1
|
Mu C, Li Q, Niu Y, Hu T, Li Y, Wang T, Yu X, Lv Y, Tang H, Jiang J, Xu H, Zheng Y, Han W. Chronic diesel exhaust exposure induced pulmonary vascular remodeling a potential trajectory for traffic related pulmonary hypertension. Respir Res 2024; 25:348. [PMID: 39342206 PMCID: PMC11439202 DOI: 10.1186/s12931-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND As one of the most common traffic-related pollutants, diesel exhaust (DE) confers high risk for cardiovascular and respiratory diseases. However, its impact on pulmonary vessels is still unclear. METHODS To explore the effects of DE exposure on pulmonary vascular remodeling, our study analyzed the number and volume of small pulmonary vessels in the diesel engine testers (the DET group) from Luoyang Diesel Engine Factory and the controls (the non-DET group) from the local water company, using spirometry and carbon content in airway macrophage (CCAM) in sputum. And then we constructed a rat model of chronic DE exposure, in which 12 rats were divided into the DE group (6 rats with 16-week DE exposure) and the control group (6 rats with 16-week clean air exposure). During right heart catheterization, right ventricular systolic pressure (RVSP) was assessed by manometry. Macrophage migration inhibitory factor (MIF) in lung tissues and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA, respectively. Histopathological analysis for cardiovascular remodeling was also performed. RESULTS In DET cohort, the number and volume of small pulmonary vessels in CT were positively correlated with CCAM in sputum (P<0.05). Rat model revealed that chronic DE-exposed rats had elevated RVSP, along with increased wall thickness of pulmonary small vessels and right the ventricle. What's more, the MIF levels in BALF and lung tissues were higher in DE-exposed rats than the controls. CONCLUSION Apart from airway remodeling, DE also induces pulmonary vascular remodeling, which will lead to cardiopulmonary dysfunction.
Collapse
Affiliation(s)
- Chaohui Mu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Qinghai Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yong Niu
- National Institute of Occupational Health and Posing Control, China CDC, Beijing, 100050, China
| | - Ting Hu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Tao Wang
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Xinjuan Yu
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Yiqiao Lv
- Department of Pulmonary and Critical Care Medicine, Qingdao Hospital, Dalian Medical University, Dalian, 116000, China
| | - Huiling Tang
- Department of Pulmonary and Critical Care Medicine, Qingdao Hospital, Dalian Medical University, Dalian, 116000, China
| | - Jing Jiang
- Department of Ultrasound, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Haibin Xu
- Department of Radiology, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071, China.
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China.
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China.
- School of Public Health, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Squillacioti G, Charreau T, Wild P, Bellisario V, Ghelli F, Bono R, Bergamaschi E, Garzaro G, Guseva Canu I. Worse pulmonary function in association with cumulative exposure to nanomaterials. Hints of a mediation effect via pulmonary inflammation. Part Fibre Toxicol 2024; 21:28. [PMID: 38943182 PMCID: PMC11212158 DOI: 10.1186/s12989-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Today, nanomaterials are broadly used in a wide range of industrial applications. Such large utilization and the limited knowledge on to the possible health effects have raised concerns about potential consequences on human health and safety, beyond the environmental burden. Given that inhalation is the main exposure route, workers exposed to nanomaterials might be at risk of occurrence of respiratory morbidity and/or reduced pulmonary function. However, epidemiological evidence regarding the association between cumulative exposure to nanomaterials and respiratory health is still scarce. This study focused on the association between cumulative exposure to nanomaterials and pulmonary function among 136 workers enrolled in the framework of the European multicentric NanoExplore project. RESULTS Our findings suggest that, independently of lifelong tobacco smoking, ethnicity, age, sex, body mass index and physical activity habits, 10-year cumulative exposure to nanomaterials is associated to worse FEV1 and FEF25 - 75%, which might be consistent with the involvement of both large and small airway components and early signs of airflow obstruction. We further explored the hypothesis of a mediating effect via airway inflammation, assessed by interleukin (IL-)10, IL-1β and Tumor Necrosis Factor alpha (TNF-α), all quantified in the Exhaled Breath Condensate of workers. The mediation analysis results suggest that IL-10, TNF-α and their ratio (i.e., anti-pro inflammatory ratio) may fully mediate the negative association between cumulative exposure to nanomaterials and the FEV1/FVC ratio. This pattern was not observed for other pulmonary function parameters. CONCLUSIONS Safeguarding the respiratory health of workers exposed to nanomaterials should be of primary importance. The observed association between cumulative exposure to nanomaterials and worse pulmonary function parameters underscores the importance of implementing adequate protective measures in the nanocomposite sector. The mitigation of harmful exposures may ensure that workers can continue to contribute productively to their workplaces while preserving their respiratory health over time.
Collapse
Affiliation(s)
- Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
| | - Thomas Charreau
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Lausanne, 1066, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Lausanne, 1066, Switzerland
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
- Città della Salute e della Scienza di Torino, University Hospital, Via Zuretti 29, 10126, Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
- Città della Salute e della Scienza di Torino, University Hospital, Via Zuretti 29, 10126, Turin, Italy
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Lausanne, 1066, Switzerland.
| |
Collapse
|
3
|
Jiang M, Hu CJ, Rowe CL, Kang H, Gong X, Dagucon CP, Wang J, Lin Y, Sood A, Guo Y, Zhu Y, Alexis NE, Gilliland FD, Belinsky SA, Yu X, Leng S. Application of artificial intelligence in quantifying lung deposition dose of black carbon in people with exposure to ambient combustion particles. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:529-537. [PMID: 37848612 PMCID: PMC11021374 DOI: 10.1038/s41370-023-00607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Understanding lung deposition dose of black carbon is critical to fully reconcile epidemiological evidence of combustion particles induced health effects and inform the development of air quality metrics concerning black carbon. Macrophage carbon load (MaCL) is a novel cytology method that quantifies lung deposition dose of black carbon, however it has limited feasibility in large-scale epidemiological study due to the labor-intensive manual counting. OBJECTIVE To assess the association between MaCL and episodic elevation of combustion particles; to develop artificial intelligence based counting algorithm for MaCL assay. METHODS Sputum slides were collected during episodic elevation of ambient PM2.5 (n = 49, daily PM2.5 > 10 µg/m3 for over 2 weeks due to wildfire smoke intrusion in summer and local wood burning in winter) and low PM2.5 period (n = 39, 30-day average PM2.5 < 4 µg/m3) from the Lovelace Smokers cohort. RESULTS Over 98% individual carbon particles in macrophages had diameter <1 µm. MaCL levels scored manually were highly responsive to episodic elevation of ambient PM2.5 and also correlated with lung injury biomarker, plasma CC16. The association with CC16 became more robust when the assessment focused on macrophages with higher carbon load. A Machine-Learning algorithm for Engulfed cArbon Particles (MacLEAP) was developed based on the Mask Region-based Convolutional Neural Network. MacLEAP algorithm yielded excellent correlations with manual counting for number and area of the particles. The algorithm produced associations with ambient PM2.5 and plasma CC16 that were nearly identical in magnitude to those obtained through manual counting. IMPACT STATEMENT Understanding lung black carbon deposition is crucial for comprehending health effects of combustion particles. We developed "Machine-Learning algorithm for Engulfed cArbon Particles (MacLEAP)", the first artificial intelligence algorithm for quantifying airway macrophage black carbon. Our study bolstered the algorithm with more training images and its first use in air pollution epidemiology. We revealed macrophage carbon load as a sensitive biomarker for heightened ambient combustion particles due to wildfires and residential wood burning.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Chelin Jamie Hu
- College of Nursing, University of New Mexico College of Nursing, Albuquerque, NM, USA
| | - Cassie L Rowe
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Huining Kang
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Xi Gong
- Department of Geography & Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | | | - Jialiang Wang
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Yan Lin
- Department of Geography & Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Akshay Sood
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
- Miners Colfax Medical Center, Raton, NM, USA
| | - Yan Guo
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Yiliang Zhu
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Neil E Alexis
- Center for Environmental Medicine Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frank D Gilliland
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven A Belinsky
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Xiaozhong Yu
- College of Nursing, University of New Mexico College of Nursing, Albuquerque, NM, USA.
| | - Shuguang Leng
- School of Medicine, University of New Mexico, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
- Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Yong M, McCunney RJ. Evaluation of biological markers for the risk assessment of carbon black in epidemiological studies. Front Public Health 2024; 12:1367797. [PMID: 38689765 PMCID: PMC11060078 DOI: 10.3389/fpubh.2024.1367797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Background/objectives Engineered nanomaterials (ENMs) have been suggested as being capable of promoting inflammation, a key component in the pathways associated with carcinogenesis, cardiovascular disease, and other conditions. As a result, the risk assessment of biological markers as early-stage indicators has the potential to improve translation from experimental toxicologic findings to identifying evidence in human studies. The study aims to review the possible early biological changes in workers exposed to carbon black (CB), followed by an evidentiary quality evaluation to determine the predictive value of the biological markers. Methods We conducted a literature search to identify epidemiological studies that assessed biological markers that were involved in the inflammatory process at early stages among workers with exposure to CB. We reviewed the studies with specific reference to the study design, statistical analyses, findings, and limitations. Results We identified five Chinese studies that investigated the potential impact of exposure to CB on inflammatory markers, bronchial wall thickening, genomic instability, and lung function impairment in CB production workers. Of the five Chinese studies, four were cross-sectional; another study reported results at two-time points over six years of follow-up. The authors of all five studies concluded positive relationships between exposure and the inflammatory cytokine profiles. The weak to very weak correlations between biomarkers and early-stage endpoints were reported. Conclusion Most inflammatory markers failed to satisfy the proposed evidentiary quality criteria. The significance of the results of the reviewed studies is limited by the cross-sectional study design, inconsistency in results, uncertain clinical relevance, and high occupational exposures. Based on this review, the risk assessment relying on inflammatory markers does not seem appropriate at this time. Nevertheless, the novel research warrants further exploration in assessing exposure to ENMs and corresponding potential health risks in occupational settings.
Collapse
Affiliation(s)
- Mei Yong
- MY EpiConsulting, Duesseldorf, Germany
| | - Robert J. McCunney
- Brigham and Women’s Hospital, Pulmonary Division, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Guseva Canu I, Plys E, Velarde Crézé C, Fito C, Hopf NB, Progiou A, Riganti C, Sauvain JJ, Squillacioti G, Suarez G, Wild P, Bergamaschi E. A harmonized protocol for an international multicenter prospective study of nanotechnology workers: the NanoExplore cohort. Nanotoxicology 2023; 17:1-19. [PMID: 36927342 DOI: 10.1080/17435390.2023.2180220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Nanotechnology applications are fast-growing in many industrial fields. Consequently, health effects of engineered nanomaterials (ENMs) should be investigated. Within the EU-Life project NanoExplore, we developed a harmonized protocol of an international multicenter prospective cohort study of workers in ENM-producing companies. This article describes the development of the protocol, sample size calculation, data collection and management procedures and discusses its relevance with respect to research needs. Within this protocol, workers' ENM exposure will be assessed over four consecutive working days during the initial recruitment campaign and the subsequent follow-up campaigns. Biomonitoring using noninvasive sampling of exhaled breath condensate (EBC), exhaled air, and urine will be collected before and after 4-day exposure monitoring. Both exposure and effect biomarkers, will be quantified along with pulmonary function tests and diagnosed diseases reported using a standardized epidemiological questionnaire available in four languages. Until now, this protocol was implemented at seven companies in Switzerland, Spain and Italy. The protocol is well standardized, though sufficiently flexible to include company-specific conditions and occupational hygiene measures. The recruitment, to date, of 140 participants and collection of all data and samples, enabled us launching the first international cohort of nanotechnology workers. All companies dealing with ENMs could join the NanoExplore Consortium, apply this harmonized protocol and enter in the cohort, concieved as an open cohort. Its protocol meets all requirements of a hypotheses-driven prospective study, which will assess and reassess effects of ENM exposure on workers' health by updating the follow-up of the cohort. New hypothesis could be also considered.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Ekaterina Plys
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Camille Velarde Crézé
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Carlos Fito
- Institutotecnológico del embalaje, transporte y logística (ITENE), Paterna, Spain
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Guillaume Suarez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
6
|
Zhai T, Diergaarde B, Wilson DO, Kang H, Sood A, Bayliss SH, Yuan JM, Picchi MA, Lan Q, Belinsky SA, Siegfried JM, Cook LS, Leng S. Early natural menopause is associated with poor lung health and increased mortality among female smokers. Am J Obstet Gynecol 2022; 227:885.e1-885.e12. [PMID: 35934119 PMCID: PMC9729368 DOI: 10.1016/j.ajog.2022.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Early natural menopause has been regarded as a biomarker of reproductive and somatic aging. Cigarette smoking is the most harmful factor for lung health and also an established risk factor for early menopause. Understanding the effect of early menopause on health outcomes in middle-aged and older female smokers is important to develop preventive strategies. OBJECTIVE This study aimed to examine the associations of early menopause with multiple lung health and aging biomarkers, lung cancer risk, and all-cause and cause-specific mortality in postmenopausal women who were moderate or heavy smokers. STUDY DESIGN This study was conducted on postmenopausal women with natural (n=1038) or surgical (n=628) menopause from the Pittsburgh Lung Screening Study. The Pittsburgh Lung Screening Study is a community-based research cohort of current and former smokers, screened with low-dose computed tomography and followed up for lung cancer. Early menopause was defined as occurring before 45 years of age. The analyses were stratified by menopause types because of the different biological and medical causes of natural and surgical menopause. Statistical methods included linear model, generalized linear model, linear mixed-effects model, and time-to-event analysis. RESULTS The average age of the 1666 female smokers was 59.4±6.7 years, with 1519 (91.2%) of the population as non-Hispanic Whites and 1064 (63.9%) of the population as current smokers at baseline. Overall, 646 (39%) women reported early menopause, including 198 (19.1%) women with natural menopause and 448 (71.3%) women with surgical menopause (P<.001). Demographic variables did not differ between early and nonearly menopause groups, regardless of menopause type. Significant associations were identified between early natural menopause and higher risk of wheezing (odds ratio, 1.65; P<.01), chronic bronchitis (odds ratio, 1.73; P<.01), and radiographic emphysema (odds ratio, 1.70; P<.001) and lower baseline lung spirometry in an obstructive pattern (-104.8 mL/s for forced expiratory volume in the first second with P<.01, -78.6 mL for forced vital capacity with P=.04, and -2.1% for forced expiratory volume in the first second-to-forced vital capacity ratio with P=.01). In addition, early natural menopause was associated with a more rapid decline of forced expiratory volume in the first second-to-forced vital capacity ratio (-0.16% per year; P=.01) and incident airway obstruction (odds ratio, 2.02; P=.04). Furthermore, women early natural menopause had a 40% increased risk of death (P=.023), which was mainly driven by respiratory diseases (hazard ratio, 2.32; P<.001). Mediation analyses further identified that more than 33.3% of the magnitude of the associations between early natural menopause and all-cause and respiratory mortality were explained by baseline forced expiratory volume in the first second. Additional analyses in women with natural menopause identified that the associations between continuous smoking and subsequent lung cancer risk and cancer mortality were moderated by early menopause status, and females with early natural menopause who continued smoking had the worst outcomes (hazard ratio, >4.6; P<.001). This study did not find associations reported above in female smokers with surgical menopause. CONCLUSION Early natural menopause was found to be a risk factor for malignant and nonmalignant lung diseases and mortality in middle-aged and older female smokers. These findings have strong public health relevance as preventive strategies, including smoking cessation and chest computed tomography screening, should target this population (ie, female smokers with early natural menopause) to improve their postmenopausal health and well-being.
Collapse
Affiliation(s)
- Ting Zhai
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Brenda Diergaarde
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
| | - David O Wilson
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Huining Kang
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM; Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Akshay Sood
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM
| | - Samuel H Bayliss
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM
| | - Jian-Min Yuan
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Steven A Belinsky
- Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM; Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM
| | - Jill M Siegfried
- Department of Pharmacology, University of Minnesota, Minneapolis, MN; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Linda S Cook
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz, Arora, CO
| | - Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM; Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM; Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM.
| |
Collapse
|
7
|
Qiu AY, Leng S, McCormack M, Peden DB, Sood A. Lung Effects of Household Air Pollution. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2807-2819. [PMID: 36064186 DOI: 10.1016/j.jaip.2022.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Biomass fuel smoke, secondhand smoke, and oxides of nitrogen are common causes of household air pollution (HAP). Almost 2.4 billion people worldwide use solid fuels for cooking and heating, mostly in low- and middle-income countries. Wood combustion for household heating is also common in many areas of high-income countries, and minorities are particularly vulnerable. HAP in low- and middle-income countries is associated with asthma, acute respiratory tract infections in adults and children, chronic obstructive pulmonary disease, lung cancer, tuberculosis, and respiratory mortality. Although wood smoke exposure levels in high-income countries are typically lower than in lower-income countries, it is similarly associated with accelerated lung function decline, higher prevalence of airflow obstruction and chronic bronchitis, and higher all-cause and respiratory cause-specific mortality. Household air cleaners with high-efficiency particle filters have mixed effects on asthma and chronic obstructive pulmonary disease outcomes. Biomass fuel interventions in low-income countries include adding chimneys to cookstoves, improving biomass fuel combustion stoves, and switching fuel to liquid petroleum gas. Still, the impact on health outcomes is inconsistent. In high-income countries, strategies for reducing biomass fuel-related HAP are centered on community-level woodstove changeout programs, although the results are again inconsistent. In addition, initiatives to encourage home smoking bans have mixed success in households with children. Environmental solutions to reduce HAP have varying success in reducing pollutants and health problems. Improved understanding of indoor air quality factors and actions that prevent degradation or improve polluted indoor air may lead to enhanced environmental health policies, but health outcomes must be rigorously examined.
Collapse
Affiliation(s)
- Anna Y Qiu
- Johns Hopkins University, School of Medicine, Baltimore, Md
| | - Shuguang Leng
- University of New Mexico School of Medicine, Albuquerque, NM; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | | | - David B Peden
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Akshay Sood
- University of New Mexico School of Medicine, Albuquerque, NM; Miners Colfax Medical Center, Raton, NM.
| |
Collapse
|
8
|
Pei Z, Ning J, Zhang N, Zhang X, Zhang H, Zhang R. Genetic instability of lung induced by carbon black nanoparticles is related with Plk1 signals changes. NANOIMPACT 2022; 26:100400. [PMID: 35560285 DOI: 10.1016/j.impact.2022.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
As a possible carcinogen, carbon black has threatened public health. However, the evidences are insufficient and the mechanism of carcinogenesis is still not specified. Thirty rats were randomly divided into 3 groups, namely 0, 5 and 30 mg/m3 Carbon Black nanoparticles (CBNPs) groups, respectively. Rats were treated with CBNPs by nose-only inhalation for 28 days, 6 h/day. The human bronchial epithelial (16HBE) cells were treated with 0, 50, 100 and 200 μg/mL CBNPs for 24 h. Polo-like kinase 1 (PLK1) overexpression cell line was established by pcDNA3.1-PLK1 stable transfection. Our results showed that CBNPs exposure could induce DNA damage and genetic changes as well as apoptosis in vivo and in vitro. The DNA repair ability increased after CBNPs exposure. Cell cycle process was retarded at the G2/M phases in 16HBE cells after CBNPs treatment. The PLK1, ChK2 GADD45α and XRCC1 expression levels changed in rat lung and 16HBE cells after CBNPs treatment. Compared with NC 16HBE cells, DNA damage and repair, numbers of apoptotic cells and micronucleus (MN) rates, as well as the ChK2, GADD45α, XRCC1 expression levels decreased, whereas cytokinesis block proliferation index (CBPI) and replicative index (RI) increase in PLK overexpression (PLK+/+) cells after CBNPs treatment. This study highlighted that PLK1 related with the genetic toxicity of CBNPs in vitro and in vivo. Our results provided evidences supporting reclassification of carbon black as a human possible carcinogen.
Collapse
Affiliation(s)
- Zijie Pei
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Helin Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
9
|
Sin S, Lim MN, Kim J, Bak SH, Kim WJ. Association between plasma sRAGE and emphysema according to the genotypes of AGER gene. BMC Pulm Med 2022; 22:58. [PMID: 35144588 PMCID: PMC8832795 DOI: 10.1186/s12890-022-01848-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Higher soluble receptor for advanced glycation end product (sRAGE) levels are considered to be associated with severe emphysema. However, the relationship remains uncertain when the advanced glycation end-product specific receptor (AGER) gene is involved. We aimed to analyse the association between sRAGE levels and emphysema according to the genotypes of rs2070600 in the AGER gene. Methods We genotyped rs2070600 and measured the plasma concentration of sRAGE in each participant. Emphysema was quantified based on the chest computed tomography findings. We compared sRAGE levels based on the presence or absence and severity of emphysema in each genotype. Multiple logistic and linear regression models were used for the analyses. Results A total of 436 participants were included in the study. Among them, 64.2% had chronic obstructive pulmonary disease and 34.2% had emphysema. Among the CC-genotyped participants, the sRAGE level was significantly higher in participants without emphysema than in those with emphysema (P < 0.001). In addition, sRAGE levels were negatively correlated with emphysema severity in CC-genotyped patients (r = − 0.268 P < 0.001). Multiple regression analysis revealed that sRAGE was an independent protective factor for the presence of emphysema (adjusted odds ratio, 0.24; 95% confidence interval (CI) 0.11–0.51) and severity of emphysema (β = − 3.28, 95% CI − 4.86 to − 1.70) in CC-genotyped participants. Conclusion Plasma sRAGE might be a biomarker with a protective effect on emphysema among CC-genotyped patients of rs2070600 on the AGER gene. This is important in determining the target group for the future prediction and treatment of emphysema. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01848-9.
Collapse
Affiliation(s)
- Sooim Sin
- Department of Internal Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Myung-Nam Lim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyeon Bak
- Department of Radiology, , School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Wang T, Li J, Liang Y, Han W, Tang J, Cheng G, Zheng Y. Joint Effects of Carbon Black Exposure and Dietary Antioxidant Vitamin Intake on Small Airway Dysfunction. Front Nutr 2021; 8:716398. [PMID: 34760908 PMCID: PMC8572798 DOI: 10.3389/fnut.2021.716398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives: Small airway dysfunction is considered as a precursor of chronic obstructive pulmonary disease and asthma. Our aim was to explore the joint effects of carbon black (CB) exposure and antioxidant vitamin intake on small airway dysfunction. Methods: A total of 70 CB packers (CBPs) and 107 non-CBPs were enrolled from an established cohort of CBP. Carbon content in airway macrophage (CCAM) quantified in induced sputum was used as a bio-effective dosimetry for exposure to CB. Logistic regression models were used to examine the odds ratios (ORs) of CB and dietary intake of antioxidant vitamins on small airway dysfunction, and the dose–response association. Results: The prevalence of small airway dysfunction was 32.9% (23 of 70) among CBPs, and 19.6% (21 of 107) among non-CBPs. For each 2.72-fold increase in CCAM, the OR of small airway dysfunction was 2.31 (95% CI = 1.20–4.44). For every 10 mg day−1 increase of the vitamin C intake, the risk of small airway dysfunction decreased by 6% (OR = 0.94, 95% CI = 0.88–0.99). Compared to non-CB exposure and higher vitamin C intake, CB exposure and lower vitamin C intake (OR = 7.56, 95% CI = 1.80 to 31.81) were associated with an increased risk of small airway dysfunction. Conclusions: Chronic exposure to a high level of CB aerosol increased the risk of small airway dysfunction in CB baggers. Dietary intake of vitamin C might be a modifiable factor for preventing small airway dysfunction.
Collapse
Affiliation(s)
- Tao Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jianyu Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yi Liang
- Laboratory of Molecular Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Centre for Translational Medicine, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Han
- Department of Respiratory and Critical Care Medicine, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Centre for Translational Medicine, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Kong N, Chen G, Wang H, Li J, Yin S, Cao X, Wang T, Li X, Li Y, Zhang H, Yu S, Tang J, Sood A, Zheng Y, Leng S. Blood leukocyte count as a systemic inflammatory biomarker associated with a more rapid spirometric decline in a large cohort of iron and steel industry workers. Respir Res 2021; 22:254. [PMID: 34565362 PMCID: PMC8467242 DOI: 10.1186/s12931-021-01849-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Iron and steel industry workers are exposed to high levels of inhalable dust particles that contain various elements, including metals, and cause occupational lung diseases. We aim to assess the relationship between occupational dust exposure, systemic inflammation, and spirometric decline in a cohort of Chinese iron and steel workers. Methods We studied 7513 workers who participated in a Health Surveillance program at Wugang Institute for Occupational Health between 2008 and 2017. Time-weighted exposure intensity (TWEI) of dust was quantified based on self-reported dust exposure history, the experience of occupational hygienists, and historical data of dust exposure for workers with certain job titles. A linear mixed-effects model was used for association analyses. Results The average annual change of lung function was − 50.78 ml/year in forced expiratory volume in 1 s (FEV1) and − 34.36 ml/year in forced vital capacity (FVC) in males, and − 39.06 ml/year in FEV1 and − 26.66 ml/year in FVC in females. Higher TWEI prior to baseline was associated with lower longitudinal measurements of FEV1 and FVC but not with their decline rates. Higher WBC and its differential at baseline were associated with lower longitudinal measurements and a more rapid decline of FEV1 and FVC in a dose-dependent monotonically increasing manner. Moreover, the increase of WBC and its differential post-baseline was also associated with a more rapid decline of FEV1 and FVC. Conclusions Our findings support the important role of systemic inflammation in affecting the temporal change of lung function in iron and steel industry workers. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01849-y.
Collapse
Affiliation(s)
- Nan Kong
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Guoshun Chen
- Wugang Institute for Occupational Health, Wuyang Iron and Steel Company Limited of Hangang Group in Henan, Wuyang, Henan, China
| | - Haitao Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Jianyu Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Shuzhen Yin
- Wugang Institute for Occupational Health, Wuyang Iron and Steel Company Limited of Hangang Group in Henan, Wuyang, Henan, China
| | - Xue Cao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Tao Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xin Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Yanan Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Huanling Zhang
- Wugang Institute for Occupational Health, Wuyang Iron and Steel Company Limited of Hangang Group in Henan, Wuyang, Henan, China
| | - Shanfa Yu
- Henan Medical College, Zhengzhou, Henan, China
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Akshay Sood
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China.
| | - Shuguang Leng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China. .,Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA. .,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
12
|
Liu H, Li J, Ma Q, Tang J, Jiang M, Cao X, Lin L, Kong N, Yu S, Sood A, Zheng Y, Leng S, Han W. Chronic exposure to diesel exhaust may cause small airway wall thickening without lumen narrowing: a quantitative computerized tomography study in Chinese diesel engine testers. Part Fibre Toxicol 2021; 18:14. [PMID: 33766066 PMCID: PMC7992811 DOI: 10.1186/s12989-021-00406-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/12/2021] [Indexed: 01/23/2023] Open
Abstract
Background Diesel exhaust (DE) is a major source of ultrafine particulate matters (PM) in ambient air and contaminates many occupational settings. Airway remodeling assessed using computerized tomography (CT) correlates well with spirometry in patients with obstructive lung diseases. Structural changes of small airways caused by chronic DE exposure is unknown. Wall and lumen areas of 6th and 9th generations of four candidate airways were quantified using end-inhalation CT scans in 78 diesel engine testers (DET) and 76 non-DETs. Carbon content in airway macrophage (CCAM) in sputum was quantified to assess the dose-response relationship. Results Environmental monitoring and CCAM showed a much higher PM exposure in DETs, which was associated with higher wall area and wall area percent for 6th generation of airways. However, no reduction in lumen area was identified. No study subjects met spirometry diagnosis of airway obstruction. This suggested that small airway wall thickening without lumen narrowing may be an early feature of airway remodeling in DETs. The effect of DE exposure status on wall area percent did not differ by lobes or smoking status. Although the trend test was of borderline significance between categorized CCAM and wall area percent, subjects in the highest CCAM category has a 14% increase in wall area percent for the 6th generation of airways compared to subjects in the lowest category. The impact of DE exposure on FEV1 can be partially explained by the wall area percent with mediation effect size equal to 20%, Pperm = 0.028). Conclusions Small airway wall thickening without lumen narrowing may be an early image feature detected by CT and underlie the pathology of lung injury in DETs. The pattern of changes in small airway dimensions, i.e., thicker airway wall without lumen narrowing caused by occupational DE exposure was different to that (i.e., thicker airway wall with lumen narrowing) seen in our previous study of workers exposed to nano-scale carbon black aerosol, suggesting constituents other than carbon cores may contribute to such differences. Our study provides some imaging indications of the understanding of the pulmonary toxicity of combustion derived airborne particulate matters in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00406-1.
Collapse
Affiliation(s)
- Hong Liu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jianyu Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Qianli Ma
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Menghui Jiang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xue Cao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Li Lin
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266021, China
| | - Nan Kong
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Shanfa Yu
- Henan Institute of Occupational Medicine, Zhengzhou, Henan, China
| | - Akshay Sood
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China.
| | - Shuguang Leng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China. .,Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA. .,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| | - Wei Han
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
13
|
Qin S, Yu X, Ma Q, Lin L, Li Q, Liu H, Zhang L, Leng S, Han W. Quantitative CT Analysis of Small Airway Remodeling in Patients with Chronic Obstructive Pulmonary Disease by a New Image Post-Processing System. Int J Chron Obstruct Pulmon Dis 2021; 16:535-544. [PMID: 33688178 PMCID: PMC7936712 DOI: 10.2147/copd.s295320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/07/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose To explore a practical marker for quantitatively analyzing the small airway remodeling in COPD by HRCT. Patients and Methods Twenty-four patients with COPD (GOLD I, n = 7; GOLD II, n = 8; GOLD III+IV, n = 9) and 14 healthy controls (7 normal pulmonary function; 7 small-airway disease (SAD)) were enrolled in the study as five groups, GOLD I, GOLD II, GOLD III+IV, normal and SAD. All subjects underwent HRCT and spirometry. With ISP 9.0, whole emphysema index (EI) and the airway parameters, including wall area (WA), lumen area (LA), airway area (AA) of the 3rd, 5th and 9th generations of bronchi, were measured successively. The ratio of LA/AA and WA/AA in the 3rd, 5th and 9th generations of bronchi were calculated and compared among groups. Results For the five groups, EI was increased only in GOLD III+IV group (P < 0.05), while the ratio of LA/AA (9-LA/AA) and WA/AA (9-WA/AA) in 9th generation of bronchi have significantly changed since SAD group (P < 0.05). There were significant correlation between FEV1generations of bronchi (r3 = 0.429, r5 = 0.583, r9 = 0.592, respectively, P < 0.05); FEV1% and WA/AA (r3 = –0.428, r5 = –0.532, r9 = –0.570, respectively, P < 0.05); as well as MMEF% and LA/AA (r3 = 0.421, r5 = 0.566, r9 = 0.610, respectively, P < 0.05); MMEF% and WA/AA (r3 = –0.421, r5 = –0.529, r9 = –0.593, respectively, P < 0.05). Conclusion Small airway remodeling has occurred in the early stage of COPD, while emphysema in the late stage of COPD. The 9-LA/AA and 9-WA/AA are accurate and practical markers for small airway remodeling of COPD.
Collapse
Affiliation(s)
- Shuyi Qin
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, People's Republic of China.,Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| | - Xinjuan Yu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, People's Republic of China.,Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| | - Qianli Ma
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| | - Li Lin
- Department of Pulmonary Medicine, Shandong Provincial Chest Hospital, Jinan, Shandong, People's Republic of China
| | - Qinghai Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, People's Republic of China.,Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| | - Hong Liu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, People's Republic of China.,Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| | - Lei Zhang
- Department of Hospital Infection, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, People's Republic of China.,Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
14
|
Kim J, Kim B, Bak SH, Oh YM, Kim WJ. A comparative study of chest CT findings regarding the effects of regional dust exposure on patients with COPD living in urban areas and rural areas near cement plants. Respir Res 2021; 22:43. [PMID: 33549113 PMCID: PMC7866433 DOI: 10.1186/s12931-021-01649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Background The clinical and radiological presentation of chronic obstructive pulmonary disease (COPD) is heterogenous depending on the characterized sources of inflammation. This study aimed to evaluate COPD phenotypes associated with specific dust exposure. Methods This study was designed to compare the characteristics, clinical outcomes and radiological findings between two prospective COPD cohorts representing two distinguishing regions in the Republic of Korea; COPD in Dusty Area (CODA) and the Korean Obstructive Lung Disease (KOLD) cohort. A total of 733 participants (n = 186 for CODA, and n = 547 for KOLD) were included finally. A multivariate analysis to compare lung function and computed tomography (CT) measurements of both cohort studies after adjusting for age, sex, education, body mass index, smoking status, and pack-year, Charlson comorbidity index, and frequency of exacerbation were performed by entering the level of FEV1(%), biomass exposure and COPD medication into the model in stepwise. Results The mean wall area (MWA, %) became significantly lower in COPD patients in KOLD from urban and metropolitan area than those in CODA cohort from cement dust area (mean ± standard deviation [SD]; 70.2 ± 1.21% in CODA vs. 66.8 ± 0.88% in KOLD, p = 0.028) after including FEV1 in the model. COPD subjects in KOLD cohort had higher CT-emphysema index (EI, 6.07 ± 3.06 in CODA vs. 20.0 ± 2.21 in KOLD, p < 0.001, respectively). The difference in the EI (%) was consistently significant even after further adjustment of FEV1 (6.12 ± 2.88% in CODA vs. 17.3 ± 2.10% in KOLD, p = 0.002, respectively). However, there was no difference in the ratio of mean lung density (MLD) between the two cohorts (p = 0.077). Additional adjustment for biomass parameters and medication for COPD did not alter the statistical significance after entering into the analysis with COPD medication. Conclusions Higher MWA and lower EI were observed in COPD patients from the region with dust exposure. These results suggest that the imaging phenotype of COPD is influenced by specific environmental exposure.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Bom Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyeon Bak
- Deparment of Radiology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|