1
|
da Silva Viana de Souza H, Kumar A, Nugegoda D. Multigenerational effects of individual and binary mixtures of two commonly used NSAIDs on Daphnia carinata. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-024-02824-1. [PMID: 39755989 DOI: 10.1007/s10646-024-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (IBU) and naproxen (NPX), are widely used for medical purposes but have also become prevalent environmental contaminants. However, there is limited understanding of their effects on aquatic organisms, especially regarding multigenerational and mixture exposures. This study aimed to evaluate the toxicological impacts of ibuprofen and naproxen, individually and in combination, on three generations of Daphnia carinata, a freshwater organism. Daphnids were exposed to environmentally relevant concentrations of ibuprofen and naproxen (0.1, 0.5, 2.5 µg/L and 0.1 + 0.1, 0.1 + 0.5, 2.5 + 2.5 µg/L) throughout multiple generations. The endpoints assessed were reproduction, body size, reproduction recovery, and behaviour. The results revealed that ibuprofen and naproxen negatively impacted reproduction, reducing reproduction output across generations. Additionally, daphnids exhibited changes in body size, with significant alterations observed in the F2 and F3 generations. Male individuals and ephippium were also present at all concentrations throughout all generations. Although reproduction recovery could not be observed in daphnids after one generation in clean water, the average number of neonates was higher in a few treatments in generation F4 compared to generation F3. In addition, binary mixtures of the drugs showed synergistic effects on daphnids' reproduction for most generations. The multigenerational approach provided valuable insights into the long-term effects of these NSAIDs on reproduction success and population dynamics. This study contributes to understanding the ecotoxicity of ibuprofen and naproxen in aquatic organisms, particularly in a multigenerational context and in the presence of mixture exposures.
Collapse
Affiliation(s)
| | - Anupama Kumar
- CSIRO Environment, Waite Road, Urrbrae, SA, 5064, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research group, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Prakash V, Ansari MI, Chauhan SS, Parthasarathi R, Anbumani S. Embryonal exposure to 4-methylbenzylidene camphor induces reproduction impairment in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110051. [PMID: 39413942 DOI: 10.1016/j.cbpc.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
This study investigated how early exposure to xenobiotics can lead to disease in adulthood, which is challenging for toxicologists. We employed a 'cradle to grave' approach using zebrafish (Danio rerio) embryos exposed to 4-methylbenzylidene camphor (4-MBC), a commonly used organic UV filter. Molecular docking and simulation studies confirmed the predictive toxicity and stable interaction of 4-MBC with androgen and estrogen receptors, with binding energies of -9.28 and -9.01 kcal/mol, respectively. Exposure to 4-MBC at 5, 50, and 500 μg/L concentrations resulted in significantly altered transcriptional and translational responses of ar, esr1, and vtg1 genes in embryos at 120 h post-fertilization (hpf). The exposure induced a non-monotonic dose-response pattern (NMDR), a characteristic feature of endocrine-disrupting chemicals. Additionally, a significant decrease in fertilization was observed in adults. Although fecundity was not affected in inter- and intra-breeding performances, developmental deformities were observed in F1 progenies with impaired survival at 10 days post-fertilization. The findings of this study show that embryonic exposure to 4-MBC is likely to induce reproductive and transgenerational toxicity in D. rerio and exhibit endocrine disruption in aquatic non-target organisms. This work is the first to elucidate the low-level long-term effects of 4-MBC from the embryonic stage to adulthood.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shwetha Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Meyer DN, Silva I, Vo B, Paquette A, Blount JR, George SE, Gonzalez G, Cavaneau E, Khalaf A, Petriv AM, Wu CC, Haimbaugh A, Baker TR. Juvenile exposure to low-level 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alters behavior and longitudinal morphometrics in zebrafish and F 1 offspring. J Dev Orig Health Dis 2024; 15:e22. [PMID: 39397699 DOI: 10.1017/s2040174424000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental endocrine disruptor and model AhR agonist, is linked to skeletal abnormalities, cardiac edema, stunted growth rate, altered metabolism, and neurobehavioral deficits. We have previously reported transgenerational reproductive outcomes of developmental TCDD exposure in adult zebrafish (Danio rerio), an NIH-validated model for developmental and generational toxicology. Using the same paradigm of sublethal TCDD exposure (50 pg/ml) at both 3 and 7 weeks post fertilization (wpf), we investigated several novel endpoints, including longitudinal morphometrics and anxiety-linked behavior, in fish exposed as juveniles. We also assessed developmental abnormalities and neurobehavior in their F1 larval offspring. TCDD exposure induced timepoint-dependent decreases in several craniofacial and trunk morphometrics across juvenile development. In early adulthood, however, only exposed males underwent a transient period of compensatory growth, ending between 7 and 12 months post fertilization (mpf). At 12 mpf, exposed adult fish of both sexes displayed increased exploratory behaviors in a novel tank test. The F1 offspring of parents exposed at both 3 and 7 wpf were hyperactive, but neurobehavioral outcomes diverged depending on parental exposure window. F1 exposure-lineage larvae had increased rates of edema and skeletal abnormalities, but fewer unhatched larvae compared to controls. Parent- and timepoint-specific effects of exposure on abnormality rate were also evaluated; these outcomes were considerably less severe. Our novel behavioral findings expand current knowledge of the long-term and intergenerational consequences of early-life TCDD exposure in a zebrafish model, in addition to delineating minor longitudinal morphometric changes in exposed fish and abnormalities in larval offspring.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Isabela Silva
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Brianna Vo
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Amelia Paquette
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Jessica R Blount
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Serena E George
- School of Veterinary Medicine, University of Madison-Wisconsin, Madison, WI, USA
| | - Gabrielle Gonzalez
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Emma Cavaneau
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aicha Khalaf
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Anna-Maria Petriv
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Chia-Chen Wu
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Alex Haimbaugh
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
Zou F, Wu MMH, Tan Z, Lu G, Kwok KWH, Leng Z. Ecotoxicological risk of asphalt pavements to aquatic animals associated with pollutant leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173985. [PMID: 38876354 DOI: 10.1016/j.scitotenv.2024.173985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Contaminants such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) can be released from asphalt pavement and transported through stormwater runoff to nearby water bodies, leading to water pollution and potential harm to living aquatic animals. This study characterizes the heavy metal and PAH leaching from various asphalt paving materials and their potential ecotoxicological effects on zebrafish Danio rerio. Artificial runoffs were prepared in the laboratory concerning the effects of water, temperature, and traffic. The concentrations of heavy metals and PAHs in the leachates were quantified, while the toxicity assessment encompassed mortality, metal stress, PAH toxicity, inflammation, carcinogenicity, and oxidative damage. Gene expressions of related proteins or transcription factors were assessed, including metallothionines, aryl hydrocarbon receptors, interleukin-1β, interleukin-10, nuclear factor-κB, tumor necrosis factor-α, tumor suppressor p53, heat shock protein 70, and reactive oxygen species (ROS). The findings demonstrate that leachates from asphalt pavements containing waste bottom ash, crumb rubber, or specific chemicals could induce notable stress and inflammation responses in zebrafish. In addition, potential carcinogenic effects and the elevation of ROS were identified within certain treatment groups. This study represents the first attempt to assess the ecotoxicity of pavement leachates employing a live fish model, thereby improving the current understanding of the environmental impact of asphalt pavements.
Collapse
Affiliation(s)
- Fuliao Zou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Margaret M H Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhifei Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Guoyang Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong
| | - Kevin W H Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Zhen Leng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Wang CL, Li P, Liu B, Ma YQ, Feng JX, Xu YN, Liu L, Li ZH. Decrypting the skeletal toxicity of vertebrates caused by environmental pollutants from an evolutionary perspective: From fish to mammals. ENVIRONMENTAL RESEARCH 2024; 255:119173. [PMID: 38763280 DOI: 10.1016/j.envres.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.
Collapse
Affiliation(s)
- Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ya-Nan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
6
|
Kossack ME, Bowie K, Tian L, Plavicki JS. Building methodological consensus to ensure rigor and reproducibility in zebrafish fertility research. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106930. [PMID: 38744123 PMCID: PMC11261831 DOI: 10.1016/j.aquatox.2024.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
The summary included in the text: Zebrafish are an increasingly popular model for studying the genetic and environmental factors that shape male and female fertility; however, the field currently lacks a standardized approach to fertility assessment. The current lack of consensus makes comparisons across studies more challenging and is an obstacle to reproducibility in the fields of reproductive biology and toxicology. Here, we review the diversity of spawning approaches used in zebrafish reproductive toxicology research to asses fertility and provide evidence that spawning parameters can result in meaningful differences in egg production and spawning success.
Collapse
Affiliation(s)
- M E Kossack
- Department of Pathology and Laboratory Medicine, Brown University, United States
| | - K Bowie
- Department of Pathology and Laboratory Medicine, Brown University, United States
| | - L Tian
- Department of Pathology and Laboratory Medicine, Brown University, United States
| | - J S Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, United States.
| |
Collapse
|
7
|
Varvara C, Hala E, Di Comite M, Zupa R, Passantino L, Ventriglia G, Quaranta A, Corriero A, Pousis C. An Observational Study of Skeletal Malformations in Four Semi-Intensively Reared Carp Species. Vet Sci 2024; 11:30. [PMID: 38250936 PMCID: PMC10819420 DOI: 10.3390/vetsci11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Cyprinids include some of the most widely farmed freshwater species. The aim of this study was to assess the incidence of skeletal malformations in carp species reared in semi-intensive systems in Albania: common carp (Cyprinus carpio), silver carp (Hypophthalmichthys molitrix), grass carp (Ctenopharyngodon idella) and bighead carp (Hypophthalmichthys nobilis). The common carp fingerlings had a mean total length of 28.9 ± 5.0 mm; the frequencies of individuals with at least one anomaly and at least one severe anomaly were 79.2% and 43.4%, respectively. The silver carp juveniles had a mean total length of 21.6 ± 2.1 mm; the frequencies of individuals with at least one anomaly and one severe anomaly were 93.1% and 57.5%, respectively. The grass carp fry had a mean total length of 33.5 ± 2.6 mm; all the analyzed specimens showed almost one anomaly and 86.4% showed at least one severe anomaly. The bighead carp juveniles had a mean total length of 34.4 ± 5.7 mm; the frequencies of individuals with at least one anomaly and at least one severe anomaly were 95.0% and 62.5%, respectively. The development of a more suitable feeding protocol for herbivorous species and the setting up of more efficient broodstock management protocols are suggested to reduce the high incidence of skeletal malformations.
Collapse
Affiliation(s)
- Caterina Varvara
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (C.V.); (R.Z.); (A.Q.); (A.C.); (C.P.)
| | - Edmond Hala
- Department of Aquaculture and Fisheries, Faculty of Agriculture and Environment, Agricultural University of Tirana, 1030 Tirana, Albania;
| | - Mariasevera Di Comite
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Rosa Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (C.V.); (R.Z.); (A.Q.); (A.C.); (C.P.)
| | - Letizia Passantino
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (C.V.); (R.Z.); (A.Q.); (A.C.); (C.P.)
| | - Angelo Quaranta
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (C.V.); (R.Z.); (A.Q.); (A.C.); (C.P.)
| | - Aldo Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (C.V.); (R.Z.); (A.Q.); (A.C.); (C.P.)
| | - Chrysovalentinos Pousis
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (C.V.); (R.Z.); (A.Q.); (A.C.); (C.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy
| |
Collapse
|
8
|
Kossack ME, Tian L, Bowie K, Plavicki JS. Defining the cellular complexity of the zebrafish bipotential gonad. Biol Reprod 2023; 109:586-600. [PMID: 37561446 PMCID: PMC10651076 DOI: 10.1093/biolre/ioad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing datasets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes, but not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature gonad.
Collapse
Affiliation(s)
- Michelle E Kossack
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Lucy Tian
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Kealyn Bowie
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Jessica S Plavicki
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Kossack ME, Tian L, Bowie K, Plavicki JS. Defining the cellular complexity of the zebrafish bipotential gonad. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524593. [PMID: 36712047 PMCID: PMC9882255 DOI: 10.1101/2023.01.18.524593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage cells arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing data sets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes that were not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature, differentiated gonad.
Collapse
|
10
|
Mansuri A, Kansara K, Raiyani D, Mazmudar D, Kumar A. New insight into long-term effects of phthalates microplastics in developing zebrafish: Evidence from genomic alteration and organ development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104087. [PMID: 36841272 DOI: 10.1016/j.etap.2023.104087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The plasticizer leaches from the microplastics are one of the significant concerns related to plastic pollution. These plasticizers are known to be endocrine disrupters; however, little is known about their long-term effect on the development of aquatic vertebrates. Hence, the present study has been conducted to provide a holistic understanding of the effect of the three most common plasticizers, dibutyl phthalate (DBP), diethyl phthalate (DEP), and di-ethylhexyl phthalate (DEHP) leaching out from the microplastics in zebrafish development. Zebrafish larvae were exposed to different phthalates at different concentrations. The phthalates have shown significantly higher mortality and morphological changes in the larva upon exposure compared to the control. A significant change in the genes related to cardiovascular development (krit1, fbn2b), dorsoventral axis development (chrd, smad5), tail formation (pkd2, wnt3a, wnt8a), and floorplate development (foxa2) were also observed under the effects of the phthalates in comparison to control.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Krupa Kansara
- Biological and Engineering Discipline, Indian Institute of Technology - Gandhinagar (IITGN), Palaj 382355, Gujarat, India.
| | - Dixit Raiyani
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhairya Mazmudar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
11
|
Kossack ME, Manz KE, Martin NR, Pennell KD, Plavicki J. Environmentally relevant uptake, elimination, and metabolic changes following early embryonic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. CHEMOSPHERE 2023; 310:136723. [PMID: 36241106 PMCID: PMC9835613 DOI: 10.1016/j.chemosphere.2022.136723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
Dioxin and dioxin-like compounds are ubiquitous environmental contaminants that induce toxicity by binding to the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The zebrafish model has been used to define the developmental toxicity observed following exposure to exogenous AHR ligands such as the potent agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin, TCDD). While the model has successfully identified cellular targets of TCDD and molecular mechanisms mediating TCDD-induced phenotypes, fundamental information such as the body burden produced by standard exposure models is still unknown. We performed targeted gas chromatography (GC) high-resolution mass spectrometry (HRMS) in tandem with non-targeted liquid chromatography (LC) HRMS to quantify TCDD uptake, model the elimination dynamics of TCDD, and determine how TCDD exposure affects the zebrafish metabolome. We found that 50 ppt, 10 ppb, and 1 ppb waterborne exposures to TCDD during early embryogenesis produced environmentally relevant body burdens: 38 ± 4.34, 26.6 ± 1.2, and 8.53 ± 0.341 pg/embryo, respectively, at 24 hours post fertilization. TCDD exposure was associated with the dysregulation of metabolic pathways that are associated with the AHR signaling pathway as well as pathways shown to be affected in mammals following TCDD exposure. In addition, we discovered that TCDD exposure affected several metabolic pathways that are critical for brain development and function including glutamate metabolism, chondroitin sulfate biosynthesis, and tyrosine metabolism. Together, these data demonstrate that existing exposure methods produce environmentally relevant body burdens of TCDD in zebrafish and provide insight into the biochemical pathways impacted by toxicant-induced AHR activation.
Collapse
Affiliation(s)
- Michelle E Kossack
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Katherine E Manz
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Jessica Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
12
|
Xie H, Li M, Kang Y, Zhang J, Zhao C. Zebrafish: an important model for understanding scoliosis. Cell Mol Life Sci 2022; 79:506. [PMID: 36059018 PMCID: PMC9441191 DOI: 10.1007/s00018-022-04534-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
Scoliosis is a common spinal deformity that considerably affects the physical and psychological health of patients. Studies have shown that genetic factors play an important role in scoliosis. However, its etiopathogenesis remain unclear, partially because of the genetic heterogeneity of scoliosis and the lack of appropriate model systems. Recently, the development of efficient gene editing methods and high-throughput sequencing technology has made it possible to explore the underlying pathological mechanisms of scoliosis. Owing to their susceptibility for developing scoliosis and high genetic homology with human, zebrafish are increasingly being used as a model for scoliosis in developmental biology, genetics, and clinical medicine. Here, we summarize the recent advances in scoliosis research on zebrafish and discuss the prospects of using zebrafish as a scoliosis model.
Collapse
Affiliation(s)
- Haibo Xie
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Li
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yunsi Kang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China. .,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China. .,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
13
|
Igbo JK, Chukwu LO, Oyewo EO, Blum JL, Schanzer A, Wirgin I, Meltzer GY, Roy NK, Zelikoff JT. The Chemistry and Health Outcomes of Electronic Waste (E-Waste) Leachate: Exposure to E-Waste Is Toxic to Atlantic Killifish ( Fundulus heteroclitus) Embryos. SUSTAINABILITY 2022; 14:11304. [PMID: 38883266 PMCID: PMC11178100 DOI: 10.3390/su141811304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Although there is rising global concern over the environmental, ecological, and human health risks associated with the discharge of leachates from e-waste dumpsites into the aquatic ecosystems, little is known in this research area. Thus, for this study, we first defined the chemistry of the test leachate, followed by assessment of the leachate on the development of a model aquatic organism (Fundulus heteroclitus) used extensively as a bioassay organism in pollution studies. Chemical analyses revealed that levels of phosphate (20.03 mg/L), cadmium (Cd) (0.4 mg/L), lead (Pb) (0.2 mg/L), and chromium (Cr) (0.4 mg/L) were higher than the 2009 US EPA and the 2009 National Environmental Standards and Regulations Enforcement Agency (NESREA) permissible limits. Polycyclic aromatic hydrocarbon (PAH) burdens were dominated mainly by the high molecular weight congeners, specifically the ∑4rings (73 μg/L). Total polychlorinated biphenyls (PCB) levels ranged from 0.00 to 0.40 μg/L with the ∑deca PCBs reaching the highest concentration. For the biological studies, F. heteroclitus embryos (48-h post-fertilization) were divided randomly into groups and exposed to one of six e-waste leachate concentrations (10, 1, 0.1, 0.01, 0.001, 0.0001%). Significant differences (p ≤ 0.05) between treated and control groups were observed in standard and total length, and head size. Further analysis using Duncan's post-hoc test of multiple comparison also revealed specific differences within and between specific treatment groups. We conclude that e-waste leachate arising from indiscriminate dumping into aquatic ecosystems in Nigeria contains mixtures of toxic constituents that can threaten ecosystem and public health.
Collapse
Affiliation(s)
- Juliet Kelechi Igbo
- Department of Biological Oceanography, Nigeria Institute for Oceanography and Marine Research, 3 Wilmot Point Road, P.O. Box 12729, Lagos 106104, Nigeria
| | - Lucian Obinna Chukwu
- Department of Marine Sciences, University of Lagos, P.O. Box 156, Lagos 100218, Nigeria
| | - Emmanuel Olusegun Oyewo
- Department of Biological Oceanography, Nigeria Institute for Oceanography and Marine Research, 3 Wilmot Point Road, P.O. Box 12729, Lagos 106104, Nigeria
| | - Jason L. Blum
- Department of Environmental Medicine, School of Medicine, New York University, 341 East 25th Street, New York, NY 10012, USA
| | - Ariana Schanzer
- Department of Environmental Medicine, School of Medicine, New York University, 341 East 25th Street, New York, NY 10012, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, School of Medicine, New York University, 341 East 25th Street, New York, NY 10012, USA
| | - Gabriella Y. Meltzer
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | - Nirmal K. Roy
- Department of Environmental Medicine, School of Medicine, New York University, 341 East 25th Street, New York, NY 10012, USA
| | - Judith T. Zelikoff
- Department of Environmental Medicine, School of Medicine, New York University, 341 East 25th Street, New York, NY 10012, USA
| |
Collapse
|
14
|
Machikhin A, Huang CC, Khokhlov D, Galanova V, Burlakov A. Single-shot Mueller-matrix imaging of zebrafish tissues: In vivo analysis of developmental and pathological features. JOURNAL OF BIOPHOTONICS 2022; 15:e202200088. [PMID: 35582886 DOI: 10.1002/jbio.202200088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Zebrafish is a well-established animal model for developmental and disease studies. Its optical transparency at early developmental stages allows in vivo tissues visualization. Interaction of polarized light with these tissues provides information on their structure and properties. This approach is effective for muscle tissue analysis due to its birefringence. To enable real-time Mueller-matrix characterization of unanesthetized fish, we assembled a microscope for single-shot Mueller-matrix imaging. First, we performed a continuous observation of 48 species within the period of 2 to 96 hpf and measured temporal dependencies of the polarization features in different tissues. These measurements show that hatching was accompanied by a sharp change in the angle and degree of linearly polarized light after interaction with muscles. Second, we analyzed nine species with skeletal disorders and demonstrated that the spatial distribution of light depolarization features clearly indicated them. Obtained results demonstrated that real-time Mueller-matrix imaging is a powerful tool for label-free monitoring zebrafish embryos.
Collapse
Affiliation(s)
- Alexander Machikhin
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Demid Khokhlov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Victoria Galanova
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Department of Laser and Opto-Electronic Systems, Bauman Moscow State Technical University, Moscow, Russia
| | - Alexander Burlakov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Haimbaugh A, Akemann C, Meyer D, Gurdziel K, Baker TR. Insight into 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced disruption of zebrafish spermatogenesis via single cell RNA-seq. PNAS NEXUS 2022; 1:pgac060. [PMID: 35799832 PMCID: PMC9252172 DOI: 10.1093/pnasnexus/pgac060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent and environmentally persistent endocrine disrupting chemical. Our previous work demonstrated the latent reproductive maladies of early-life TCDD exposure in zebrafish. Zebrafish acutely exposed to low, environmentally relevant levels of TCDD (50 pg/mL) during two windows of sexual differentiation in development (1 hour of exposure at 3 and 7 weeks postfertilization) were later infertile, showed a reduction in sperm, and exhibited gene expression consistent with an altered microenvironment, even months after exposure. Due to the highly heterogeneous cell- type and -stage landscape of the testes, we hypothesized various cell types contribute markedly different profiles toward the pathology of TCDD exposure. To investigate the contributions of the diverse cell types in the adult zebrafish testes to TCDD-induced pathology, we utilized single-cell RNA-seq and the 10x Genomics platform. The method successfully captured every stage of testicular germ cell development. Testes of adult fish exposed during sexual differentiation to TCDD contained sharply decreased populations of late spermatocytes, spermatids, and spermatozoa. Spermatogonia and early spermatocyte populations were, in contrast, enriched following exposure. Pathway analysis of differentially expressed genes supported previous findings that TCDD exposure resulted in male infertility, and suggested this outcome is due to apoptosis of spermatids and spermatozoa, even years after exposure cessation. Increased germ cell apoptosis was confirmed histologically. These results provide support for an environmental exposure explanation of idiopathic male infertility.
Collapse
Affiliation(s)
- Alex Haimbaugh
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | | |
Collapse
|
16
|
Haimbaugh A, Meyer D, Akemann C, Gurdziel K, Baker TR. Comparative Toxicotranscriptomics of Single Cell RNA-Seq and Conventional RNA-Seq in TCDD-Exposed Testicular Tissue. FRONTIERS IN TOXICOLOGY 2022; 4:821116. [PMID: 35615540 PMCID: PMC9126299 DOI: 10.3389/ftox.2022.821116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
In this report, we compare the outcomes and limitations of two methods of transcriptomic inquiry on adult zebrafish testes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during sexual differentiation: conventional or bulk RNA-seq (bulk-seq) and single cell RNA sequencing (scRNA-seq) data. scRNA-seq has emerged as a valuable tool for uncovering cell type-specific transcriptome dynamics which exist in heterogeneous tissue. Our lab previously showed the toxicological value of the scRNA-seq pipeline to characterize the sequelae of TCDD exposure in testes, demonstrating that loss of spermatids and spermatozoa, but not other cell types, contributed to the pathology of infertility in adult male zebrafish exposed during sexual differentiation. To investigate the potential for technical artifacts in scRNA-seq such as cell dissociation effects and reduced transcriptome coverage, we compared bulk-sequenced and scRNA-seq-paired samples from control and TCDD-exposed samples to understand what is gained and lost in scRNA-seq vs bulk-seq, both transcriptomically and toxicologically. We hypothesized that the testes may be sensitive to tissue disruption as they contain multiple cell types under constant division and/or maturation, and that TCDD exposure may mediate the extent of sensitivity. Thus, we sought to understand the extent to which this dissociation impacts the toxicological value of data returned from scRNA-seq. We confirm that the required dissociation of individual cells from intact tissue has a significant impact on gene expression, affecting gene pathways with the potential to confound toxicogenomics studies on exposures if findings are not well-controlled and well-situated in context. Additionally, a common scRNA-seq method using cDNA amplified from the 3' end of mRNA under-detects low-expressing transcripts including transcription factors. We confirm this, and show TCDD-related genes may be overlooked by scRNA-seq, however, this under-detection effect is not mediated by TCDD exposure. Even so, scRNA-seq generally extracted toxicologically relevant information better than the bulk-seq method in the present study. This report aims to inform future experimental design for transcriptomic investigation in the growing field of toxicogenomics by demonstrating the differential information extracted from sequencing cells-despite being from the same tissue and exposure scheme-is influenced by the specific protocol used, with implications for the interpretation of exposure-induced risk.
Collapse
Affiliation(s)
- Alex Haimbaugh
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Genome Sciences Core, Office of the Vice President for Research, Wayne State University, Detroit, MI, United States
| | - Tracie R. Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Shankar P, Garcia GR, LaDu JK, Sullivan CM, Dunham CL, Goodale BC, Waters KM, Stanisheuski S, Maier CS, Thunga P, Reif DM, Tanguay RL. The Ahr2-Dependent wfikkn1 Gene Influences Zebrafish Transcriptome, Proteome, and Behavior. Toxicol Sci 2022; 187:325-344. [PMID: 35377459 DOI: 10.1093/toxsci/kfac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is required for vertebrate development and is also activated by exogenous chemicals, including polycyclic aromatic hydrocarbons (PAHs) and TCDD. AHR activation is well-understood, but roles of downstream molecular signaling events are largely unknown. From previous transcriptomics in 48-hours post fertilization (hpf) zebrafish exposed to several PAHs and TCDD, we found wfikkn1 was highly co-expressed with cyp1a (marker for AHR activation). Thus, we hypothesized wfikkn1's role in AHR signaling, and showed that wfikkn1 expression was Ahr2 (zebrafish ortholog of human AHR)-dependent in developing zebrafish exposed to TCDD. To functionally characterize wfikkn1, we made a CRISPR-Cas9 mutant line with a 16-bp deletion in wfikkn1's exon, and exposed wildtype and mutants to DMSO or TCDD. 48-hpf mRNA sequencing revealed over 700 genes that were differentially expressed (p < 0.05, log2FC > 1) between each pair of treatment combinations, suggesting an important role for wfikkn1 in altering both the 48-hpf transcriptome and TCDD-induced expression changes. Mass spectrometry-based proteomics of 48-hpf wildtype and mutants revealed 325 significant differentially expressed proteins. Functional enrichment demonstrated wfikkn1 was involved in skeletal muscle development and played a role in neurological pathways after TCDD exposure. Mutant zebrafish appeared morphologically normal but had significant behavior deficiencies at all life stages, and absence of Wfikkn1 did not significantly alter TCDD-induced behavior effects at all life stages. In conclusion, wfikkn1 did not appear to be significantly involved in TCDD's overt toxicity but is likely a necessary functional member of the AHR signaling cascade.
Collapse
Affiliation(s)
- Prarthana Shankar
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Gloria R Garcia
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Jane K LaDu
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Christopher M Sullivan
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Cheryl L Dunham
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Britton C Goodale
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 USA
| | - Katrina M Waters
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331.,Biological Sciences Division, Pacific Northwest Laboratory, 902 Battelle Boulevard, Richland, P.O. Box 999, USA WA 99352
| | | | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Preethi Thunga
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Robyn L Tanguay
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| |
Collapse
|
18
|
Kerniske FF, Pena Castro J, De la Ossa-Guerra LE, Mayer BA, Abilhoa V, de Paiva Affonso I, Ferreira Artoni R. Spinal malformations in a naturally isolated Neotropical fish population. PeerJ 2021; 9:e12239. [PMID: 34721968 PMCID: PMC8541325 DOI: 10.7717/peerj.12239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
Fish populations that reside in completely isolated freshwater ecosystems are rare worldwide. The Vila Velha State Park (VVSP), located in southern Brazil, is recognized for its arenitic formations called sinkholes (furnas), which are completely isolated. Fish populations within, such as those of Psalidodon aff. fasciatus, often develop vertebral malformations due to this isolation from other conspecifics and other species. In this study, we analyzed geometric morphology in digital radiographs to identify congenital deformations of Psalidodon aff. fasciatus in Furna 2 of VVSP. We found many fish with spinal deformities, including wide variation in the number of caudal vertebrae and corporal deformations related to a flattened body and spinal curvature. Females were more affected than males. We also demonstrated that these deformations reflect inbreeding and an absence of gene flow in the population. In conclusion, isolated populations such as fish species in furnas are potential models for evo-devo research.
Collapse
Affiliation(s)
| | - Jonathan Pena Castro
- Graduate Program in Evolutionary Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Luz Elena De la Ossa-Guerra
- Graduate Program in Evolutionary Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.,Graduate Program in Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Bruna Angelina Mayer
- Graduate Program in Evolutionary Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Vinícius Abilhoa
- Capão da Imbuia Natural History Museum, Curitiba, Paraná, Brazil
| | | | - Roberto Ferreira Artoni
- Graduate Program in Evolutionary Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.,Graduate Program in Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
19
|
Alla LNR, Monshi M, Siddiqua Z, Shields J, Alame K, Wahls A, Akemann C, Meyer D, Crofts EJ, Saad F, El-Nachef J, Antoon M, Nakhle R, Hijazi N, Hamid M, Gurdziel K, McElmurry SP, Kashian DR, Baker TR, Pitts DK. Detection of endocrine disrupting chemicals in Danio rerio and Daphnia pulex: Step-one, behavioral screen. CHEMOSPHERE 2021; 271:129442. [PMID: 33476875 DOI: 10.1016/j.chemosphere.2020.129442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 05/27/2023]
Abstract
Anthropogenic surface and ground water contamination by chemicals is a global problem, and there is an urgent need to develop tools to identify and elucidate biological effects. Contaminants of emerging concern (CECs) are not typically monitored or regulated and those with known or suspected endocrine disrupting potential have been termed endocrine disrupting chemicals (EDCs). Many CECs are known to be neurotoxic (e.g., insecticides) and many are incompletely characterized. Behavioral responses can identify chemicals with neuroactive properties, which can be relevant to EDC mechanisms (e.g., neuroendocrine disturbances). Two freshwater species, Daphnia pulex and Danio rerio, were evaluated for swimming behavior alterations resulting from 24-hr exposure to 9 CECs: triclosan, triclocarban, chlorpyrifos, dieldrin, 4-nonylphenol, bisphenol-A, atrazine, metformin, and estrone. This is the first step in the development of a bioassay for detecting estrogenic and/or anti-androgenic activity with the goal to evaluate complex mixtures of uncharacterized contaminants in water samples. The second step, described in a subsequent report, examines transcriptome alterations following chemical exposure. Significant differences in the swimming behavior response and sensitivity were found across chemicals within a species and across species for a given chemical in this unique optical bioassay system. In the concentration ranges studied, significant behavioral alterations were detected for 6 of 9 CECs for D. pulex and 4 of 9 CECs for D. rerio. These results underscore the utility of this bioassay to identify behavioral effects of sublethal concentrations of CECs before exploration of transcriptomic alterations for EDC detection.
Collapse
Affiliation(s)
- Lakshmi Neha Reddy Alla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Manahil Monshi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jeremiah Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Karim Alame
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Andrea Wahls
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fadie Saad
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Judy El-Nachef
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Merna Antoon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Raquel Nakhle
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Nemer Hijazi
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Maha Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Shawn P McElmurry
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Donna R Kashian
- Department of Biological Sciences, College of Liberal Arts, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
20
|
Eissa AE, Abu‐Seida AM, Ismail MM, Abu‐Elala NM, Abdelsalam M. A comprehensive overview of the most common skeletal deformities in fish. AQUACULTURE RESEARCH 2021. [DOI: 10.1111/are.15125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Alaa E. Eissa
- Department of Aquatic Animal Medicine and Management Faculty of Veterinary Medicine Cairo University Giza Egypt
| | - Ashraf M. Abu‐Seida
- Department of Surgery, Anesthesiology and Radiology Faculty of Veterinary Medicine Cairo University Giza Egypt
| | - Mona M. Ismail
- Department of Fish Diseases and Management Faculty of Veterinary Medicine Suez Canal University Ismailia Egypt
| | - Nermeen M. Abu‐Elala
- Department of Aquatic Animal Medicine and Management Faculty of Veterinary Medicine Cairo University Giza Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management Faculty of Veterinary Medicine Cairo University Giza Egypt
| |
Collapse
|
21
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
22
|
Hu J, Xia M, Wang Y, Tian F, Sun B, Yang M, Yang W, Ding X, Xu H, Li W. Paternal exposure to di-n-butyl-phthalate induced developmental toxicity in zebrafish (Danio rerio). Birth Defects Res 2020; 113:14-21. [PMID: 33009721 DOI: 10.1002/bdr2.1812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dibutyl phthalate (DBP) is an environmental endocrine disruptor detected in water, soil, and other environmental media frequently. Growing concerns regarding DBP exposure focus on toxicity to male reproduction. Reports about the developmental toxicity of paternal DBP exposure are rare. In this study, we investigated the developmental toxicity of paternal exposure to DBP on offspring in zebrafish. METHODS Adult male zebrafish with normal reproductive function were exposed to 0.2, 0.6, 1.8 mg/L of DBP or acetone solvent control for 30 days, and then mated with females. Thirty embryos per group were randomly selected to be observed, and malformations were recorded and photographed. The mating and observations were repeated three times, for a total of 90 embryos per group. RESULTS The results showed that the percentage of malformations, such as edema and a bent trunk, was increased in the 0.6 and 1.8 mg/L DBP exposure groups, the heart rate and spontaneous contraction decreased in the 0.6 and 1.8 mg/L DBP exposure groups and migration of primordial germ cells was disrupted in some F1 embryos in all DBP exposure group after paternal exposure. The axial skeleton was affected in some F1 adults in the 1.8 mg/L DBP exposure group. CONCLUSIONS Our findings demonstrate the developmental toxicity of paternal DBP exposure in zebrafish.
Collapse
Affiliation(s)
- Jingying Hu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Bing Sun
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Wei Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Xuncheng Ding
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Huihui Xu
- Division of Health Risk Factors Surveillance and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, P.R. China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| |
Collapse
|
23
|
Akemann C, Meyer DN, Gurdziel K, Baker TR. TCDD-induced multi- and transgenerational changes in the methylome of male zebrafish gonads. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa010. [PMID: 33214906 PMCID: PMC7660120 DOI: 10.1093/eep/dvaa010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 05/23/2023]
Abstract
The legacy endocrine disrupting chemical and aryl hydrocarbon receptor agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is produced as a byproduct of industrial processes and causes adverse health effects ranging from skin irritation to cancer. TCDD endpoints are also observed in subsequent, unexposed generations; however, the mechanisms of these multi- and transgenerational effects are unknown. We hypothesized an epigenetic mechanism, specifically DNA methylation for the transgenerational, male-mediated reproductive effects of developmental TCDD exposure. Using whole genome bisulfite sequencing, we evaluated DNA methylation changes in three generations of zebrafish, the first of which was exposed to TCDD during sexual development at 50 ppt for 1 h at both 3- and 7-week post-fertilization. We discovered that TCDD induces multi- and transgenerational methylomic changes in testicular tissue from zebrafish with decreased reproductive capacity, but most significantly in the indirectly exposed F1 generation. In comparing differentially methylated genes to concurrent transcriptomic changes, we identified several genes and pathways through which transgenerational effects of low level TCDD exposure are likely inherited. These include significant differential methylation of genes involved in reproduction, endocrine function, xenobiotic metabolism, and epigenetic processing. Notably, a number of histone modification genes were both differentially methylated and expressed in all generations, and many differentially methylated genes overlapped between multiple generations. Collectively, our results suggest that DNA methylation is a promising mechanism to explain male-mediated transgenerational reproductive effects of TCDD exposure in zebrafish, and these effects are likely inherited through integration of multiple epigenetic pathways.
Collapse
Affiliation(s)
- Camille Akemann
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| | - Danielle N Meyer
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| | - Katherine Gurdziel
- School of Medicine, Applied Genome Technology Center, Wayne State University, Detroit, 261 E Hancock St, Detroit, MI, 4820, USA
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| |
Collapse
|
24
|
Marcé-Nogué J, Liu J. Evaluating fidelity of CT based 3D models for Zebrafish conductive hearing system. Micron 2020; 135:102874. [PMID: 32388237 DOI: 10.1016/j.micron.2020.102874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 01/25/2023]
Abstract
The zebrafish Weberian apparatus is an emerging model for human conductive hearing system. Their Weberian apparatus comprises minute bones and ligamentary links, and conducts sound pressure transmission from the gas bladder to inner ear through four pairs of Weberian ossicles along the vertebral column. We herein present a methodological study using MicroCT to image the Weberian apparatus for biomechanical and morphological analysis. The aim of this work is to evaluate computational models generated from multiple MicroCT scans with different parameters, to identify the most feasible scan combination for practical (minimized scan time) yet accurate (relative to highest resolution) biomechanical simulations. We segmented and created 3D models from CT scan image stacks at 4.64 μm, 5.05 μm, 9.30 μm and 13.08 μm voxel resolutions, respectively. Then, we used geometric morphometrics analysis to quantify inter-model shape differences, as well as a series of finite element modal and harmonic analyses to simulate auditory signal vibrations. Relative to the highest resolution and most accurate model, the Model 9.30 is closest in overall geometry and biomechanical behavior of all lower resolution models. The differences in resolution and quality of the CT substantially affect the segmentation and reconstruction process of the three-dimensional model of the ossicles, and the subsequent analyses. We conclude that scan voxel resolution is a key factor influencing outcomes of biomechanical simulations of delicate and minute structures, especially when studying the harmonic response of minute ossicles connected by ligaments using finite element modeling. Furthermore, contrast variations in CT images as determined by x-ray power and scan speed, also affect fidelity in 3D models and simulation outcomes.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Liu
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA.
| |
Collapse
|
25
|
Crawford KA, Clark BW, Heiger-Bernays WJ, Karchner SI, Hahn ME, Nacci DE, Schlezinger JJ. Tributyltin disrupts fin development in Fundulus heteroclitus from both PCB-sensitive and resistant populations: Investigations of potential interactions between AHR and PPARγ. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105334. [PMID: 31743820 PMCID: PMC6935467 DOI: 10.1016/j.aquatox.2019.105334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 05/09/2023]
Abstract
Tributyltin (TBT) and dioxin-like polychlorinated biphenyls (PCBs) are environmental contaminants that are highly toxic to fish and co-occur in New Bedford Harbor (NBH), an estuarine Superfund site located in Massachusetts, USA. Atlantic killifish (Fundulus heteroclitus) that reside in NBH (and other highly contaminated sites along the east coast of the United States) have developed resistance to activation of the aryl hydrocarbon receptor (AHR) pathway and the toxicity of dioxin-like chemicals, such as 3,3',4,4',5-pentachlorobiphenyl, PCB126. In many biological systems, TBT disregulates adipose and bone development via the PPARγ-RXR pathway; AHR activation also disrupts adipose and bone homeostasis, potentially through molecular crosstalk between AHR and PPARγ. However, little is known about how co-exposure and the interaction of these pathways modulate the toxicological effects of these contaminants. Here, we tested the hypotheses that TBT would induce teratogenesis in killifish via activation of PPARγ and that PCB126 co-exposure would suppress PPARγ pathway activation in PCB-sensitive killifish from a reference site (Scorton Creek, SC, PCB-sensitive) but not in PCB-tolerant NBH killifish. Killifish embryos from both populations exposed to TBT (50 and 100 nM) displayed caudal fin deformities. TBT did not change the expression of pparg or its target genes related to adipogenesis (fabp11a and fabp1b) in either population. However, expression of osx/sp7, an osteoblast marker gene, and col2a1b, a chondroblast marker gene, was significantly suppressed by TBT only in SC killifish. An RXR-specific agonist, but not a PPARγ-specific agonist, induced caudal fin deformities like those observed in TBT-treated embryos. PCB126 did not induce caudal fin deformities and did not exacerbate TBT-induced fin deformities. Further, PCB126 increased expression of pparg in SC embryos and not NBH embryos, but did not change the expression of fabp1b. Taken together, these results suggest that in killifish embryos the PPARγ pathway is regulated in part by AHR, but is minimally active at least in this early life stage. In killifish, RXR activation, rather than PPARγ activation, appears to be the mechanism by which TBT induces caudal fin teratogenicity, which is not modulated by AHR responsiveness.
Collapse
Affiliation(s)
- K A Crawford
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - B W Clark
- Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - W J Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - S I Karchner
- Boston University Superfund Research Program, Boston, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - M E Hahn
- Boston University Superfund Research Program, Boston, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - D E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - J J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA.
| |
Collapse
|
26
|
Dang Z, Kienzler A. Changes in fish sex ratio as a basis for regulating endocrine disruptors. ENVIRONMENT INTERNATIONAL 2019; 130:104928. [PMID: 31277008 DOI: 10.1016/j.envint.2019.104928] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Fish sex ratio (SR) is an endpoint potentially indicating both endocrine activity and adversity, essential elements for identifying Endocrine Disrupting Chemicals (EDCs) as required by the EU regulations. Due to different protocols and methods in the literature studies, SR data vary greatly. This study analyses literature SR data and discusses important considerations for using SR data in the regulatory context for the hazard identification, classification, PBT (persistent, bioaccumulative and toxic) assessment, testing, and risk assessment. A total number of 106 studies were compiled for SR of zebrafish, medaka and fathead minnow exposed to 84 chemicals or mixtures. About 53% of literature studies determined SR by methods different from the standard histology method, leading to uncertainty of quantifying SR and differential sensitivity. SR was determined after depuration in 40 papers, which may lead to chemical-induced SR changes reversible to the control. SR was responsive to chemicals with EAS (estrogen, androgen, steoroidogenesis) activity and also to those with thyroid and progesterone activity. Besides, SR was influenced by non-chemical factors, e.g., inbreeding and temperature, leading to difficulty in data interpretation. The ECHA/EFSA/JRC Guidance suggests that SR and gonad histology data can be used for identifying EDCs. Due to reversibility, influence of confounding factors, and responsiveness to chemicals with endocrine activity other than EAS, this study suggests that SR/gonad histology should be combined with certain mode of action evidence for identifying EDCs. Important considerations for using SR data in the identification, classification, PBT assessment, testing, and risk assessment are discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), A. van Leeuwenhoeklaan 9, Bilthoven, the Netherlands.
| | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| |
Collapse
|
27
|
Abstract
The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.
Collapse
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
28
|
Akemann C, Meyer DN, Gurdziel K, Baker TR. Developmental Dioxin Exposure Alters the Methylome of Adult Male Zebrafish Gonads. Front Genet 2019; 9:719. [PMID: 30687390 PMCID: PMC6336703 DOI: 10.3389/fgene.2018.00719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/21/2018] [Indexed: 01/20/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental toxicant and endocrine disrupting compound with reproductive and developmental effects in humans and model organisms, including zebrafish. Our previous microarray and histological studies found defects in spermatogenesis and fertility of zebrafish in response to acute developmental TCDD exposure. These effects are apparent following exposure during reproductive development, modeling fetal basis of adult-onset disease. Some outcomes of these previous studies (reduced fertility, changes in sex ratio, transcriptomic alterations) are also transgenerational – persisting to unexposed generations – through the male germline. We hypothesized that DNA methylation could be a possible mechanism for these reproductive effects and performed whole genome bisulfite sequencing (WGBS), which identifies whole genome DNA methylation status at the base pair level, on testes of adult zebrafish exposed to TCDD (two separate hour-long exposures to 50 pg/mL TCDD at 3 and 7 weeks post fertilization). In response to TCDD exposure, multiple genes were differentially methylated; many of which are involved in reproductive processes or epigenetic modifications, suggesting a role of DNA methylation in later-life health outcomes. Additionally, several differentially methylated genes corresponded with gene expression changes identified in TCDD-exposed zebrafish testes, indicating a potential link between DNA methylation and gene expression. Ingenuity pathway analysis of WGBS and microarray data revealed genes involved in reproductive processes and development, RNA regulation, the cell cycle, and cellular morphology and development. We conclude that site-specific changes in DNA methylation of adult zebrafish testes occur in response to acute developmental TCDD exposure.
Collapse
Affiliation(s)
- Camille Akemann
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Danielle N Meyer
- Department of Pharmacology, Wayne State University, Detroit, MI, United States.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University, Detroit, MI, United States.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
29
|
Elmore SA, Carreira V, Labriola CS, Mahapatra D, McKeag SR, Rinke M, Shackelford C, Singh B, Talley A, Wallace SM, Wancket LM, Willson CJ. Proceedings of the 2018 National Toxicology Program Satellite Symposium. Toxicol Pathol 2018; 46:865-897. [PMID: 30282530 DOI: 10.1177/0192623318800734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 2018 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Indianapolis, Indiana, at the Society of Toxicologic Pathology's 37th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and other topics covered during the symposium included seminiferous tubule dysgenesis in rats, ameloblast and odontoblast degeneration/necrosis in a Sprague Dawley rat, intestinal leiomyositis in a beagle dog, gallbladder mucinous hyperplasia, focus of hepatocellular alteration and bile duct alteration in otters, renal tubule cytoplasmic vacuolation with basophilic granules in mice treated swith antisense oligonucleotide therapy, a uterine choriocarcinoma in a rhesus macaque, and rete ovarii proliferative ovarian lesions in various aged rat strains. One particularly provocative lesion was a malignant neoplastic proliferation in the renal pelvic region of a cynomolgus macaque from a 21-day study. Additional challenging lesions included thyroid proliferative lesions in zebra fish and gross findings in fish larvae during routine chemical screening. The Rabbit and Minipig International Harmonization of Nomenclature and Diagnostic Criteria Organ Working Groups also presented a series of challenging lesions.
Collapse
Affiliation(s)
- Susan A Elmore
- 1 Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Caralyn S Labriola
- 3 Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Debabrata Mahapatra
- 4 Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Sean R McKeag
- 5 Covance Laboratories, Harrogate, North Yorkshire, United Kingdom
| | | | - Cynthia Shackelford
- 7 Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Bhanu Singh
- 8 Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Ashley Talley
- 9 Charles River Laboratories, Inc., Durham, North Carolina, USA
| | - Shannon M Wallace
- 10 Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | | | - Cynthia J Willson
- 4 Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| |
Collapse
|
30
|
Meyer DN, Baker BB, Baker TR. Ancestral TCDD Exposure Induces Multigenerational Histologic and Transcriptomic Alterations in Gonads of Male Zebrafish. Toxicol Sci 2018; 164:603-612. [PMID: 29788325 PMCID: PMC6061693 DOI: 10.1093/toxsci/kfy115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the classic aryl hydrocarbon receptor (AhR) agonist, is a potent environmental toxicant and endocrine-disrupting chemical (EDC) with known developmental toxicity in humans, rodents, and fish. Early life exposure to some EDCs, including TCDD, is linked to the occurrence of adult-onset and multigenerational disease. Previous work exposing juvenile F0 zebrafish (Danio rerio) to 50 ppt (parts per trillion) TCDD during reproductive development has shown male-mediated transgenerational decreases in fertility (F0-F2) and histologic and transcriptomic alterations in F0 testes. Here, we analyzed male germline alterations in F1 and F2 adult fish, looking for changes in testicular histology and gene expression inherited through the male lineage that could account for decreased reproductive capacity. Testes of TCDD-lineage F1 fish displayed an increase in spermatogonia (immature germ cells) and decrease in spermatozoa (mature germ cells). No histological changes were present in F2 fish. Transcriptomic analysis of exposed F1 and F2 testes revealed alterations in lipid and glucose metabolism, oxidation, xenobiotic response, and sperm cell development and maintenance genes, all of which are implicated in fertility outcomes. Overall, we found that differential expression of reproductive genes and reduced capacity of sperm cells to mature could account for the reproductive defects previously seen in TCDD-exposed male zebrafish and their descendants, providing insight into the distinct multigenerational effects of toxicant exposure.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan 48202
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors
| |
Collapse
|
31
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:141-163. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.08.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 05/13/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
32
|
Baker BB, Yee JS, Meyer DN, Yang D, Baker TR. Histological and Transcriptomic Changes in Male Zebrafish Testes Due to Early Life Exposure to Low Level 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Zebrafish 2017; 13:413-23. [PMID: 27618130 DOI: 10.1089/zeb.2016.1275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have shown that zebrafish (Danio rerio) are an excellent model for evaluating the link between early life stage exposure to environmental chemicals and disease in adulthood and subsequent unexposed generations. Previously, we used this model to identify transgenerational effects of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) on skeletal development, sex ratio, and reproductive capacity. Transgenerational inheritance of TCDD toxicity, notably decreased reproductive capacity, appears to be mediated through the male germ line. Thus, we examine testicular tissue for structural and gene expression changes using histology, microarray, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Histological analysis revealed decreased spermatozoa with concurrent increase in spermatogonia, and decreased germinal epithelium thickness in TCDD-exposed males compared with controls. We also identified altered expression of genes associated with testis development, steroidogenesis, spermatogenesis, hormone metabolism, and xenobiotic response. Altered genes are in pathways involving lipid metabolism, molecular transport, small molecule biochemistry, cell morphology, and metabolism of vitamins and minerals. These data will inform future investigations to elucidate the mechanism of adult-onset and transgenerational infertility due to TCDD exposure in zebrafish.
Collapse
Affiliation(s)
- Bridget B Baker
- 1 Fisheries Management, Fish, Wildlife, and Parks Division, Wisconsin Department of Natural Resources , Madison, Wisconsin
| | - Jeremiah S Yee
- 2 Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Danielle N Meyer
- 3 Department of Pharmacology, School of Medicine, Wayne State University , Detroit, Michigan
| | - Doris Yang
- 4 School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin
| | - Tracie R Baker
- 2 Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Pharmacology, School of Medicine, Wayne State University , Detroit, Michigan.,4 School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin.,5 Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors, Wayne State University , Detroit, Michigan
| |
Collapse
|
33
|
Mu J, Chernick M, Dong W, Di Giulio RT, Hinton DE. Early life co-exposures to a real-world PAH mixture and hypoxia result in later life and next generation consequences in medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:162-173. [PMID: 28728047 PMCID: PMC5584607 DOI: 10.1016/j.aquatox.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
Acute effects of individual and complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are well documented in vertebrate species. Hypoxia in fish reduces metabolic rate and reproduction. However, less is known about the later life consequences stemming from early-life exposure to PAHs or hypoxia, particularly their co-exposure. To address this, medaka (Oryzias latipes) embryos were exposed to a complex PAH mixture sediment extract from the Elizabeth River, VA (ERSE) at concentrations of 0.1, 0.5, or 1.0% or to one of three different hypoxia scenarios: continuous, nocturnal, or late stage embryogenesis hypoxia. Co-exposures with 0.1% ERSE and each of the hypoxia scenarios were conducted. Results included decreased survival with ERSE, hatching delays with hypoxia, and higher occurrences of deformities with each. The continuous hypoxia scenario caused the most significant changes in all endpoints. These early-life exposures altered later-life growth, impaired reproductive capacity, and reduced the quality of their offspring. ERSE alone resulted in a female-biased sex ratio while continuous or nocturnal hypoxia produced significantly greater numbers of males; and co-exposure produced an equal sex ratio. Exposure to a PAH mixture and hypoxia during early life stages has meaningful later-life and next generational consequences.
Collapse
Affiliation(s)
- Jingli Mu
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC, USA; College of Animal Science and Technology, Inner Mongolia University for the Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, China
| | | | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Tillitt DE, Buckler JA, Nicks DK, Candrl JS, Claunch RA, Gale RW, Puglis HJ, Little EE, Linbo TL, Baker M. Sensitivity of lake sturgeon (Acipenser fulvescens) early life stages to 2,3,7,8-tetrachlorodibenzo-P-dioxin and 3,3',4,4',5-pentachlorobiphenyl. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:988-998. [PMID: 27600767 DOI: 10.1002/etc.3614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/18/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
The aquatic food web of the Great Lakes has been contaminated with polychlorinated biphenyls (PCBs) since the mid-20th century. Threats of PCB exposures to long-lived species of fish, such as lake sturgeon (Acipenser fulvescens), have been uncertain because of a lack of information on the relative sensitivity of the species. The objective of the present study was to evaluate the sensitivity of early-life stage lake sturgeon to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Mortality, growth, morphological and tissue pathologies, swimming performance, and activity levels were used as assessment endpoints. Pericardial and yolk sac edema, tubular heart, yolk sac hemorrhaging, and small size were the most commonly observed pathologies in both TCDD and PCB-126 exposures, beginning as early as 4 d postfertilization, with many of these pathologies occurring in a dose-dependent manner. Median lethal doses for PCB-126 and TCDD in lake sturgeon were 5.4 ng/g egg (95% confidence interval, 3.9-7.4 ng/g egg) and 0.61 ng/g egg (0.47-0.82 ng/g egg), respectively. The resulting relative potency factor for PCB-126 (0.11) was greater than the World Health Organization estimate for fish (toxic equivalency factor = 0.005), suggesting that current risk assessments may underestimate PCB toxicity toward lake sturgeon. Swimming activity and endurance were reduced in lake sturgeon survivors from the median lethal doses at 60 d postfertilization. Threshold and median toxicity values indicate that lake sturgeon, like other Acipenser species, are more sensitive to PCB and TCDD than the other genus of sturgeon, Scaphirhynchus, found in North America. Indeed, lake sturgeon populations in the Great Lakes and elsewhere are susceptible to PCB/TCDD-induced developmental toxicity in embryos and reductions in swimming performance. Environ Toxicol Chem 2017;36:988-998. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Justin A Buckler
- Five Rivers Services Corporation, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Diane K Nicks
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - James S Candrl
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Rachel A Claunch
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Robert W Gale
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Holly J Puglis
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Edward E Little
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Tiffany L Linbo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Mary Baker
- Office of Response and Restoration, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| |
Collapse
|
35
|
Abstract
As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic.
Collapse
Affiliation(s)
- Kathryn Bambino
- Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jaime Chu
- Icahn School of Medicine at Mount Sinai, New York, United States.
| |
Collapse
|
36
|
Watson ATD, Planchart A, Mattingly CJ, Winkler C, Reif DM, Kullman SW. From the Cover: Embryonic Exposure to TCDD Impacts Osteogenesis of the Axial Skeleton in Japanese medaka, Oryzias latipes. Toxicol Sci 2016; 155:485-496. [PMID: 28077779 DOI: 10.1093/toxsci/kfw229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies from mammalian, fish, and in vitro models have identified bone and cartilage development as sensitive targets for dioxins and other aryl hydrocarbon receptor ligands. In this study, we assess how embryonic 2,3,7,8-tetrachlorochlorodibenzo-p-dioxin (TCDD) exposure impacts axial osteogenesis in Japanese medaka (Oryzias latipes), a vertebrate model of human bone development. Embryos from inbred wild-type Orange-red Hd-dR and 3 transgenic medaka lines (twist:EGFP, osx/sp7:mCherry, col10a1:nlGFP) were exposed to 0.15 nM and 0.3 nM TCDD and reared until 20 dpf. Individuals were stained for mineralized bone and imaged using confocal microscopy to assess skeletal alterations in medial vertebrae in combination with a qualitative spatial analysis of osteoblast and osteoblast progenitor cell populations. Exposure to TCDD resulted in an overall attenuation of vertebral ossification characterized by truncated centra, and reduced neural and hemal arch lengths. Effects on mineralization were consistent with modifications in cell number and cell localization of transgene-labeled osteoblast and osteoblast progenitor cells. Endogenous expression of osteogenic regulators runt-related transcription factor 2 (runx2) and osterix (osx/sp7), and extracellular matrix genes osteopontin (spp1), collagen type I alpha I (col1), collagen type X alpha I (col10a1), and osteocalcin (bglap/osc) was significantly diminished at 20 dpf following TCDD exposure as compared with controls. Through global transcriptomic analysis more than 590 differentially expressed genes were identified and mapped to select pathological states including inflammatory disease, connective tissue disorders, and skeletal and muscular disorders. Taken together, results from this study suggest that TCDD exposure inhibits axial bone formation through dysregulation of osteoblast differentiation. This approach highlights the advantages and sensitivity of using small fish models to investigate how xenobiotic exposure may impact skeletal development.
Collapse
Affiliation(s)
| | - Antonio Planchart
- Department of Biological Sciences.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Carolyn J Mattingly
- Department of Biological Sciences.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore 117543, Singapore
| | - David M Reif
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695.,Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Seth W Kullman
- Department of Biological Sciences; .,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
37
|
Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH. Zebrafish: A Versatile Animal Model for Fertility Research. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9732780. [PMID: 27556045 PMCID: PMC4983327 DOI: 10.1155/2016/9732780] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
Collapse
Affiliation(s)
- Jing Ying Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Sunway College, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Seow Mun Hue
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
38
|
Rigaud C, Couillard CM, Pellerin J, Légaré B, Byer JD, Alaee M, Lebeuf M, Casselman JM, Hodson PV. Temporal variations in embryotoxicity of Lake Ontario American eel (Anguilla rostrata) extracts to developing Fundulus heteroclitus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:765-775. [PMID: 26433333 DOI: 10.1016/j.scitotenv.2015.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
The recruitment of American eel (Anguilla rostrata) juveniles to Lake Ontario (LO), Canada has declined significantly since the 1980s. To investigate the possible contribution of maternally-transferred persistent organic pollutants (POPs) to this decline, this study measured temporal variations in the toxicity of complex organic mixtures extracted from LO American eels captured in 1988, 1998 and 2008 to developing Fundulus heteroclitus exposed by intravitelline (IVi) injection. The 1988 and 1998 eel extracts were most toxic, causing a pattern of sublethal embryotoxic responses similar to those previously reported in F. heteroclitus embryos exposed to single dioxin-like compounds (DLCs): stunted growth, craniofacial deformities, EROD activity induction, and reduced predatory capacities. The potency of extracts declined over time; the only significant effect of the 2008 eel extracts was EROD induction. The chemically-derived TCDD-TEQs of eel extracts, calculated using measured concentrations of some DLCs and their relative potencies for F. heteroclitus, overestimated their potency to induce EROD activity possibly due to interactions among POPs. Other POPs measured in eel extracts (non-dioxin-like PCBs, PBDEs and organochlorinated pesticides) did not appear to be important agonistic contributors to the observed toxicity. The toxicity of the complex mixtures of POPs measured in LO eels may have been underestimated as a result of several factors, including the loss of POPs during extracts preparation and a focus only on short-term effects. Based on the model species examined, our results support the hypothesis that contamination of LO with DLCs may have represented a threat to the American eel population through ecologically-relevant effects such as altered larval prey capture ability. These results prioritize the need to assess early life stage (ELS) toxicity of DLCs in Anguilla species, to investigate long-term effects of complex eel extracts to ELS of fish, and to develop biomarkers for potential effects in eel ELS sampled in the field.
Collapse
Affiliation(s)
- Cyril Rigaud
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Québec G5L 3A1, Canada; Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, Mont-Joli, Québec G5H 3Z4, Canada.
| | - Catherine M Couillard
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, Mont-Joli, Québec G5H 3Z4, Canada.
| | - Jocelyne Pellerin
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Benoît Légaré
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, Mont-Joli, Québec G5H 3Z4, Canada
| | - Jonathan D Byer
- Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada; Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Mehran Alaee
- Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada
| | - Michel Lebeuf
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, Mont-Joli, Québec G5H 3Z4, Canada
| | - John M Casselman
- Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Peter V Hodson
- Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
39
|
Du JL, Cao LP, Liu YJ, Jia R, Yin GJ. A Study of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Induced Liver Injury in Jian Carp (Cyprinus carpio var. Jian) Using Precision-Cut Liver Slices. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:55-61. [PMID: 26508429 DOI: 10.1007/s00128-015-1683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to establish a model for the study of liver injury induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Jian carp using precision-cut liver slices (PCLS). PCLS were treated with TCDD at concentrations of 0, 0.05, 0.1, 0.3, and 0.6 μg/L for 6 h, followed by collection of the culture supernatant and PCLS for analysis. Several biochemical indices were analyzed, including glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA). Expression of mRNA was also estimated for cytochrome P4501A (CYP1A), aryl hydrocarbon receptor2 (AhR2), and aryl hydrocarbon receptor nuclear translocator2 (ARNT2). Results showed that some significant effects (p < 0.05) in MDA, GSH-Px and PCLS viability were observed at a TCDD concentration as low as 0.05 µg/L, and the observed effects increased with exposure concentration. Following exposure to TCDD for 6 h at a concentration of 0.3 μg/L, significant increases (p < 0.01) in the content of GPT, GOT, MDA, and LDH were observed, while SOD activity, GSH-Px activity, and PCLS viability were decreased (p < 0.01 or p < 0.05). Exposure to 0.3 μg/L TCDD also resulted in increased expression of mRNA for CYP1A, AhR2, and ARNT2. Overall, these results provide evidence of TCDD-induced liver injury and oxidative stress in Jian carp. These results also support the use of PCLS as an in vitro model for the evaluation of hepatotoxicity in Jian carp.
Collapse
Affiliation(s)
- Jin-Liang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Li-Ping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Ying-Juan Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Guo-Jun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
40
|
Chen J, Xiao Y, Gai Z, Li R, Zhu Z, Bai C, Tanguay RL, Xu X, Huang C, Dong Q. Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay: Evidence of male-specific effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:204-14. [PMID: 26562050 PMCID: PMC6689195 DOI: 10.1016/j.aquatox.2015.10.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 05/03/2023]
Abstract
Bisphenol A (BPA), a high-volume chemical used to make polycarbonate plastic and epoxy resins, is a ubiquitous contaminant in environment and human body. To investigate the reproductive effects of long-term exposure to low concentrations of BPA, a two-generation study was conducted using the aquatic model species of zebrafish. Our findings revealed that exposure to 1nM (0.228μg/L) BPA for continuous two generations resulted in female-biased sex ratio in both F1 and F2 adult population, decreased sperm density, and decreased sperm quality as measured by motility, velocity, ATP content and lipid peroxidation in F1 and F2 males. Females were less sensitive to BPA exposures than males as no adverse effects were found in female gonads or gametes. Delayed hatching at 48hpf and increased malformation and mortality were found in the offspring from BPA exposed F2, but not F1 parents. Most importantly, the adverse effect on larval development and survival from BPA exposed F2 parents was paternal-specific, resulting mainly from BPA exposed males. Subsequent transcription analysis of F2 male gonads revealed dysregulated mitochondrial biogenesis and significant activation of non-canonical Wnt/planar cell polarity and Wnt/Calcium signaling pathways. Gene expression analysis of larvae from BPA exposed F2 parents showed significant reduced expression of DNA methyltransferases such as dnmt1, dnmt3, and dnmt5. In conclusion, low level BPA exposures for continuous two generations not only affects sex ratio and sperm quantity/quality in F1 and F2 adults, reproductive success in offspring from F2 parents, but also perturbs various molecular pathways potentially contributing to these BPA induced male-specific reproductive defects.
Collapse
Affiliation(s)
- Jiangfei Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanyan Xiao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Zengxin Gai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Rong Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Zixu Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Robert L Tanguay
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State, University, Corvallis, OR 97333, USA
| | - Xiaojiang Xu
- Integrated Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qiaoxiang Dong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
41
|
Di Paolo C, Groh KJ, Zennegg M, Vermeirssen ELM, Murk AJ, Eggen RIL, Hollert H, Werner I, Schirmer K. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:168-178. [PMID: 26551687 DOI: 10.1016/j.aquatox.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in two experiments). Interestingly, the patterns of delayed mortality and delayed effects on growth and development were similar between sole and zebrafish. This indicates the comparability of critical developmental stages across divergent fish species such as a cold water marine flatfish and a tropical freshwater cyprinid. Additionally, sublethal effects in early embryo-larval stages were found promising for predicting delayed lethal and sublethal effects of PCB126. Therefore, the proposed method with zebrafish is expected to provide valuable information on delayed mortality and delayed sublethal effects of chemicals and environmental samples that may be extrapolated to other species.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, 8600, Dübendorf, Switzerland; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Markus Zennegg
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600, Dübendorf, Switzerland.
| | | | - Albertinka J Murk
- Wageningen University, Marine Animal Ecology Group, 6708WD, Wageningen, The Netherlands; IMARES, Institute for Marine Resources and Ecosystem Studies, Wageningen UR, 1780 AB, Den Helder, The Netherlands.
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland.
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany.
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, 8600, Dübendorf, Switzerland.
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland.
| |
Collapse
|
42
|
Mariotti M, Carnovali M, Banfi G. Danio rerio: the Janus of the bone from embryo to scale. ACTA ACUST UNITED AC 2015; 12:188-94. [PMID: 26604948 DOI: 10.11138/ccmbm/2015.12.2.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Danio rerio (zebrafish), like the Roman god Janus, is an old animal model which is recently emerged and looks to the future with an increasing scientific success. Unlike other traditional animal models, zebrafish represents a versatile way to approach the study of the skeleton. Transparency of the larval stage, genetic manipulability and unique anatomical structures (scales) makes zebrafish a powerful and versatile instrument to investigate the bone tissue in terms of structure and function. Like Janus, zebrafish offers two different faces, or better, two models in one animal: larval and adult stage. The embryo can be used to isolate new genes involved in osteogenesis by large-scale mutagenesis screenings. The behavior of bone cells and genes in osteogenesis can be investigate by using transgenic lines, vital dyes, mutants and traditional molecular biology techniques. The adult zebrafish represents an important resource to study the pathways related to the bone metabolism and turnover. In particular, the properties of the caudal fin allow to study mechanisms of bone regeneration and reparation whereas the elasmoid scale represents an unique tool to investigate the bone metabolism under physiological or pathological conditions.
Collapse
Affiliation(s)
- Massimo Mariotti
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Giuseppe Banfi
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
43
|
Wirbisky SE, Weber GJ, Sepúlveda MS, Xiao C, Cannon JR, Freeman JL. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis. Toxicology 2015; 333:156-167. [PMID: 25929836 PMCID: PMC4471955 DOI: 10.1016/j.tox.2015.04.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
Abstract
Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Maria S Sepúlveda
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA.
| | - Changhe Xiao
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
44
|
Buckler J, Candrl JS, McKee MJ, Papoulias DM, Tillitt DE, Galat DL. Sensitivity of shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid sturgeon (S. albus) early life stages to 3,3',4,4',5-pentachlorobiphenyl and 2,3,7,8-tetrachlorodibenzo-P-dioxin exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1417-1424. [PMID: 25703836 DOI: 10.1002/etc.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/03/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Concern exists that polychlorinated biphenyls (PCBs) may be contributing to the current decline of shovelnose sturgeon (Scaphirhynchus platorynchus) and the US federally endangered pallid sturgeon (Scaphirhynchus albus). Waterborne exposures with newly fertilized eggs were used to assess developmental and morphological effects of 2 of the most potent aryl hydrocarbon receptor (AhR) agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on early life stage shovelnose and pallid sturgeon. No dose-related effects of PCB-126 were observed on percent development or hatch in either species at concentrations as high as 1711 ng/g egg. Effects of TCDD on percent development were not assessed in shovelnose sturgeon. However, percent development was not affected by TCDD in pallid sturgeon, and percent hatch was unaffected by TCDD doses as high as 60 ng/g egg to 81 ng/g egg in either species. Morphological pathologies such as yolk sac edema and craniofacial deformities were typical of AhR agonist exposure and were similar in both species. Calculated PCB-126 50% lethal dose (LD50, 95% fiducial limits) values were 196 ng/g egg (188-203 ng/g) for shovelnose and 159 ng/g egg (122-199 ng/g) for pallid sturgeon. Likewise, calculated TCDD LD50 values were 13 ng/g egg (11-15 ng/g) for shovelnose and 12 ng/g egg (10-14 ng/g) for pallid sturgeon. These LD50 values are among the highest recorded in early life stage fish, suggesting that early life stage Scaphirhynchus sturgeon may be comparatively insensitive to AhR agonists.
Collapse
Affiliation(s)
- Justin Buckler
- University of Missouri Cooperative Fish and Wildlife Research Unit, University of Missouri-Columbia, Columbia, Missouri, USA
| | - James S Candrl
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Michael J McKee
- Missouri Department of Conservation, Central Region Office and Research Center, Columbia, Missouri, USA
| | - Diana M Papoulias
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - David L Galat
- University of Missouri Cooperative Fish and Wildlife Research Unit, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
45
|
Huang Y, Wang XL, Zhang JW, Wu KS. Impact of endocrine-disrupting chemicals on reproductive function in zebrafish (Danio rerio). Reprod Domest Anim 2015; 50:1-6. [PMID: 25529055 DOI: 10.1111/rda.12468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/17/2014] [Indexed: 02/05/2023]
Abstract
The prevalence of endocrine-disrupting chemicals (EDCs) in the aquatic environment has been associated with the wide detection of alterations in the development and physiology of vertebrates. Zebrafish, as a model species, has been extensively used in toxicological research. In this review, we focus on recent published evidence of the harmful effects of EDCs on reproductive function in zebrafish, including skewed sex ratio, immature gonads, diminished sexual behaviour, decreased sperm count, reduced spawning and fertilization. These impairments mostly result from disruption to sex-steroid hormones induced by endocrine disruptors. We also discuss other effects of exposure to EDCs. In EDC exposure research, despite incomplete assessments of altered gonad histopathology and sexual behaviour, these present potential effective biomarkers or pathways for evaluating the reproductive function in zebrafish on EDC exposure. To date, the pernicious effects of some EDCs on the reproductive performance in laboratory zebrafish are well understood; however, similar alterations remain for further determination in wild-type fish and more kinds of EDCs. More studies should be performed under established scientific regulatory criteria to investigate the impact of EDCs on reproduction in zebrafish. Moreover, further research is required to explain the definite mechanism of sexual differentiation, which helps in understanding the shift of sexual phenotype with EDC exposure.
Collapse
Affiliation(s)
- Y Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | |
Collapse
|
46
|
Baker TR, King-Heiden TC, Peterson RE, Heideman W. Dioxin induction of transgenerational inheritance of disease in zebrafish. Mol Cell Endocrinol 2014; 398:36-41. [PMID: 25194296 PMCID: PMC4262573 DOI: 10.1016/j.mce.2014.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 01/07/2023]
Abstract
Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD) is an aryl hydrocarbon receptor (AHR) agonist, an endocrine disruptor, and a potent global pollutant. TCDD exposure is associated with diseases of almost every organ system, and its toxicity is highly conserved across vertebrates. While the acute developmental effects of dioxin exposure have been extensively studied, the ability of early sublethal exposure to produce toxicity in adulthood or subsequent generations is poorly understood. This type of question is difficult to study because of the time frame of the effects. With human subjects, such a study could span more than a lifetime. We have chosen zebrafish (Danio rerio) as a model because they are vertebrates with short generation times and consistent genetic backgrounds. Zebrafish have very modest housing needs, facilitating single and multigenerational studies with minimal time and expense. We have used this model to identify transgenerational effects of TCDD on skeletal development, sex ratio, and male-mediated decreases in reproductive capacity. Here we compare these findings with transgenerational effects described in laboratory rodent species. We propose that the zebrafish is a cost-effective model system for evaluating the transgenerational effects of toxic chemicals and their role in the fetal basis of adult disease.
Collapse
Affiliation(s)
- Tracie R Baker
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Tisha C King-Heiden
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI, USA
| | - Richard E Peterson
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA.
| | - Warren Heideman
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
47
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
48
|
Chollett D, Perez KE, King-Heiden TC. Embryonic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs prey capture by zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:784-790. [PMID: 24812677 DOI: 10.1002/etc.2477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As a ubiquitous, persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has the potential to cause lethal deformities in larval fishes. Few studies have examined its impacts on larval growth and craniofacial development in conjunction with feeding capability. The authors used morphological and behavioral assessments to demonstrate that feeding capability of larvae is impaired even when craniofacial structures are not grossly malformed. Zebrafish embryos were exposed to 25 pg TCDD/mL, 50 pg TCDD/mL, or 100 pg TCDD/mL or <0.1% dimethyl sulfoxide for 1 h at 4 h postfertilization and then raised in clean water for 21 d or 90 d to assess craniofacial morphology, feeding capability, and long-term survival. The lower jaw was 5% smaller in 21-d larvae exposed to ≥ 50 pg TCDD/mL, and those larvae caught 10% fewer prey items; survival was reduced by 13% to 23%. The direct cause of TCDD's impacts on feeding capability is not known, but feeding success was correlated with growth, length of lower jaw, and survival. Since low larval mortality rates are key for recruitment, this suggests that exposure to concentrations of TCDD during embryonic development that do not initially cause mortality still has the potential to impact the recruitment success of feral fish. Furthermore, the present work provides additional evidence that behavioral end points are often more sensitive than morphological ones and should be included when assessing the sublethal toxicity of environmental contaminants.
Collapse
|
49
|
Baker TR, Peterson RE, Heideman W. Adverse effects in adulthood resulting from low-level dioxin exposure in juvenile zebrafish. ACTA ACUST UNITED AC 2014; 2. [PMID: 26180821 DOI: 10.4161/endo.28309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is strong evidence indicating that disease in adult humans stems from a combination of genetic and environmental factors. A problem in identifying environmental factors is that subacute exposures during early life are often unnoticed, or exposures are variable among a diverse population. This leads to a confusing pattern in adulthood. An additional problem in following exposure effects in humans is the length of time needed to study outcomes spanning a human generation. We have recently developed a zebrafish model for studying the effects of sublethal juvenile exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin). Although the initial exposure produces no effect at the time, we find skeletal and reproductive defects in adulthood and into subsequent generations. The short generation time of zebrafish along with the ability to maintain large cohorts of exposed individuals and their offspring allows us to overcome variation in exposure and genetic background. Here we describe progress in studying TCDD as an endocrine and developmental disruptor, and our results showing adult consequences of early exposure.
Collapse
Affiliation(s)
- Tracie R Baker
- Department of Pharmaceutical Sciences; University of Wisconsin; Madison, WI USA
| | - Richard E Peterson
- Department of Pharmaceutical Sciences; University of Wisconsin; Madison, WI USA
| | - Warren Heideman
- Department of Pharmaceutical Sciences; University of Wisconsin; Madison, WI USA
| |
Collapse
|
50
|
Baker TR, Peterson RE, Heideman W. Using zebrafish as a model system for studying the transgenerational effects of dioxin. Toxicol Sci 2014; 138:403-11. [PMID: 24470537 DOI: 10.1093/toxsci/kfu006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) has been associated with many disease states in humans. A rising concern is that exposure early in life can lead to adult toxicity and toxicity in subsequent generations. Juvenile zebrafish exposed to TCDD (50 pg/ml in water; 1 h exposure) at 3 and 7 weeks post fertilization showed toxicity only later in adulthood. We have maintained the offspring of these exposed F₀ fish to determine whether we could find adverse affects in the next two generations of F₁ and F₂ offspring. TCDD exposure produced a significantly higher female:male ratio in all three generations. Scoliosis-like axial skeleton abnormalities, not normally observed in controls, were present in the F₁ and F₂ generations descended from the treated F₀ founders. Egg release and fertilization success were reduced in the TCDD lineage F₁ and F₂ generations. This reduction in fertility in the TCDD lineage F₂ generation could be attributed to alterations in the F₂ males. Using zebrafish as a model allowed the simultaneous maintenance of different generations with relatively small space and costs. The zebrafish showed clear signs of transgenerational responses persisting into generations never directly exposed to TCDD.
Collapse
Affiliation(s)
- Tracie R Baker
- Molecular and Environmental Toxicology Center, and Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705-2222
| | | | | |
Collapse
|