identify overlapping and discrete brain structural correlates of familial risk for mental disorders. Search for voxel-based morphometry studies in relatives of patients with SCZ, BD, and MDD in PubMed and Embase identified 33 studies with 2292 relatives and 2052 healthy controls (HC). Seed-based d Mapping software was used to investigate global differences in gray matter volumes between relatives as a group versus HC, and between those of each psychiatric disorder and HC. As a group, relatives exhibited gray matter abnormalities in left supramarginal gyrus, right striatum, right inferior frontal gyrus, left thalamus, bilateral insula, right cerebellum, and right superior frontal gyrus, compared with HC. Decreased right cerebellar gray matter was the only abnormality common to relatives of all three conditions. Subgroup analyses showed disorder-specific gray matter abnormalities in left thalamus and bilateral insula associated with risk for SCZ, in left supramarginal gyrus and right frontal regions with risk for BD, and in right striatum with risk for MDD. While decreased gray matter in right cerebellum might be a common brain structural abnormality associated with shared risk for SCZ, BD, and MDD, regional gray matter abnormalities in neocortex, thalamus, and striatum appear to be disorder-specific.
Collapse
|
46
|
Herman AB, Brown EG, Dale CL, Hinkley LB, Subramaniam K, Houde JF, Fisher M, Vinogradov S, Nagarajan SS. The Visual Word Form Area compensates for auditory working memory dysfunction in schizophrenia. Sci Rep 2020; 10:8881. [PMID: 32483253 PMCID: PMC7264140 DOI: 10.1038/s41598-020-63962-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/28/2020] [Indexed: 11/23/2022] Open
Abstract
Auditory working memory impairments feature prominently in schizophrenia. However, the existence of altered and perhaps compensatory neural dynamics, sub-serving auditory working memory, remains largely unexplored. We compared the dynamics of induced high gamma power (iHGP) across cortex in humans during speech-sound working memory in individuals with schizophrenia (SZ) and healthy comparison subjects (HC) using magnetoencephalography (MEG). SZ showed similar task performance to HC while utilizing different brain regions. During encoding of speech sounds, SZ lacked the correlation of iHGP with task performance in posterior superior temporal gyrus (STGp) that was observed in healthy subjects. Instead, SZ recruited the visual word form area (VWFA) during both stimulus encoding and response preparation. Importantly, VWFA activity during encoding correlated with the magnitude of SZ hallucinations, task performance and an independent measure of verbal working memory. These findings suggest that VWFA plasticity is harnessed to compensate for STGp dysfunction in schizophrenia patients with hallucinations.
Collapse
Affiliation(s)
- Alexander B Herman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- UCB-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Ethan G Brown
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Corby L Dale
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Karuna Subramaniam
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - John F Houde
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa Fisher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
- San Francisco Veterans' Affairs Medical Center, San Francisco, CA, United States
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
- San Francisco Veterans' Affairs Medical Center, San Francisco, CA, United States
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
47
|
Wearne D, Curtis GJ, Melvill-Smith P, Orr KG, Mackereth A, Rajanthiran L, Hood S, Choy W, Waters F. Exploring the relationship between auditory hallucinations, trauma and dissociation. BJPsych Open 2020; 6:e54. [PMID: 32431265 PMCID: PMC7345666 DOI: 10.1192/bjo.2020.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND It is clinically imperative to better understand the relationship between trauma, auditory hallucinations and dissociation. The personal narrative of trauma has enormous significance for each individual and is also important for the clinician, who must use this information to decide on a diagnosis and treatment approach. AIMS To better understand whether dissociation contributes in a significant way to hallucinations in individuals with and without trauma histories. METHOD Three groups of participants with auditory hallucinations were recruited, with diagnoses of: schizophrenia (without trauma) (n = 18), post-traumatic stress disorder (PTSD, n = 27) and comorbid schizophrenia and PTSD (SCZ+PTSD), n = 26). Clinician-administered measures included the PTSD Symptoms Scale Interview (PSSI-5), the Clinician-Administered Dissociative States Scale (CADSS) and the Psychotic Symptom Rating Scales (PSYRATS). RESULTS Dissociative symptoms were significantly higher in participants with trauma histories (PTSD and SCZ+PTSD groups) and significantly correlated with hallucinations in trauma-exposed participants, but not in participants with schizophrenia (without trauma history). Hallucination severity was correlated with the CADSS amnesia subscale score, but depersonalisation and derealisation were not. CONCLUSIONS Dissociation may be a mechanism in trauma-exposed individuals who hear voices, but it does not explain all hallucinatory experiences. The SCZ+PTSD group were in an intermediary position between schizophrenia and PTSD on dissociative and hallucination measures. The PTSD and SCZ+PTSD groups experienced dissociative phenomena much more frequently than the schizophrenia group, with a significant trend towards the amnesia subtype of dissociation.
Collapse
Affiliation(s)
- Deborah Wearne
- School of Medicine, University of Western Australia, Perth, Australia
| | - Guy J Curtis
- School of Psychological Science, University of Western Australia, Perth, Australia
| | | | | | | | | | - Sean Hood
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Winston Choy
- School of Medicine, University of Western Australia, Perth, Australia
| | - Flavie Waters
- School of Psychological Sciences, University of Western Australia, Perth; and Clinical Research Centre, Graylands Campus, North Metropolitan Health Service, Mental Health, Perth, Australia
| |
Collapse
|
48
|
BAHADIR A. Applications of Functional Near-Infrared Spectroscopy (fNIRS)- Based Neurofeedback (NF) Training in Neurophsychiatric Disorders. KONURALP TIP DERGISI 2020. [DOI: 10.18521/ktd.670281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Zhang W, Lei D, Keedy SK, Ivleva EI, Eum S, Yao L, Tamminga CA, Clementz BA, Keshavan MS, Pearlson GD, Gershon ES, Bishop JR, Gong Q, Lui S, Sweeney JA. Brain gray matter network organization in psychotic disorders. Neuropsychopharmacology 2020; 45:666-674. [PMID: 31812151 PMCID: PMC7021697 DOI: 10.1038/s41386-019-0586-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 02/05/2023]
Abstract
Abnormal neuroanatomic brain networks have been reported in schizophrenia, but their characterization across patients with psychotic disorders, and their potential alterations in nonpsychotic relatives, remain to be clarified. Participants recruited by the Bipolar and Schizophrenia Network for Intermediate Phenotypes consortium included 326 probands with psychotic disorders (107 with schizophrenia (SZ), 87 with schizoaffective disorder (SAD), 132 with psychotic bipolar disorder (BD)), 315 of their nonpsychotic first-degree relatives and 202 healthy controls. Single-subject gray matter graphs were extracted from structural MRI scans, and whole-brain neuroanatomic organization was compared across the participant groups. Compared with healthy controls, psychotic probands showed decreased nodal efficiency mainly in bilateral superior temporal regions. These regions had altered morphological relationships primarily with frontal lobe regions, and their network-level alterations were associated with positive symptoms of psychosis. Nonpsychotic relatives showed lower nodal centrality metrics in the prefrontal cortex and subcortical regions, and higher nodal centrality metrics in the left cingulate cortex and left thalamus. Diagnosis-specific analysis indicated that individuals with SZ had lower nodal efficiency in bilateral superior temporal regions than controls, probands with SAD only exhibited lower nodal efficiency in the left superior and middle temporal gyrus, and individuals with psychotic BD did not show significant differences from healthy controls. Our findings provide novel evidence of clinically relevant disruptions in the anatomic association of the superior temporal lobe with other regions of whole-brain networks in patients with psychotic disorders, but not in their unaffected relatives, suggesting that it is a disease-related trait. Network disorganization primarily involving frontal lobe and subcortical regions in nonpsychotic relatives may be related to familial illness risk.
Collapse
Affiliation(s)
- Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seenae Eum
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brett A Clementz
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
50
|
Guo Q, Hu Y, Zeng B, Tang Y, Li G, Zhang T, Wang J, Northoff G, Li C, Goff D, Wang J, Yang Z. Parietal memory network and default mode network in first-episode drug-naïve schizophrenia: Associations with auditory hallucination. Hum Brain Mapp 2020; 41:1973-1984. [PMID: 32112506 PMCID: PMC7267906 DOI: 10.1002/hbm.24923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/29/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022] Open
Abstract
Atypical spontaneous activities in resting‐state networks may play a role in auditory hallucinations (AHs), but networks relevant to AHs are not apparent. Given the debating role of the default mode network (DMN) in AHs, a parietal memory network (PMN) may better echo cognitive theories of AHs in schizophrenia, because PMN is spatially adjacent to the DMN and more relevant to memory processing or information integration. To examine whether PMN is more relevant to AHs than DMN, we characterized these intrinsic networks in AHs with 59 first‐episode, drug‐naïve schizophrenics (26 AH+ and 33 AH−) and 60 healthy participants in resting‐state fMRI. We separated the PMN, DMN, and auditory network (AN) using independent component analysis, and compared their functional connectivity across the three groups. We found that only AH+ patients displayed dysconnectivity in PMN, both AH+ and AH− patients exhibited dysfunctions of AN, but neither patient group showed abnormal connectivity within DMN. The connectivity of PMN significantly correlated with memory performance of the patients. Further region‐of‐interest analyses confirmed that the connectivity between the core regions of PMN, the left posterior cingulate gyrus and the left precuneus, was significantly lower only in the AH+ group. In exploratory correlation analysis, this functional connectivity metric significantly correlated with the severity of AH symptoms. The results implicate that compared to the DMN, the PMN is more relevant to the AH symptoms in schizophrenia, and further provides a more precise potential brain modulation target for the intervention of AH symptoms.
Collapse
Affiliation(s)
- Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Botao Zeng
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanjun Li
- Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Georg Northoff
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Institute of Psychology and Behaviour Science, Shanghai Jiao Tong University, Shanghai, China
| | - Donald Goff
- Department of Psychiatry, New York University School of Medicine, New York, New York
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Institute of Psychology and Behaviour Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Institute of Psychology and Behaviour Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|