1
|
Morgunova A, Teixeira M, Flores C. Perspective on adolescent psychiatric illness and emerging role of microRNAs as biomarkers of risk. J Psychiatry Neurosci 2024; 49:E282-E288. [PMID: 39209460 PMCID: PMC11374446 DOI: 10.1503/jpn.240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Alice Morgunova
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| | - Maxime Teixeira
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| | - Cecilia Flores
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| |
Collapse
|
2
|
Mei Z, Liu J, Schroeder JP, Weinshenker D, Duong DM, Seyfried NT, Li Y, Jin P, Wingo AP, Wingo TS. Lowering Hippocampal miR-29a Expression Slows Cognitive Decline and Reduces Beta-Amyloid Deposition in 5×FAD Mice. Mol Neurobiol 2024; 61:3343-3356. [PMID: 37989983 PMCID: PMC11087195 DOI: 10.1007/s12035-023-03791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
microRNA-29a (miR-29a) increases with age in humans and mice, and, in the brain, it has a role in neuronal maturation and response to inflammation. We previously found higher miR-29a levels in the human brain to be associated with faster antemortem cognitive decline, suggesting that lowering miR-29a levels could ameliorate memory impairment in the 5×FAD AD mouse model. To test this, we generated an adeno-associated virus (AAV) expressing GFP and a miR-29a "sponge" or empty vector. We found that the AAV expressing miR-29a sponge functionally reduced miR-29a levels and improved measures of memory in the Morris water maze and fear condition paradigms when delivered to the hippocampi of 5×FAD and WT mice. miR-29a sponge significantly reduced hippocampal beta-amyloid deposition in 5×FAD mice and lowered astrocyte and microglia activation in both 5×FAD and WT mice. Using transcriptomic and proteomic sequencing, we identified Plxna1 and Wdfy1 as putative effectors at the transcript and protein level in WT and 5×FAD mice, respectively. These data indicate that lower miR-29a levels mitigate cognitive decline, making miR-29a and its target genes worth further evaluation as targets to mitigate Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Zhen Mei
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason P Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Shafiee-Kandjani AR, Nezhadettehad N, Farhang S, Bruggeman R, Shanebandi D, Hassanzadeh M, Azizi H. MicroRNAs and pro-inflammatory cytokines as candidate biomarkers for recent-onset psychosis. BMC Psychiatry 2023; 23:631. [PMID: 37644489 PMCID: PMC10463450 DOI: 10.1186/s12888-023-05136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Recent studies on the schizophrenia spectrum and other psychotic disorders showed that alternation of immune system components, particularly microRNAs (miRNAs) and pro-inflammatory compounds, plays a significant role in developing the illness. The study aimed to evaluate serum expression of the miRNA-26a, miRNA-106a, and miRNA-125b as genetic factors and serum levels of IL-6, IL-1β, and TNF-α as pro-inflammatory factors in an IranianAzeri population. METHODS Forty patients with recent-onset non-affective psychosis and 40 healthy people as a control group were involved. Expression levels of miRNAs and serum levels of the cytokines were measured using RT-qPCR and ELISA, respectively. T-test, receiver operating characteristics (ROC), and spearman correlation coefficient were carried out data analysis. RESULTS Findings showed higher levels of IL-6, IL-1β, TNF-α, miR-26a, and miR-106a in the plasma of the patients' group compared with the control. miRNA-26a showed a statistically significant higher level (p < .003) compared to the control group, with AUC = 0.84 (95% CI: 0.77 to 0.93, P < .001) and cut-off point = 0.17 in comparison to other miRNAs as mentioned above; in this regard, it might be a suggestive biomarker for schizophrenia in the early stage of the illness. Moreover, miRNAs' expression level was not substantially associated with the level of any measured cytokines above. CONCLUSIONS miR-26a might be a suggestive biomarker for schizophrenia in the early stage of the illness. Given that the relationship between other miRNAs and cytokines is not yet well understood; accordingly, there are encouragement and support for continued research in this fascinating field.
Collapse
Affiliation(s)
| | | | - Sara Farhang
- University Medical Center Groningen, Groningen, Netherlands
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Dariush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadbagher Hassanzadeh
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Azizi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Wawrzczak-Bargieła A, Bilecki W, Maćkowiak M. Epigenetic Targets in Schizophrenia Development and Therapy. Brain Sci 2023; 13:brainsci13030426. [PMID: 36979236 PMCID: PMC10046502 DOI: 10.3390/brainsci13030426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this mental disorder. The present article revised the epigenetic background of schizophrenia based on the data available in online databases (PubMed, Scopus). This paper focused on the role of epigenetic regulation, such as DNA methylation, histone modifications, and interference of non-coding RNAs, in schizophrenia development. The article also reviewed the available data related to epigenetic regulation that may modify the severity of the disease as a possible target for schizophrenia pharmacotherapy. Moreover, the effects of antipsychotics on epigenetic malfunction in schizophrenia are discussed based on preclinical and clinical results. The obtainable data suggest alterations of epigenetic regulation in schizophrenia. Moreover, they also showed the important role of epigenetic modifications in antipsychotic action. There is a need for more data to establish the role of epigenetic mechanisms in schizophrenia therapy. It would be of special interest to find and develop new targets for schizophrenia therapy because patients with schizophrenia could show little or no response to current pharmacotherapy and have treatment-resistant schizophrenia.
Collapse
|
5
|
Thomas KT, Vermare A, Egleston SO, Wang YD, Mishra A, Lin T, Peng J, Zakharenko SS. MicroRNA 3' ends shorten during adolescent brain maturation. Front Mol Neurosci 2023; 16:1168695. [PMID: 37122627 PMCID: PMC10140418 DOI: 10.3389/fnmol.2023.1168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
MicroRNA (miRNA) dysregulation is well-documented in psychiatric disease, but miRNA dynamics remain poorly understood during adolescent and early adult brain maturation, when symptoms often first appear. Here, we use RNA sequencing to examine miRNAs and their mRNA targets in cortex and hippocampus from early-, mid-, and late-adolescent and adult mice. Furthermore, we use quantitative proteomics by tandem mass tag mass spectrometry (TMT-MS) to examine protein dynamics in cortex from the same subjects. We found that ~25% of miRNAs' 3' ends shorten with age due to increased 3' trimming and decreased U tailing. Particularly, shorter but functionally competent isoforms (isomiRs) of miR-338-3p increase up to 10-fold during adolescence and only in brain. MiRNAs that undergo 3' shortening exhibit stronger negative correlations with targets that decrease with age and stronger positive correlations with targets that increase with age, than miRNAs with stable 3' ends. Increased 3' shortening with age was also observed in available mouse and human miRNA-seq data sets, and stronger correlations between miRNAs that undergo shortening and their mRNA targets were observed in two of the three available data sets. We conclude that age-associated miRNA 3' shortening is a well-conserved feature of postnatal brain maturation.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Anaïs Vermare
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Suzannah O. Egleston
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- *Correspondence: Stanislav S. Zakharenko,
| |
Collapse
|
6
|
Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic Spines: Synaptogenesis and Synaptic Pruning for the Developmental Organization of Brain Circuits. ADVANCES IN NEUROBIOLOGY 2023; 34:143-221. [PMID: 37962796 DOI: 10.1007/978-3-031-36159-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.The activity-dependent stabilization and selective elimination of the initially overproduced synapses is a major mechanism for generating diversity of neural connections beyond their genetic determination. The largest number of overproduced synapses was found in the monkey and human cerebral cortex. The highest (exceeding adult values by two- to threefold) and most protracted overproduction (up to third decade of life) was described for associative layer IIIC pyramidal neurons in the human dorsolateral prefrontal cortex.Therefore, the highest proportion and extraordinarily extended phase of synaptic spine overproduction is a hallmark of neural circuitry in human higher-order associative areas. This indicates that microcircuits processing the most complex human cognitive functions have the highest level of developmental plasticity. This finding is the backbone for understanding the effect of environmental impact on the development of the most complex, human-specific cognitive and emotional capacities, and on the late onset of human-specific neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Wingo AP, Wang M, Liu J, Breen MS, Yang HS, Tang B, Schneider JA, Seyfried NT, Lah JJ, Levey AI, Bennett DA, Jin P, De Jager PL, Wingo TS. Brain microRNAs are associated with variation in cognitive trajectory in advanced age. Transl Psychiatry 2022; 12:47. [PMID: 35105862 PMCID: PMC8807720 DOI: 10.1038/s41398-022-01806-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
In advancing age, some individuals maintain a stable cognitive performance over time, while others experience a rapid decline. Such variation in cognitive trajectory is only partially explained by common neurodegenerative pathologies. Hence, we aimed to identify new molecular processes underlying variation in cognitive trajectory using brain microRNA profile followed by an integrative analysis with brain transcriptome and proteome. Individual cognitive trajectories were derived from longitudinally assessed cognitive-test scores of older-adult brain donors from four longitudinal cohorts. Postmortem brain microRNA profiles, transcriptomes, and proteomes were derived from the dorsolateral prefrontal cortex. The global microRNA association study of cognitive trajectory was performed in a discovery (n = 454) and replication cohort (n = 134), followed by a meta-analysis that identified 6 microRNAs. Among these, miR-132-3p and miR-29a-3p were most significantly associated with cognitive trajectory. They explain 18.2% and 2.0% of the variance of cognitive trajectory, respectively, and act independently of the eight measured neurodegenerative pathologies. Furthermore, integrative transcriptomic and proteomic analyses revealed that miR-132-3p was significantly associated with 24 of the 47 modules of co-expressed genes of the transcriptome, miR-29a-3p with 3 modules, and identified 84 and 214 downstream targets of miR-132-3p and miR-29a-3p, respectively, in cognitive trajectory. This is the first global microRNA study of cognitive trajectory to our knowledge. We identified miR-29a-3p and miR-132-3p as novel and robust contributors to cognitive trajectory independently of the eight known cerebral pathologies. Our findings lay a foundation for future studies investigating mechanisms and developing interventions to enhance cognitive stability in advanced age.
Collapse
Affiliation(s)
- Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mengli Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyun-Sik Yang
- Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Changsha, Hunan, China
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Philip L De Jager
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA.
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Ott LR, Penhale SH, Taylor BK, Lew BJ, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. Neuroimage 2021; 244:118552. [PMID: 34517128 PMCID: PMC8685767 DOI: 10.1016/j.neuroimage.2021.118552] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While numerous studies have examined the developmental trajectory of task-based neural oscillations during childhood and adolescence, far less is known about the evolution of spontaneous cortical activity during this time period. Likewise, many studies have shown robust sex differences in task-based oscillations during this developmental period, but whether such sex differences extend to spontaneous activity is not understood. METHODS Herein, we examined spontaneous cortical activity in 111 typically-developing youth (ages 9-15 years; 55 male). Participants completed a resting state magnetoencephalographic (MEG) recording and a structural MRI. MEG data were source imaged and the power within five canonical frequency bands (delta, theta, alpha, beta, gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially-specific effects of age, sex, and their interaction. RESULTS We found robust increases in power with age in all frequencies except delta, which decreased over time, with findings largely confined to frontal cortices. Sex effects were distributed across frontal and temporal regions; females tended to have greater delta and beta power, whereas males had greater alpha. Importantly, there was a significant age-by-sex interaction in theta power, such that males exhibited decreasing power with age while females showed increasing power with age in the bilateral superior temporal cortices. DISCUSSION These data suggest that the strength of spontaneous activity undergoes robust change during the transition from childhood to adolescence (i.e., puberty onset), with intriguing sex differences in some cortical areas. Future developmental studies should probe task-related oscillations and spontaneous activity in parallel.
Collapse
Affiliation(s)
- Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samantha H Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Haddad A, Voth B, Brooks J, Swang M, Carryl H, Algarzae N, Taylor S, Parker C, Van Rompay KKA, De Paris K, Burke MW. Reduced neuronal population in the dorsolateral prefrontal cortex in infant macaques infected with simian immunodeficiency virus (SIV). J Neurovirol 2021; 27:923-935. [PMID: 34554407 PMCID: PMC8901521 DOI: 10.1007/s13365-021-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Pediatric HIV infection remains a global health crisis with an estimated 150,000 new mother-to-child (MTCT) infections each year. Antiretroviral therapy (ART) has improved childhood survival, but only an estimated 53% of children worldwide have access to treatment. Adding to the health crisis is the neurological impact of HIV on the developing brain, in particular cognitive and executive function, which persists even when ART is available. Imaging studies suggest structural, connectivity, and functional alterations in perinatally HIV-infected youth. However, the paucity of histological data limits our ability to identify specific cortical regions that may underlie the clinical manifestations. Utilizing the pediatric simian immunodeficiency virus (SIV) infection model in infant macaques, we have previously shown that early-life SIV infection depletes the neuronal population in the hippocampus. Here, we expand on these previous studies to investigate the dorsolateral prefrontal cortex (dlPFC). A total of 11 ART-naïve infant rhesus macaques (Macaca mulatta) from previous studies were retrospectively analyzed. Infant macaques were either intravenously (IV) inoculated with highly virulent SIVmac251 at ~1 week of age and monitored for 6-10 weeks or orally challenged with SIVmac251 from week 9 of age onwards with a monitoring period of 10-23 weeks post-infection (19-34 weeks of age), and SIV-uninfected controls were euthanized at 16-17 weeks of age. Both SIV-infected groups show a significant loss of neurons along with evidence of ongoing neuronal death. Oral- and IV-infected animals showed a similar neuronal loss which was negatively correlated to chronic viremia levels as assessed by an area under the curve (AUC) analysis. The loss of dlPFC neurons may contribute to the rapid neurocognitive decline associated with pediatric HIV infection.
Collapse
Affiliation(s)
- Alexandra Haddad
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Brittany Voth
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Janiya Brooks
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Melanie Swang
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Heather Carryl
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Norah Algarzae
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
- King Saudi University, Riyadh, Riyadh, Kingdom of Saudi Arabia
| | - Shane Taylor
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Camryn Parker
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
10
|
Thomas KT, Zakharenko SS. MicroRNAs in the Onset of Schizophrenia. Cells 2021; 10:2679. [PMID: 34685659 PMCID: PMC8534348 DOI: 10.3390/cells10102679] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence implicates microRNAs (miRNAs) in the pathology of schizophrenia. These small noncoding RNAs bind to mRNAs containing complementary sequences and promote their degradation and/or inhibit protein synthesis. A single miRNA may have hundreds of targets, and miRNA targets are overrepresented among schizophrenia-risk genes. Although schizophrenia is a neurodevelopmental disorder, symptoms usually do not appear until adolescence, and most patients do not receive a schizophrenia diagnosis until late adolescence or early adulthood. However, few studies have examined miRNAs during this critical period. First, we examine evidence that the miRNA pathway is dynamic throughout adolescence and adulthood and that miRNAs regulate processes critical to late neurodevelopment that are aberrant in patients with schizophrenia. Next, we examine evidence implicating miRNAs in the conversion to psychosis, including a schizophrenia-associated single nucleotide polymorphism in MIR137HG that is among the strongest known predictors of age of onset in patients with schizophrenia. Finally, we examine how hemizygosity for DGCR8, which encodes an obligate component of the complex that synthesizes miRNA precursors, may contribute to the onset of psychosis in patients with 22q11.2 microdeletions and how animal models of this disorder can help us understand the many roles of miRNAs in the onset of schizophrenia.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
11
|
Ferreira M, Francisco S, Soares AR, Nobre A, Pinheiro M, Reis A, Neto S, Rodrigues AJ, Sousa N, Moura G, Santos MAS. Integration of segmented regression analysis with weighted gene correlation network analysis identifies genes whose expression is remodeled throughout physiological aging in mouse tissues. Aging (Albany NY) 2021; 13:18150-18190. [PMID: 34330884 PMCID: PMC8351669 DOI: 10.18632/aging.203379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Gene expression alterations occurring with aging have been described for a multitude of species, organs, and cell types. However, most of the underlying studies rely on static comparisons of mean gene expression levels between age groups and do not account for the dynamics of gene expression throughout the lifespan. These studies also tend to disregard the pairwise relationships between gene expression profiles, which may underlie commonly altered pathways and regulatory mechanisms with age. To overcome these limitations, we have combined segmented regression analysis with weighted gene correlation network analysis (WGCNA) to identify high-confidence signatures of aging in the brain, heart, liver, skeletal muscle, and pancreas of C57BL/6 mice in a publicly available RNA-Seq dataset (GSE132040). Functional enrichment analysis of the overlap of genes identified in both approaches showed that immune- and inflammation-related responses are prominently altered in the brain and the liver, while in the heart and the muscle, aging affects amino and fatty acid metabolism, and tissue regeneration, respectively, which reflects an age-related global loss of tissue function. We also explored sexual dimorphism in the aging mouse transcriptome and found the liver and the muscle to have the most pronounced gender differences in gene expression throughout the lifespan, particularly in proteostasis-related pathways. While the data showed little overlap among the age-dysregulated genes between tissues, aging triggered common biological processes in distinct tissues, which we highlight as important features of murine tissue physiological aging.
Collapse
Affiliation(s)
- Margarida Ferreira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Stephany Francisco
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana R. Soares
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana Nobre
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Miguel Pinheiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andreia Reis
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sonya Neto
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gabriela Moura
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Manuel A. S. Santos
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
12
|
Panja D, Li Y, Ward ME, Li Z. miR-936 is Increased in Schizophrenia and Inhibits Neural Development and AMPA Receptor-Mediated Synaptic Transmission. Schizophr Bull 2021; 47:1795-1805. [PMID: 33940617 PMCID: PMC8530405 DOI: 10.1093/schbul/sbab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression and play important roles in the development and function of synapses. miR-936 is a primate-specific miRNA increased in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. The significance of miR-936 increase to schizophrenia is unknown. Here, we show that miR-936 in the human DLPFC is enriched in cortical layer 2/3 and expressed in glutamatergic and GABAergic neurons. miR-936 is increased from layers 2 to 6 of the DLPFC in schizophrenia samples. In neurons derived from human induced pluripotent stem cells (iNs), miR-936 reduces the number of excitatory synapses, inhibits AMPA receptor-mediated synaptic transmission, and increases intrinsic excitability. These effects are mediated by its target gene TMOD2. These results indicate that miR-936 restricts the number of synapses and the strength of glutamatergic synaptic transmission by inhibiting TMOD2 expression. miR-936 upregulation in the DLPFC, therefore, can reduce glutamatergic synapses and weaken excitatory synaptic transmission, which underlie the synaptic pathology and hypofrontality in schizophrenia.
Collapse
Affiliation(s)
- Debabrata Panja
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - You Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Michael E Ward
- Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD,To whom correspondence should be addressed; National Institute of Mental Health, National Institutes of Health, Bldg 35A, Room 2C-1010, Bethesda, MD 20892, USA; tel: +1 301 594 2269, fax: +1 301 480 2561, e-mail:
| |
Collapse
|
13
|
MicroRNA regulation of prefrontal cortex development and psychiatric risk in adolescence. Semin Cell Dev Biol 2021; 118:83-91. [PMID: 33933350 DOI: 10.1016/j.semcdb.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
In this review, we examine the role of microRNAs in the development of the prefrontal cortex (PFC) in adolescence and in individual differences in vulnerability to mental illness. We describe results from clinical and preclinical research indicating that adolescence coincides with drastic changes in local microRNA expression, including microRNAs that control gene networks involved in PFC and cognitive refinement. We highlight that altered levels of microRNAs in the PFC are associated with psychopathologies of adolescent onset, notably depression and schizophrenia. We show that microRNAs can be measured non-invasively in peripheral samples and could serve as longitudinal physiological readouts of brain expression and psychiatric risk in youth.
Collapse
|
14
|
Price AJ, Jaffe AE, Weinberger DR. Cortical cellular diversity and development in schizophrenia. Mol Psychiatry 2021; 26:203-217. [PMID: 32404946 PMCID: PMC7666011 DOI: 10.1038/s41380-020-0775-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
While a definitive understanding of schizophrenia etiology is far from current reality, an increasing body of evidence implicates perturbations in early development that alter the trajectory of brain maturation in this disorder, leading to abnormal function in early childhood and adulthood. This atypical development likely arises from an interaction of many brain cell types that follow distinct developmental paths. Because both cellular identity and development are governed by the transcriptome and epigenome, two levels of gene regulation that have the potential to reflect both genetic and environmental influences, mapping "omic" changes over development in diverse cells is a fruitful avenue for schizophrenia research. In this review, we provide a survey of human brain cellular composition and development, levels of genomic regulation that determine cellular identity and developmental trajectories, and what is known about how genomic regulation is dysregulated in specific cell types in schizophrenia. We also outline technical challenges and solutions to conducting cell type-specific functional genomic studies in human postmortem brain.
Collapse
Affiliation(s)
- Amanda J. Price
- Lieber Institute for Brain Development, Baltimore, MD,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Baltimore, MD,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Baltimore, MD,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Advances in transcriptome analysis of human brain aging. Exp Mol Med 2020; 52:1787-1797. [PMID: 33244150 PMCID: PMC8080664 DOI: 10.1038/s12276-020-00522-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with gradual deterioration of physiological and biochemical functions, including cognitive decline. Transcriptome profiling of brain samples from individuals of varying ages has identified the whole-transcriptome changes that underlie age-associated cognitive declines. In this review, we discuss transcriptome-based research on human brain aging performed by using microarray and RNA sequencing analyses. Overall, decreased synaptic function and increased immune function are prevalent in most regions of the aged brain. Age-associated gene expression changes are also cell dependent and region dependent and are affected by genotype. In addition, the transcriptome changes that occur during brain aging include different splicing events, intersample heterogeneity, and altered levels of various types of noncoding RNAs. Establishing transcriptome-based hallmarks of human brain aging will improve the understanding of cognitive aging and neurodegenerative diseases and eventually lead to interventions that delay or prevent brain aging.
Collapse
|
16
|
Cattaneo A, Suderman M, Cattane N, Mazzelli M, Begni V, Maj C, D'Aprile I, Pariante CM, Luoni A, Berry A, Wurst K, Hommers L, Domschke K, Cirulli F, Szyf M, Menke A, Riva MA. Long-term effects of stress early in life on microRNA-30a and its network: Preventive effects of lurasidone and potential implications for depression vulnerability. Neurobiol Stress 2020; 13:100271. [PMID: 33344724 PMCID: PMC7739180 DOI: 10.1016/j.ynstr.2020.100271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Exposure to early life stress can interfere with neurodevelopmental trajectories to increase the vulnerability for psychiatric disorders later in life. With this respect, epigenetic mechanisms play a key role for the long-lasting changes in brain functions that may elicit and sustain psychopathologic outcomes. Here, we investigated DNA methylation changes as possible epigenetic mechanism mediating the effect of prenatal stress (PNS), an experimental paradigm associated with behavioral and molecular alterations relevant for psychiatric disorders. We identified 138 genes as being differentially methylated in the prefrontal cortex (PFC) and in the hippocampus (HIP) of male and female adult rats exposed to PNS. Among these genes, miR-30a and Neurod1 emerged as potential players for the negative outcomes associated with PNS exposure. Indeed, in addition to showing consistent methylation differences in both brain regions and in both sexes, and interacting with each other, they are both involved in Axon guidance and Neurotrophin signaling, which are important to neurodevelopmental disorders. We also found a significant reduction in the expression of a panel of genes (CAMK2A, c-JUN, LIMK1, MAP2K1, MAP2K2, PIK3CA and PLCG1) that belong to these two biological pathways and are also validated targets of miR-30a, pointing to a down-regulation of these pathways as a consequence of PNS exposure. Interestingly, we also found that miR-30a levels were significantly upregulated in depressed patients exposed to childhood trauma, as compared to control individuals. Importantly, we also found that a sub-chronic treatment with the atypical antipsychotic drug, lurasidone, during adolescence was able to prevent the up-regulation of miR-30a and normalized the expression of its target genes in response to PNS exposure. Our results demonstrate that miR-30a undergoes epigenetic changes following early life stress exposure and suggest that this miRNA could play a key role in producing broad and long-lasting alterations in neuroplasticity-related pathways, contributing to the etiology of psychiatric disorders. MiR-30a and Neurod1 undergo epigenetic changes following PNS exposure. MiR-30 and Neurod1 are involved in Axon guidance and Neurotrophin signaling, two important pathways for neurodevelopment. We found lower expression levels of a panel of genes targeted by miR-30a. MiR-30a was significantly up-regulated in depressed patients exposed to childhood trauma. A chronic treatment with lurasidone during adolescence prevented the up-regulation of miR-30a following PNS exposure.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy.,Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, BSB 1TH, UK
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Mazzelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy.,Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy
| | - Alessandra Berry
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Katharina Wurst
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesca Cirulli
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade #1311, Montreal, Quebec, Canada, H3G 1Y6
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
17
|
Widespread transcriptional disruption of the microRNA biogenesis machinery in brain and peripheral tissues of individuals with schizophrenia. Transl Psychiatry 2020; 10:376. [PMID: 33149139 PMCID: PMC7642431 DOI: 10.1038/s41398-020-01052-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
In schizophrenia, altered transcription in brain and peripheral tissues may be due to altered expression of the microRNA biogenesis machinery genes. In this study, we explore the expression of these genes both at the cerebral and peripheral levels. We used shinyGEO application to analyze gene expression from ten Gene Expression Omnibus datasets, in order to perform differential expression analyses for eight genes encoding the microRNA biogenesis machinery. First, we compared expression of the candidate genes between control subjects and individuals with schizophrenia in postmortem cerebral samples from seven different brain regions. Then, we compared the expression of the candidate genes between control subjects and individuals with schizophrenia in three peripheral tissues. In brain and peripheral tissues of individuals with schizophrenia, we report distinct altered expression patterns of the microRNA biogenesis machinery genes. In the dorsolateral prefrontal cortex, associative striatum and cerebellum of individuals with schizophrenia, we observed an overexpression pattern of some candidate genes suggesting a heightened miRNA production in these brain regions. Additionally, mixed transcriptional abnormalities were identified in the hippocampus. Moreover, in the blood and olfactory epithelium of individuals with schizophrenia, we observed distinct aberrant transcription patterns of the candidate genes. Remarkably, in individuals with schizophrenia, we report DICER1 overexpression in the dorsolateral prefrontal cortex, hippocampus and cerebellum as well as a congruent DICER1 upregulation in the blood compartment suggesting that it may represent a peripheral marker. Transcriptional disruption of the miRNA biogenesis machinery may contribute to schizophrenia pathogenesis both in brain and peripheral tissues.
Collapse
|
18
|
Aristizabal MJ, Anreiter I, Halldorsdottir T, Odgers CL, McDade TW, Goldenberg A, Mostafavi S, Kobor MS, Binder EB, Sokolowski MB, O'Donnell KJ. Biological embedding of experience: A primer on epigenetics. Proc Natl Acad Sci U S A 2020; 117:23261-23269. [PMID: 31624126 PMCID: PMC7519272 DOI: 10.1073/pnas.1820838116] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biological embedding occurs when life experience alters biological processes to affect later life health and well-being. Although extensive correlative data exist supporting the notion that epigenetic mechanisms such as DNA methylation underlie biological embedding, causal data are lacking. We describe specific epigenetic mechanisms and their potential roles in the biological embedding of experience. We also consider the nuanced relationships between the genome, the epigenome, and gene expression. Our ability to connect biological embedding to the epigenetic landscape in its complexity is challenging and complicated by the influence of multiple factors. These include cell type, age, the timing of experience, sex, and DNA sequence. Recent advances in molecular profiling and epigenome editing, combined with the use of comparative animal and human longitudinal studies, should enable this field to transition from correlative to causal analyses.
Collapse
Affiliation(s)
- Maria J Aristizabal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V52 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Thorhildur Halldorsdottir
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Candice L Odgers
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Psychological Science, University of California, Irvine, CA 92697
- Sanford School of Public Policy, Duke University, Durham, NC 27708
| | - Thomas W McDade
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Anthropology, Northwestern University, Evanston, IL 60208
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| | - Anna Goldenberg
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Computer Science, Hospital for Sick Children, Vector Institute, University of Toronto, Toronto, ON, M5G OA4, Canada
| | - Sara Mostafavi
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Statistics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V52 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Elisabeth B Binder
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada;
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Kieran J O'Donnell
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada;
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| |
Collapse
|
19
|
Bame M, McInnis MG, O'Shea KS. MicroRNA Alterations in Induced Pluripotent Stem Cell-Derived Neurons from Bipolar Disorder Patients: Pathways Involved in Neuronal Differentiation, Axon Guidance, and Plasticity. Stem Cells Dev 2020; 29:1145-1159. [PMID: 32438891 PMCID: PMC7469698 DOI: 10.1089/scd.2020.0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BP) is a complex psychiatric condition characterized by severe fluctuations in mood for which underlying pathological mechanisms remain unclear. Family and twin studies have identified a hereditary component to the disorder, but a single causative gene (or set of genes) has not been identified. MicroRNAs (miRNAs) are small, noncoding RNAs ∼20 nucleotides in length, that are responsible for the posttranslational regulation of multiple genes. They have been shown to play important roles in neural development as well as in the adult brain, and several miRNAs have been reported to be dysregulated in postmortem brain tissue isolated from bipolar patients. Because there are no viable cellular models to study BP, we have taken advantage of the recent discovery that somatic cells can be reprogrammed to pluripotency then directed to form the full complement of neural cells. Analysis of RNAs extracted from Control and BP patient-derived neurons identified 58 miRNAs that were differentially expressed between the two groups. Using quantitative polymerase chain reaction we validated six miRNAs that were elevated and two miRNAs that were expressed at lower levels in BP-derived neurons. Analysis of the targets of the miRNAs indicate that they may regulate a number of cellular pathways, including axon guidance, Mapk, Ras, Hippo, Neurotrophin, and Wnt signaling. Many are involved in processes previously implicated in BP, such as cell migration, axon guidance, dendrite and synapse development, and function. We have validated targets of several different miRNAs, including AXIN2, BDNF, RELN, and ANK3 as direct targets of differentially expressed miRNAs using luciferase assays. Identification of pathways altered in patient-derived neurons suggests that disruption of these regulatory networks that may contribute to the complex phenotypes in BP.
Collapse
Affiliation(s)
- Monica Bame
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K. Sue O'Shea
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
The relationship between DNA methylation in neurotrophic genes and age as evidenced from three independent cohorts: differences by delirium status. Neurobiol Aging 2020; 94:227-235. [PMID: 32650186 DOI: 10.1016/j.neurobiolaging.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/07/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
We previously reported the association between DNA methylation (DNAm) of pro-inflammatory cytokine genes and age. In addition, neurotrophic factors are known to be associated with age and neurocognitive disorders. Therefore, we hypothesized that DNAm of neurotrophic genes change with age, especially in delirium patients. DNAm was analyzed using the Illumina HumanMethylation450 or HumanMethylationEPIC BeadChip Kit in 3 independent cohorts: blood from 383 Grady Trauma Project subjects, brain from 21 neurosurgery patients, and blood from 87 inpatients with and without delirium. Both blood and brain samples showed that most of the DNAm of neurotrophic genes were positively correlated with age. Furthermore, DNAm of neurotrophic genes was more positively correlated with age in delirium cases than in non-delirium controls. These findings support our hypothesis that the neurotrophic genes may be epigenetically modulated with age, and this process may be contributing to the pathophysiology of delirium.
Collapse
|
21
|
Temporal dynamics of miRNAs in human DLPFC and its association with miRNA dysregulation in schizophrenia. Transl Psychiatry 2019; 9:196. [PMID: 31431609 PMCID: PMC6702224 DOI: 10.1038/s41398-019-0538-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brain development is dependent on programmed gene expression, which is both genetically and epigenetically regulated. Post-transcriptional regulation of gene expression by microRNAs (miRNAs) is essential for brain development. As abnormal brain development is hypothesized to be associated with schizophrenia, miRNAs are an intriguing target for this disorder. The aims of this study were to determine the temporal dynamics of miRNA expression in the human dorsolateral prefrontal cortex (DLPFC), and the relationship between miRNA's temporal expression pattern and dysregulation in schizophrenia. This study used next-generation sequencing to characterize the temporal dynamics of miRNA expression in the DLPFC of 109 normal subjects (second trimester-74 years of age) and miRNA expression changes in 34 schizophrenia patients. Unlike mRNAs, the majority of which exhibits a wave of change in fetuses, most miRNAs are preferentially expressed during a certain period before puberty. It is noted that in schizophrenia patients, miRNAs normally enriched in infants tend to be upregulated, while those normally enriched in prepuberty tend to be downregulated, and the targets of these miRNAs are enriched for genes encoding synaptic proteins and those associated with schizophrenia. In addition, miR-936 and miR-3162 were found to be increased in the DLPFC of patients with schizophrenia. These findings reveal the temporal dynamics of miRNAs in the human DLPFC, implicate the importance of miRNAs in DLPFC development, and suggest a possible link between schizophrenia and dysregulation of miRNAs enriched in infancy and prepuberty.
Collapse
|
22
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
23
|
Gibbons A, Udawela M, Dean B. Non-Coding RNA as Novel Players in the Pathophysiology of Schizophrenia. Noncoding RNA 2018; 4:E11. [PMID: 29657307 PMCID: PMC6027250 DOI: 10.3390/ncrna4020011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is associated with diverse changes in the brain's transcriptome and proteome. Underlying these changes is the complex dysregulation of gene expression and protein production that varies both spatially across brain regions and temporally with the progression of the illness. The growing body of literature showing changes in non-coding RNA in individuals with schizophrenia offers new insights into the mechanisms causing this dysregulation. A large number of studies have reported that the expression of microRNA (miRNA) is altered in the brains of individuals with schizophrenia. This evidence is complemented by findings that single nucleotide polymorphisms (SNPs) in miRNA host gene sequences can confer an increased risk of developing the disorder. Additionally, recent evidence suggests the expression of other non-coding RNAs, such as small nucleolar RNA and long non-coding RNA, may also be affected in schizophrenia. Understanding how these changes in non-coding RNAs contribute to the development and progression of schizophrenia offers potential avenues for the better treatment and diagnosis of the disorder. This review will focus on the evidence supporting the involvement of non-coding RNA in schizophrenia and its therapeutic potential.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Department of Psychiatry, the University of Melbourne, Parkville, Victoria, Australia.
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
24
|
Cao T, Zhen XC. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci Ther 2018. [PMID: 29529357 DOI: 10.1111/cns.12840] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although it is generally believed that genetic and developmental factors play critical roles in pathogenesis of schizophrenia, however, the precise etiological mechanism of schizophrenia remains largely unknown. Over past decades, miRNAs have emerged as an essential post-transcriptional regulator in gene expression regulation. The importance of miRNA in brain development and neuroplasticity has been well-established. Abnormal expression and dysfunction of miRNAs are known to involve in the pathophysiology of many neuropsychiatric diseases including schizophrenia. In this review, we summarized the recent findings in the schizophrenia-associated dysregulation of miRNA and functional roles in the development and pathogenesis of schizophrenia. We also discussed the potential therapeutic implications of miRNA regulation in the illness.
Collapse
Affiliation(s)
- Ting Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,The Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,The Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Zaidan H, Ramaswami G, Golumbic YN, Sher N, Malik A, Barak M, Galiani D, Dekel N, Li JB, Gaisler-Salomon I. A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations. BMC Genomics 2018; 19:28. [PMID: 29310578 PMCID: PMC5759210 DOI: 10.1186/s12864-017-4409-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. RESULTS In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. CONCLUSIONS Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.
Collapse
Affiliation(s)
- Hiba Zaidan
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA.,Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, USA
| | - Yaela N Golumbic
- Faculty of Education in Technology and Science, Technion, Haifa, Israel.,Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Noa Sher
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel.,Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Dalia Galiani
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Jin B Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
26
|
Liu YN, Lu SY, Yao J. Application of induced pluripotent stem cells to understand neurobiological basis of bipolar disorder and schizophrenia. Psychiatry Clin Neurosci 2017; 71:579-599. [PMID: 28393474 DOI: 10.1111/pcn.12528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
The etiology of neuropsychiatric disorders, such as schizophrenia and bipolar disorder, usually involves complex combinations of genetic defects/variations and environmental impacts, which hindered, for a long time, research efforts based on animal models and patients' non-neuronal cells or post-mortem tissues. However, the development of human induced pluripotent stem cell (iPSC) technology by the Yamanaka group was immediately applied to establish cell research models for neuronal disorders. Since then, techniques to achieve highly efficient differentiation of different types of neural cells following iPSC modeling have made much progress. The fast-growing iPSC and neural differentiation techniques have brought valuable insights into the pathology and neurobiology of neuropsychiatric disorders. In this article, we first review the application of iPSC technology in modeling neuronal disorders and discuss the progress in the accompanying neural differentiation. Then, we summarize the progress in iPSC-based research that has been accomplished so far regarding schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Si-Yao Lu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
28
|
Abstract
Despite a lack of recent progress in the treatment of schizophrenia, our understanding of its genetic and environmental causes has considerably improved, and their relationship to aberrant patterns of neurodevelopment has become clearer. This raises the possibility that 'disease-modifying' strategies could alter the course to - and of - this debilitating disorder, rather than simply alleviating symptoms. A promising window for course-altering intervention is around the time of the first episode of psychosis, especially in young people at risk of transition to schizophrenia. Indeed, studies performed in both individuals at risk of developing schizophrenia and rodent models for schizophrenia suggest that pre-diagnostic pharmacotherapy and psychosocial or cognitive-behavioural interventions can delay or moderate the emergence of psychosis. Of particular interest are 'hybrid' strategies that both relieve presenting symptoms and reduce the risk of transition to schizophrenia or another psychiatric disorder. This Review aims to provide a broad-based consideration of the challenges and opportunities inherent in efforts to alter the course of schizophrenia.
Collapse
|
29
|
Kimoto S, Glausier JR, Fish KN, Volk DW, Bazmi HH, Arion D, Datta D, Lewis DA. Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophr Bull 2016; 42:396-405. [PMID: 26424323 PMCID: PMC4753606 DOI: 10.1093/schbul/sbv139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-methyl-d-aspartate receptor (NMDAR) hypofunction in the dorsolateral prefrontal cortex (DLPFC) has been implicated in the pathology of schizophrenia. NMDAR activity is negatively regulated by some G protein-coupled receptors (GPCRs). Signaling through these GPCRs is reduced by Regulator of G protein Signaling 4 (RGS4). Thus, lower levels of RGS4 would enhance GPCR-mediated reductions in NMDAR activity and could contribute to NMDAR hypofunction in schizophrenia. In this study, we quantified RGS4 mRNA and protein levels at several levels of resolution in the DLPFC from subjects with schizophrenia and matched healthy comparison subjects. To investigate molecular mechanisms that could contribute to altered RGS4 levels, we quantified levels of small noncoding RNAs, known as microRNAs (miRs), which regulate RGS4 mRNA integrity after transcription. RGS4 mRNA and protein levels were significantly lower in schizophrenia subjects and were positively correlated across all subjects. The RGS4 mRNA deficit was present in pyramidal neurons of DLPFC layers 3 and 5 of the schizophrenia subjects. In contrast, levels of miR16 were significantly higher in the DLPFC of schizophrenia subjects, and higher miR16 levels predicted lower RGS4 mRNA levels. These findings provide convergent evidence of lower RGS4 mRNA and protein levels in schizophrenia that may result from increased expression of miR16. Given the role of RGS4 in regulating GPCRs, and consequently the strength of NMDAR signaling, these findings could contribute to the molecular substrate for NMDAR hypofunction in DLPFC pyramidal cells in schizophrenia.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA; Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David W Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - H Holly Bazmi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Dibyadeep Datta
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. RECENT FINDINGS Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. SUMMARY Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.
Collapse
|
31
|
Wang X, Gardiner EJ, Cairns MJ. Optimal consistency in microRNA expression analysis using reference-gene-based normalization. MOLECULAR BIOSYSTEMS 2016; 11:1235-40. [PMID: 25797570 DOI: 10.1039/c4mb00711e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression.
Collapse
Affiliation(s)
- Xi Wang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, NSW 2308, Australia.
| | | | | |
Collapse
|
32
|
Lai CY, Lee SY, Scarr E, Yu YH, Lin YT, Liu CM, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Udawela M, Gibbons AS, Everall IP, Hwu HG, Dean B, Chen WJ. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiatry 2016; 6:e717. [PMID: 26784971 PMCID: PMC5068884 DOI: 10.1038/tp.2015.213] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022] Open
Abstract
Based on our previous finding of a seven-miRNA (hsa-miR-34a, miR-449a, miR-564, miR-432, miR-548d, miR-572 and miR-652) signature as a potential biomarker for schizophrenia, this study aimed to examine if hospitalization could affect expressions of these miRNAs. We compared their expression levels between acute state and partial remission state in people with schizophrenia (n=48) using quantitative PCR method. Further, to examine whether the blood and brain show similar expression patterns, the expressions of two miRNAs (hsa-miR-34a and hsa-miR-548d) were examined in the postmortem brain tissue of people with schizophrenia (n=25) and controls (n=27). The expression level of the seven miRNAs did not alter after ~2 months of hospitalization with significant improvement in clinical symptoms, suggesting the miRNAs could be traits rather than state-dependent markers. The aberrant expression seen in the blood of hsa-miR-34a and hsa-miR-548d were not present in the brain samples, but this does not discount the possibility that the peripheral miRNAs could be clinically useful biomarkers for schizophrenia. Unexpectedly, we found an age-dependent increase in hsa-miR-34a expressions in human cortical (Brodmann area 46 (BA46)) but not subcortical region (caudate putamen). The correlation between hsa-miR-34a expression level in BA46 and age was much stronger in the controls than in the cases, and the corresponding correlation in the blood was only seen in the cases. The association between the miRNA dysregulations, the disease predisposition and aging warrants further investigation. Taken together, this study provides further insight on the candidate peripheral miRNAs as stable biomarkers for the diagnostics of schizophrenia.
Collapse
Affiliation(s)
- C-Y Lai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan,Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - S-Y Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan,Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - E Scarr
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Y-H Yu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan,Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-T Lin
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - C-M Liu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - T-J Hwang
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - M H Hsieh
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - C-C Liu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Y-L Chien
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - M Udawela
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - A S Gibbons
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - I P Everall
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - H-G Hwu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - B Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - W J Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan,Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan,Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei 100, Taiwan. E-mail:
| |
Collapse
|
33
|
Stamova B, Ander BP, Barger N, Sharp FR, Schumann CM. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains. J Child Neurol 2015; 30:1930-46. [PMID: 26350727 PMCID: PMC4647182 DOI: 10.1177/0883073815602067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2022]
Abstract
Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex.
Collapse
Affiliation(s)
- Boryana Stamova
- Department of Neurology, University of California at Davis, MIND Institute, Sacramento, CA, USA
| | - Bradley P. Ander
- Department of Neurology, University of California at Davis, MIND Institute, Sacramento, CA, USA
| | - Nicole Barger
- Department of Psychiatry & Behavioral Sciences, University of California at Davis, MIND Institute, Sacramento, CA, USA
| | - Frank R. Sharp
- Department of Neurology, University of California at Davis, MIND Institute, Sacramento, CA, USA
| | - Cynthia M. Schumann
- Department of Psychiatry & Behavioral Sciences, University of California at Davis, MIND Institute, Sacramento, CA, USA,Cynthia M. Schumann, PhD, Departments of Psychiatry & Behavioral Sciences, University of California at Davis, MIND Institute, 2805 50th Street, Sacramento, CA 95817, USA.
| |
Collapse
|
34
|
O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci 2015; 73:63-83. [PMID: 26608002 DOI: 10.1016/j.mcn.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BP) is a chronic neuropsychiatric condition characterized by pathological fluctuations in mood from mania to depression. Adoption, twin and family studies have consistently identified a significant hereditary component to BP, yet there is no clear genetic event or consistent neuropathology. BP has been suggested to have a developmental origin, although this hypothesis has been difficult to test since there are no viable neurons or glial cells to analyze, and research has relied largely on postmortem brain, behavioral and imaging studies, or has examined proxy tissues including saliva, olfactory epithelium and blood cells. Neurodevelopmental factors, particularly pathways related to nervous system development, cell migration, extracellular matrix, H3K4 methylation, and calcium signaling have been identified in large gene expression and GWAS studies as altered in BP. Recent advances in stem cell biology, particularly the ability to reprogram adult somatic tissues to a pluripotent state, now make it possible to interrogate these pathways in viable cell models. A number of induced pluripotent stem cell (iPSC) lines from BP patient and healthy control (C) individuals have been derived in several laboratories, and their ability to form cortical neurons examined. Early studies suggest differences in activity, calcium signaling, blocks to neuronal differentiation, and changes in neuronal, and possibly glial, lineage specification. Initial observations suggest that differentiation of BP patient-derived neurons to dorsal telencephalic derivatives may be impaired, possibly due to alterations in WNT, Hedgehog or Nodal pathway signaling. These investigations strongly support a developmental contribution to BP and identify novel pathways, mechanisms and opportunities for improved treatments.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, 3051 BSRB, 109 Zina Pitcher PL, Ann Arbor, MI 48109-2200, United States; Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States.
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States
| |
Collapse
|
35
|
Geaghan M, Cairns MJ. MicroRNA and Posttranscriptional Dysregulation in Psychiatry. Biol Psychiatry 2015; 78:231-9. [PMID: 25636176 DOI: 10.1016/j.biopsych.2014.12.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/11/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
Psychiatric syndromes, including schizophrenia, mood disorders, and autism spectrum disorders, are characterized by a complex range of symptoms, including psychosis, depression, mania, and cognitive deficits. Although the mechanisms driving pathophysiology are complex and remain largely unknown, advances in the understanding of gene association and gene networks are providing significant clues to their etiology. In recent years, small noncoding RNA molecules known as microRNA (miRNA) have emerged as potential players in the pathophysiology of mental illness. These small RNAs regulate hundreds of target transcripts by modifying their stability and translation on a broad scale, influencing entire gene networks in the process. There is evidence to suggest that numerous miRNAs are dysregulated in postmortem neuropathology of neuropsychiatric disorders, and there is strong genetic support for association of miRNA genes and their targets with these conditions. This review presents the accumulated evidence linking miRNA dysregulation and dysfunction with schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorders and the potential of miRNAs as biomarkers or therapeutics for these disorders. We further assess the functional roles of some outstanding miRNAs associated with these conditions and how they may be influencing the development of psychiatric symptoms.
Collapse
Affiliation(s)
- Michael Geaghan
- School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.; Schizophrenia Research Institute, Sydney, Australia.; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, New South Wales, Australia..
| |
Collapse
|
36
|
Zhao D, Lin M, Chen J, Pedrosa E, Hrabovsky A, Fourcade HM, Zheng D, Lachman HM. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del. PLoS One 2015; 10:e0132387. [PMID: 26173148 PMCID: PMC4501820 DOI: 10.1371/journal.pone.0132387] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2023] Open
Abstract
We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del), the most common known schizophrenia (SZ)-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA) biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher). Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05), including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p). Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Jian Chen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - H. Matthew Fourcade
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| |
Collapse
|
37
|
Zhang F, Xu Y, Shugart YY, Yue W, Qi G, Yuan G, Cheng Z, Yao J, Wang J, Wang G, Cao H, Guo W, Zhou Z, Wang Z, Tian L, Jin C, Yuan J, Liu C, Zhang D. Converging evidence implicates the abnormal microRNA system in schizophrenia. Schizophr Bull 2015; 41:728-35. [PMID: 25429046 PMCID: PMC4393688 DOI: 10.1093/schbul/sbu148] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous findings are inconsistent; yet, converging evidence suggests an association between schizophrenia (SZ) and the impairment of posttranscriptional regulation of brain development through microRNA (miRNA) systems. METHODS This study aims to (1) compare the overall frequency of 121 rare variants (RVs) in 59 genes associated with the miRNA system in genome-wide association studies (GWAS)-derived data including 768 SZ cases and 1348 healthy controls and validated in an independent GWAS data including 1802 SZ cases and 1447 controls; (2) profile genome-wide miRNA expression in blood collected from 15 early-onset SZ (EOS) cases and 15 healthy controls; and (3) construct a miRNA-messenger RNA (mRNA) regulatory network using our previous genome-wide mRNA expression data generated from a separate sample of 18 EOS cases and 12 healthy controls. RESULTS Our findings indicate that: (1) In genes associated with the control of miRNAs, there are approximately 50% more RVs in SZ cases than in controls (P ≤ 2.62E-10); (2) The observed lower miRNA activity in EOS patients compared with the healthy controls suggests that miRNAs are abnormally downregulated; (3) There exists a predicted regulatory network among some downregulated miRNAs and some upregulated mRNAs. CONCLUSIONS Collectively, results from all 3 lines of evidence, suggest that the genetically based dysregulation of miRNA systems undermines miRNAs' inhibitory effects, resulting in the abnormal upregulation of genome transcription in the development of SZ.
Collapse
Affiliation(s)
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China;,These authors contributed equally to this work
| | - Yin Yao Shugart
- Division of Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD;,Department of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD;,These authors contributed equally to this work
| | - Weihua Yue
- Department of Psychiatry, The Sixth Affiliated Hospital and Institute for Mental Health of Peking University/Key Laboratory of Mental Health, Ministry of Health, Beijing, China;,These authors contributed equally to this work
| | - Guoyang Qi
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Guozhen Yuan
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Zaohuo Cheng
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jianjun Yao
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jidong Wang
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Guoqiang Wang
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hongbao Cao
- Division of Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Wei Guo
- Division of Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Zhenhe Zhou
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Zhiqiang Wang
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lin Tian
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Chunhui Jin
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jianmin Yuan
- Department of Clinical Psychology, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Chenxing Liu
- Department of Psychiatry, The Sixth Affiliated Hospital and Institute for Mental Health of Peking University/Key Laboratory of Mental Health, Ministry of Health, Beijing, China
| | - Dai Zhang
- Department of Psychiatry, The Sixth Affiliated Hospital and Institute for Mental Health of Peking University/Key Laboratory of Mental Health, Ministry of Health, Beijing, China; Peking-Tsinghua Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
38
|
Merico D, Costain G, Butcher NJ, Warnica W, Ogura L, Alfred SE, Brzustowicz LM, Bassett AS. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome. Front Neurol 2014; 5:238. [PMID: 25484875 PMCID: PMC4240070 DOI: 10.3389/fneur.2014.00238] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/02/2014] [Indexed: 01/20/2023] Open
Abstract
The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways.
Collapse
Affiliation(s)
- Daniele Merico
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children , Toronto, ON , Canada
| | - Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Nancy J Butcher
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Institute of Medical Science, University of Toronto , Toronto, ON , Canada
| | - William Warnica
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Lucas Ogura
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Simon E Alfred
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Linda M Brzustowicz
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University , Piscataway, NJ , USA
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Institute of Medical Science, University of Toronto , Toronto, ON , Canada ; The Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network , Toronto, ON , Canada ; Department of Psychiatry, Toronto General Research Institute, University Health Network , Toronto, ON , Canada ; Department of Psychiatry, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
39
|
Vallès A, Martens GJ, De Weerd P, Poelmans G, Aschrafi A. MicroRNA-137 regulates a glucocorticoid receptor-dependent signalling network: implications for the etiology of schizophrenia. J Psychiatry Neurosci 2014; 39:312-20. [PMID: 24866554 PMCID: PMC4160360 DOI: 10.1503/jpn.130269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable neurodevelopmental disorder. A genetic variant of microRNA-137 (miR-137) has yielded significant genome-wide association with schizophrenia, suggesting that this miRNA plays a key role in its etiology. Therefore, a molecular network of interacting miR-137 targets may provide insights into the biological processes underlying schizophrenia. METHODS We first used bioinformatics tools to obtain and analyze predicted human and mouse miR-137 targets. We then determined miR-137 levels in rat barrel cortex after environmental enrichment (EE), a neuronal plasticity model that induces upregulation of several predicted miR-137 targets. Subsequently, expression changes of these predicted targets were examined through loss of miR-137 function experiments in rat cortical neurons. Finally, we conducted bioinformatics and literature analyses to examine the targets that were upregulated upon miR-137 downregulation. RESULTS Predicted human and mouse miR-137 targets were enriched in neuronal processes, such as axon guidance, neuritogenesis and neurotransmission. The miR-137 levels were significantly downregulated after EE, and we identified 5 novel miR-137 targets through loss of miR-137 function experiments. These targets fit into a glucocorticoid receptor-dependent signalling network that also includes 3 known miR-137 targets with genome-wide significant association with schizophrenia. LIMITATIONS The bioinformatics analyses involved predicted human and mouse miR-137 targets owing to lack of information on predicted rat miR-137 targets, whereas follow-up experiments were performed with rats. Furthermore, indirect effects in the loss of miR-137 function experiments cannot be excluded. CONCLUSION We have identified a miR-137-regulated protein network that contributes to our understanding of the molecular basis of schizophrenia and provides clues for future research into psychopharmacological treatments for schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Armaz Aschrafi
- Correspondence to: A. Aschrafi, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands;
| |
Collapse
|
40
|
Lai CY, Wu YT, Yu SL, Yu YH, Lee SY, Liu CM, Hsieh WS, Hwu HG, Chen PC, Jeng SF, Chen WJ. Modulated expression of human peripheral blood microRNAs from infancy to adulthood and its role in aging. Aging Cell 2014; 13:679-89. [PMID: 24803090 PMCID: PMC4326935 DOI: 10.1111/acel.12225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/26/2023] Open
Abstract
Accumulating evidence suggests a role for microRNAs (miRNAs) in regulating various processes of mammalian postnatal development and aging. To investigate the changes in blood-based miRNA expression from preterm infants to adulthood, we compared 365 miRNA expression profiles in a screening set of preterm infants and adults. Approximately one-third of the miRNAs were constantly expressed from postnatal development to adulthood, another one-third were differentially expressed between preterm infants and adults, and the remaining one-third were not detectable in these two groups. Based on their expression in infants and adults, the miRNAs were categorized into five classes, and six of the seven miRNAs chosen from each class except one with age-constant expression were confirmed in a validation set containing infants, children, and adults. Comparing the chromosomal locations of the different miRNA classes revealed two hot spots: the miRNA cluster on 14q32.31 exhibited age-constant expression, and the one on 9q22.21 exhibited up-regulation in adults. Furthermore, six miRNAs detectable in adults were down-regulated in older adults, and four chosen for individual quantification were verified in the validation set. Analysis of the network functions revealed that differentially regulated miRNAs between infants and adults and miRNAs that decreased during aging shared two network functions: inflammatory disease and inflammatory response. Four expression patterns existed in the 11 miRNAs from infancy to adulthood, with a significant transition in ages 9–20 years. Our results provide an overview on the regulation pattern of blood miRNAs throughout life and the possible biological functions performed by different classes of miRNAs.
Collapse
Affiliation(s)
- Chi-Yu Lai
- Institute of Epidemiology and Preventive Medicine; College of Public Health; National Taiwan University; Taipei 100 Taiwan
- Center of Genomic Medicine; National Taiwan University; Taipei 100 Taiwan
| | - Yen-Tzu Wu
- School and Graduate Institute of Physical Therapy; National Taiwan University College of Medicine; Taipei 100 Taiwan
| | - Sung-Liang Yu
- Center of Genomic Medicine; National Taiwan University; Taipei 100 Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology; College of Medicine; National Taiwan University; Taipei 100 Taiwan
| | - Ya-Hui Yu
- Center of Genomic Medicine; National Taiwan University; Taipei 100 Taiwan
| | - Su-Yin Lee
- Center of Genomic Medicine; National Taiwan University; Taipei 100 Taiwan
| | - Chih-Min Liu
- Department of Psychiatry; College of Medicine and National Taiwan University Hospital; National Taiwan University; Taipei 100 Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics; College of Medicine and National Taiwan University Hospital; National Taiwan University; Taipei 100 Taiwan
| | - Hai-Gwo Hwu
- Institute of Epidemiology and Preventive Medicine; College of Public Health; National Taiwan University; Taipei 100 Taiwan
- Department of Psychiatry; College of Medicine and National Taiwan University Hospital; National Taiwan University; Taipei 100 Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene; College of Public Health; National Taiwan University; Taipei 100 Taiwan
- Department of Environmental and Occupational Medicine; College of Medicine and National Taiwan University Hospital; Taipei 100 Taiwan
| | - Suh-Fang Jeng
- School and Graduate Institute of Physical Therapy; National Taiwan University College of Medicine; Taipei 100 Taiwan
- Physical Therapy Center; National Taiwan University Hospital; Taipei 100 Taiwan
| | - Wei J. Chen
- Institute of Epidemiology and Preventive Medicine; College of Public Health; National Taiwan University; Taipei 100 Taiwan
- Center of Genomic Medicine; National Taiwan University; Taipei 100 Taiwan
- Department of Psychiatry; College of Medicine and National Taiwan University Hospital; National Taiwan University; Taipei 100 Taiwan
| |
Collapse
|
41
|
Sanders AR, Göring HHH, Duan J, Drigalenko EI, Moy W, Freda J, He D, Shi J, Gejman PV. Transcriptome study of differential expression in schizophrenia. Hum Mol Genet 2013; 22:5001-14. [PMID: 23904455 DOI: 10.1093/hmg/ddt350] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia genome-wide association studies (GWAS) have identified common SNPs, rare copy number variants (CNVs) and a large polygenic contribution to illness risk, but biological mechanisms remain unclear. Bioinformatic analyses of significantly associated genetic variants point to a large role for regulatory variants. To identify gene expression abnormalities in schizophrenia, we generated whole-genome gene expression profiles using microarrays on lymphoblastoid cell lines (LCLs) from 413 cases and 446 controls. Regression analysis identified 95 transcripts differentially expressed by affection status at a genome-wide false discovery rate (FDR) of 0.05, while simultaneously controlling for confounding effects. These transcripts represented 89 genes with functions such as neurotransmission, gene regulation, cell cycle progression, differentiation, apoptosis, microRNA (miRNA) processing and immunity. This functional diversity is consistent with schizophrenia's likely significant pathophysiological heterogeneity. The overall enrichment of immune-related genes among those differentially expressed by affection status is consistent with hypothesized immune contributions to schizophrenia risk. The observed differential expression of extended major histocompatibility complex (xMHC) region histones (HIST1H2BD, HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) converges with the genetic evidence from GWAS, which find the xMHC to be the most significant susceptibility locus. Among the differentially expressed immune-related genes, B3GNT2 is implicated in autoimmune disorders previously tied to schizophrenia risk (rheumatoid arthritis and Graves' disease), and DICER1 is pivotal in miRNA processing potentially linking to miRNA alterations in schizophrenia (e.g. MIR137, the second strongest GWAS finding). Our analysis provides novel candidate genes for further study to assess their potential contribution to schizophrenia.
Collapse
Affiliation(s)
- Alan R Sanders
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|