1
|
Berja ED, Kwon H, Walsh KG, Bates SV, Kramer MA, Chu CJ. Infant sleep spindle measures from EEG improve prediction of cerebral palsy. Clin Neurophysiol 2024; 167:51-60. [PMID: 39278086 DOI: 10.1016/j.clinph.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Early identification of infants at risk of cerebral palsy (CP) enables interventions to optimize outcomes. Central sleep spindles reflect thalamocortical sensorimotor circuit function. We hypothesized that abnormal infant central spindle activity would predict later contralateral CP. METHODS We trained and validated an automated detector to measure spindle rate, duration, and percentage from central electroencephalogram (EEG) channels in high-risk infants (n = 35) and age-matched controls (n = 42). Neonatal magnetic resonance imaging (MRI) findings, infant motor exam, and CP outcomes were obtained from chart review. Using univariable and multivariable logistic regression models, we examined whether spindle activity, MRI abnormalities, and/or motor exam predicted future contralateral CP. RESULTS The detector had excellent performance (F1 = 0.50). Spindle rate (p = 0.005, p = 0.0004), duration (p < 0.001, p < 0.001), and percentage (p < 0.001, p < 0.001) were decreased in hemispheres corresponding to future CP compared to those without. In this cohort, PLIC abnormality (p = 0.004) and any MRI abnormality (p = 0.004) also predicted subsequent CP. After controlling for MRI findings, spindle features remained significant predictors and improved model fit (p < 0.001, all tests). Using both spindle duration and MRI findings had highest accuracy to classify hemispheres corresponding to future CP (F1 = 0.98, AUC 0.999). CONCLUSION Decreased central spindle activity improves the prediction of future CP in high-risk infants beyond early MRI or clinical exam alone. SIGNIFICANCE Decreased central spindle activity provides an early biomarker for CP.
Collapse
Affiliation(s)
- Erin D Berja
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Katherine G Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Sara V Bates
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Mark A Kramer
- Department of Mathematics and Statistics and Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Tamaki M, Yamada T, Barnes-Diana T, Wang Z, Watanabe T, Sasaki Y. First-night effect reduces the beneficial effects of sleep on visual plasticity and modifies the underlying neurochemical processes. Sci Rep 2024; 14:14388. [PMID: 38909129 PMCID: PMC11193735 DOI: 10.1038/s41598-024-64091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024] Open
Abstract
Individuals experience difficulty falling asleep in a new environment, termed the first night effect (FNE). However, the impact of the FNE on sleep-induced brain plasticity remains unclear. Here, using a within-subject design, we found that the FNE significantly reduces visual plasticity during sleep in young adults. Sleep-onset latency (SOL), an indicator of the FNE, was significantly longer during the first sleep session than the second session, confirming the FNE. We assessed performance gains in visual perceptual learning after sleep and increases in the excitatory-to-inhibitory neurotransmitter (E/I) ratio in early visual areas during sleep using magnetic resonance spectroscopy and polysomnography. These parameters were significantly smaller in sleep with the FNE than in sleep without the FNE; however, these parameters were not correlated with SOL. These results suggest that while the neural mechanisms of the FNE and brain plasticity are independent, sleep disturbances temporarily block the neurochemical process fundamental for brain plasticity.
Collapse
Affiliation(s)
- Masako Tamaki
- Cognitive Somnology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Saitama, 351-0106, Japan
- RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Tyler Barnes-Diana
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Zhiyan Wang
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Kwon H, Chinappen DM, Kinard EA, Goodman SK, Huang JF, Berja ED, Walsh KG, Shi W, Manoach DS, Kramer MA, Chu CJ. Impaired sleep-dependent memory consolidation predicted by reduced sleep spindles in Rolandic epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594515. [PMID: 38798414 PMCID: PMC11118409 DOI: 10.1101/2024.05.16.594515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background and Objectives Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in Rolandic epilepsy and related sleep-activated epileptic encephalopathies. We investigate the relationship between sleep spindle deficits and deficient sleep dependent memory consolidation in children with Rolandic epilepsy. Methods In this prospective case-control study, children were trained and tested on a validated probe of memory consolidation, the motor sequence task (MST). Sleep spindles were measured from high-density EEG during a 90-minute nap opportunity between MST training and testing using a validated automated detector. Results Twenty-three children with Rolandic epilepsy (14 with resolved disease), and 19 age- and sex-matched controls were enrolled. Children with active Rolandic epilepsy had decreased memory consolidation compared to control children (p=0.001, mean percentage reduction: 25.7%, 95% CI [10.3, 41.2]%) and compared to children with resolved Rolandic epilepsy (p=0.007, mean percentage reduction: 21.9%, 95% CI [6.2, 37.6]%). Children with active Rolandic epilepsy had decreased sleep spindle rates in the centrotemporal region compared to controls (p=0.008, mean decrease 2.5 spindles/min, 95% CI [0.7, 4.4] spindles/min). Spindle rate positively predicted sleep-dependent memory consolidation (p=0.004, mean MST improvement of 3.9%, 95% CI [1.3, 6.4]%, for each unit increase in spindles per minute). Discussion Children with Rolandic epilepsy have a sleep spindle deficit during the active period of disease which predicts deficits in sleep dependent memory consolidation. This finding provides a mechanism and noninvasive biomarker to aid diagnosis and therapeutic discovery for cognitive dysfunction in Rolandic epilepsy and related sleep activated epilepsy syndromes.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dhinakaran M. Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Elizabeth A. Kinard
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Skyler K. Goodman
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jonathan F. Huang
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Erin D. Berja
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine G. Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dara S. Manoach
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Mark A. Kramer
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Catherine J. Chu
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Navarrete M, Greco V, Rakowska M, Bellesi M, Lewis PA. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Commun Biol 2024; 7:193. [PMID: 38365955 PMCID: PMC10873307 DOI: 10.1038/s42003-024-05825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024] Open
Abstract
REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
- Psychology and Biobehavioral Sciences Department, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Viviana Greco
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Martyna Rakowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino (MC), Italy
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
5
|
Vitali H, Campus C, Signorini S, De Giorgis V, Morelli F, Varesio C, Pasca L, Sammartano A, Gori M. Blindness affects the developmental trajectory of the sleeping brain. Neuroimage 2024; 286:120508. [PMID: 38181867 DOI: 10.1016/j.neuroimage.2024.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
Sleep plays a crucial role in brain development, sensory information processing, and consolidation. Sleep spindles are markers of these mechanisms as they mirror the activity of the thalamocortical circuits. Spindles can be subdivided into two groups, slow (10-13 Hz) and fast (13-16 Hz), which are each associated with different functions. Specifically, fast spindles oscillate in the high-sigma band and are associated with sensorimotor processing, which is affected by visual deprivation. However, how blindness influences spindle development has not yet been investigated. We recorded nap video-EEG of 50 blind/severely visually impaired (BSI) and 64 sighted children aged 5 months to 6 years old. We considered aspects of both macro- and micro-structural spindles. The BSI children lacked the evolution of developmental spindles within the central area. Specifically, young BSI children presented low central high-sigma and high-beta (25-30 Hz) event-related spectral perturbation and showed no signs of maturational decrease. High-sigma and high-beta activity in the BSI group correlated with clinical indices predicting perceptual and motor disorders. Our findings suggest that fast spindles are pivotal biomarkers for identifying an early developmental deviation in BSI children. These findings are critical for initial therapeutic intervention.
Collapse
Affiliation(s)
- Helene Vitali
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy; DIBRIS, University of Genova, Genoa 16145, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy
| | - Sabrina Signorini
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Federica Morelli
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Alessia Sammartano
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy.
| |
Collapse
|
6
|
Tamaki M, Yamada T, Barnes-Diana T, Wang Z, Watanabe T, Sasaki Y. First-night effect reduces the beneficial effects of sleep on visual plasticity and modifies the underlying neurochemical processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576529. [PMID: 38328250 PMCID: PMC10849493 DOI: 10.1101/2024.01.21.576529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Individuals experience difficulty falling asleep in a new environment, termed the first night effect (FNE). However, the impact of the FNE on sleep-induced brain plasticity remains unclear. Here, using a within-subject design, we found that the FNE significantly reduces visual plasticity during sleep in young adults. Sleep-onset latency (SOL), an indicator of the FNE, was significantly longer during the first sleep session than the second session, confirming the FNE. We assessed performance gains in visual perceptual learning after sleep and increases in the excitatory-to-inhibitory neurotransmitter (E/I) ratio in early visual areas during sleep using magnetic resonance spectroscopy and polysomnography. These parameters were significantly smaller in sleep with the FNE than in sleep without the FNE; however, these parameters were not correlated with SOL. These results suggest that while the neural mechanisms of the FNE and brain plasticity are independent, sleep disturbances temporarily block the neurochemical process fundamental for brain plasticity.
Collapse
|
7
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
8
|
McLaren JR, Luo Y, Kwon H, Shi W, Kramer MA, Chu CJ. Preliminary evidence of a relationship between sleep spindles and treatment response in epileptic encephalopathy. Ann Clin Transl Neurol 2023; 10:1513-1524. [PMID: 37363864 PMCID: PMC10502632 DOI: 10.1002/acn3.51840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE Epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS) is a challenging neurodevelopmental disease characterized by abundant epileptiform spikes during non-rapid eye movement (NREM) sleep accompanied by cognitive dysfunction. The mechanism of cognitive dysfunction is unknown, but treatment with high-dose diazepam may improve symptoms. Spike rate does not predict treatment response, but spikes may disrupt sleep spindles. We hypothesized that in patients with EE-SWAS: (1) spikes and spindles would be anti-correlated, (2) high-dose diazepam would increase spindles and decrease spikes, and (3) spindle response would be greater in those with cognitive improvement. METHODS Consecutive EE-SWAS patients treated with high-dose diazepam that met the criteria were included. Using a validated automated spindle detector, spindle rate, duration, and percentage were computed in pre- and post-treatment NREM sleep. Spikes were quantified using a validated automated spike detector. The cognitive response was determined from a chart review. RESULTS Spindle rate was anti-correlated with the spike rate in the channel with the maximal spike rate (p = 0.002) and averaged across all channels (p = 0.0005). Spindle rate, duration, and percentage each increased, and spike rate decreased, after high-dose diazepam treatment (p ≤ 2e-5, all tests). Spindle rate, duration, and percentage (p ≤ 0.004, all tests) were increased in patients with cognitive improvement after treatment, but not those without. Changes in spindle rate but not changes in spike rate distinguished between groups. INTERPRETATION These findings confirm thalamocortical disruption in EE-SWAS, identify a mechanism through which benzodiazepines may support cognitive recovery, and introduce sleep spindles as a promising mechanistic biomarker to detect treatment response in severe epileptic encephalopathies.
Collapse
Affiliation(s)
- John R. McLaren
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Yancheng Luo
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Hunki Kwon
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Wen Shi
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Mark A. Kramer
- Department of Mathematics and Statistics & Center for Systems NeuroscienceBoston UniversityBoston02215MassachusettsUSA
| | - Catherine J. Chu
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| |
Collapse
|
9
|
Teh JZ, Grummitt L, Haroutonian C, Cross NE, Skinner B, Bartlett DJ, Yee B, Grunstein RR, Naismith SL, D’Rozario AL. Overnight declarative memory consolidation and non-rapid eye movement sleep electroencephalographic oscillations in older adults with obstructive sleep apnea. Sleep 2023; 46:zsad087. [PMID: 37052122 PMCID: PMC10666962 DOI: 10.1093/sleep/zsad087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
STUDY OBJECTIVES To compare overnight declarative memory consolidation and non-rapid eye movement (NREM) sleep electroencephalogram (EEG) oscillations in older adults with obstructive sleep apnea (OSA) to a control group and assess slow-wave activity (SWA) and sleep spindles as correlates of memory consolidation. METHODS Forty-six older adults (24 without OSA and 22 with OSA) completed a word-pair associate's declarative memory task before and after polysomnography. Recall and recognition were expressed as a percentage of the morning relative to evening scores. Power spectral analysis was performed on EEG recorded at frontal (F3-M2, F4-M1) and central (C3-M2, C4-M1) sites. We calculated NREM absolute slow oscillation (0.25-1 Hz) and delta (0.5-4.5 Hz) EEG power, and slow (11-13 Hz) spindle density (number of events per minute of N2 sleep) and fast (13-16 Hz) spindle density. RESULTS There were no significant differences in overnight recall and recognition between OSA (mean age 58.7 ± 7.1 years, apnea-hypopnea index (AHI) 41.9 ± 29.7 events/hour) and non-OSA (age 61.1 ± 10.3 years, AHI 6.6 ± 4.2 events/hour) groups. The OSA group had lower fast spindle density in the frontal region (p = 0.007). No between-group differences in SWA were observed. In the Control group, overnight recognition positively correlated with slow spindle density in frontal (rho = 0.555, p = 0.020) and central regions (rho = 0.490, p = 0.046). Overnight recall was not related to SWA or spindle measures in either group. CONCLUSIONS Older adults with OSA had deficits in fast sleep spindles but showed preserved overnight declarative memory consolidation. It is possible that compensatory mechanisms are being recruited by OSA patients to preserve declarative memory consolidation despite the presence of sleep spindle deficits.
Collapse
Affiliation(s)
- Jun Z Teh
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Lucinda Grummitt
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Carla Haroutonian
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Nathan E Cross
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Bradley Skinner
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Delwyn J Bartlett
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Brendon Yee
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D’Rozario
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
10
|
McLaren JR, Luo Y, Kwon H, Shi W, Kramer MA, Chu CJ. Preliminary evidence of a relationship between sleep spindles and treatment response in epileptic encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537937. [PMID: 37163098 PMCID: PMC10168273 DOI: 10.1101/2023.04.22.537937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Objective Epileptic encephalopathy with spike wave activation in sleep (EE-SWAS) is a challenging neurodevelopmental disease characterized by abundant epileptiform spikes during non-rapid eye movement (NREM) sleep accompanied by cognitive dysfunction. The mechanism of cognitive dysfunction is unknown, but treatment with high-dose diazepam may improve symptoms. Spike rate does not predict treatment response, but spikes may disrupt sleep spindles. We hypothesized that in patients with EE-SWAS: 1) spikes and spindles would be anticorrelated, 2) high-dose diazepam would increase spindles and decrease spikes, and 3) spindle response would be greater in those with cognitive improvement. Methods Consecutive EE-SWAS patients treated with high-dose diazepam that met criteria were included. Using a validated automated spindle detector, spindle rate, duration, and percentage were computed in pre- and post-treatment NREM sleep. Spikes were quantified using a validated automated spike detector. Cognitive response was determined from chart review. Results Spindle rate was anticorrelated with spike rate in the channel with the maximal spike rate ( p =0.002) and averaged across all channels ( p =0.0005). Spindle rate, duration, and percentage each increased, and spike rate decreased, after high-dose diazepam treatment ( p≤ 2e-5, all tests). Spindle rate, duration, and percentage ( p ≤0.004, all tests) were increased in patients with cognitive improvement after treatment, but not those without. Changes in spike rate did not distinguish between groups. Interpretation These findings confirm thalamocortical disruption in EE-SWAS, identify a mechanism through which benzodiazepines may support cognitive recovery, and introduce sleep spindles as a promising mechanistic biomarker to detect treatment response in severe epileptic encephalopathies.
Collapse
Affiliation(s)
- John R McLaren
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Yancheng Luo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Mark A Kramer
- Department of Mathematics and Statistics & Center for Systems Neuroscience, Boston University, Boston, MA, USA 02215
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
11
|
Natraj N, Richards A. Sleep spindles, stress and PTSD: The state of the science and future directions. Neurobiol Stress 2023; 23:100516. [PMID: 36861030 PMCID: PMC9969071 DOI: 10.1016/j.ynstr.2023.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Sleep spindles are a signature feature of non-REM (NREM) sleep, with demonstrated relationships to sleep maintenance and learning and memory. Because PTSD is characterized by disturbances in sleep maintenance and in stress learning and memory, there is now a growing interest in examining the role of sleep spindles in the neurobiology of PTSD. This review provides an overview of methods for measuring and detecting sleep spindles as they pertain to human PTSD and stress research, presents a critical review of early findings examining sleep spindles in PTSD and stress neurobiology, and proposes several directions for future research. In doing so, this review underscores the extensive heterogeneity in sleep spindle measurement and detection methods, the wide range of spindle features that may be and have been examined, the many persisting unknowns about the clinical and functional relevance of those features, and the problems considering PTSD as a homogeneous group in between-group comparisons. This review also highlights the progress that has been made in this field and underscores the strong rationale for ongoing work in this area.
Collapse
Affiliation(s)
- Nikhilesh Natraj
- Department of Neurology, University of California, San Francisco, USA
- San Francisco VA Health Care System, San Francisco, USA
| | - Anne Richards
- San Francisco VA Health Care System, San Francisco, USA
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| |
Collapse
|
12
|
van Rijn E, Gouws A, Walker SA, Knowland VCP, Cairney SA, Gaskell MG, Henderson LM. Do naps benefit novel word learning? Developmental differences and white matter correlates. Cortex 2023; 158:37-60. [PMID: 36434978 DOI: 10.1016/j.cortex.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Memory representations of newly learned words undergo changes during nocturnal sleep, as evidenced by improvements in explicit recall and lexical integration (i.e., after sleep, novel words compete with existing words during online word recognition). Some studies have revealed larger sleep-benefits in children relative to adults. However, whether daytime naps play a similar facilitatory role is unclear. We investigated the effect of a daytime nap (relative to wake) on explicit memory (recall/recognition) and lexical integration (lexical competition) of newly learned novel words in young adults and children aged 10-12 years, also exploring white matter correlates of the pre- and post-nap effects of word learning in the child group with diffusion weighted MRI. In both age groups, a nap maintained explicit memory of novel words and wake led to forgetting. However, there was an age group interaction when comparing change in recall over the nap: children showed a slight improvement whereas adults showed a slight decline. There was no evidence of lexical integration at any point. Although children spent proportionally more time in slow-wave sleep (SWS) than adults, neither SWS nor spindle parameters correlated with over-nap changes in word learning. For children, increased fractional anisotropy (FA) in the uncinate fasciculus and arcuate fasciculus were associated with the recognition of novel words immediately after learning, and FA in the right arcuate fasciculus was further associated with changes in recall of novel words over a nap, supporting the importance of these tracts in the word learning and consolidation process. These findings point to a protective role of naps in word learning (at least under the present conditions), and emphasize the need to better understand both the active and passive roles that sleep plays in supporting vocabulary consolidation over development.
Collapse
Affiliation(s)
- E van Rijn
- Department of Psychology, University of York, York, United Kingdom.
| | - A Gouws
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Walker
- Department of Psychology, University of York, York, United Kingdom.
| | - V C P Knowland
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Cairney
- Department of Psychology, University of York, York, United Kingdom.
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom.
| | - L M Henderson
- Department of Psychology, University of York, York, United Kingdom.
| |
Collapse
|
13
|
Jackson A, Xu W. Role of cerebellum in sleep-dependent memory processes. Front Syst Neurosci 2023; 17:1154489. [PMID: 37143709 PMCID: PMC10151545 DOI: 10.3389/fnsys.2023.1154489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
The activities and role of the cerebellum in sleep have, until recently, been largely ignored by both the sleep and cerebellum fields. Human sleep studies often neglect the cerebellum because it is at a position in the skull that is inaccessible to EEG electrodes. Animal neurophysiology sleep studies have focussed mainly on the neocortex, thalamus and the hippocampus. However, recent neurophysiological studies have shown that not only does the cerebellum participate in the sleep cycle, but it may also be implicated in off-line memory consolidation. Here we review the literature on cerebellar activity during sleep and the role it plays in off-line motor learning, and introduce a hypothesis whereby the cerebellum continues to compute internal models during sleep that train the neocortex.
Collapse
Affiliation(s)
- Andrew Jackson
- Institute of Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wei Xu
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Wei Xu,
| |
Collapse
|
14
|
Miyamoto D. Neural circuit plasticity for complex non-declarative sensorimotor memory consolidation during sleep. Neurosci Res 2022; 189:37-43. [PMID: 36584925 DOI: 10.1016/j.neures.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the brain actively consolidates long-term memory during sleep. Motor skill memory is a form of non-declarative procedural memory and can be coordinated with multi-sensory processing such as visual, tactile, and, auditory. Conversely, perception is affected by body movement signal from motor brain regions. Although both cortical and subcortical brain regions are involved in memory consolidation, cerebral cortex activity can be recorded and manipulated noninvasively or minimally invasively in humans and animals. NREM sleep, which is important for non-declarative memory consolidation, is characterized by slow and spindle waves representing thalamo-cortical population activity. In animals, electrophysiological recording, optical imaging, and manipulation approaches have revealed multi-scale cortical dynamics across learning and sleep. In the sleeping cortex, neural activity is affected by prior learning and neural circuits are continually reorganized. Here I outline how sensorimotor coordination is formed through awake learning and subsequent sleep.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
15
|
Onuki Y, Lakbila-Kamal O, Scheffer B, Van Someren EJW, Van der Werf YD. Selective Enhancement of Post-Sleep Visual Motion Perception by Repetitive Tactile Stimulation during Sleep. J Neurosci 2022; 42:7400-7411. [PMID: 35995563 PMCID: PMC9525164 DOI: 10.1523/jneurosci.1512-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
Tactile sensations can bias visual perception in the awake state while visual sensitivity is known to be facilitated by sleep. It remains unknown, however, whether the tactile sensation during sleep can bias the visual improvement after sleep. Here, we performed nap experiments in human participants (n = 56, 18 males, 38 females) to demonstrate that repetitive tactile motion stimulation on the fingertip during slow wave sleep selectively enhanced subsequent visual motion detection. The visual improvement was associated with slow wave activity. The high activation at the high beta frequency was found in the occipital electrodes after the tactile motion stimulation during sleep, indicating a visual-tactile cross-modal interaction during sleep. Furthermore, a second experiment (n = 14, 14 females) to examine whether a hand- or head-centered coordination is dominant for the interpretation of tactile motion direction showed that the biasing effect on visual improvement occurs according to the hand-centered coordination. These results suggest that tactile information can be interpreted during sleep, and can induce the selective improvement of post-sleep visual motion detection.SIGNIFICANCE STATEMENT Tactile sensations can bias our visual perception as a form of cross-modal interaction. However, it was reported only in the awake state. Here we show that repetitive directional tactile motion stimulation on the fingertip during slow wave sleep selectively enhanced subsequent visual motion perception. Moreover, the visual improvement was positively associated with sleep slow wave activity. The tactile motion stimulation during slow wave activity increased the activation at the high beta frequency over the occipital electrodes. The visual improvement occurred in agreement with a hand-centered reference frame. These results suggest that our sleeping brain can interpret tactile information based on a hand-centered reference frame, which can cause the sleep-dependent improvement of visual motion detection.
Collapse
Affiliation(s)
- Yoshiyuki Onuki
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Oti Lakbila-Kamal
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Bo Scheffer
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, 1081HV, The Netherlands
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, 1081HV, The Netherlands
| | - Ysbrand D Van der Werf
- Department of Anatomy and Neurosciences, Amsterdam UMC, location VU, University Medical Center, Amsterdam, 1081HZ, The Netherlands
| |
Collapse
|
16
|
Mizrahi-Kliger AD, Kaplan A, Israel Z, Bergman H. Entrainment to sleep spindles reflects dissociable patterns of connectivity between cortex and basal ganglia. Cell Rep 2022; 40:111367. [PMID: 36130495 DOI: 10.1016/j.celrep.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep spindles are crucial for learning in the cortex and basal ganglia (BG) because they facilitate the reactivation of previously active neuronal ensembles. Studying field potentials (FPs) and spiking in the cortex and BG during sleep in non-human primates following pre-sleep learning, we show that FP sleep spindles are widespread in the BG and are similar to cortical spindles in morphology, spectral content, and response to the pre-sleep task. Further, BG spindles are concordant with electroencephalogram (EEG) spindles and associated with increased cortico-BG correlation. However, spindles across the BG differ markedly in their entrainment of local spiking. The spiking activity of striatal projection neurons exhibits consistent phase locking to striatal and EEG spindles, producing phase windows of peaked cross-region spindling. In contrast, firing in other BG nuclei is not entrained to either local or EEG sleep spindles. These results suggest corticostriatal synapses as the main hub for offline cortico-BG communication.
Collapse
Affiliation(s)
- Aviv D Mizrahi-Kliger
- Department of Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel.
| | - Alexander Kaplan
- Department of Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9190401 Jerusalem, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, 9112001 Jerusalem, Israel
| | - Hagai Bergman
- Department of Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9190401 Jerusalem, Israel; Department of Neurosurgery, Hadassah University Hospital, 9112001 Jerusalem, Israel
| |
Collapse
|
17
|
Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation-spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. eLife 2022; 11:e66761. [PMID: 35188457 PMCID: PMC8860438 DOI: 10.7554/elife.66761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Previously, we demonstrated that precise temporal coordination between slow oscillations (SOs) and sleep spindles indexes declarative memory network development (Hahn et al., 2020). However, it is unclear whether these findings in the declarative memory domain also apply in the motor memory domain. Here, we compared adolescents and adults learning juggling, a real-life gross-motor task. Juggling performance was impacted by sleep and time of day effects. Critically, we found that improved task proficiency after sleep lead to an attenuation of the learning curve, suggesting a dynamic juggling learning process. We employed individualized cross-frequency coupling analyses to reduce inter- and intragroup variability of oscillatory features. Advancing our previous findings, we identified a more precise SO-spindle coupling in adults compared to adolescents. Importantly, coupling precision over motor areas predicted overnight changes in task proficiency and learning curve, indicating that SO-spindle coupling relates to the dynamic motor learning process. Our results provide first evidence that regionally specific, precisely coupled sleep oscillations support gross-motor learning.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kathrin Bothe
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| |
Collapse
|
18
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D’Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
|
19
|
Association of polygenic risk for schizophrenia with fast sleep spindle density depends on pro-cognitive variants. Eur Arch Psychiatry Clin Neurosci 2022; 272:1193-1203. [PMID: 35723738 PMCID: PMC9508216 DOI: 10.1007/s00406-022-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/15/2022] [Indexed: 11/14/2022]
Abstract
Cognitive impairment is a common feature in schizophrenia and the strongest prognostic factor for long-term outcome. Identifying a trait associated with the genetic background for cognitive outcome in schizophrenia may aid in a deeper understanding of clinical disease subtypes. Fast sleep spindles may represent such a biomarker as they are strongly genetically determined, associated with cognitive functioning and impaired in schizophrenia and unaffected relatives. We measured fast sleep spindle density in 150 healthy adults and investigated its association with a genome-wide polygenic score for schizophrenia (SCZ-PGS). The association between SCZ-PGS and fast spindle density was further characterized by stratifying it to the genetic background of intelligence. SCZ-PGS was positively associated with fast spindle density. This association mainly depended on pro-cognitive genetic variants. Our results strengthen the evidence for a genetic background of spindle abnormalities in schizophrenia. Spindle density might represent an easily accessible marker for a favourable cognitive outcome which should be further investigated in clinical samples.
Collapse
|
20
|
Bartsch U, Corbin LJ, Hellmich C, Taylor M, Easey KE, Durant C, Marston HM, Timpson NJ, Jones MW. Schizophrenia-associated variation at ZNF804A correlates with altered experience-dependent dynamics of sleep slow waves and spindles in healthy young adults. Sleep 2021; 44:zsab191. [PMID: 34329479 PMCID: PMC8664578 DOI: 10.1093/sleep/zsab191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The rs1344706 polymorphism in ZNF804A is robustly associated with schizophrenia and schizophrenia is, in turn, associated with abnormal non-rapid eye movement (NREM) sleep neurophysiology. To examine whether rs1344706 is associated with intermediate neurophysiological traits in the absence of disease, we assessed the relationship between genotype, sleep neurophysiology, and sleep-dependent memory consolidation in healthy participants. We recruited healthy adult males with no history of psychiatric disorder from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Participants were homozygous for either the schizophrenia-associated 'A' allele (N = 22) or the alternative 'C' allele (N = 18) at rs1344706. Actigraphy, polysomnography (PSG) and a motor sequence task (MST) were used to characterize daily activity patterns, sleep neurophysiology and sleep-dependent memory consolidation. Average MST learning and sleep-dependent performance improvements were similar across genotype groups, albeit more variable in the AA group. During sleep after learning, CC participants showed increased slow-wave (SW) and spindle amplitudes, plus augmented coupling of SW activity across recording electrodes. SW and spindles in those with the AA genotype were insensitive to learning, whilst SW coherence decreased following MST training. Accordingly, NREM neurophysiology robustly predicted the degree of overnight motor memory consolidation in CC carriers, but not in AA carriers. We describe evidence that rs1344706 polymorphism in ZNF804A is associated with changes in the coordinated neural network activity that supports offline information processing during sleep in a healthy population. These findings highlight the utility of sleep neurophysiology in mapping the impacts of schizophrenia-associated common genetic variants on neural circuit oscillations and function.
Collapse
Affiliation(s)
- Ullrich Bartsch
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
- UK DRI Health Care & Technology at Imperial College London and the University of Surrey, Surrey Sleep Research Centre, University of Surrey, Clinical Research Building, Egerton Road, Guildford, Surrey, UK
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Charlotte Hellmich
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Michelle Taylor
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
| | - Kayleigh E Easey
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- UK Centre for Tobacco and Alcohol Studies, School of Psychological Science, University of Bristol, Bristol, UK
| | - Claire Durant
- Clinical Research and Imaging Centre (CRIC), University of Bristol, Bristol, UK
| | - Hugh M Marston
- Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
- Böhringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Koller DP, Kasanin V, Flynn-Evans EE, Sullivan JP, Dijk DJ, Czeisler CA, Barger LK. Altered sleep spindles and slow waves during space shuttle missions. NPJ Microgravity 2021; 7:48. [PMID: 34795291 PMCID: PMC8602337 DOI: 10.1038/s41526-021-00177-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Sleep deficiencies and associated performance decrements are common among astronauts during spaceflight missions. Previously, sleep in space was analyzed with a focus on global measures while the intricate structure of sleep oscillations remains largely unexplored. This study extends previous findings by analyzing how spaceflight affects characteristics of sleep spindles and slow waves, two sleep oscillations associated with sleep quality and quantity, in four astronauts before, during and after two Space Shuttle missions. Analysis of these oscillations revealed significantly increased fast spindle density, elevated slow spindle frequency, and decreased slow wave amplitude in space compared to on Earth. These results reflect sleep characteristics during spaceflight on a finer electrophysiological scale and provide an opportunity for further research on sleep in space.
Collapse
Affiliation(s)
- Dominik P Koller
- Advanced Concepts Team, European Space Agency, ESTEC, Noordwijk, The Netherlands.
| | - Vida Kasanin
- Advanced Concepts Team, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, Exploration Technology Directorate, NASA Ames Research Center, Moffett Field, CA, USA
| | - Jason P Sullivan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Laura K Barger
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Goetz P, Hu D, To PD, Garner C, Yuen T, Skora C, Shrey DW, Lopour BA. Scalp EEG markers of normal infant development using visual and computational approaches. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6528-6532. [PMID: 34892605 DOI: 10.1109/embc46164.2021.9629909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The infant brain is rapidly developing, and these changes are reflected in scalp electroencephalography (EEG) features, including power spectrum and sleep spindle characteristics. These biomarkers not only mirror infant development, but they are also altered by conditions such as epilepsy, autism, developmental delay, and trisomy 21. Prior studies of early development were generally limited by small cohort sizes, lack of a specific focus on infancy (0-2 years), and exclusive use of visual marking for sleep spindles. Therefore, we measured the EEG power spectrum and sleep spindles in 240 infants ranging from 0-24 months. To rigorously assess these metrics, we used both clinical visual assessment and computational techniques, including automated sleep spindle detection. We found that the peak frequency and power of the posterior dominant rhythm (PDR) increased with age, and a corresponding peak occurred in the EEG power spectra. Based on both clinical and computational measures, spindle duration decreased with age, and spindle synchrony increased with age. Our novel metric of spindle asymmetry suggested that peak spindle asymmetry occurs at 6-9 months of age.Clinical Relevance- Here we provide a robust characterization of the development of EEG brain rhythms during infancy. This can be used as a basis of comparison for studies of infant neurological disease, including epilepsy, autism, developmental delay, and trisomy 21.
Collapse
|
23
|
Foroutannia A, Nazarimehr F, Ghasemi M, Jafari S. Chaos in memory function of sleep: A nonlinear dynamical analysis in thalamocortical study. J Theor Biol 2021; 528:110837. [PMID: 34273361 DOI: 10.1016/j.jtbi.2021.110837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
Studying the dynamical behaviors of neuronal models may help in better understanding of real nervous system. In addition, it can help researchers to understand some specific phenomena in neuronal system. The thalamocortical network is made of neurons in the thalamus and cortex. In it, the memory function is consolidated in sleep by creating up and down state oscillations (1 Hz) and fast (13-17 Hz) - slow (8-12 Hz) spindles. Recently, a nonlinear biological model for up-down oscillations and fast-slow spindles of the thalamocortical network has been proposed. In this research, the power spectral for the fast-slow spindle of the model is extracted. Dynamical properties of the model, such as the bifurcation diagrams, and attractors are investigated. The results show that the variation of the synaptic power between the excitatory neurons of the cortex and the reticular neurons in the thalamus changes the spindles' activity. According to previous experimental findings, it is an essential rule for consolidating the memory function during sleep. It is also pointed out that when the fast-slow spindles of the brain increase, the dynamics of the thalamocortical system tend to chaos.
Collapse
Affiliation(s)
- Ali Foroutannia
- Neural Engineering Laboratory, Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran
| | - Fahimeh Nazarimehr
- Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 159163-4311, Iran
| | - Mahdieh Ghasemi
- Neural Engineering Laboratory, Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran.
| | - Sajad Jafari
- Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 159163-4311, Iran; Health Technology Research Institute, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 159163-4311, Iran
| |
Collapse
|
24
|
Spencer RMC. The role of naps in memory and executive functioning in early childhood. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 60:139-158. [PMID: 33641791 DOI: 10.1016/bs.acdb.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While sleep, including naps, has been shown to benefit many cognitive functions in adults, understanding whether naps are beneficial in early childhood has important translational implications. Here we review recent studies which, collectively, suggest that naps indeed benefit cognition at this age. Specifically, declarative, motor, and emotional memory are better if a nap follows learning. Executive functions such as attention and emotion processing are likewise better following sleep. However, a better understanding of the mechanism supporting these benefits and the generalizability to other forms of learning and executive functions is necessary. It is important for future research to extend such findings, which may promote the use of naps to support early education, particularly for learning-impaired children.
Collapse
Affiliation(s)
- Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
25
|
Stevens D, Leong CWY, Cheung H, Arciuli J, Vakulin A, Kim JW, Openshaw HD, Rae CD, Wong KKH, Dijk DJ, Siong Leow JW, Saini B, Grunstein RR, D'Rozario AL. Sleep spindle activity correlates with implicit statistical learning consolidation in untreated obstructive sleep apnea patients. Sleep Med 2021; 86:126-134. [PMID: 33707093 DOI: 10.1016/j.sleep.2021.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE/BACKGROUND The aim of this study was to examine the relationship between overnight consolidation of implicit statistical learning with spindle frequency EEG activity and slow frequency delta power during non-rapid eye movement (NREM) sleep in obstructive sleep apnea (OSA). PATIENTS/METHODS Forty-seven OSA participants completed the experiment. Prior to sleep, participants performed a reaction time cover task containing hidden patterns of pictures, about which participants were not informed. After the familiarisation phase, participants underwent overnight polysomnography. 24 h after the familiarisation phase, participants performed a test phase to assess their learning of the hidden patterns, expressed as a percentage of the number of correctly identified patterns. Spindle frequency activity (SFA) and delta power (0.5-4.5 Hz), were quantified from NREM electroencephalography. Associations between statistical learning and sleep EEG, and OSA severity measures were examined. RESULTS SFA in NREM sleep in frontal and central brain regions was positively correlated with statistical learning scores (r = 0.41 to 0.31, p = 0.006 to 0.044). In multiple regression, greater SFA and longer sleep onset latency were significant predictors of better statistical learning performance. Delta power and OSA severity were not significantly correlated with statistical learning. CONCLUSIONS These findings suggest spindle activity may serve as a marker of statistical learning capability in OSA. This work provides novel insight into how altered sleep physiology relates to consolidation of implicitly learnt information in patients with moderate to severe OSA.
Collapse
Affiliation(s)
- David Stevens
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia; Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Helena Cheung
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Joanne Arciuli
- College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Andrew Vakulin
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Jong-Won Kim
- Department of Healthcare IT, Inje University, Inje-ro 197, Kimhae, Kyunsangnam-do, 50834, South Korea
| | - Hannah D Openshaw
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia (NeuRA), Sydney, Australia; School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Keith K H Wong
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney Health Partners, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; UK Dementia Research Institute at the University of Surrey, UK
| | - Josiah Wei Siong Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Bandana Saini
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney Health Partners, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; The University of Sydney, School of Psychology, Brain and Mind Centre and Charles Perkins Centre, Australia.
| |
Collapse
|
26
|
MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med Rev 2021; 59:101453. [PMID: 33588273 DOI: 10.1016/j.smrv.2021.101453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It has become clear that sleep after learning has beneficial effects on the later retrieval of newly acquired memories. The neural mechanisms underlying these effects are becoming increasingly clear as well, particularly those of non-REM sleep. However, much is still unknown about the sleep and memory relationship: the sleep state or features of sleep physiology that associate with memory performance often vary by task or experimental design, and the nature of this variability is not entirely clear. This paper describes pertinent features of sleep physiology and provides a detailed review of the scientific literature indicating beneficial effects of post-learning sleep on memory retrieval. This paper additionally introduces a hypothesis which attributes these beneficial effects of post-learning sleep to separable processes of memory reinforcement and memory refinement whereby reinforcement supports one's ability to retrieve a given memory and refinement supports the precision of that memory retrieval in the context of competitive alternatives. It is observed that features of non-REM sleep are involved in a post-learning substantiation of memory representations that benefit memory performance; thus, memory reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and findings from studies of selective REM sleep deprivation.
Collapse
|
27
|
Focal Sleep Spindle Deficits Reveal Focal Thalamocortical Dysfunction and Predict Cognitive Deficits in Sleep Activated Developmental Epilepsy. J Neurosci 2021; 41:1816-1829. [PMID: 33468567 DOI: 10.1523/jneurosci.2009-20.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
Childhood epilepsy with centrotemporal spikes (CECTS) is the most common focal epilepsy syndrome, yet the cause of this disease remains unknown. Now recognized as a mild epileptic encephalopathy, children exhibit sleep-activated focal epileptiform discharges and cognitive difficulties during the active phase of the disease. The association between the abnormal electrophysiology and sleep suggests disruption to thalamocortical circuits. Thalamocortical circuit dysfunction resulting in pathologic epileptiform activity could hinder the production of sleep spindles, a brain rhythm essential for memory processes. Despite this pathophysiologic connection, the relationship between spindles and cognitive symptoms in epileptic encephalopathies has not been previously evaluated. A significant challenge limiting such work has been the poor performance of available automated spindle detection methods in the setting of sharp activities, such as epileptic spikes. Here, we validate a robust new method to accurately measure sleep spindles in patients with epilepsy. We then apply this detector to a prospective cohort of male and female children with CECTS with combined high-density EEGs during sleep and cognitive testing at varying time points of disease. We show that: (1) children have a transient, focal deficit in spindles during the symptomatic phase of disease; (2) spindle rate anticorrelates with spike rate; and (3) spindle rate, but not spike rate, predicts performance on cognitive tasks. These findings demonstrate focal thalamocortical circuit dysfunction and provide a pathophysiological explanation for the shared seizures and cognitive symptoms in CECTS. Further, this work identifies sleep spindles as a potential treatment target of cognitive dysfunction in this common epileptic encephalopathy.SIGNIFICANCE STATEMENT Childhood epilepsy with centrotemporal spikes is the most common idiopathic focal epilepsy syndrome, characterized by self-limited focal seizures and cognitive symptoms. Here, we provide the first evidence that focal thalamocortical circuit dysfunction underlies the shared seizures and cognitive dysfunction observed. In doing so, we identify sleep spindles as a mechanistic biomarker, and potential treatment target, of cognitive dysfunction in this common developmental epilepsy and provide a novel method to reliably quantify spindles in brain recordings from patients with epilepsy.
Collapse
|
28
|
Mark Lawrence W, Esther Yuet Ying L, Yeuk Ching L, Benjamin R, Chia-Huei T, Tatia Mei Chun L, Yun Kwok W. The protective effect of daytime sleep on planning and risk-related decision-making in emerging adults. Soc Cogn Affect Neurosci 2020; 15:1228-1237. [PMID: 33064803 PMCID: PMC7745149 DOI: 10.1093/scan/nsaa140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
We assessed the effect of a daytime sleep opportunity on planning and risk-related decision-making in emerging adults using multiple neurobehavioral assessments. A total of 136 healthy emerging adults (20.0 ± 1.5 years), 65% female, performed the Risky-Gains Task and the Tower of London test twice. Between these assessments, they were randomized to either have a sleep opportunity monitored by polysomnography (Sleep group, n = 101) or to stay awake (Wake group, n = 35). During Test 2, in comparison to the Sleep group, the Wake group showed increased sleepiness, worse planning ability and more decrease in reaction times when selecting risky choices. Changes in Tower of London test steps used and Risky-Gains Task response time correlated with the number of central and frontal fast sleep spindles, respectively. These results indicate that among emerging adults who commonly have poor sleep patterns, a daytime sleep opportunity was related to better planning ability, better psychomotor vigilance and stable response speeds in risk-related decision-making. Changes in planning and risk-related decision-making correlated with the number of sleep spindles during the nap, supporting a specific role for sleep in modulating planning and potentially other higher-order cognitive functions.
Collapse
Affiliation(s)
| | - Lau Esther Yuet Ying
- Department of Psychology, The Education University of Hong Kong, Hong Kong.,Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong.,Centre for Religious and Spirituality Education, The Education University of Hong Kong, Hong Kong
| | - Lam Yeuk Ching
- Department of Psychology, The Education University of Hong Kong, Hong Kong.,Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong
| | - Rusak Benjamin
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tseng Chia-Huei
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | | | - Wing Yun Kwok
- Sleep Assessment Unit, Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
29
|
Donati FL, D’Agostino A, Ferrarelli F. Neurocognitive and neurophysiological endophenotypes in schizophrenia: An overview. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Wang C, Laxminarayan S, Ramakrishnan S, Dovzhenok A, Cashmere JD, Germain A, Reifman J. Increased oscillatory frequency of sleep spindles in combat-exposed veteran men with post-traumatic stress disorder. Sleep 2020; 43:5814942. [PMID: 32239159 DOI: 10.1093/sleep/zsaa064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/25/2020] [Indexed: 02/05/2023] Open
Abstract
STUDY OBJECTIVES Sleep disturbances are core symptoms of post-traumatic stress disorder (PTSD), but reliable sleep markers of PTSD have yet to be identified. Sleep spindles are important brain waves associated with sleep protection and sleep-dependent memory consolidation. The present study tested whether sleep spindles are altered in individuals with PTSD and whether the findings are reproducible across nights and subsamples of the study. METHODS Seventy-eight combat-exposed veteran men with (n = 31) and without (n = 47) PTSD completed two consecutive nights of high-density EEG recordings in a laboratory. We identified slow (10-13 Hz) and fast (13-16 Hz) sleep spindles during N2 and N3 sleep stages and performed topographical analyses of spindle parameters (amplitude, duration, oscillatory frequency, and density) on both nights. To assess reproducibility, we used the first 47 consecutive participants (18 with PTSD) for initial discovery and the remaining 31 participants (13 with PTSD) for replication assessment. RESULTS In the discovery analysis, compared to non-PTSD participants, PTSD participants exhibited (1) higher slow-spindle oscillatory frequency over the antero-frontal regions on both nights and (2) higher fast-spindle oscillatory frequency over the centro-parietal regions on the second night. The first finding was preserved in the replication analysis. We found no significant group differences in the amplitude, duration, or density of slow or fast spindles. CONCLUSIONS The elevated spindle oscillatory frequency in PTSD may indicate a deficient sensory-gating mechanism responsible for preserving sleep continuity. Our findings, if independently validated, may assist in the development of sleep-focused PTSD diagnostics and interventions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Srinivas Laxminarayan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Sridhar Ramakrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Andrey Dovzhenok
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - J David Cashmere
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD
| |
Collapse
|
31
|
Liang SF, Shih YH, Hu YH, Kuo CE. A Method for Napping Time Recommendation Using Electrical Brain Activity. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2020.2991176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Zhang Y, Quiñones GM, Ferrarelli F. Sleep spindle and slow wave abnormalities in schizophrenia and other psychotic disorders: Recent findings and future directions. Schizophr Res 2020; 221:29-36. [PMID: 31753592 PMCID: PMC7231641 DOI: 10.1016/j.schres.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/27/2022]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during NREM sleep. Slow waves are ∼1 Hz, high amplitude, negative-positive deflections that are primarily generated and coordinated within the cortex, whereas sleep spindles are 12-16 Hz, waxing and waning oscillations that are initiated within the thalamus and regulated by thalamo-cortical circuits. In healthy subjects, these oscillations are thought to be responsible for the restorative aspects of sleep and have been increasingly shown to be involved in learning, memory and plasticity. Furthermore, deficits in sleep spindles and, to lesser extent, slow waves have been reported in both chronic schizophrenia (SCZ) and early course psychosis patients. In this article, we will first describe sleep spindle and slow wave characteristics, including their putative functional roles in the healthy brain. We will then review electrophysiological, genetic, and cognitive studies demonstrating spindle and slow wave impairments in SCZ and other psychotic disorders, with particularly emphasis on recent findings in early course patients. Finally, we will discuss how future work, including sleep studies in individuals at clinical high risk for psychosis, may help position spindles and slow waves as candidate biomarkers, as well as novel treatment targets, for SCZ and related psychotic disorders.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of Psychiatry, University of Pittsburgh, USA
| | | | | |
Collapse
|
33
|
Morrow EL, Duff MC. Sleep Supports Memory and Learning: Implications for Clinical Practice in Speech-Language Pathology. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:577-585. [PMID: 32202919 DOI: 10.1044/2019_ajslp-19-00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose This tutorial aims to draw attention to the interactions among memory, sleep, and therapy potential and to increase awareness and knowledge in the field of speech-language pathology of the potential impact of sleep as a mediating or moderating factor in promoting therapeutic outcome. Method We highlight key findings from the literature on the cognitive neuroscience of memory, the neurophysiology of sleep, how sleep supports memory, and how sleep disruption affects memory and learning abilities in populations commonly served in speech-language pathology. Results Research increasingly points to the critical importance of sleep quality and quantity to memory and learning, and sleep disruption is linked to deficits in functional cognition that may limit our clients' ability to benefit from speech pathology interventions. Conclusions As a field dedicated to promoting memory, learning, and relearning through our interventions, any systemic factors that affect these abilities demand our attention. Although speech-language pathologists do not treat sleep disturbance, we play a critical role in recognizing the signs and symptoms of sleep disturbance and making appropriate referrals, as undiagnosed and untreated sleep disturbance can have serious impacts on success in therapeutic contexts. By considering how related factors affect memory and learning, we have the opportunity to take a whole client approach to maximizing our clients' therapy potential and functional progress.
Collapse
Affiliation(s)
- Emily L Morrow
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Melissa C Duff
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
34
|
You Snooze, You Win? An Ecological Dynamics Framework Approach to Understanding the Relationships Between Sleep and Sensorimotor Performance in Sport. Sleep Med Clin 2020; 15:31-39. [PMID: 32005348 DOI: 10.1016/j.jsmc.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sleep has a widespread impact across different domains of performance, including sensorimotor function. From an ecological dynamics perspective, sensorimotor function involves the continuous and dynamic coupling between perception and action. Sport performance relies on sensorimotor function as successful movement behaviors require accurate and efficient coupling between perceptions and actions. Compromised sleep impairs different aspects of sensorimotor performance, including perceptual attunement and motor execution. Changes in sensorimotor performance can be related to specific features of sleep, notably sleep spindles and slow waves. One unaddressed area of study is the extent to which specific sleep features contribute to overall sport-specific performance.
Collapse
|
35
|
Gorgoni M, D'Atri A, Scarpelli S, Reda F, De Gennaro L. Sleep electroencephalography and brain maturation: developmental trajectories and the relation with cognitive functioning. Sleep Med 2020; 66:33-50. [PMID: 31786427 DOI: 10.1016/j.sleep.2019.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M Gorgoni
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - A D'Atri
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - S Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - F Reda
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - L De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
36
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Brockmann PE, Bruni O, Kheirandish-Gozal L, Gozal D. Reduced sleep spindle activity in children with primary snoring. Sleep Med 2019; 65:142-146. [PMID: 31869690 DOI: 10.1016/j.sleep.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Habitually snoring children are at risk of manifesting disease-related problems even if their sleep studies are overall within normal limits. STUDY OBJECTIVES To compare sleep spindle activity in children with primary snoring and healthy controls. METHODS Sleep spindle activity including analysis of fast and slow spindles (ie, >13 Hz and <13 Hz, respectively) was evaluated in polysomnographic (PSG) recordings of 20 randomly selected children with primary snoring (PS; normal PSG recordings except for objective presence of snoring; 12 boys, mean age 6.5 ± 2.1 years), and 20 age- and gender-matched PSG-confirmed non-snoring controls. RESULTS PS children showed significantly lower spindle indices in all non-rapid eye movement (NREM) sleep stages (p < 0.05). In contrast, fast spindles were found in 40% (n = 8) children with PS and in 25% (n = 5) controls. Sleep spindle activity was particularly higher in NREM sleep stage 2 in controls compared PS (76% versus 43% of all marked sleep spindles events in NREM sleep stage 2, p < 0.001). CONCLUSIONS Children with PS exhibit significantly reduced spindle activity when compared to matched controls. Reduced sleep spindle activity may be an indicator of sleep disruption and, therefore, could be involved in the development of disease-related consequences in snoring children.
Collapse
Affiliation(s)
- Pablo E Brockmann
- Department of Pediatric Cardiology and Pulmonology, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Pediatric Sleep Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Rome, Italy
| | - Leila Kheirandish-Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| |
Collapse
|
38
|
Tamaki M, Wang Z, Watanabe T, Sasaki Y. Trained-feature-specific offline learning by sleep in an orientation detection task. J Vis 2019; 19:12. [PMID: 31622472 PMCID: PMC6797476 DOI: 10.1167/19.12.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022] Open
Abstract
Training-induced performance gains in a visual perceptual learning (VPL) task that take place during sleep are termed "offline performance gains." Offline performance gains of VPL so far have been reported in the texture discrimination task and other discrimination tasks. This raises the question as to whether offline performance gains on VPL occur exclusively in discrimination tasks. The present study examined whether offline performance gains occur in detection tasks. In Experiment 1, subjects were trained on a Gabor orientation detection task. They were retested after a 12-hr interval, which included either nightly sleep or only wakefulness. Offline performance gains occurred only after sleep on the trained orientation, not on an untrained orientation. In Experiment 2, we tested whether offline performance gains in the detection task occur over a nap using polysomnography. Moreover, we tested whether sigma activity during non-rapid eye movement (NREM) sleep recorded from occipital electrodes, previously implicated in offline performance gains of the texture discrimination task, was associated with the degree of offline performance gains of the Gabor orientation detection task. We replicated offline performance gains on the trained orientation in the detection task over the nap. Sigma activity during NREM sleep was significantly larger in the occipital electrodes relative to control electrodes in correlation with offline performance gains. The results suggest that offline performance gains occur over the sleep period generally in VPL. Moreover, sigma activity in the occipital region during NREM sleep may play an important role in offline performance gains of VPL.
Collapse
Affiliation(s)
- Masako Tamaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Zhiyan Wang
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
39
|
Scarpelli S, Bartolacci C, D'Atri A, Gorgoni M, De Gennaro L. Mental Sleep Activity and Disturbing Dreams in the Lifespan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3658. [PMID: 31569467 PMCID: PMC6801786 DOI: 10.3390/ijerph16193658] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
Sleep significantly changes across the lifespan, and several studies underline its crucial role in cognitive functioning. Similarly, mental activity during sleep tends to covary with age. This review aims to analyze the characteristics of dreaming and disturbing dreams at different age brackets. On the one hand, dreams may be considered an expression of brain maturation and cognitive development, showing relations with memory and visuo-spatial abilities. Some investigations reveal that specific electrophysiological patterns, such as frontal theta oscillations, underlie dreams during sleep, as well as episodic memories in the waking state, both in young and older adults. On the other hand, considering the role of dreaming in emotional processing and regulation, the available literature suggests that mental sleep activity could have a beneficial role when stressful events occur at different age ranges. We highlight that nightmares and bad dreams might represent an attempt to cope the adverse events, and the degrees of cognitive-brain maturation could impact on these mechanisms across the lifespan. Future investigations are necessary to clarify these relations. Clinical protocols could be designed to improve cognitive functioning and emotional regulation by modifying the dream contents or the ability to recall/non-recall them.
Collapse
Affiliation(s)
- Serena Scarpelli
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Chiara Bartolacci
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Aurora D'Atri
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Maurizio Gorgoni
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Luigi De Gennaro
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
- IRCCS Santa Lucia Foundation, 00142 Rome, Italy.
| |
Collapse
|
40
|
Cerasuolo M, Conte F, Giganti F, Ficca G. Sleep changes following intensive cognitive activity. Sleep Med 2019; 66:148-158. [PMID: 31877506 DOI: 10.1016/j.sleep.2019.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Studies over the last 40 years have mainly investigated sleep structure changes as a result of wake duration, in the frame of the classical sleep regulation theories. However, wake intervals of the same duration can profoundly differ in their intensity, which actually reflects the degree of cognitive and physical activity. Data on how sleep can be modified by wake intensity changes (initially sparse and of little consistence) have become much more substantial, especially in the frame of the intense research debate on sleep-memory relationships. Our aim is to examine the vast repertoire of sleep modifications that depend on waking cognitive manipulations, highlighting the sleep features that appear most affected. By systematically addressing this issue, we want to set the basis for future research exploring both the specific nature of the mechanisms involved and the applicative psychosocial and clinical fall-outs, in terms of possible behavioural interventions for sleep quality improvement.
Collapse
Affiliation(s)
- Mariangela Cerasuolo
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Francesca Conte
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Fiorenza Giganti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluca Ficca
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
41
|
Puentes-Mestril C, Roach J, Niethard N, Zochowski M, Aton SJ. How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep 2019; 42:zsz095. [PMID: 31100149 PMCID: PMC6612670 DOI: 10.1093/sleep/zsz095] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Indexed: 11/14/2022] Open
Abstract
Decades of neurobehavioral research has linked sleep-associated rhythms in various brain areas to improvements in cognitive performance. However, it remains unclear what synaptic changes might underlie sleep-dependent declarative memory consolidation and procedural task improvement, and why these same changes appear not to occur across a similar interval of wake. Here we describe recent research on how one specific feature of sleep-network rhythms characteristic of rapid eye movement and non-rapid eye movement-could drive synaptic strengthening or weakening in specific brain circuits. We provide an overview of how these rhythms could affect synaptic plasticity individually and in concert. We also present an overarching hypothesis for how all network rhythms occurring across the sleeping brain could aid in encoding new information in neural circuits.
Collapse
Affiliation(s)
| | - James Roach
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Niels Niethard
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Michal Zochowski
- Department of Physics, Biophysics Program, University of Michigan, Ann Arbor, MI
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
42
|
Dehnavi F, Moghimi S, Sadrabadi Haghighi S, Safaie M, Ghorbani M. Opposite effect of motivated forgetting on sleep spindles during stage 2 and slow wave sleep. Sleep 2019; 42:5427878. [DOI: 10.1093/sleep/zsz085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Memories selectively benefit from sleep. In addition to the importance of the consolidation of relevant memories, the capacity to forget unwanted memories is also crucial. We investigated the effect of suppressing unwanted memories on electroencephalography activity of subsequent sleep using a motivated forgetting (MF) paradigm as compared with a control non-forgetting task. Subjects were randomly assigned to nap or no-nap groups. We used a modified version of the think/no-think paradigm with dominant number of no-think words cued to be forgotten and included only subjects capable of suppressing unwanted memories by performing an initial subject inclusion experiment. In both groups and conditions, the performance of the subjects in recalling the word pairs learned in the beginning of the day was evaluated in a final recall test. We found that both nap and no-nap groups recalled significantly less no-think words in the MF condition compared to the control condition. Moreover, for the nap group, in the MF compared to the control condition, spindle power and density increased during stage 2 (S2) whereas they decreased during slow wave sleep (SWS). Interestingly, recall performance of no-think words was negatively correlated with spindle power during S2 whereas it was positively correlated with spindle power during SWS. These results indicate that sleep spindles are sensitive to the previous MF experiences and suggest a differential role of sleep spindles during S2 and SWS in memory processing during sleep.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sahar Moghimi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mostafa Safaie
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- INSERM UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
43
|
Perrault AA, Khani A, Quairiaux C, Kompotis K, Franken P, Muhlethaler M, Schwartz S, Bayer L. Whole-Night Continuous Rocking Entrains Spontaneous Neural Oscillations with Benefits for Sleep and Memory. Curr Biol 2019; 29:402-411.e3. [DOI: 10.1016/j.cub.2018.12.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/13/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
|
44
|
Adult Gross Motor Learning and Sleep: Is There a Mutual Benefit? Neural Plast 2018; 2018:3076986. [PMID: 30186317 PMCID: PMC6110005 DOI: 10.1155/2018/3076986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/26/2022] Open
Abstract
Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions.
Collapse
|
45
|
Ritter PS, Schwabedal J, Brandt M, Schrempf W, Brezan F, Krupka A, Sauer C, Pfennig A, Bauer M, Soltmann B, Nikitin E. Sleep spindles in bipolar disorder - a comparison to healthy control subjects. Acta Psychiatr Scand 2018; 138:163-172. [PMID: 29974456 DOI: 10.1111/acps.12924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Bipolar disorder is a severe mental disorder for which currently no reliable biomarkers exist. It has been shown that patients with schizophrenia but not with unipolar depression have a reduced density of fast sleep spindles during N2 sleep. The aim of this study was to assess fast sleep spindle density in euthymic patients with bipolar disorder. METHODS Patients with bipolar disorder (n = 24) and healthy control subjects (n = 25) were assessed using all-night polysomnography. Sleep spindles within stage N2 sleep were identified by visual inspection and subdivided into fast (>13 Hz) and slow (≤13 Hz) spindles. All spindles were subsequently characterised by density, frequency, amplitude, duration and coherence. RESULTS Euthymic patients with bipolar disorder were found to have a reduced density and a lower mean frequency of fast spindles. Slow spindle density and frequency did not differ between groups. There were no differences regarding amplitude, duration or coherence. CONCLUSIONS A reduction in fast spindle density during N2 sleep points towards thalamic dysfunction as a potential neurobiological mechanism of relevance in bipolar disorder. In addition, a reduced sleep spindle density could be interpreted as a common endophenotype shared with schizophrenia but not unipolar depression and may - if replicated - be of utility in early recognition and risk stratification.
Collapse
Affiliation(s)
- P S Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J Schwabedal
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Brandt
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - W Schrempf
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - F Brezan
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - A Krupka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - C Sauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - A Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - B Soltmann
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - E Nikitin
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
46
|
Sleep spindle activity in children with obstructive sleep apnea as a marker of neurocognitive performance: A pilot study. Eur J Paediatr Neurol 2018; 22:434-439. [PMID: 29477593 DOI: 10.1016/j.ejpn.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 11/22/2022]
Abstract
STUDY OBJECTIVES To assess spindle activity as possible markers for neurocognitive consequences in children with mild obstructive sleep apnea. METHODS Children aged 6-11 years diagnosed with mild OSA (i.e., an apnea hypopnea index <5.0) were recruited and compared with age and gender-matched healthy controls. Polysomnographic recordings were analyzed for sleep microstructure and spindle activity. All children completed also an intelligence test battery (i.e., the Wechsler intelligence test for children, 4th version). RESULTS Nineteen children with OSA (13 boys, mean age 7.1 ± 1.4 y), and 14 controls (7 boys, mean age 8.1 ± 1.9 y) were included. Mean IQ was 110 ± 12 for the complete sample, in children with OSA 111 ± 13, and in controls 108 ± 12 (p = 0.602). Controls showed a higher spindle index in N2 stage than children with OSA: 143.0 ± 42.5 vs 89.5 ± 56.9, respectively (p = 0.003). Spindle index in NREM was strongly and significantly correlated with Verbal Comprehension Index (VCI), Working Memory Index (WMI), Processing Speed Index (PSI), and total IQ in children with OSA. CONCLUSIONS Children with mild OSA demonstrate a different pattern of sleep spindle activity that seems to be linked with neurocognitive performance, especially concerning memory. Sleep spindle activity seems to be involved with mechanisms related with neurocognitive consequences in children with OSA.
Collapse
|
47
|
Yordanova J, Kolev V, Bruns E, Kirov R, Verleger R. Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations. Sleep 2018; 40:4104557. [PMID: 28958008 PMCID: PMC5806558 DOI: 10.1093/sleep/zsx151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Study Objectives The present study explored the sleep mechanisms which may support awareness of hidden regularities. Methods Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Results Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Conclusions Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere.
Collapse
Affiliation(s)
- Juliana Yordanova
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Vasil Kolev
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Eike Bruns
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
| | - Roumen Kirov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rolf Verleger
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Psychology II, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
48
|
Mantua J. Sleep Physiology Correlations and Human Memory Consolidation: Where Do We Go From Here? Sleep 2018; 41:4842847. [PMID: 31652331 DOI: 10.1093/sleep/zsx204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Janna Mantua
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA
| |
Collapse
|
49
|
Rochette AC, Soulières I, Berthiaume C, Godbout R. NREM sleep EEG activity and procedural memory: A comparison between young neurotypical and autistic adults without sleep complaints. Autism Res 2018; 11:613-623. [PMID: 29381247 DOI: 10.1002/aur.1933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 11/07/2022]
Abstract
Delta EEG activity (0.75-3.75 Hz) during non-Rapid eye movement (NREM) sleep reflects the thalamo-cortical system contribution to memory consolidation. The functional integrity of this system is thought to be compromised in the Autism spectrum disorder (ASD). This lead us to investigate the topography of NREM sleep Delta EEG activity in young adults with ASD and typically-developed individuals (TYP). The relationship between Delta EEG activity and sensory-motor procedural information was also examined using a rotary pursuit task. Two dependent variables were computed: a learning index (performance increase across trials) and a performance index (average performance for all trials). The ASD group showed less Delta EEG activity during NREM sleep over the parieto-occipital recording sites compared to the TYP group. Delta EEG activity dropped more abruptly from frontal to posterior regions in the ASD group. Both groups of participants learned the task at a similar rate but the ASD group performed less well in terms of contact time with the target. Delta EEG activity during NREM sleep, especially during stage 2, correlated positively with the learning index for electrodes located all over the cortex in the TYP group, but only in the frontal region in the ASD group. Delta EEG activity, especially during stage 2, correlated positively with the performance index, but in the ASD group only. These results reveal an atypical thalamo-cortical functioning over the parieto-occipital region in ASD. They also point toward an atypical relationship between the frontal area and the encoding of sensory-motor procedural memory in ASD. Autism Res 2018, 11: 613-623. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Slow EEG waves recorded from the scalp during sleep are thought to facilitate learning and memory during daytime. We compared these EEG waves in young autistic adults to typically-developing young adults. We found less slow EEG waves in the ASD group and the pattern of relationship with memory differed between groups. This suggests atypicalities in the way sleep mechanisms are associated with learning and performance in a sensory-motor procedural memory task in ASD individuals.
Collapse
Affiliation(s)
- Annie-Claude Rochette
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Autism Center of Excellence, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Research Center, Hôpital Rivière-des-Prairies, CIUSSS-du-Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Isabelle Soulières
- Autism Center of Excellence, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Research Center, Hôpital Rivière-des-Prairies, CIUSSS-du-Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Claude Berthiaume
- Research Center, Hôpital Rivière-des-Prairies, CIUSSS-du-Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Roger Godbout
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Autism Center of Excellence, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Research Center, Hôpital Rivière-des-Prairies, CIUSSS-du-Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada.,Department of Psychiatry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
50
|
Lee S, Kim S, Choi JH. A Novel Visualization Method for Sleep Spindles Based on Source Localization of High Density EEG. Exp Neurobiol 2018; 26:362-368. [PMID: 29302203 PMCID: PMC5746501 DOI: 10.5607/en.2017.26.6.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 11/19/2022] Open
Abstract
Equivalent dipole source localization is a well-established approach to localizing the electrical activity in electroencephalogram (EEG). So far, source localization has been used primarily in localizing the epileptic source in human epileptic patients. Currently, source localization techniques have been applied to account for localizing epileptic source among the epileptic patients. Here, we present the first application of source localization in the field of sleep spindle in mouse brain. The spatial distribution of cortical potential was obtained by high density EEG and then the anterior and posterior sleep spindles were classified based on the K-mean clustering algorithm. To solve the forward problem, a realistic geometry brain model was produced based on boundary element method (BEM) using mouse MRI. Then, we applied four different source estimation algorithms (minimum norm, eLORETA, sLORETA, and LORETA) to estimate the spatial location of equivalent dipole source of sleep spindles. The estimated sources of anterior and posterior spindles were plotted in a cine-mode that revealed different topographic patterns of spindle propagation. The characterization of sleep spindles may be better be distinguished by our novel visualization method.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seunghwan Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| |
Collapse
|