1
|
Sharma S, Kapri A, Joshi M, Onteru SK, Singh D. Development of RT-LAMP assay for detection of lead and cadmium toxicity using HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65328-65343. [PMID: 39578335 DOI: 10.1007/s11356-024-35544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Heavy metals such as lead and cadmium are prevalent in the environment. These are harmful to living beings even at lower concentrations as they persist in the body for years and lead to the development of severe diseases. Therefore, the present work was designed to develop a rapid and field-applicable cell-based assay for quick detection of lead and cadmium in biofluids using an RNA biomarker. The RNA biomarker was identified by analyzing the impact of these heavy metals on the gene expression of candidate genes using HepG2 cells. The results showed that the gene expression of AhR pathway-related genes, apoptosis-related genes, MAPK1, and HMOX1 were significantly increased after lead and cadmium treatments (P < 0.05). Interestingly, the gene expression of HMOX1 was increased linearly up to fivefold in a dose and time-dependent manner in the case of both heavy metals which also correlated with an increased secretion of bilirubin from the cells after 6 h treatment. Therefore, the RT-LAMP assay was developed for lead and cadmium toxicity using HMOX1. The positive amplification was visualized in the form of color change of HNB dye from violet to blue in 30 min. Additionally, standard curves were also prepared for the RT-LAMP color change after treatment with different concentrations of lead and cadmium for their quantification in unknown samples. The developed RT-LAMP assay was also validated using lead and cadmium-spiked milk samples. The ROC curve analysis showed 100% sensitivity and specificity for both heavy metals above their MRL value in infant milk substitutes and infant foods. This assay can be utilized for early detection of heavy metals in common food items such as milk.
Collapse
Affiliation(s)
- Sanjay Sharma
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ankita Kapri
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Mansi Joshi
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
2
|
He C, Li Y, Zhou Z, Wei Y, Zhu Y, Han Y, Li Y, Yang R, Xu K. The role of neuropeptide prothoracicotropic hormone (PTTH) - Torso in pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106139. [PMID: 39477593 DOI: 10.1016/j.pestbp.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
The neuropeptide prothoracicotropic hormone (PTTH) plays a key role in regulating ecdysone synthesis and promoting insect metamorphosis. Pyriproxyfen is a juvenile hormone analogue. We previously reported that pyriproxyfen disrupts ecdysone secretion and inhibits larval-pupal metamorphosis in silkworms. However, the specific molecular mechanisms by which pyriproxyfen interferes with ecdysone signaling remain to be elucidated. Herein, the RNA-seq analysis on the ecdysone-secretion organ prothoracic gland (PG) was conducted following pyriproxyfen exposure. A total of 3774 differentially expressed genes (DEGs) were identified, with 1667 up-regulated and 2107 down-regulated. KEGG analysis showed that DEGs were enriched in the MAPK signaling pathway, a conserved pathway activated by PTTH binding to Torso, which regulates the ecdysone synthesis. qRT-PCR results indicated a significant up-regulation in PTTH transcription level, while the transcription levels of torso and downstream MAPK pathway genes, Ras2, Raf and ERK, were down-regulated 24 h post-pyriproxyfen treatment. Consistent with these transcriptional changes, PTTH titers in the brain also increased following pyriproxyfen treatment. These results suggest that pyriproxyfen induces abnormal metamorphosis in silkworms by impairing PTTH-Torso signaling. This study enhances our understanding of the molecular mechanisms of pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms, and also provides insights for developing detoxification strategies for juvenile hormone analog pesticides to non-target organisms.
Collapse
Affiliation(s)
- Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Zhenfeng Zhou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yirong Han
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yifei Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Rifeng Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
3
|
Alarcón-Herrera N, Gómez-Arroyo S, Flores-Maya S, Flores-Márquez AR, Abrica-González P. Assessment of genotoxic damage induced by exposure to binary mixtures of polycyclic aromatic hydrocarbons and three heavy metals in male mice. Toxicol Mech Methods 2024; 34:955-969. [PMID: 38863169 DOI: 10.1080/15376516.2024.2365434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) exposition has been associated with health problems. Therefore, this research evaluated genotoxicity induced in male mice strain CD-1 exposed to benzo[a]anthracene (B[a]A) and benzo[a]pyrene (B[a]P) and their interaction with Fe, Pb, and Al. METHODS Groups of animals were exposed intraperitoneally to HM, PAHs, and mixtures of both. Peripheral blood samples were taken from 0 to 96 h at 24 h intervals; genotoxicity was determined by micronucleus tests and comet assay. Additionally, toxicity and viability were evaluated. RESULTS HM and PAHs individually were genotoxic. About toxicity, only Al altered polychromatic erythrocytes number and did not change leukocytes viability. Concerning mixtures, Fe + B[a]P, Fe + B[a]A, Pb + B[a]P increased genotoxicity. There were no changes with Pb + B[a]A. Finally, Al mixtures with both PAHs damage was decreased. CONCLUSIONS Exposure to HM and PAH caused genetic damage. Fe, Al, and B[a]A, established a genotoxic potential. Every metal can interact with PAHs in different ways. Also, the micronucleus test and the comet assay demonstrated their high capacity and reliability to determine the genotoxic potential of the compounds evaluated in this work.
Collapse
Affiliation(s)
- Norberto Alarcón-Herrera
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Saúl Flores-Maya
- Laboratorio de Recursos Naturales, UBIPRO, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla, Estado de México, México
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Paulina Abrica-González
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
4
|
Li Y, Li Z, Wang H. Gut dysbiosis of Rana zhenhaiensis tadpoles after lead (Pb) exposure based on integrated analysis of microbiota and gut transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116922. [PMID: 39181079 DOI: 10.1016/j.ecoenv.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Lead (Pb) is a ubiquitously detected heavy metal pollutant in aquatic ecosystems. Previous studies focused mainly on the response of gut microbiota to Pb stress, with less emphasis on gene expression in intestine, thereby limiting the information about impacts of Pb on intestinal homeostasis in amphibians. Here, microbial community and transcriptional response of intestines in Rana zhenhaiensis tadpoles to Pb exposure were evaluated. Our results showed that 10 μg/L Pb significantly decreased bacterial diversity compared to the controls by the Simpson index. Additionally, 1000 μg/L Pb exposure resulted in a significant reduction in the abundance of Fusobacteriota phylum and Cetobacterium genus but a significant expansion in Hafnia-Obesumbacterium genus. Moreover, transcriptome analysis revealed that about 90 % of the DEGs (8458 out of 9450 DEGs) were down-regulated in 1000 μg/L Pb group, mainly including genes annotated with biological functions in fatty acid degradation, and oxidative phosphorylation, while up-regulated DEGs involved in metabolism of xenobiotics by cytochrome P450. The expression of Gsto1, Gsta5, Gstt4, and Nadph showed strong correlation with the abundance of genera Serratia, Lactococcus, and Hafnia-Obesumbacterium. The findings of this study provide important insights into understanding the influence of Pb on intestinal homeostasis in amphibians.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Zizhu Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Fisher M, Weiler HA, Kuiper JR, Borghese M, Buckley JP, Shutt R, Ashley-Martin J, Subramanian A, Arbuckle TE, Potter BK, Little J, Morisset AS, Jukic AM. Vitamin D and Toxic Metals in Pregnancy - a Biological Perspective. CURR EPIDEMIOL REP 2024; 11:153-163. [PMID: 39156920 PMCID: PMC11329583 DOI: 10.1007/s40471-024-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 08/20/2024]
Abstract
Purpose of Review To discuss the potential biological mechanisms between vitamin D and toxic metals and summarize epidemiological studies examining this association in pregnant women. Recent Findings We identified four plausible mechanisms whereby vitamin D and toxic metals may interact: nephrotoxicity, intestinal absorption of metals, endocrine disruption, and oxidative stress. Few studies have examined the association between vitamin D and toxic metals in pregnant women. North American studies suggest that higher vitamin D status early in pregnancy are associated with lower blood metals later in pregnancy. However, a trial of vitamin D supplementation in a pregnant population, with higher metal exposures and lower overall nutritional status, does not corroborate these findings. Summary Given ubiquitous exposure to many toxic metals, nutritional intervention could be a means for prevention of adverse outcomes. Future prospective studies are needed to establish a causal relationship and clarify the directionality of vitamin D and metals. Supplementary Information The online version contains supplementary material available at 10.1007/s40471-024-00348-0.
Collapse
Affiliation(s)
- Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Hope A. Weiler
- Nutrition Research Division, Health Products and Food Branch, Health Canada, Ottawa, ON Canada
| | - Jordan R. Kuiper
- Milken Institute School of Public Health, The George Washington University, Washington, DC USA
| | - Michael Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Jessie P. Buckley
- Department of Epidemiology, University of North Carolina at Chapel Hill, Gillings School of Global Public Health Sciences, Chapel Hill, North Carolina USA
| | - Robin Shutt
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | | | - Anita Subramanian
- National Institute of Environmental Health Sciences (NIEHS), Duram, North Carolina USA
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Beth K. Potter
- School of Epidemiology and Public Health (SEPH), University of Ottawa, Ottawa, ON Canada
| | - Julian Little
- School of Epidemiology and Public Health (SEPH), University of Ottawa, Ottawa, ON Canada
| | | | - Anne Marie Jukic
- National Institute of Environmental Health Sciences (NIEHS), Duram, North Carolina USA
| |
Collapse
|
6
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
7
|
Havrylyuk D, Heidary DK, Glazer EC. The Impact of Inorganic Systems and Photoactive Metal Compounds on Cytochrome P450 Enzymes and Metabolism: From Induction to Inhibition. Biomolecules 2024; 14:441. [PMID: 38672458 PMCID: PMC11048704 DOI: 10.3390/biom14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.
Collapse
Affiliation(s)
| | - David K. Heidary
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| | - Edith C. Glazer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| |
Collapse
|
8
|
Boyi JO, Sonne C, Dietz R, Rigét F, Siebert U, Lehnert K. Gene expression and trace elements in Greenlandic ringed seals (Pusa hispida). ENVIRONMENTAL RESEARCH 2024; 244:117839. [PMID: 38081340 DOI: 10.1016/j.envres.2023.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Marine top predators such as ringed seals biomagnify environmental contaminants; and with the increasing human activities in the Arctic, ringed seals are exposed to biologically significant concentrations of trace elements resulting in reproductive impairment, immunosuppression, and neurological damages. Little is known about the molecular effects of heavy metals on these vulnerable apex predators suffering from a rapidly changing Arctic with significant loss of sea-ice. In the present study, concentrations of cadmium (Cd), mercury (Hg) and selenium (Se) were measured in liver of sixteen Greenlandic ringed seals (nine adults and seven subadults) together with molecular biomarkers involved in bio-transformation, oxidative stress, endocrine disruption and immune activity in blood and blubber. The concentrations of trace elements increased in the following order: Hg > Se > Cd with levels of mercury and selenium being highest in adults. Aryl hydrocarbon receptor nuclear translocator (ARNT), peroxisome proliferator activated receptor alpha (PPARα, estrogen receptor alpha (ESR1), thyroid hormone receptor alpha (TRα) and interleukin - 2 (IL-2) mRNA transcript levels were highest in blubber, while heat shock protein 70 (HSP70) and interleukin - 10 (IL-10) were significantly higher in blood. There were no significant correlations between the concentrations of trace elements and mRNA transcript levels suggesting that stressors other than the trace elements investigated are responsible for the changes in gene expression levels. Since Hg seems to increase in Greenlandic ringed seals, there is a need to re-enforce health monitoring of this ringed seal population.
Collapse
Affiliation(s)
- Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Frank Rigét
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| |
Collapse
|
9
|
Kou Z, Tran F, Dai W. Heavy metals, oxidative stress, and the role of AhR signaling. Toxicol Appl Pharmacol 2024; 482:116769. [PMID: 38007072 PMCID: PMC10988536 DOI: 10.1016/j.taap.2023.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
The Aryl Hydrocarbon Receptor (AhR) is a ligand-activated transcriptional factor pivotal in responding to environmental stress and maintaining cellular homeostasis. Exposure to specific xenobiotics or industrial compounds in the environment activates AhR and its subsequent signaling, inducing oxidative stress and related toxicity. Past research has also identified and characterized several classes of endogenous ligands, particularly some tryptophan (Trp) metabolic/catabolic products, that act as AhR agonists, influencing a variety of physiological and pathological states, including the modulation of immune responses and cell death. Heavy metals, being non-essential elements in the human body, are generally perceived as toxic and hazardous, originating either naturally or from industrial activities. Emerging evidence indicates that heavy metals significantly influence AhR activation and its downstream signaling. This review consolidates current knowledge on the modulation of the AhR signaling pathway by heavy metals, explores the consequences of co-exposure to AhR ligands and heavy metals, and investigates the interplay between oxidative stress and AhR activation, focusing on the regulation of immune responses and ferroptosis.
Collapse
Affiliation(s)
- Ziyue Kou
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25(th) Street, New York, NY 10010, United States of America
| | - Franklin Tran
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25(th) Street, New York, NY 10010, United States of America
| | - Wei Dai
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25(th) Street, New York, NY 10010, United States of America.
| |
Collapse
|
10
|
Hidayat R, El-Ghiaty MA, Shoieb SM, Alqahtani MA, El-Kadi AOS. The Effects of 16-HETE Enantiomers on Hypertrophic Markers in Human Fetal Ventricular Cardiomyocytes, RL-14 Cells. Eur J Drug Metab Pharmacokinet 2023; 48:709-722. [PMID: 37815672 DOI: 10.1007/s13318-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Cytochrome P450 (CYP) metabolizes arachidonic acid to produce bioactive metabolites such as EETs and HETEs: mid-chain, subterminal, and terminal HETEs. Recent studies have revealed the role of CYP1B1 and its associated cardiotoxic mid-chain HETE metabolites in developing cardiac hypertrophy and heart failure. Subterminal HETEs have also been involved in various physiological and pathophysiological processes; however, their role in cardiac hypertrophy has not been fully defined. OBJECTIVE The objective of the current study is to determine the possible effect of subterminal HETEs, R and S enantiomers of 16-HETE, on CYP1B1 expression in vitro using human cardiomyocytes RL-14 cells. METHODS In the study, RL14 cell line was treated with vehicle and either of the 16-HETE enantiomers for 24 h. Subsequently, the following markers were assessed: cell viability, cellular size, hypertrophic markers, CYP1B1 gene expression (at mRNA, protein, and activity levels), luciferase activity, and CYP1B1 mRNA and protein half-lives. RESULTS The results of the study showed that 16-HETE enantiomers significantly increased hypertrophic markers and upregulated CYP1B1 mRNA and protein expressions in RL-14 cell line. The upregulation of CYP1B1 by 16-HETE enantiomers occurs via a transcriptional mechanism as evidenced by transcriptional induction and luciferase reporter assay. Furthermore, neither post-transcriptional nor post-translational modification was involved in such modulation since there was no change in CYP1B1 mRNA and protein stabilities upon treatment with 16-HETE enantiomers. CONCLUSION The current study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 gene expression through a transcriptional mechanism.
Collapse
Affiliation(s)
- Rahmat Hidayat
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
11
|
El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Arsenic trioxide (ATO) up-regulates cytochrome P450 1A (CYP1A) enzymes in murine hepatoma Hepa-1c1c7 cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104214. [PMID: 37423394 DOI: 10.1016/j.etap.2023.104214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Arsenic trioxide (ATO) is a highly toxic arsenical which has been successfully exploited for treating acute promyelocytic leukemia (APL). Unfortunately, its therapeutic efficacy is accompanied by serious toxicities with undeciphered mechanisms. Cytochrome P450 1A (CYP1A) enzymes undergo modulation by arsenicals, with ensuing critical consequences regarding drug clearance or procarcinogen activation. Here, we investigated the potential of ATO to alter basal and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced CYP1A1/1A2 expressions. Mouse-derived hepatoma Hepa-1c1c7 cells were exposed to 0.63, 1.25, and 2.5μM ATO with or without 1nM TCDD. ATO increased TCDD-induced CYP1A1/1A2 mRNA, protein, and activity. Constitutively, ATO induced Cyp1a1/1a2 transcripts and CYP1A2 protein. ATO increased AHR nuclear accumulation and subsequently increased XRE-luciferase reporter activity. ATO enhanced CYP1A1 mRNA and protein stabilities. In conclusion, ATO up-regulates CYP1A in Hepa-1c1c7 cells transcriptionally, post-transcriptionally, and post-translationally. Therefore, ATO can be implicated in clearance-related interactions with CYP1A1/1A2 substrates, or in excessive activation of environmental procarcinogens.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Naimabadi A, Ghasemi A, Mohtashami M, Saeidi J, Bakaeian M, Haddad Mashadrizeh A, Azimi-Nezhad M, Mohammadi AA. Heavy metal analysis in of indoor and outdoor dust extracts and cytotoxicity evaluation and inflammation factors on lung, gastric and skin cell lines. Heliyon 2022; 8:e12414. [PMID: 36593833 PMCID: PMC9803783 DOI: 10.1016/j.heliyon.2022.e12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Dust particles (DPs) are one of the most important public health concerns in the urban environment. The presence of heavy metals (HMs) on the surface of DPs might increase the health risk of exposure to the DPs. Accordingly, The purpose of this study was to examine the content of HMs in the outdoor and indoor DPs in Neyshabur city and assess the cytotoxic effects of DPs exposure on lung, gastric, and skin cell lines. To this end, the city was divided into three areas, high-traffic, medium-traffic, and low-traffic (rural). The average concentration of the HMs in the indoor DPs were as follows, 655.5 μg g-1 for Zn, 114.6 μg g-1 for Cu, 77.7 μg g-1 for Cr, 108.6 μg g-1 for Ni, 52 μg g-1 for Pb, 12 μg g-1 for Co, and 3.3 μg g-1 for Cd, while the average concentration of Zn, Cu, Cr, Ni, Pb, Co, Cd in the outdoor DPs were 293.7 μg g-1, 200.6 μg g-1, 100.7 μg g-1, 68.4 μg g-1, 44.7 μg g-1, 18.6 μg g-1, 0.25 μg g-1, respectively. A higher concentration of HMs, as well as cytotoxicity, were revealed in the indoor samples compared to outdoor ones. The degree of cytotoxicity of DPs collected from high-traffic areas was higher than that of low and medium-traffic ones. In addition, treatment of AGS and L929 cells with indoor dust samples induced the expression level of inflammatory agents such as TNFα, IL6, and, CYP1A1 genes more than in outdoor dust samples (P < 0.05). Briefly, a higher level of HMs concentration and cytotoxicity effect on the given cell lines was observed in the samples taken from indoor environments and high-traffic areas.
Collapse
Affiliation(s)
- Abolfazl Naimabadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ahmad Ghasemi
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Microbiology, School of Basic Science, Neyshabur Brench, Islamic Azad University, Neyshabur, Iran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Brench, Islamic Azad University, Neyshabur, Iran
| | - Mehdi Bakaeian
- Instructor of Psychiatric Nursing, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Aliakbar Haddad Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences Research, Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran,Corresponding author.
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran,Corresponding author.
| |
Collapse
|
13
|
Hemmaphan S, Bordeerat NK. Reduced DNA Glycosylases Expression and Oxidative DNA Damage Induced by Lead. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/29322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to lead (Pb) continues to be a significant worldwide problem. Pb is a highly toxic heavy metal affecting several organ systems in the body. There has been reported to have potential genotoxic properties to various cells. However, the underlying mechanisms of lead-induced toxicity are still unknown. The present study aimed to investigate the lead-induced cytotoxicity in human renal proximal tubular epithelial cells and its underlying DNA damage mechanisms. Lead exposure caused DNA damage as demonstrated by increased 8-OHdG/dG ratio in cells even at a relatively normal dose (10μg/dL). Lead also led to producing oxidative stress as characterized by increased intensity of the Reactive Oxygen Species (ROS) indicator. ROS overproduction should be the reason for lead-induced DNA damage. Therefore, the effects of Lead on ROS elimination should be the main reason for lead-induced oxidative stress in human renal proximal tubular epithelial cells. After lead acetate (PbAc) treatment, the cell viability significantly decreased in a dose-dependent manner, and the accumulation of cellular ROS was observed. 8-OHdG levels, a marker of oxidative DNA damage, were significantly increased by both acute and chronic Pb exposure. Interestingly, the mRNA expression of the 8-oxoguanine DNA glycosylase 1 (hOGG1) significantly decreased after acute and chronic exposure. In conclusion, our study provides the first evidence to demonstrate that acute and chronic Pb exposure results in the altered expression of DNA glycosylases genes indicating the impairment of DNA repair pathways and contributing to DNA damage. These findings should be useful for the more comprehensive assessment of the toxic effects of Pb.
Collapse
|
14
|
Han J, Park Y, Jeong H, Park JC. Effects of particulate matter (PM 2.5) on life history traits, oxidative stress, and defensome system in the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2022; 178:113588. [PMID: 35358891 DOI: 10.1016/j.marpolbul.2022.113588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter (PM2.5) generated in large cities creates new problems in marine ecosystems and may adversely affect its inhabitants. However, the mechanisms underlying the same remain unclear; hence, we investigated the effects of PM2.5 on life history traits (e.g., mortality, development, and fecundity), cellular reactive oxygen species (ROS) levels, antioxidant enzyme (e.g., glutathione peroxidase [GPx], superoxide dismutase [SOD], and catalase [CAT]) activities, and the transcript levels of detoxification-related genes (cytochrome P450s [CYPs]) and antioxidant (glutathione S-transferases [GSTs]) in the copepod Tigriopus japonicus. Among the life history traits, developmental time was the only trait to significantly deviate (P < 0.05) in response to PM2.5 (compared to that in the controls). Significant changes in ROS levels and antioxidant enzymatic activities (P < 0.05) in response to PM2.5, suggested that PM2.5 can induce oxidative stress, leading to adverse effects on the T. japonicus life history. In addition, PM2.5 induced a differential regulation of various CYP and GST genes, particularly CYP307E1, GST-kappa, and GST-sigma were significantly upregulated (P < 0.05), suggesting that these genes likely play crucial roles in detoxification mechanisms and could be useful as reliable biomarkers for PM2.5 toxicity. Overall, the results of this study provide new insights into the potential toxicity of PM2.5.
Collapse
Affiliation(s)
- Jeonghoon Han
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea.
| | - Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyeryeong Jeong
- Marine Environmental Research Center, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| |
Collapse
|
15
|
Hemmaphan S, Bordeerat NK. Genotoxic Effects of Lead and Their Impact on the Expression of DNA Repair Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074307. [PMID: 35409986 PMCID: PMC8998702 DOI: 10.3390/ijerph19074307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
Exposure to lead (Pb) continues to be a significant worldwide problem. Pb is a highly poisonous heavy metal affecting several organ systems in the body. Although Pb has been shown to be genotoxic to experimental animals and humans, the underlying mechanisms are still not understood. An indirect mechanism related to the inhibition of DNA repair systems by Pb has been suggested. Heavy metals can interfere with the activities of several proteins and gene expressions. Recent studies gathered in this review article demonstrated an altered expression of DNA repair genes due to Pb toxicity. However, their findings are conflicting. Furthermore, the interaction of Pb and epigenetic mechanisms regulating gene expression may have a crucial role in the inhibition of DNA repair systems. Therefore, additional studies are needed to evaluate these findings and to obtain a complete picture of the genotoxic properties of Pb and the underlying mechanisms that may have a crucial role in carcinogenesis.
Collapse
Affiliation(s)
- Sirirak Hemmaphan
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit 12121, Thailand;
| | - Narisa K. Bordeerat
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit 12121, Thailand
- Correspondence: ; Tel.: +66-81-912-2694
| |
Collapse
|
16
|
Tian J, Li Y, Fu H, Ren L, He Y, Zhai S, Yang B, Li Q, Liu N, Liu S. Physiological role of CYP17A1-like in cadmium detoxification and its transcriptional regulation in the Pacific oyster, Crassostrea gigas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149039. [PMID: 34328900 DOI: 10.1016/j.scitotenv.2021.149039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the most harmful heavy metals due to its persistence and bioaccumulation through the food chains, posing health risks to human. Oysters can bioaccumulate and tolerate high concentrations of Cd, providing a great model for studying molecular mechanism of Cd detoxification. In a previous study, we identified two CYP genes, CYP17A1-like and CYP2C50, that were potentially involved in Cd detoxification in the Pacific oyster, Crassostrea gigas. In this work, we performed further investigations on their physiological roles in Cd detoxification through RNA interference (RNAi). After injection of double-stranded RNA (dsRNA) into the adductor muscle of oysters followed by Cd exposure for 7 days, we observed that the expressions of CYP17A1-like and CYP2C50 in interference group were significantly suppressed on day 3 compared with control group injected with PBS. Moreover, the mortality rate and Cd content in the CYP17A1-like dsRNA interference group (dsCYP17A1-like) was significantly higher than those of the control on day 3. Furthermore, the activities of antioxidant enzymes, including SOD, CAT, GST, were significantly increased in dsCYP17A1-like group, while were not changed in dsCYP2C50 group. More significant tissue damage was observed in gill and digestive gland of oysters in RNAi group than control group, demonstrating the critical role of CYP17A1-like in Cd detoxification. Dual luciferase reporter assay revealed three core regulatory elements of MTF-1 within promoter region of CYP17A1-like, suggesting the potential transcriptional regulation of CYP17A1-like by MTF-1 in oysters. This work demonstrated a critical role of CYP17A1-like in Cd detoxification in C. gigas and provided a new perspective toward unravelling detoxification mechanisms of bivalves under heavy metal stress.
Collapse
Affiliation(s)
- Jing Tian
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yongjing Li
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yameng He
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shangyu Zhai
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
17
|
Titaley IA, Lam MM, Bülow R, Enell A, Wiberg K, Larsson M. Characterization of polycyclic aromatic compounds in historically contaminated soil by targeted and non-targeted chemical analysis combined with in vitro bioassay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117910. [PMID: 34426193 DOI: 10.1016/j.envpol.2021.117910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Soil samples from a contaminated site in Sweden were analyzed to identify the presence of 78 polycyclic aromatic compounds (PACs) using gas chromatography coupled with mass spectrometry (GC-MS). The target analysis revealed large contributions not only from polycyclic aromatic hydrocarbons (PAHs), but also from alkylated- and oxygenated-PAHs (alkyl- and oxy-PAHs, respectively), and N-heterocyclics (NPACs). PAC profiles indicated primarily pyrogenic sources, although contribution of petrogenic sources was also observed in one sample as indicated by a high ratio of alkylated naphthalene compared to naphthalene. The aryl hydrocarbon receptor (AhR)-activity of the soil extracts was assessed using the H4IIe-pGudluc 1.1 cells bioassay. When compared with the calculated total AhR-activity of the PACs in the target list, 35-97% of the observed bioassay activity could be explained by 62 PACs with relative potency factors (REPs). The samples were further screened using GC coupled with Orbitrap™ high resolution MS (GC-HRMS) to investigate the presence of other PACs that could potentially contribute to the AhR-activity of the extracts. 114 unique candidate compounds were tentatively identified and divided into four groups based on their AhR-activity and environmental occurrence. Twelve substances satisfied all the criteria, and these compounds are suggested to be included in regular screening in future studies, although their identities were not confirmed by standards in this study. High unexplained bio-TEQ fractions in three of the samples may be explained by tentatively identified compounds (n = 35) with high potential of being toxic. This study demonstrates the benefit of combining targeted and non-targeted chemical analysis with bioassay analysis to assess the diversity and effects of PACs at contaminated sites. The applied prioritization strategy revealed a number of tentatively identified compounds, which likely contributed to the overall bioactivity of the soil extracts.
Collapse
Affiliation(s)
- Ivan A Titaley
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| | - Monika M Lam
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Rebecca Bülow
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Anja Enell
- Swedish Geotechnical Institute, SE-581 93, Linköping, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Maria Larsson
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| |
Collapse
|
18
|
Lawton E, Antczak P, Walker S, Germain-Cripps E, Falciani F, Routledge EJ. An investigation into the biological effects of indirect potable reuse water using zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147981. [PMID: 34323829 DOI: 10.1016/j.scitotenv.2021.147981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Advanced treatment technologies are being assessed as a proactive measure to assist with the transformation of treated wastewater into a source of water for potable water production. We investigated the biological effects along an advanced water treatment pilot plant, using zebrafish embryos throughout early development. The study compared phenotypic observations with global transcriptome responses, enabling us to keep an open mind about the chemicals that might influence the biological activity. There was no evidence of acute toxicity at any treatment stage, but skeletal, cardiovascular and pigmentation changes occurred in a small proportion of embryos along the treatment process, and in a tap water; not detected in the aquarium water control. Reverse osmosis (RO) reduced the concentration of measured chemical contaminants in the water the most, while eliminating the occurrence of abnormalities detected in fish embryos. Conversely, advanced oxidation reversed the benefits of RO treatment by increasing the frequency of teratogenic and sub-lethal abnormalities seen. Using the molecular responses of zebrafish embryos to different IPR water, we report the bioactivity within the water at different stages of advanced treatment and associate these to perturbed biological functions. Transcriptomic analysis revealed alterations to the retinoid system, which was consistent with the observed teratogenic effects. Changes to tryptophan metabolism (associated with the production of melatonin required for the control of normal circadian rhythms) and somatolactin-beta (associated with normal pigmentation in fish) were also found. We show that underexplored forms of biological activity occur in treated wastewater effluent, and/or may be created depending on the type of advanced treatment process used. By integrating the available analytical chemistry we highlight chemical groups associated to this response. Our study shows that more detailed and in-depth characterisation of chemicals and biological pathways associated with advanced treatment water systems are needed to mitigate possible risks to downstream organisms.
Collapse
Affiliation(s)
- E Lawton
- Brunel University London, Institute for Environment Health and Societies, UB8 3PH, UK
| | - P Antczak
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, L69 7ZB, UK; University of Cologne, Faculty of Medicine and Cologne University Hospital, Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - S Walker
- Brunel University London, Institute for Environment Health and Societies, UB8 3PH, UK
| | | | - F Falciani
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, L69 7ZB, UK
| | - E J Routledge
- Brunel University London, Institute for Environment Health and Societies, UB8 3PH, UK.
| |
Collapse
|
19
|
Olsvik PA, Azad AM, Yadetie F. Bioaccumulation of mercury and transcriptional responses in tusk (Brosme brosme), a deep-water fish from a Norwegian fjord. CHEMOSPHERE 2021; 279:130588. [PMID: 33901891 DOI: 10.1016/j.chemosphere.2021.130588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
High concentrations of mercury (Hg) have been documented in deep-water fish species from some Norwegian fjords. In this study, tusk (Brosme brosme) was sampled from four locations in the innermost parts of Sognefjorden in Western Norway. Total Hg and methylmercury (MeHg) levels were measured in liver tissue. To search for potential sublethal effects of Hg, we characterized the hepatic transcriptome in tusk with high and low levels of Hg bioaccumulation using global transcriptomics analysis (RNA-seq). The results showed that there was a significant correlation between fish weight and accumulated concentrations of MeHg but not total Hg. MeHg accounted for 30-40% of total Hg in liver of most of the fish, although at concentrations above 2-3 mg Hg/kg wet weight the percentage of MeHg dropped considerably. Transcriptome analysis resulted in hundreds of differentially expressed genes in the liver of tusk with high Hg levels. Functional enrichment analysis suggested that the top affected pathways are associated with protein folding, adipogenesis, notch signaling, and lipid metabolism (beta-oxidation and phospholipids). Based on transcriptional responses pointing to well-known effects of Hg compounds in fish, the study suggests that tusk in Sognefjorden could be negatively impacted by Hg bioaccumulation.
Collapse
Affiliation(s)
- Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research, Nordnes, Bergen, Norway.
| | - Atabak M Azad
- Institute of Marine Research, Nordnes, Bergen, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Jiang W, Fang J, Du M, Gao Y, Fang J, Jiang Z. Integrated transcriptomics and metabolomics analyses reveal benzo[a]pyrene enhances the toxicity of mercury to the Manila clam, Ruditapes philippinarum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112038. [PMID: 33636467 DOI: 10.1016/j.ecoenv.2021.112038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg2+) and benzo[a]pyrene (BaP) are ubiquitous and persistent pollutants with multiple toxicities in bivalve molluscs. Here, the toxicological responses in the gills of Manila clams, Ruditapes philippinarum, to Hg2+ (10 μg L-1), BaP (3 μg L-1), and their mixture were analysed using transcriptomics and metabolomics approaches. Comparisons of the transcriptomes and metabolomes of Hg2+-and/or BaP-treated clams with control animals revealed the involvement of the detoxification metabolism, immune defence, energy-related pathways, and osmotic regulation in the stress response of R. philippinarum. Exposure to Hg2+ alone primarily enhanced the detoxification and energy metabolic pathways by significantly increasing the expression of genes associated with heat-shock proteins and oxidative phosphorylation. However, co-exposure to Hg2+ and BaP caused greater immunotoxicity and disrupted detoxification metabolism, the TCA cycle, glycolysis, and ATP generation. The expression levels of cytochrome P450 1A1 (CYP1A1), multidrug resistance-associated protein 1 (MRP1), and myosin (MYO), and the activity of electron transport system (ETS) in gills were detected, supporting the underlying toxic mechanisms of Hg2+ and BaP. We suggest that the presence of BaP enhances the toxicity of Hg2+ by 1) hampering the detoxification of Hg2+, 2) increasing the immunotoxicity of Hg2+, and 3) constraining energy availability for clams.
Collapse
Affiliation(s)
- Weiwei Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jinghui Fang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Meirong Du
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yaping Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jianguang Fang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Zengjie Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
21
|
Lu K, Song Y, Zeng R. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. CURRENT OPINION IN INSECT SCIENCE 2021; 43:103-107. [PMID: 33387688 DOI: 10.1016/j.cois.2020.11.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 05/27/2023]
Abstract
Insect cytochrome P450 monooxygenases (P450s) are well known to be involved in metabolic detoxification of xenobiotics, such as phytochemicals, insecticides and environmental pollutants. Enhanced metabolic detoxification is closely associated with the constitutive overexpression and induction of P450s. In general, multiple insect P450s are co-responsible for xenobiotic detoxification. Considering the capacity of P450s to respond to a wide range of xenobiotics, synergistic interactions between natural and synthetic xenobiotics and P450-mediated cross-tolerance/resistance are ubiquitous. Recent studies have indicated that both transcription factors and signaling pathways are involved in the regulation of P450 genes in xenobiotic responses. This article reviews our current understanding of P450-mediated detoxification in insect adaptation to xenobiotics and highlights recent progress in the molecular basis of P450 regulation.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rensen Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Identification and response of cytochrome P450 genes in the brackish water flea Diaphanosoma celebensis after exposure to benzo[α]pyrene and heavy metals. Mol Biol Rep 2021; 48:657-664. [PMID: 33393003 DOI: 10.1007/s11033-020-06113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is extensive; these enzymes participate in phase I enzyme metabolism and are involved in xenobiotic detoxification in all living organisms. Despite their significance in xenobiotic detoxification, little is known about the species-specific comparison of CYPs and their molecular responses in aquatic invertebrates. We identified 31 CYPs in the brackish water flea Diaphanosoma celebensis via thorough exploration of transcriptomic databases and measured the transcript profiles of 9 CYPs (within full sequences) in response to benzo[α]pyrene (B[α]P) and two heavy metals (cadmium [Cd] and copper [Cu]). Through phylogenetic analysis, the CYPs were separated and clustered into four clans: mitochondrial, CYP2, CYP3, and CYP4. The expression of 9 CYPs were differentially modulated (up- and/or downregulated) in response to B[α]P, Cd, and Cu. In particular, CYP370A15 was significantly upregulated in response to B[α]P, Cd, and Cu, suggesting that the identified CYPs are involved in xenobiotic detoxification and are useful as biomarkers in response to B[α]P, Cd, and Cu. This study aimed to comprehensively annotate cladoceran CYPs; our results will add to the existing knowledge on the potential roles of CYPs in xenobiotic detoxification in cladocerans.
Collapse
|
23
|
Kang D, Jung IB, Lee SY, Park SJ, Kwon SJ, Park DH, Son JW. Particulate matter less than 10 μm (PM 10) activates cancer related genes in lung epithelial cells. Inhal Toxicol 2020; 32:487-493. [PMID: 33283556 DOI: 10.1080/08958378.2020.1850936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Particulate matter (PM) has various systemic effects. We researched the effects of PM on lung epithelial cells with next generation sequencing (NGS) and validated this with quantitative real-time polymerase chain reaction (qRT-PCR). Methods: We cultured the group exposed to PM10 (Particulate matter less than 10 μm)-like fine dust (ERM® CZ120 fine dust) at a concentration of 50 μg/mL and the untreated group for seven days in one normal lung epithelial cell line (BEAS-2B) and four lung cancer epithelial cell lines (NCI-H358, HCC-827, A549, NCI-H292). Then, we extracted the RNA from the sample and performed NGS. As a result of NGS, various gene expressions were upregulated or downregulated. Among them, we selected the gene whose mean fold change was more than doubled and changed in the same direction in all five cell lines. Based on these genes, we selected the top 10 genes, either upregulated or downregulated, to validate with the qRT-PCR. Results: There were the four genes that matched the NGS and qRT-PCR results, all of which were upregulated genes. The four genes are CYP1A1, CYP1B1, LINC01816, and BPIFA2. All four genes that matched the two results were upregulated genes and none of the downregulated genes matched. Conclusion: CYP1A1 and CYP1B1 are known to cause lung cancer by metabolizing polycyclic aromatic hydrocarbons, and long noncoding RNA is also known to play an important role in lung cancer. Considering this, we thought PM10 might be associated with lung cancer by activating CYP1A1, CYP1B1, and LINC01816.
Collapse
Affiliation(s)
- Daeun Kang
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - In Beom Jung
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Su Yel Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Se Jin Park
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Sun Jung Kwon
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Dong Ho Park
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Ji Woong Son
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Zhang Q, Zhang C, Ge J, Lv MW, Talukder M, Guo K, Li YH, Li JL. Ameliorative effects of resveratrol against cadmium-induced nephrotoxicity via modulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated Mitophagy. Food Funct 2020; 11:1856-1868. [PMID: 32068207 DOI: 10.1039/c9fo02287b] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a toxic pollutant with high nephrotoxicity in the agricultural environment. Resveratrol has been found to have a renoprotective effect but the underlying mechanisms of this have not yet been fully elucidated. The aim of this study is to illustrate the antagonism of resveratrol against Cd-induced nephrotoxicity. A total of 80 birds were divided randomly into 4 groups and treated via diet for 90 days as follows: control group (Con); 400 mg kg-1 resveratrol group (Resv); 140 mg kg-1 Cd group (Cd 140); and 140 mg kg-1 Cd + 400 mg kg-1 resveratrol group (Cd + Resv). It was observed that resveratrol treatment dramatically alleviated Cd-induced histopathological lesions of the kidney. Simultaneously, resveratrol mitigated Cd-induced oxidative stress by reducing MDA and H2O2 production, alleviating GSH depletion and restoring the activity of antioxidant enzymes (T-SOD, Cu-Zn SOD, CAT, GST and GSH-Px). Resveratrol activated NXRs (CAR/PXR/AHR/Nrf2) signaling pathways and exerted antidotal roles by enhancing the phase I and II detoxification systems to relieve oxidative damage. Moreover, resveratrol ameliorated Cd-induced ultrastructural abnormality and mitochondria dysfunction by recovering mitochondrial function-related factors VDAC1, Cyt C and Sirt3 upregulation and Sirt1, PGC-1α, Nrf1 and TFAM transcription restrictions. Resveratrol attenuated Cd-induced excessive mitochondrial fission and promoted mitochondrial fusion, which reversed PINK1/Parkin-mediated mitophagy initiation. Collectively, our findings explicate the potential protection against Cd-induced nephrotoxicity and mitochondria damage.
Collapse
Affiliation(s)
- Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Al Naggar Y, Dabour K, Masry S, Sadek A, Naiem E, Giesy JP. Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (Apis millefera L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19004-19015. [PMID: 30280346 DOI: 10.1007/s11356-018-3314-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Cadmium and lead-based nanotechnologies are increasingly used in agricultural, industrial, and biological processes; however, potential adverse effects of nanomaterials on honey bees had not been assessed. In this study, effects of exposures to sublethal concentrations of PbO and CdO nanoparticles (NPs), either separately or in combination on honey bee (Apis mellifera) workers, were assessed. Honey bee workers were orally exposed for 9 days under laboratory conditions to sublethal concentrations (20% of LC50) of CdO (0.01 mg/ml-) and PbO (0.65 mg/ml-) NPs either separately or combined. Effects on survival, feeding rate, activity of acetylcholinesterase (AChE), and expression of selected stress-related detoxifying enzymes were quantified. Survival and feeding rates decreased particularly in bees fed sugar syrup containing CdO NPs or binary mixtures of NPs of both metal oxides. Expressions of genes involved in detoxification of xenobiotics were affected by various combinations. Expression of catalase was 13.6-fold greater in bees consumed sugar syrup diet containing binary mixture of sublethal concentrations of both CdO and PbO NPs than it was in unexposed, control bees. AChE activity in heads of honey bees was inhibited by 3.8-, 3.0-, and 2.8-fold relative to control, respectively, in response to exposure to Cd or/and Pb oxide NPs. This result indicates potential neurotoxic effects of these NPs to honey bees. CdO NPs exhibited greater potency to honey bees. Overall, sublethal concentrations of CdO or/and PbO NPs resulted in detrimental effects on honeybee workers.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Centre of Integrative Bee Research (CIBER), Entomology Department, University of California at Riverside, Riverside, CA, 92507, USA.
| | - Khaled Dabour
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Saad Masry
- Department of Plant Protection and Molecular Diagnosis, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Ahmed Sadek
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, 12613, Egypt
| | - Elsaied Naiem
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
26
|
Badran G, Ledoux F, Verdin A, Abbas I, Roumie M, Genevray P, Landkocz Y, Lo Guidice JM, Garçon G, Courcot D. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. CHEMOSPHERE 2020; 243:125440. [PMID: 31995888 DOI: 10.1016/j.chemosphere.2019.125440] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
To date no study has been able to clearly attribute the observed toxicological effects of atmospheric particles (PM) to a specific class of components. The toxicity of both the organic extractable matter (OEM2.5-0.3) and non-extractable matter (NEM2.5-0.3) of fine particles (PM2.5-0.3) was compared to that of PM2.5-0.3 in its entirety on normal human epithelial bronchial BEAS-2B cells in culture. The specific effect of the quasi-ultrafine fraction (PM0.3) was assessed, by comparing the responses of cells exposed to the PM2.5-0.3 and PM0.3 organic extractable matter, OEM2.5-0.3 and OEM0.3 respectively. Chemically, PAH, O-PAH, and N-PAH were respectively 43, 17, and 4 times more concentrated in PM0.3 than in PM2.5-0.3, suggesting thereby a predominant influence of anthropogenic activities and combustion sources. BEAS-2B cells exposed to PM2.5-0.3, NEM2.5-0.3, EOM2.5-0.3 and OEM0.3 lead to different profiles of expression of selected genes and proteins involved in the metabolic activation of PAH, O-PAH, and N-PAH, and in the genotoxicity pathways. Specifically, OEM0.3 was the most inducer for phase I and phase II enzymes implicated in the metabolic activation of PAH (AHR, AHRR, ARNT, CYP1A1, CYP1B1, EPHX-1, GSTA-4) thereby producing the highest DNA damage, felt by ATR and, thereafter, a cascade of protein phosphorylation (CHK1/CHK2/MDM2) closely related to the cell cycle arrest (P21 and P53 induction). This study underlined the crucial role played by the organic chemicals present in PM0.3. These results should be considered in any future study looking for the main chemical determinants responsible for the toxicity of ambient fine PM.
Collapse
Affiliation(s)
- Ghidaa Badran
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France; CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France; Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France.
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Imane Abbas
- Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Mohamed Roumie
- Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Paul Genevray
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| |
Collapse
|
27
|
Attafi IM, Bakheet SA, Korashy HM. The role of NF-κB and AhR transcription factors in lead-induced lung toxicity in human lung cancer A549 cells. Toxicol Mech Methods 2019; 30:197-207. [PMID: 31682781 DOI: 10.1080/15376516.2019.1687629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lead (Pb) is recognized as the first heavy metal of the top six toxic air pollutants threatening human health and the second hazardous substance. Pb exposure is associated with lung impairment and high incidences of lung cancer. Nuclear factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways are known to be expressed and play an important role in the lung. However, the link between Pb lung toxicity and NF-κB and/or AhR pathways remains unclear. This study was established to explore the role of NF-κB and AhR modulation in Pb-induced lung toxicity in human lung cancer A549 cells. In the current study, treatment of A549 cells with Pb significantly induced cell apoptosis as evidenced by increasing a) the percentage of cells underwent apoptosis determined by flow cytometry and b) p53 mRNA level. Pb treatment induced oxidative stress by a) increasing the formation of reactive oxygen species and b) decreasing GSTA1 mRNA levels. The toxic effects of Pb on the lung was associated with significant increases in NF-κB and AhR levels which was accompanied with increases in downstream targets genes, iNOS and CYP1A1, respectively. Inhibition of NF-κB or AhR either chemically using resveratrol or genetically using small interfering RNA (siRNA) significantly rescued A549 cells from Pb-mediated lung toxicity. The results clearly indicate that Pb-mediated lung toxicities are NF-κB and AhR-dependent mechanism.
Collapse
Affiliation(s)
- Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Poison Control & Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
28
|
Dietary-Induced Obesity, Hepatic Cytochrome P450, and Lidocaine Metabolism: Comparative Effects of High-Fat Diets in Mice and Rats and Reversibility of Effects With Normalization of Diet. J Pharm Sci 2019; 109:1199-1210. [PMID: 31733268 DOI: 10.1016/j.xphs.2019.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
The effects of a high-fat diet on mRNA and protein of cytochrome P450 (CYP) enzymes in rats and mice and its impact on lidocaine deethylation to its main active metabolite, monoethylglycinexylidide (MEGX), in rats were investigated. The effect of a change in diet from high-fat to standard diet was also evaluated. Plasma biochemistry, mRNA, protein expression for selected CYP, and the activity of lidocaine deethylation were determined. The high-fat diet curtailed the activity and the expression of the majority of CYPs (CYP1A2, CYP3A1, CYP2C11, CYP2C12, and CYP2D1), mRNA levels (Cyp1a2 and Cyp3a2), and MEGX maximal formation rate (Vmax). Mice showed complementary results in their protein expressions of cyp3a and 1a2. Switching the diet back to standard chow in rats for 4 weeks reverted the expression levels of mRNA and protein back to normal levels as well as the maximum formation rates of MEGX. Female and male rodents showed similar patterns in CYP expression and lidocaine metabolism in response to the diets, although MEGX formation was faster in male rats. In conclusion, diet-induced obesity caused general decreases in CYP isoforms not only in rats but also in mice. The effects were shown to be reversible in rats by normalizing the diet.
Collapse
|
29
|
Martin PJ, Héliot A, Trémolet G, Landkocz Y, Dewaele D, Cazier F, Ledoux F, Courcot D. Cellular response and extracellular vesicles characterization of human macrophages exposed to fine atmospheric particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112933. [PMID: 31382213 DOI: 10.1016/j.envpol.2019.07.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Exposure to fine atmospheric Particulate Matter (PM) is one of the major environmental causes involved in the development of inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD) or asthma. When PM is penetrating in the pulmonary system, alveolar macrophages represent the first line of defense, in particular by triggering a pro-inflammatory response, and also by their ability to recruit infiltrating macrophages from the bone marrow. The aim of this in vitro study was to evaluate the gene expression and cytokine production involved in the toxicological and inflammatory responses of infiltrating macrophages, as well as the Extracellular Vesicles (EVs) production, after their exposure to PM. The ability of these EVs to convey information related to PM exposure from exposed macrophages to pulmonary epithelial cells was also evaluated. Infiltrating macrophages respond to fine particles exposure in a conventional manner, as their exposure to PM induced the expression of Xenobiotic Metabolizing Enzymes (XMEs) such as CYP1A1 and CYP1B1, the enzymes involved in oxidative stress SOD2, NQO1 and HMOX as well as pro-inflammatory cytokines in a dose-dependent manner. Exposure to PM also induced a greater release of EVs in a dose-dependent manner. In addition, the produced EVs were able to induce a pro-inflammatory phenotype on pulmonary epithelial cells, with the induction of the release of IL6 and TNFα proinflammatory cytokines. These results suggest that infiltrating macrophages participate in the pro-inflammatory response induced by PM exposure and that EVs could be involved in this mechanism.
Collapse
Affiliation(s)
- Perrine J Martin
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Amélie Héliot
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Gauthier Trémolet
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Yann Landkocz
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Dorothée Dewaele
- University of Littoral Côte d'Opale, Common Center of Measurements, CCM, Dunkerque, France.
| | - Fabrice Cazier
- University of Littoral Côte d'Opale, Common Center of Measurements, CCM, Dunkerque, France.
| | - Frédéric Ledoux
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Dominique Courcot
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| |
Collapse
|
30
|
Wu Y, Chen Z, Darwish WS, Terada K, Chiba H, Hui SP. Choline and Ethanolamine Plasmalogens Prevent Lead-Induced Cytotoxicity and Lipid Oxidation in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7716-7725. [PMID: 31131603 DOI: 10.1021/acs.jafc.9b02485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmalogens derived from dietary phospholipids are considered to be potential protectors against oxidation-related disorders, while lead (Pb) is an environmental contaminant worldwide and is known to induce oxidative stress. However, the protective and antilipid oxidative effects of individual plasmalogen species against Pb damage have received little attention. In this study, six plasmalogen species (with either choline or ethanolamine as the headgroup and p16:0/18:1, p16:0/18:2, or p16:0/20:5 as the side chains) were evaluated in human hepatoma cells. Plasmalogen species showed a remarkable recovery in cell viability as well as elimination of reactive oxygen species and suppressed the accumulation of phosphatidylcholine hydroperoxides (from 63.6 ± 1.8% to 80.3 ± 2.9%) and phosphatidylethanolamine hydroperoxides (from 25.7 ± 9.3% to 76.1 ± 3.7%). Moreover, plasmalogens significantly upregulated the gene expression levels of a series of antioxidant enzymes that are regulated via the Nrf-2-dependent pathway. This study suggested that choline and ethanolamine plasmalogens could prevent Pb-induced cytotoxicity and lipid oxidation in HepG2 cells.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
| | - Zhen Chen
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
| | - Wageh S Darwish
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
- Food Control Department, Faculty of Veterinary Medicine , Zagazig University , Zagazig 44519 , Egypt
| | - Koh Terada
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
| | - Hitoshi Chiba
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
- Department of Nutrition , Sapporo University of Health Sciences , Nakanuma Nishi-4-2-1-15, Higashi , Sapporo 007-0894 , Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
| |
Collapse
|
31
|
Wang Y, Wu Q, Liu L, Li X, Lin A, Li C. MoMCP1, a Cytochrome P450 Gene, Is Required for Alleviating Manganese Toxin Revealed by Transcriptomics Analysis in Magnaporthe oryzae. Int J Mol Sci 2019; 20:ijms20071590. [PMID: 30934953 PMCID: PMC6480321 DOI: 10.3390/ijms20071590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022] Open
Abstract
Manganese, as an essential trace element, participates in many physiological reactions by regulating Mn associated enzymes. Magnaporthe oryzae is a serious pathogen and causes destructive losses for rice production. We identified a cytochrome P450 gene, MoMCP1, involving the alleviation of manganese toxin and pathogenicity. To identify the underlying mechanisms, transcriptomics were performed. The results indicated that many pathogenicity related genes were regulated, especially hydrophobin related genes in ∆Momcp1. Furthermore, the Mn2+ toxicity decreased the expressions of genes involved in the oxidative phosphorylation and energy production, and increased the reactive oxygen species (ROS) levels, which might impair the functions of mitochondrion and vacuole, compromising the pathogenicity and development in ∆Momcp1. Additionally, our results provided further information about Mn associated the gene network for Mn metabolism in cells.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Xiaoling Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650223, China.
| | - Aijia Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
32
|
Kumari K, Pathakota GB, Kumar S, Krishna G. Gene structure and comparative and phylogenetic analyses of Catla catla CYP1A full-length cDNA and its responsiveness to benzo(a)pyrene and copper sulphate at early developmental stages. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:95-108. [PMID: 28822029 DOI: 10.1007/s10695-017-0416-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
In the present study, full-length CYP1A cDNA from Catla catla (Catla) has been identified, and its real-time quantitative reverse transcription PCR (qRT-PCR) expression has been evaluated in different tissues, developmental stages (0, 3, 6, 12 and 24 h and 5, 7 and 9 days post-fertilization) and copper sulphate and benzo(a)pyrene (BaP)-treated 5-day post-fertilization (dpf) larvae (6 to 6.5 mm). Various structural, comparative and phylogenetic analyses of the deduced amino acid sequence revealed that the identified gene of Catla belongs to the CYP1A1 subfamily. Among different tissues of Catla, the highest CYP1A expression was observed in the kidney followed by the liver, muscle, gill, intestine and brain. CYP1A mRNA expression was detected during all the larval developmental stages, including the unfertilized egg with the highest expression on 9 dpf. BaP (3.5 ppb) and copper sulphate (sublethal dose 0.516 ppm) challenge test for 96 h to Catla larvae revealed the highest CYP1A1 expression at 48 h post-challenge. CYP1A1 transcript also showed a concentration-dependent increase in expression following exposure at 1.75 and 3.5 ppb of BaP for 48 h. Its expression profiling indicates that it is functional at early developmental stages. It can also be used to develop a specific biomarker tool for monitoring environmental pollution.
Collapse
Affiliation(s)
- Kavita Kumari
- Central Inland Fisheries Research Institute, Barrackpore, 700120, India
- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | | | - Shivendra Kumar
- Dr. Rajendra Prasad Central Agricultural University, Pusa 848125, Samastipur, Bihar, India.
| | - Gopal Krishna
- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| |
Collapse
|
33
|
Flores-Pérez A, Elizondo G. Apoptosis induction and inhibition of HeLa cell proliferation by alpha-naphthoflavone and resveratrol are aryl hydrocarbon receptor-independent. Chem Biol Interact 2018; 281:98-105. [DOI: 10.1016/j.cbi.2017.12.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
|
34
|
Chen YY, Chan KM. Transcriptional inhibition of TCDD-mediated induction of cytochrome P450 1A1 and alteration of protein expression in a zebrafish hepatic cell line following the administration of TCDD and Cd 2. Toxicol Lett 2017; 282:121-135. [PMID: 29107029 DOI: 10.1016/j.toxlet.2017.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/27/2022]
Abstract
We studied the effects of Cd2+ on TCDD-mediated induction of the cytochrome P450 1A1 (cyp1a1) gene using a zebrafish liver cell line (ZFL). Our results showed that Cd2+ inhibited the TCDD-mediated induction of the cyp1a1 protein, enzyme activity, and mRNA expression level. Cd2+ also down-regulated levels of the aryl hydrocarbon receptor (ahr2) and the aryl hydrocarbon receptor nuclear translocator 2b (arnt2b) mRNAs. Compared with TCDD (3nM) treatment alone, co-treatment with Cd2+ (0-30μM) and TCDD (3nM) significantly inhibited the activity of the luciferase reporter gene constructs harboring the distal promoter region (P-2626/-2009) of CYP1A1 and the synthetic 3XRE gene promoter. This indicates that Cd2+ decreased the level of TCDD-induced cyp1a1 through transcriptional inhibition. Proteomic analysis was also used to evaluate the effect of Cd2+ on TCDD-altered protein expression in ZFL cells. The identified proteins are mainly enzymes of the glycolysis pathway and proteasomes, and have anti-oxidative and anti-stress effects.
Collapse
Affiliation(s)
- Ying Ying Chen
- School of Life Sciences, Faculty of Science, Chinese University, Sha Tin, Hong Kong
| | - King Ming Chan
- School of Life Sciences, Faculty of Science, Chinese University, Sha Tin, Hong Kong.
| |
Collapse
|
35
|
Effects of human blood levels of two PAH mixtures on the AHR signalling activation pathway and CYP1A1 and COMT target genes in granulosa non-tumor and granulosa tumor cell lines. Toxicology 2017; 389:1-12. [DOI: 10.1016/j.tox.2017.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022]
|
36
|
Abdussalam A, Elshenawy OH, bin Jardan YA, El-Kadi AO, Brocks DR. The Obesogenic Potency of Various High-Caloric Diet Compositions in Male Rats, and Their Effects on Expression of Liver and Kidney Proteins Involved in Drug Elimination. J Pharm Sci 2017; 106:1650-1658. [DOI: 10.1016/j.xphs.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/12/2017] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
|
37
|
Harbi S, Park H, Gregory M, Lopez P, Chiriboga L, Mignatti P. Arrested Development: Infantile Hemangioma and the Stem Cell Teratogenic Hypothesis. Lymphat Res Biol 2017; 15:153-165. [PMID: 28520518 DOI: 10.1089/lrb.2016.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Early-life programming is defined by the adaptive changes made by the fetus in response to an adverse in utero environment. Infantile hemangioma (IH), a vascular anomaly, is the most common tumor of infancy. Here we take IH as the tumor model to propose the stem cell teratogenic hypothesis of tumorigenesis and the potential involvement of the immune system. OBJECTIVES Teratogenic agents include chemicals, heavy metals, pathogens, and ionizing radiation. To investigate the etiology and pathogenesis of IH, we hypothesized that they result from a teratogenic mechanism. Immature, incompletely differentiated, dysregulated progenitor cells (multipotential stem cells) are arrested in development with vasculogenic, angiogenic, and tumorigenic potential due to exposure to teratogenic agents such as extrinsic factors that disrupt intrinsic factors via molecular mimicry. During the critical period of immunological tolerance, environmental exposure to immunotoxic agents may harness the teratogenic potential in the developing embryo or fetus and modify the early-life programming algorithm by altering normal fetal development, causing malformations, and inducing tumorigenesis. Specifically, exposure to environmental agents may interfere with physiological signaling pathways and contribute to the generation of IH, by several mechanisms. DISCUSSION An adverse in utero environment no longer serves as a sustainable environment for proper embryogenesis and normal development. Targeted disruption of stem cells by extrinsic factors can alter the genetic program. CONCLUSIONS This article offers new perspectives to stimulate discussion, explore novel experimental approaches (such as immunotoxicity/vasculotoxicity assays and novel isogenic models), and to address the questions raised to convert the hypotheses into nontoxic, noninvasive treatments.
Collapse
Affiliation(s)
| | - Hannah Park
- 2 Department of Epidemiology, University of California , Irvine, School of Medicine, Irvine, California
| | - Michael Gregory
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Peter Lopez
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Luis Chiriboga
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Paolo Mignatti
- 4 Department of Medicine, New York University School of Medicine , New York, New York.,5 Department of Cell Biology, New York University School of Medicine , New York, New York
| |
Collapse
|
38
|
Regulation of Human Cytochrome P4501A1 (hCYP1A1): A Plausible Target for Chemoprevention? BIOMED RESEARCH INTERNATIONAL 2016; 2016:5341081. [PMID: 28105425 PMCID: PMC5220472 DOI: 10.1155/2016/5341081] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 1A1 (hCYP1A1) has been an object of study due to its role in precarcinogen metabolism; for this reason it is relevant to know more in depth the mechanisms that rule out its expression and activity, which make this enzyme a target for the development of novel chemiopreventive agents. The aim of this work is to review the origin, regulation, and structural and functional characteristics of CYP1A1 letting us understand its role in the bioactivation of precarcinogen and the consequences of its modulation in other physiological processes, as well as guide us in the study of this important protein.
Collapse
|
39
|
Plant lignan secoisolariciresinol suppresses pericardial edema caused by dioxin-like compounds in developing zebrafish: Implications for suppression of morphological abnormalities. Food Chem Toxicol 2016; 96:160-6. [DOI: 10.1016/j.fct.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
|
40
|
Cavallini A, Lippolis C, Vacca M, Nardelli C, Castegna A, Arnesano F, Carella N, Depalo R. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction. PLoS One 2016; 11:e0152181. [PMID: 27008165 PMCID: PMC4805276 DOI: 10.1371/journal.pone.0152181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb.
Collapse
Affiliation(s)
- Aldo Cavallini
- Laboratory of Cellular and Molecular Biology, Dept. Clinical Pathology, National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, via Turi 27, 70013, Castellana Grotte (BA), Italy
- * E-mail:
| | - Catia Lippolis
- Laboratory of Cellular and Molecular Biology, Dept. Clinical Pathology, National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, via Turi 27, 70013, Castellana Grotte (BA), Italy
| | - Margherita Vacca
- Unit of Pathophysiology of Human Reproduction and Gametes Cryopreservation, Dept. of General Surgery, Gynecology, Obstetrics and Anesthesiology, University Hospital of Bari, Consorziale, Policlinico. piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Claudia Nardelli
- Unit of Pathophysiology of Human Reproduction and Gametes Cryopreservation, Dept. of General Surgery, Gynecology, Obstetrics and Anesthesiology, University Hospital of Bari, Consorziale, Policlinico. piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alessandra Castegna
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”, via E. Orabona 4, 70125, Bari, Italy
| | - Fabio Arnesano
- Dept. of Chemistry, University of Bari “A. Moro”, via E. Orabona 4, 70125, Bari, Italy
| | - Nicola Carella
- Laboratory of Cellular and Molecular Biology, Dept. Clinical Pathology, National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, via Turi 27, 70013, Castellana Grotte (BA), Italy
| | - Raffaella Depalo
- Unit of Pathophysiology of Human Reproduction and Gametes Cryopreservation, Dept. of General Surgery, Gynecology, Obstetrics and Anesthesiology, University Hospital of Bari, Consorziale, Policlinico. piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
41
|
Maayah ZH, Elshenawy OH, Althurwi HN, Abdelhamid G, El-Kadi AOS. Human fetal ventricular cardiomyocyte, RL-14 cell line, is a promising model to study drug metabolizing enzymes and their associated arachidonic acid metabolites. J Pharmacol Toxicol Methods 2014; 71:33-41. [PMID: 25454080 DOI: 10.1016/j.vascn.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/04/2014] [Accepted: 11/23/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION RL-14 cells, human fetal ventricular cardiomyocytes, are a commercially available cell line that has been established from non-proliferating primary cultures derived from human fetal heart tissue. However, the expression of different drug metabolizing enzymes (DMEs) in RL-14 cells has not been elucidated yet. Therefore, the main objectives of the current work were to investigate the capacity of RL-14 cells to express different cytochrome P450 (CYP) isoenzymes and correlate this expression to primary cardiomyocytes. METHODS The expression of CYP isoenzymes was determined at mRNA, protein and catalytic activity levels using real time-PCR, Western blot analysis and liquid chromatography-electron spray ionization-mass spectrometry (LC-ESI-MS), respectively. RESULTS Our results showed that RL-14 cells constitutively express CYP ω-hydroxylases, CYP1A, 1B, 4A and 4F; CYP epoxygenases, CYP2B, 2C and 2J; in addition to soluble epoxide hydrolayse (EPHX2) at mRNA and protein levels. The basal expression of CYP ω-hydroxylases, epoxygenases and EPHX2 was supported by the ability of RL-14 cells to convert arachidonic acid to its biologically active metabolites, 20-hydroxyeicosatetraenoic acids (20-HETEs), 14,15-epoxyeicosatrienoic acids (14,15-EET), 11,12-EET, 8,9-EET, 5,6-EET, 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), 11,12-DHET, 8,9-DHET and 5,6-DHET. Furthermore, RL-14 cells express CYP epoxygenases and ω-hydroxylase at comparable levels to those expressed in adult and fetal human primary cardiomyocytes cells implying the importance of RL-14 cells as a model for studying DMEs in vitro. Lastly, different CYP families were induced in RL-14 cells using 2,3,7,8-tetrachlorodibenzo-p-dioxin and fenofibrate at mRNA and protein levels. DISCUSSION The current study provides the first evidence that RL-14 cells express CYP isoenzymes at comparable levels to those expressed in the primary cells and thus offers a unique in vitro model to study DMEs in the heart.
Collapse
Affiliation(s)
- Zaid H Maayah
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Osama H Elshenawy
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Hassan N Althurwi
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ghada Abdelhamid
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
42
|
Ishikawa T, Takahashi S, Morita K, Okinaga H, Teramoto T. Induction of AhR-mediated gene transcription by coffee. PLoS One 2014; 9:e102152. [PMID: 25007155 PMCID: PMC4090196 DOI: 10.1371/journal.pone.0102152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/16/2014] [Indexed: 11/29/2022] Open
Abstract
Background Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. Methods HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. Results All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. Conclusions By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.
Collapse
Affiliation(s)
- Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tamio Teramoto
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| |
Collapse
|
43
|
Huang GY, Ying GG, Liang YQ, Liu SS, Liu YS. Expression patterns of metallothionein, cytochrome P450 1A and vitellogenin genes in western mosquitofish (Gambusia affinis) in response to heavy metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:97-102. [PMID: 24793519 DOI: 10.1016/j.ecoenv.2014.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 05/21/2023]
Abstract
The aim of this study was to evaluate the effects of three metals (Zn, Cd and Pb) on hepatic metallothionein (MT), cytochrome P450 1A (CYP1A) and vitellogenin (Vtg) mRNA expression in the liver of adult female mosquitofish (Gambusia affinis) after 1, 3 or 8d. Both concentration-response and time-course effects of hepatic MT, CYP1A and Vtg at the transcription level were determined by quantitative real-time PCR. The results from this study showed that Zn, Cd and Pb could significantly induced MT, CYP1A and Vtg mRNA expression levels in mosquitofish. In general, this study demonstrated that heavy metals modulate MT, CYP1A and Vtg mRNA expression levels in a metal-, concentration- or time-dependent manner.
Collapse
Affiliation(s)
- Guo-Yong Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yan-Qiu Liang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shuang-Shuang Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - You-Sheng Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
44
|
Katsnelson BA, Minigaliyeva IA, Degtyareva TD, Privalova LI, Beresneva TA. Does a concomitant exposure to lead influence unfavorably the naphthalene subchronic toxicity and toxicokinetics? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:152-157. [PMID: 24114755 DOI: 10.1002/etc.2405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
Rats were given 20 times during 40 d either naphthalene per gavage or the same and lead acetate intraperitoneally in single doses corresponding to 5% of the respective 50% lethal doses. The concomitant exposure to lead not only added some typical indicators of lead toxicity to the moderate naphthalene intoxication picture but also exaggerated some less specific indices for intoxication. However, a number of such indices testified to attenuation of naphthalene's adverse effects under the impact of lead. Lead also lowered urinary excretion of both total and conjugated naphthalene, while the free- to total naphthalene ratio in urine sharply increased. These results corroborate implicitly the initial hypothesis that lead, being an inhibitor of cytochrome P450, hinders phase I of the naphthalene biotransformation and, thus, the formation of derivates which can be more toxic but are capable of entering into reactions of conjugation with resulting detoxication and elimination of naphthalene from the body.
Collapse
Affiliation(s)
- Boris A Katsnelson
- Ekaterinburg Medical Research Canter for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | | | | | | | | |
Collapse
|
45
|
Kim BM, Choi BS, Lee KW, Ki JS, Kim IC, Choi IY, Rhee JS, Lee JS. Expression profile analysis of antioxidative stress and developmental pathway genes in the manganese-exposed intertidal copepod Tigriopus japonicus with 6K oligochip. CHEMOSPHERE 2013; 92:1214-1223. [PMID: 23714145 DOI: 10.1016/j.chemosphere.2013.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Manganese (Mn) provides one of aquatic pollutants in marine ecosystem. Here we used a 6K oligomicroarray to identify the effect of Mn on transcriptomes in the copepod Tigriopus japonicus. A total of 5594 spots were significantly modulated on a 6K oligomicroarray with hierarchical clustering after exposure to Mn over 24h. Of them, 186 and 489 genes were significantly upregulated and downregulated, respectively. Particularly, several genes involved in stress, detoxification, and developmental functions were significantly modulated in T. japonicus exposed for 24h. In detail, Mn exposure specifically up-regulated genes that were related to intracellular stress, antioxidant, and detoxification pathways such as cytochrome P450s (CYPs), glutathione S-transferases (GSTs), and heat shock proteins (hsps), while a majority of downregulated genes was associated with developmental pathways such as cuticle protein, ecdysone receptor, and vitellogenin. These results demonstrated that Mn exposure modulated gene expression in relation to intracellular stress, leading to developmental retardation in the intertidal copepod, T. japonicus, and provide a better understanding of mechanistic molecular studies of Mn-induced cellular damage.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Posttranslational mechanisms modulating the expression of the cytochrome P450 1A1 gene by methylmercury in HepG2 cells: A role of heme oxygenase-1. Toxicol Lett 2013; 219:239-47. [DOI: 10.1016/j.toxlet.2013.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 11/23/2022]
|
47
|
Val S, Liousse C, Doumbia EHT, Galy-Lacaux C, Cachier H, Marchand N, Badel A, Gardrat E, Sylvestre A, Baeza-Squiban A. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation. Part Fibre Toxicol 2013; 10:10. [PMID: 23548138 PMCID: PMC3637552 DOI: 10.1186/1743-8977-10-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 03/12/2013] [Indexed: 01/22/2023] Open
Abstract
Background The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. Methods Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). Results PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel vehicles (Dakar). Desert dust events seem to produce fewer biological impacts than anthropogenic sources. Discussion Our study shows that combustion sources contribute to the high toxicity of F and UF PM of African urban aerosols, and underlines the importance of emission mitigation and the imperative need to evaluate and to regulate particulate pollution in Africa.
Collapse
|
48
|
The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model. Toxicology 2013; 306:40-9. [DOI: 10.1016/j.tox.2013.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
|
49
|
Amara IE, Anwar-Mohamed A, Abdelhamid G, El-Kadi AO. Mercury modulates the cytochrome P450 1a1, 1a2 and 1b1 in C57BL/6J mice: in vivo and in vitro studies. Toxicol Appl Pharmacol 2013; 266:419-29. [DOI: 10.1016/j.taap.2012.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/17/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
|
50
|
Amara IEA, Anwar-Mohamed A, Abdelhamid G, El-Kadi AOS. Effect of mercury on aryl hydrocarbon receptor-regulated genes in the extrahepatic tissues of C57BL/6 mice. Food Chem Toxicol 2012; 50:2325-34. [PMID: 22579925 DOI: 10.1016/j.fct.2012.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/12/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
Abstract
The individual toxic effects of aryl hydrocarbon receptors (AhR) ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or heavy metals typified by mercury (Hg(2+)) has been previously demonstrated. However, little is known about the combined toxic effects of TCDD and Hg(2+)in vivo. Therefore, we examined the effect of exposure to Hg(2+) (2.5mg/kg) in the absence and presence of TCDD (15 μg/kg) on the AhR-regulated genes using C57Bl/6 mice. Hg(2+) alone did not affect kidney, lung, or heart Cyp1a1/1a2/1b1 mRNA levels. On the contrary, Hg(2+) alone significantly induced kidney Cyp1a1/1a2/1b1 and lung Cyp1b1 protein and catalytic activities. Hg(2+) also induced Nqo1, Gsta1, and HO-1 at the mRNA, protein, and activity levels in the kidney and heart but not in the lung. Upon co-exposure to Hg(2+) and TCDD, Hg(2+) significantly potentiated the TCDD-mediated induction of kidney and lung Cyp1a1/1a2/1b1 mRNA levels, while it decreased their kidney protein and catalytic activity and it increased their lung protein. In addition, Hg(2+) potentiated the TCDD-mediated induction of Nqo1, Gsta1, and HO-1 at mRNA, protein and activity levels in all tissues. The present study demonstrates that Hg(2+) modulates the constitutive and TCDD-induced AhR-regulated genes in a time-, tissue- and, AhR-regulated enzyme genes manner.
Collapse
Affiliation(s)
- Issa E A Amara
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|