1
|
Li Q, Cai X, Zhou H, Ma D, Li N. Maternal smoking cessation in the first trimester still poses an increased risk of attention-deficit/hyperactivity disorder and learning disability in offspring. Front Public Health 2024; 12:1386137. [PMID: 39081356 PMCID: PMC11286595 DOI: 10.3389/fpubh.2024.1386137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Background Studies have found maternal smoking during pregnancy was linked to attention-deficit/hyperactivity disorder (ADHD) risk. It is unclear if maternal smoking cessation during pregnancy lowers ADHD and learning disability (LD) risk in offspring. This study aimed to explore the associations between maternal smoking cessation during pregnancy and ADHD and LD risk in offspring. Methods Data from the National Health and Nutrition Examination Survey 1999-2004 (8,068 participants) were used. Logistic regression was used to analyze the associations between maternal smoking and smoking cessation during pregnancy and ADHD and LD risk in offspring. Results Compared to non-smokers' offspring, maternal smoking during pregnancy increased the risk of ADHD (odds ratios [OR] = 2.07, 95% confidence interval [CI]: 1.67-2.56) and LD (OR = 1.93, 95% CI: 1.61-2.31) in offspring, even if mothers quit smoking later (ORADHD = 1.91, 95%CIADHD: 1.38-2.65, ORLD = 1.65, 95%CILD: 1.24-2.19). Further analysis of the timing of initiation of smoking cessation during pregnancy revealed that, compared to non-smokers' offspring, maternal quitting smoking in the first trimester still posed an increased risk of ADHD (OR = 1.72, 95% CI: 1.41-2.61) and LD (OR = 1.52, 95% CI: 1.06-2.17) in offspring. Maternal quitting smoking in the second or third trimester also had a significantly increased risk of ADHD (OR = 2.13, 95% CI: 1.26-3.61) and LD (OR = 1.82, 95% CI: 1.16-2.87) in offspring. Furthermore, maternal smoking but never quitting during pregnancy had the highest risk of ADHD (OR = 2.17, 95% CI: 1.69-2.79) and LD (OR = 2.10, 95% CI: 1.70-2.58) in offspring. Interestingly, a trend toward a gradual increase in the risk-adjusted OR for ADHD and LD risk was observed among the three groups: maternal quitting smoking in the first trimester, maternal quitting smoking in the second or third trimester, and maternal smoking but never quitting. Conclusion Maternal smoking cessation in the first trimester still poses an increased risk of ADHD and LD in offspring. Furthermore, it seems that the later the mothers quit smoking during pregnancy, the higher the risk of ADHD and LD in their offspring. Therefore, early intervention of maternal smoking in preconception and prenatal care is vital for offspring neurodevelopment.
Collapse
Affiliation(s)
- Qiu Li
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaotang Cai
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Dan Ma
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Na Li
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Goutal S, Tran T, Leroy C, Benhamouda N, Leterrier S, Saba W, Lafont B, Tartour É, Roelens M, Tournier N. Brain Glucose Metabolism as a Readout of the Central Nervous System Impact of Cigarette Smoke Exposure and Withdrawal and the Effects of NFL-101, as an Immune-Based Drug Candidate for Smoking Cessation Therapy. ACS Chem Neurosci 2024; 15:2520-2531. [PMID: 38875216 DOI: 10.1021/acschemneuro.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Neuroimaging biomarkers are needed to investigate the impact of smoking withdrawal on brain function. NFL-101 is a denicotinized aqueous extract of tobacco leaves currently investigated as an immune-based smoking cessation therapy in humans. However, the immune response to NFL-101 and its ability to induce significant changes in brain function remain to be demonstrated. Brain glucose metabolism was investigated using [18F]fluoro-deoxy-glucose ([18F]FDG) PET imaging in a mouse model of cigarette smoke exposure (CSE, 4-week whole-body inhalation, twice daily). Compared with control animals, the relative uptake of [18F]FDG in CSE mice was decreased in the thalamus and brain stem (p < 0.001, n = 14 per group) and increased in the hippocampus, cortex, cerebellum, and olfactory bulb (p < 0.001). NFL-101 induced a humoral immune response (specific IgGs) in mice and activated human natural-killer lymphocytes in vitro. In CSE mice, but not in control mice, single-dose NFL-101 significantly increased [18F]FDG uptake in the thalamus (p < 0.01), thus restoring normal brain glucose metabolism after 2-day withdrawal in this nicotinic receptor-rich region. In tobacco research, [18F]FDG PET imaging provides a quantitative method to evaluate changes in the brain function associated with the withdrawal phase. This method also showed the CNS effects of NFL-101, with translational perspectives for future clinical evaluation in smokers.
Collapse
Affiliation(s)
- Sébastien Goutal
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Thi Tran
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Claire Leroy
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Nadine Benhamouda
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Sarah Leterrier
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Wadad Saba
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | | | - Éric Tartour
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Marie Roelens
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Nicolas Tournier
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| |
Collapse
|
3
|
Hawkey AB, Natarajan S, Kelly O, Gondal A, Wells C, Jones ML, Rezvani AH, Murphy SK, Levin ED. Persisting neurobehavioral consequences of daily or intermittent paternal cannabis administration in F1 and F2 Rats. Neurotoxicology 2024; 103:27-38. [PMID: 38810733 DOI: 10.1016/j.neuro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Repeated paternal preconception exposure to Δ9-tetrahydrocannabinol (Δ9-THC) alone or together with the other constituents in a cannabis extract has been shown in our earlier studies in rats to cause significant neurobehavioral impairment in their offspring. In the current study, we compared the effects of daily cannabis extract (CE) exposure to cannabis on two consecutive days per week, modeling weekend cannabis use in human. The CE contained Δ9-THC as well as cannabidiol and cannabinol. We also extended the investigation of the study to cross-generational effects of grand-paternal cannabis exposure on the F2 generation and included testing the effects of paternal cannabis exposure on responding for opiate self-administration in F1 and F2 generation offspring. We replicated the findings of neurobehavioral impairment in F1 offspring of male rats exposed to cannabis extract containing 4 mg/kg/day of Δ9-THC daily for four weeks prior to mating with drug naïve females. The 4-week cannabis extract exposure caused a significant decrease in weight gain in the male rats exposed daily. In contrast, their offspring showed significantly greater body weights and anogenital distances (AGD) in the third to fourth weeks after birth. The behavioral effects seen in the F1 generation were increased habituation of locomotor activity in the figure-8 maze in female offspring and increased lever pressing for the opiate drug remifentanil in male offspring. The F2 generation showed significantly impaired negative geotaxis and an elimination of the typical sex-difference in locomotor activity, with effects not seen in the F1 generation. This study shows that daily paternal cannabis exposure for four weeks prior to mating causes significant neurobehavioral impairment in the F1 and F2 offspring. Intermittent exposure on two consecutive days per week for four weeks caused comparable neurobehavioral impairment. In sum, there should be concern about paternal as well as maternal exposure to cannabis concerning neurobehavioral development of their offspring.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Biomedical Sciences, Midwestern University, Downers Grove, IL, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sarabesh Natarajan
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Olivia Kelly
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Anas Gondal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Corinne Wells
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Michelle Louise Jones
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
5
|
Wang Z, Shi H, Peng L, Zhou Y, Wang Y, Jiang F. Gender differences in the association between biomarkers of environmental smoke exposure and developmental disorders in children and adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84629-84639. [PMID: 35781659 DOI: 10.1007/s11356-022-21767-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Effects of environmental tobacco smoke (ETS) exposure on children and adolescent health outcomes have been attracted more and more attention. In the present study, we seek to examine the gender-specific difference association of environmental smoke exposure biomarkers and developmental disorders in children and adolescents aged 6-15 years. US nationally representative sample collected from the National Health and Nutrition Examination Survey (NHANES) 2007-2014 was enrolled (N = 4428). Developmental disorders (DDs) are defined as a positive answer to the question, "Does your child receive special education or early intervention services?" Serum cotinine and urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were utilized as acute and chronic exposure biomarkers of ETS, respectively. Participants with serum cotinine >0.015 ng/mL were considered as with acute ETS exposure, and participants with creatinine-adjusted NNAL >0.0006 ng/mL were considered as with chronic ETS exposure. A survey logistic regression model was used to estimate the association between ETS exposure biomarkers and DDs. Additive interaction was utilized to examine the interaction of gender and biomarkers of ETS. Overall, approximately 9% of children were defined as DDs, and 65% of children had serum cotinine and urinary NNAL levels above the limit of detection. In the adjusted models, the association of ETS exposure biomarkers with DDs was only observed in girls. Girls with low cotinine levels and high urinary NNAL levels had 2.074 (95% CI: 1.012-4.247) and 1.851 (95% CI: 1.049-3.265) times higher odds of being DDs than those without ETS exposure, respectively. However, the effects of boys and NNAL exposure on DDs have additively interacted. Our findings first provided strong evidence for gender differences in the association between two tobacco metabolites and DDs in children, disclosing the public health implications and economic burdens of environmental tobacco smoke exposure.
Collapse
Affiliation(s)
- Zixuan Wang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Hui Shi
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Ling Peng
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Ying Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu, China
| | - Fei Jiang
- School of public health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
6
|
Hawkey AB, Piatos P, Holloway Z, Boyda J, Koburov R, Fleming E, Di Giulio RT, Levin ED. Embryonic exposure to benzo[a]pyrene causes age-dependent behavioral alterations and long-term metabolic dysfunction in zebrafish. Neurotoxicol Teratol 2022; 93:107121. [PMID: 36089172 PMCID: PMC9679953 DOI: 10.1016/j.ntt.2022.107121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are products of incomplete combustion which are ubiquitous pollutants and constituents of harmful mixtures such as tobacco smoke, petroleum and creosote. Animal studies have shown that these compounds exert developmental toxicity in multiple organ systems, including the nervous system. The relative persistence of or recovery from these effects across the lifespan remain poorly characterized. These studies tested for persistence of neurobehavioral effects in AB* zebrafish exposed 5-120 h post-fertilization to a typical PAH, benzo[a]pyrene (BAP). Study 1 evaluated the neurobehavioral effects of a wide concentration range of BAP (0.02-10 μM) exposures from 5 to 120 hpf during larval (6 days) and adult (6 months) stages of development, while study 2 evaluated neurobehavioral effects of BAP (0.3-3 μM) from 5 to 120 hpf across four stages of development: larval (6 days), adolescence (2.5 months), adulthood (8 months) and late adulthood (14 months). Embryonic BAP exposure caused minimal effects on larval motility, but did cause neurobehavioral changes at later points in life. Embryonic BAP exposure led to nonmonotonic effects on adolescent activity (0.3 μM hyperactive, Study 2), which attenuated with age, as well as startle responses (0.2 μM enhanced, Study 1) at 6 months of age. Similar startle changes were also detected in Study 2 (1.0 μM), though it was observed that the phenotype shifted from reduced pretap activity to enhanced posttap activity from 8 to 14 months of age. Changes in the avoidance (0.02-10 μM, Study 1) and approach (reduced, 0.3 μM, Study 2) of aversive/social cues were also detected, with the latter attenuating from 8 to 14 months of age. Fish from study 2 were maintained into aging (18 months) and evaluated for overall and tissue-specific oxygen consumption to determine whether metabolic processes in the brain and other target organs show altered function in late life based on embryonic PAH toxicity. BAP reduced whole animal oxygen consumption, and overall reductions in total basal, mitochondrial basal, and mitochondrial maximum respiration in target organs, including the brain, liver and heart. The present data show that embryonic BAP exposure can lead to neurobehavioral impairment across the life-span, but that these long-term risks differentially emerge or attenuate as development progresses.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Perry Piatos
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Zade Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jonna Boyda
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Reese Koburov
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth Fleming
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Joglekar R, Cauley M, Lipsich T, Corcoran DL, Patisaul HB, Levin ED, Meyer JN, McCarthy MM, Murphy SK. Developmental nicotine exposure and masculinization of the rat preoptic area. Neurotoxicology 2022; 89:41-54. [PMID: 35026373 PMCID: PMC8917982 DOI: 10.1016/j.neuro.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Nicotine is a neuroteratogenic component of tobacco smoke, e-cigarettes, and other products and can exert sex-specific effects in the developing brain, likely mediated through sex hormones. Estradiol modulates expression of nicotinic acetylcholine receptors in rats, and plays critical roles in neurodevelopmental processes, including sexual differentiation of the brain. Here, we examined the effects of developmental nicotine exposure on the sexual differentiation of the preoptic area (POA), a brain region that normally displays robust structural sexual dimorphisms and controls adult mating behavior in rodents. Using a rat model of gestational exposure, developing pups were exposed to nicotine (2 mg/kg/day) via maternal osmotic minipump (subcutaneously, sc) throughout the critical window for brain sexual differentiation. At postnatal day (PND) 4, a subset of offspring was analyzed for epigenetic effects in the POA. At PND40, all offspring were gonadectomized, implanted with a testosterone-releasing capsule (sc), and assessed for male sexual behavior at PND60. Following sexual behavior assessment, the area of the sexually dimorphic nucleus of the POA (SDN-POA) was measured using immunofluorescent staining techniques. In adults, normal sex differences in male sexual behavior and in the SDN-POA area were eliminated in nicotine-treated animals. Using novel analytical approaches to evaluate overall masculinization of the adult POA, we identified significant masculinization of the nicotine-treated female POA. In neonates (PND4), nicotine exposure induced trending alterations in methylation-dependent masculinizing gene expression and DNA methylation levels at sexually-dimorphic differentially methylated regions, suggesting that developmental nicotine exposure is capable of triggering masculinization of the rat POA via epigenetic mechanisms.
Collapse
Affiliation(s)
- Rashmi Joglekar
- Duke University Nicholas School of the Environment, Durham, NC 27708 USA
| | - Marty Cauley
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC 27708 USA
| | - Taylor Lipsich
- Duke University Medical Center, Department of Obstetrics & Gynecology, Durham, NC 27708 USA
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Durham, NC 27708 USA
| | - Heather B. Patisaul
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695 USA
| | - Edward D. Levin
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC 27708 USA
| | - Joel N. Meyer
- Duke University Nicholas School of the Environment, Durham, NC 27708 USA
| | - Margaret M. McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD 21201 USA
| | - Susan K. Murphy
- Duke University Medical Center, Department of Obstetrics & Gynecology, Durham, NC 27708 USA
| |
Collapse
|
8
|
Decreased head circumference at birth associated with maternal tobacco smoke exposure during pregnancy on the Japanese prospective birth cohort study. Sci Rep 2021; 11:18949. [PMID: 34556740 PMCID: PMC8460647 DOI: 10.1038/s41598-021-98311-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
Maternal tobacco smoke exposure during pregnancy impairs fetal body size, including head circumference (HC) at birth; however, the mechanism still remains unclear. This analysis using a large prospective cohort study evaluated the impact of maternal tobacco exposure on their offspring's HC and the relationship with placental weight ratio (PWR) and placental abnormalities. Parents-children pairs (n = 84,856) were included from the 104,065 records of the Japan Environmental and Children's Study. Maternal perinatal clinical and social information by self-administered questionnaires, offspring's body size, and placental information were collected. Data were analyzed with binominal logistic regression analysis and path analysis. Logistic regression showed significantly elevated adjusted odds ratio (aOR) (1.653, 95% CI 1.387-1.969) for the impact of maternal smoking during pregnancy on their offspring's smaller HC at birth. Maternal exposure to environmental tobacco smoke in the non-smoking group did not increase aOR for the smaller HC. Path analysis showed that maternal smoking during pregnancy decreased the offspring's HC directly, but not indirectly via PWR or placental abnormalities. The quitting smoking during pregnancy group did not increase aOR for the smaller HC than the non-smoking group, suggesting that quitting smoking may reduce their offspring's neurological impairment even after pregnancy.
Collapse
|
9
|
McCarthy DM, Bhide PG. Heritable consequences of paternal nicotine exposure: from phenomena to mechanisms†. Biol Reprod 2021; 105:632-643. [PMID: 34126634 PMCID: PMC8444703 DOI: 10.1093/biolre/ioab116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Our understanding of the interactions between genetic and environmental factors in shaping behavioral phenotypes has expanded to include environment-induced epigenetic modifications and the intriguing possibility of their association with heritable behavioral phenotypes. The molecular basis of heritability of phenotypes arising from environment-induced epigenetic modifications is not well defined yet. However, phenomenological evidence in favor of it is accumulating rapidly. The resurgence of interest has led to focus on epigenetic modification of germ cells as a plausible mechanism of heritability. Perhaps partly because of practical reasons such as ease of access to male germ cells compared to female germ cells, attention has turned toward heritable effects of environmental influences on male founders. Public health implications of heritable effects of paternal exposures to addictive substances or to psycho-social factors may be enormous. Considering nicotine alone, over a billion people worldwide use nicotine-containing products, and the majority are men. Historically, the adverse effects of nicotine use by pregnant women received much attention by scientists and public policy experts alike. The implications of nicotine use by men for the physical and mental well-being of their children were not at the forefront of research until recently. Here, we review progress in the emerging field of heritable effects of paternal nicotine exposure and its implications for behavioral health of individuals in multiple generations.
Collapse
Affiliation(s)
- Deirdre M McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Pradeep G Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| |
Collapse
|
10
|
Martin MM, McCarthy DM, Schatschneider C, Trupiano MX, Jones SK, Kalluri A, Bhide PG. Effects of Developmental Nicotine Exposure on Frontal Cortical GABA-to-Non-GABA Neuron Ratio and Novelty-Seeking Behavior. Cereb Cortex 2021; 30:1830-1842. [PMID: 31599922 DOI: 10.1093/cercor/bhz207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cigarette smoking during pregnancy is a major public health concern, resulting in detrimental health effects in the mother and her offspring. The adverse behavioral consequences for children include increased risk for attention deficit hyperactivity disorder, working memory deficits, epilepsy, novelty-seeking, and risk-taking behaviors. Some of these behavioral conditions are consistent with an imbalance in frontal cortical excitatory (glutamate) and inhibitory (GABA) neurotransmitter signaling. We used a GAD67-GFP knock-in mouse model to examine if developmental nicotine exposure alters frontal cortical GABA neuron numbers, GABA-to-non-GABA neuron ratio and behavioral phenotypes. Female mice were exposed to nicotine (100 or 200 μg/mL) in drinking water beginning 3 weeks prior to breeding and until 3 weeks postpartum. Male and female offspring were examined beginning at 60 days of age. The nicotine exposure produced dose-dependent decreases in GABA-to-non-GABA neuron ratios in the prefrontal and medial prefrontal cortices without perturbing the intrinsic differences in cortical thickness and laminar distribution of GABA or non-GABA neurons between these regions. A significant increase in exploratory behavior and a shift toward "approach" in the approach-avoidance paradigm were also observed. Thus, developmental nicotine exposure shifts the cortical excitation-inhibition balance toward excitation and produces behavioral changes consistent with novelty-seeking behavior.
Collapse
Affiliation(s)
- Melissa M Martin
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Deirdre M McCarthy
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Chris Schatschneider
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4300, USA
| | - Mia X Trupiano
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Sara K Jones
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Aishani Kalluri
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Pradeep G Bhide
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| |
Collapse
|
11
|
Liu QQ, Ding SK, Zhang H, Shang YZ. The Molecular Mechanism of Scutellaria baicalensis Georgi Stems and Leaves Flavonoids in Promoting Neurogenesis and Improving Memory Impairment by the PI3K-AKT-CREB Signaling Pathway in Rats. Comb Chem High Throughput Screen 2021; 25:919-933. [PMID: 33966617 DOI: 10.2174/1386207324666210506152320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/25/2021] [Accepted: 03/07/2021] [Indexed: 11/22/2022]
Abstract
AIM The aim of this study was to investigate the effect, and molecular mechanism of Scutellaria Baicalensis Georgi stems and leaves flavonoids (SSF) in promoting neurogenesis and improving memory impairment induced by the PI3K-AKT-CREB signaling pathway. METHODS Alzheimer's disease (AD) was induced in the male Wistar rats by intracerebroventricular injection of amyloid beta-peptide 25-35 (Aβ25-35) in combination with aluminum trichloride (AlCl3) and recombinant human transforming growth factor-β1(RHTGF-β1) (composited Aβ). The Morris water maze was used to screen the successful establishment of the memory impairment model of rats. The screened successful model rats were randomly divided into a model group and three groups of three different doses of the drug (SSF). Rats in the drug group were treated with 35, 70, and 140 mg/kg of SSF for 43 days. The Eight-arm maze was used to measure the spatial learning and memory abilities of the rat, including working memory errors (WME) and reference memory errors (RME). Immunohistochemistry was used to detect the expression of BrdU, an indicator of neuronal proliferation, in the hippocampal gyrus of rats. The mRNA and protein expressions of TRKB, PI3K, AKT, P-AKT, and IGF2 in the PI3K-AKT-CREB signaling pathway in the hippocampus and cerebral cortex of the rats were determined by quantitative real-time PCR (qPCR) and Western blotting methods. RESULTS Compared to the sham group, the spatial memory ability of rats with composited Aβ was decreased, the number of WME and RME (P < 0.01) was increased, the expression of BrdU protein (P < 0.01) in the hippocampal gyrus was reduced, the mRNA and protein expression levels of TRKB, AKT, and IGF2 (P < 0.01, P < 0.05) in the hippocampus and cerebral cortex were lowered, and the mRNA expression level of PI3K (P < 0.01) in the cerebral cortex and the protein expression level of PI3K (P < 0.01) in the hippocampus were augmented. However, compared to the model group, the three-doses of SSF improved memory disorder induced by composited Aβ, reduced the number of WME and RME, increased the expression of BrdU protein in the hippocampal gyrus, and differently regulated the mRNA and protein expressions in composited Aβ rats. CONCLUSION SSF improved memory impairment and neurogenesis disorder induced by composited Aβ in rats by activating the PI3K-AKT-CREB signaling pathway and up-regulating the mRNA and protein expressions of TRKB, PI3K, AKT, CREB, and IGF2.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Institute of Traditional Chinese Medicine, Chengde Medical College, Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia, Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development Hebei Key Laboratory of Nerve Injury and Repair, Chengde, Hebei 067000, China
| | - Sheng-Kai Ding
- Institute of Traditional Chinese Medicine, Chengde Medical College, Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia, Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development Hebei Key Laboratory of Nerve Injury and Repair, Chengde, Hebei 067000, China
| | - Hui Zhang
- Institute of Traditional Chinese Medicine, Chengde Medical College, Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia, Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development Hebei Key Laboratory of Nerve Injury and Repair, Chengde, Hebei 067000, China
| | - Ya-Zhen Shang
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
12
|
Vorhees CV, Williams MT, Hawkey AB, Levin ED. Translating Neurobehavioral Toxicity Across Species From Zebrafish to Rats to Humans: Implications for Risk Assessment. FRONTIERS IN TOXICOLOGY 2021; 3:629229. [PMID: 35295117 PMCID: PMC8915800 DOI: 10.3389/ftox.2021.629229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
There is a spectrum of approaches to neurotoxicological science from high-throughput in vitro cell-based assays, through a variety of experimental animal models to human epidemiological and clinical studies. Each level of analysis has its own advantages and limitations. Experimental animal models give essential information for neurobehavioral toxicology, providing cause-and-effect information regarding risks of neurobehavioral dysfunction caused by toxicant exposure. Human epidemiological and clinical studies give the closest information to characterizing human risk, but without randomized treatment of subjects to different toxicant doses can only give information about association between toxicant exposure and neurobehavioral impairment. In vitro methods give much needed high throughput for many chemicals and mixtures but cannot provide information about toxicant impacts on behavioral function. Crucial to the utility of experimental animal model studies is cross-species translation. This is vital for both risk assessment and mechanistic determination. Interspecies extrapolation is important to characterize from experimental animal models to humans and between different experimental animal models. This article reviews the literature concerning extrapolation of neurobehavioral toxicology from established rat models to humans and from zebrafish a newer experimental model to rats. The functions covered include locomotor activity, emotion, and cognition and the neurotoxicants covered include pesticides, metals, drugs of abuse, flame retardants and polycyclic aromatic hydrocarbons. With more complete understanding of the strengths and limitations of interspecies translation, we can better use animal models to protect humans from neurobehavioral toxicity.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Andrew B. Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Edward D. Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
13
|
Holloway ZR, Hawkey AB, Torres AK, Evans J, Pippen E, White H, Katragadda V, Kenou B, Wells C, Murphy SK, Rezvani AH, Levin ED. Paternal cannabis extract exposure in rats: Preconception timing effects on neurodevelopmental behavior in offspring. Neurotoxicology 2020; 81:180-188. [DOI: 10.1016/j.neuro.2020.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023]
|
14
|
Measuring attention in rats with a visual signal detection task: Signal intensity vs. signal duration. Pharmacol Biochem Behav 2020; 199:173069. [PMID: 33144207 DOI: 10.1016/j.pbb.2020.173069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022]
Abstract
Measurement of attentional performance in animal behavioral research allows us to investigate neural mechanisms underlying attentional processes and translate results to better understand human attentional function, dysfunction and drug treatments to reverse dysfunction. One useful method to measure attention in experimental animal studies is to use an operant visual signal detection paradigm, consisting of two levers and the rapid flashing of a cue lamp to signal a reward. In this study, we tested the relative sensitivity of this task when using different variants of the stimulus signal, varying brightness or duration of the light cue. To investigate roles of different neural systems underlying attentional processes, we assessed the sensitivity of attentional performance with these two different cue variations with blockade of muscarinic acetylcholine and NMDA glutamate receptors with scopolamine and MK-801 (dizocilpine). Operant signal detection was tested using a signal light that varied in intensity (0.027, 0.269, 1.22 lx) of the signal light or in a paradigm which varied the duration (0.5 s, 1 s, 2 s) of the signal light. Both methods of assessing attention showed construct validity for producing gradients of accuracy for signal detection; the dimmest cue led to less accurate responding compared to the brighter cues, and the shortest duration led to less accuracy compared to the longer durations. However, the tests differed in their sensitivity to pharmacological disruption. With the duration test, the high dose of MK-801 along with co-exposure of scopolamine and MK-801 caused a significant reduction of hit and rejection accuracy. Conversely, the intensity variation test did not show significant differences as a function of drug exposures. These data suggest that changes in signal duration, rather than signal intensity, during operant signal detection may have higher sensitivity to detecting drug effects and be a more useful technique for examining pharmacological interventions on attentional behavior and performance.
Collapse
|
15
|
Gatzke-Kopp L, Willoughby MT, Warkentien S, Petrie D, Mills-Koonce R, Blair C. Association between environmental tobacco smoke exposure across the first four years of life and manifestation of externalizing behavior problems in school-aged children. J Child Psychol Psychiatry 2020; 61:1243-1252. [PMID: 31797389 PMCID: PMC7350288 DOI: 10.1111/jcpp.13157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Extensive literature in human and animal models has documented an association between maternal smoking during pregnancy and externalizing behavior in offspring. It remains unclear; however, the extent to which postnatal environmental smoke exposure is associated with behavioral development, particularly for children whose mothers did not smoke during pregnancy. The present study examined whether magnitude of exposure to environmental smoke across the first four years of life demonstrated a linear association with later externalizing symptoms. METHODS Exposure was quantified through salivary cotinine measured when children were 6, 15, 24, and 48 months of age, providing a more accurate quantification of realized exposure than can be estimated from parental report of cigarettes smoked. Data were available for n = 1,096 (50% male; 44% African American) children recruited for the Family Life Project, a study of child development in areas of rural poverty. RESULTS Analyses indicate a linear association between cotinine and children's symptoms of hyperactivity and conduct problems. This association remained significant after controlling for family poverty level, parental education, parental history of ADHD, hostility, depression, caregiver IQ, and obstetric complications. Furthermore, this association was unchanged when excluding mothers who smoked during pregnancy from the model. CONCLUSIONS Findings are consistent with animal models demonstrating an effect of environmental exposure to nicotine on ongoing brain development in regions related to hyperactivity and impulsivity, and highlight the importance of mitigating children's exposure to environmental smoke, including sources that extend beyond the parents.
Collapse
Affiliation(s)
| | | | | | - Daniel Petrie
- Pennsylvania State University, University Park, PA, USA
| | | | - Clancy Blair
- New York University School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Holloway ZR, Hawkey AB, Pippin E, White H, Wells C, Kenou B, Rezvani AH, Murphy SK, Levin ED. Paternal factors in neurodevelopmental toxicology: THC exposure of male rats causes long-lasting neurobehavioral effects in their offspring. Neurotoxicology 2020; 78:57-63. [PMID: 32045580 DOI: 10.1016/j.neuro.2020.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/03/2023]
Abstract
The potential health risks of cannabis are of growing concern, including effects on reproduction and development. Extensive research has investigated risks associated with maternal exposure to THC during gestation and its impacts on the development of offspring, but little research has been done regarding paternal THC exposure effects prior to conception. We have previously found that paternal THC exposure in rats causes changes in sperm methylation. In an initial study we also showed that a 12-day paternal THC exposure prior to conception alters locomotor activity and impairs cognitive function of their offspring. This study investigated the cross-generational effects of chronic paternal THC exposure in rats (0, 2, or 4 mg/kg/day SC for 28 days) prior to mating with drug naïve females. The offspring of THC-exposed male rats had significant alterations in locomotor activity and cognitive function. Specifically, during adolescence there was significant locomotor hyperactivity in the offspring of males exposed to 2 mg/kg/day of THC. During the novel object recognition task, the controls maintained their relative preference for the novel object across the duration of the ten-min session while the rats whose fathers received THC (2 mg/kg/day) showed a significantly greater drop-off in interest in the novel object during the second half of the session. Learning in the radial-arm maze was significantly delayed in the offspring of males exposed to 4 mg/kg/day of THC. This study shows that premating chronic paternal THC exposure at multiple dose regimens can cause long-lasting detrimental behavioral effects in their offspring, including abnormal locomotor activity and impaired cognitive function. Future studies should investigate the underlying mechanisms driving these aberrant developmental outcomes and seek to identify possible treatments of alleviation in the presence of paternal THC exposure.
Collapse
Affiliation(s)
- Zade R Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Erica Pippin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Hannah White
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Corinne Wells
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Bruny Kenou
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
17
|
Slotkin TA, Skavicus S, Ko A, Levin ED, Seidler FJ. The Developmental Neurotoxicity of Tobacco Smoke Can Be Mimicked by a Combination of Nicotine and Benzo[a]Pyrene: Effects on Cholinergic and Serotonergic Systems. Toxicol Sci 2019; 167:293-304. [PMID: 30247698 DOI: 10.1093/toxsci/kfy241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tobacco smoke contains polycyclic aromatic hydrocarbons (PAHs) in addition to nicotine. We compared the developmental neurotoxicity of nicotine to that of the PAH archetype, benzo[a]pyrene (BaP), and also evaluated the effects of combined exposure to assess whether PAHs might exacerbate the adverse effects of nicotine. Pregnant rats were treated preconception through the first postnatal week, modeling nicotine concentrations in smokers and a low BaP dose devoid of systemic effects. We conducted evaluations of acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT) systems in brain regions from adolescence through full adulthood. Nicotine or BaP alone impaired indices of ACh presynaptic activity, accompanied by upregulation of nicotinic ACh receptors and 5HT receptors. Combined treatment elicited a greater deficit in ACh presynaptic activity than that seen with either agent alone, and upregulation of nAChRs and 5HT receptors was impaired or absent. The individual effects of nicotine and BaP accounted for only 60% of the combination effects, which thus displayed unique properties. Importantly, the combined nicotine + BaP exposure recapitulated the effects of tobacco smoke, distinct from nicotine. Our results show that the effects of nicotine on development of ACh and 5HT systems are worsened by BaP coexposure, and that combination of the two agents contributes to the greater impact of tobacco smoke on the developing brain. These results have important implications for the relative safety in pregnancy of nicotine-containing products compared with combusted tobacco, both for active maternal smoking and secondhand exposure, and for the effects of such agents in "dirty" environments with high PAH coexposure.
Collapse
Affiliation(s)
| | | | - Ashley Ko
- Department of Pharmacology & Cancer Biology
| | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
18
|
Polli FS, Kohlmeier KA. Prenatal Nicotine Exposure in Rodents: Why Are There So Many Variations in Behavioral Outcomes? Nicotine Tob Res 2019; 22:1694-1710. [DOI: 10.1093/ntr/ntz196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Introduction
The World Health Organization (WHO) reported that smoking cessation rates among women have stagnated in the past decade and estimates that hundreds of millions of women will be smokers in the next decade. Social, environmental, and biological conditions render women more susceptible to nicotine addiction, imposing additional challenges to quit smoking during gestation, which is likely why more than 8% of pregnancies in Europe are associated with smoking. In epidemiological investigations, individuals born from gestational exposure to smoking exhibit a higher risk of development of attention-deficit/hyperactive disorder (ADHD) and liability to drug dependence. Among other teratogenic compounds present in tobacco smoke, nicotine actions during neuronal development could contribute to the observed outcomes as nicotine misleads signaling among progenitor cells during brain development. Several experimental approaches have been developed to address the consequences of prenatal nicotine exposure (PNE) to the brain and behavior but, after four decades of studies, inconsistent data have been reported and the lack of consensus in the field has compromised the hypothesis that gestational nicotine exposure participates in cognitive and emotional behavioral deficits.
Aims
In this review, we discuss the most commonly used PNE models with focus on their advantages and disadvantages, their relative validity, and how the different technical approaches could play a role in the disparate outcomes.
Results
We propose methodological considerations, which could improve the translational significance of the PNE models.
Conclusions
Such alterations might be helpful in reconciling experimental findings, as well as leading to development of treatment targets for maladaptive behaviors in those prenatally exposed.
Implications
In this article, we have reviewed the advantages and disadvantages of different variables of the commonly used experimental models of PNE. We discuss how variations in the nicotine administration methods, the timing of nicotine exposure, nicotine doses, and species employed could contribute to the disparate findings in outcomes for PNE offspring, both in behavior and neuronal changes. In addition, recent findings suggest consideration of epigenetic effects extending across generations. Finally, we have suggested improvements in the available PNE models that could contribute to the enhancement of their validity, which could assist in the reconciliation of experimental findings.
Collapse
Affiliation(s)
- Filip Souza Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
King E, Campbell A, Belger A, Grewen K. Prenatal Nicotine Exposure Disrupts Infant Neural Markers of Orienting. Nicotine Tob Res 2019; 20:897-902. [PMID: 29059450 DOI: 10.1093/ntr/ntx177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/11/2017] [Indexed: 12/25/2022]
Abstract
Introduction Prenatal nicotine exposure (PNE) from maternal cigarette smoking is linked to developmental deficits, including impaired auditory processing, language, generalized intelligence, attention, and sleep. Fetal brain undergoes massive growth, organization, and connectivity during gestation, making it particularly vulnerable to neurotoxic insult. Nicotine binds to nicotinic acetylcholine receptors, which are extensively involved in growth, connectivity, and function of developing neural circuitry and neurotransmitter systems. Thus, PNE may have long-term impact on neurobehavioral development. The purpose of this study was to compare the auditory K-complex, an event-related potential reflective of auditory gating, sleep preservation and memory consolidation during sleep, in infants with and without PNE and to relate these neural correlates to neurobehavioral development. Methods We compared brain responses to an auditory paired-click paradigm in 3- to 5-month-old infants during Stage 2 sleep, when the K-complex is best observed. We measured component amplitude and delta activity during the K-complex. Results Infants with PNE demonstrated significantly smaller amplitude of the N550 component and reduced delta-band power within elicited K-complexes compared to nonexposed infants and also were less likely to orient with a head turn to a novel auditory stimulus (bell ring) when awake. Conclusions PNE may impair auditory sensory gating, which may contribute to disrupted sleep and to reduced auditory discrimination and learning, attention re-orienting, and/or arousal during wakefulness reported in other studies. Implications Links between PNE and reduced K-complex amplitude and delta power may represent altered cholinergic and GABAergic synaptic programming and possibly reflect early neural bases for PNE-linked disruptions in sleep quality and auditory processing. These may pose significant disadvantage for language acquisition, attention, and social interaction necessary for academic and social success.
Collapse
Affiliation(s)
- Erin King
- Department of Psychiatry, University of North Carolina School of Medicine
| | - Alana Campbell
- Department of Psychiatry, University of North Carolina School of Medicine
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina School of Medicine
| | - Karen Grewen
- Department of Psychiatry, University of North Carolina School of Medicine
| |
Collapse
|
20
|
Nguyen T, Li GE, Chen H, Cranfield CG, McGrath KC, Gorrie CA. Neurological Effects in the Offspring After Switching From Tobacco Cigarettes to E-Cigarettes During Pregnancy in a Mouse Model. Toxicol Sci 2019; 172:191-200. [PMID: 31505003 DOI: 10.1093/toxsci/kfz194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/25/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
Maternal smoking is currently a public health concern and has been associated with a number of complications in the offspring. E-cigarettes are gaining popularity as a “safer” alternative to tobacco cigarettes during pregnancy, however, there are a limited number of studies to suggest that it is actually “safe.” Balb/C female mice were exposed to ambient air (n = 8; Sham), or tobacco cigarette smoke (n = 8; SE) before gestation, during gestation and lactation. A third group was exposed to cigarette smoke before gestation followed by e-cigarette aerosols during gestation and lactation (n = 8; Switch). Male offspring (12-week old, n = 10–14/group) underwent behavioral assessments to investigate short-term memory, anxiety, and activity using the novel object recognition and elevated plus maze tests. Brains were collected at postnatal day (P)1, P20, and Week 13 for global DNA methylation, epigenetic gene expression, and neuronal cell counts. The offspring from mothers switching to e-cigarettes exhibited no change in exploration/activity but showed a decrease in global DNA methylation, Aurora Kinase (Aurk) A and AurkB gene expression and a reduction in neuronal cell numbers in the cornu ammonis 1 region of the dorsal hippocampus compared with the SE group. Continuous tobacco cigarette smoke exposure during pregnancy resulted in marked neurological deficits in the offspring. Switching to e-cigarettes during pregnancy reduced these neurological deficits compared with cigarette smoke exposure. However, neurological changes were still observed, so we therefore conclude that e-cigarette use during pregnancy is not advised.
Collapse
Affiliation(s)
- Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Gerard E Li
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Charles G Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Kristine C McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Catherine A Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
21
|
Reduced adolescent risk-assessment and lower nicotinic beta-2 expression in rats exposed to nicotine through lactation by forcedly drinking dams. Neuroscience 2019; 413:64-76. [DOI: 10.1016/j.neuroscience.2019.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023]
|
22
|
Hawkey A, Junaid S, Yao L, Spiera Z, White H, Cauley M, Levin ED. Gestational exposure to nicotine and/or benzo[a]pyrene causes long-lasting neurobehavioral consequences. Birth Defects Res 2019; 111:1248-1258. [PMID: 31368242 DOI: 10.1002/bdr2.1568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
Tobacco smoke is a complex mixture that includes thousands of compounds. Previously, we have found that gestational exposure to the complex mixture of tobacco smoke extract caused long-term neurobehavioral impairments. In this study, we examined the interaction of two of the most biologically active, nicotine and benzo[a]pyrene (BaP). Developmental effects were determined in Sprague-Dawley rats prenatally exposed to low doses of BaP and nicotine (0.03 mg/kg/day of BaP and 2 mg/kg/day of nicotine) via maternal osmotic minipumps throughout gestation. Behavioral function was assessed in the offspring via a battery of tests through adolescence into adulthood. There were sex-selective effects in four of the behavioral tests. In the elevated plus maze, there was a significant interaction of BaP and sex, where BaP-treated males showed a trend for increased activity. In the novelty suppressed feeding test, there were significant sex selective effects in males such that the normal sex difference in the behavior in this test was eliminated. Male offspring with prenatal exposure to either nicotine or BaP showed significant reductions in fear response. In the Figure-8 locomotor activity test, BAP-exposed male offspring were significantly hyperactive. This also eliminated the sex difference typically seen in this test. This effect persisted into adulthood. In the attention task, males exposed to nicotine during gestation showed a significant percent hit impairment. BaP reversed this effect. No significant effects were seen with percent correct rejection. These data show that both nicotine and BaP cause persisting sex-selective behavioral effects that persist into adulthood.
Collapse
Affiliation(s)
- Andrew Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Shaqif Junaid
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Leah Yao
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Zachary Spiera
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Hannah White
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Marty Cauley
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
23
|
Ediger K, Hasan SU, Synnes A, Shah J, Creighton D, Isayama T, Shah PS, Lodha A. Maternal smoking and neurodevelopmental outcomes in infants <29 weeks gestation: a multicenter cohort study. J Perinatol 2019; 39:791-799. [PMID: 30996278 DOI: 10.1038/s41372-019-0356-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/07/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To compare neurodevelopmental outcomes of preterm infants at 18-21 months corrected age (CA) whose mothers smoked during pregnancy to those whose mothers did not smoke. STUDY DESIGN Preterm infants born at <29 weeks of gestation and evaluated at 18-21 months CA were included. Primary outcome was a composite outcome of death or neurodevelopmental impairment (NDI). RESULTS Of a total of 2760 infants, 699 met exclusion criteria. Of the remaining 2061 infants, 280 (13.6%) were exposed to maternal smoking and 1781 (86.4%) were not. The odds of the composite outcome of death or NDI (aOR 1.40; 95% CI: 1.03-1.91), NDI alone (aOR 1.43; 95% CI: 1.01-2.03), and Bayley-III motor score <85 (aOR 1.91; 95% CI: 1.31-2.81) were higher in exposed infants. CONCLUSIONS Exposure to maternal smoking was associated with adverse composite outcome of death or NDI, NDI alone and lower motor scores at 18-21 months CA.
Collapse
Affiliation(s)
- Krystyna Ediger
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Shabih U Hasan
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Jyotsna Shah
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Dianne Creighton
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Tetsuya Isayama
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, ON, Canada
| | - Prakesh S Shah
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Abhay Lodha
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Community Health Sciences, University of Calgary, Calgary, Canada.
| | | | | |
Collapse
|
24
|
Paternal nicotine exposure in rats produces long-lasting neurobehavioral effects in the offspring. Neurotoxicol Teratol 2019; 74:106808. [PMID: 31103693 DOI: 10.1016/j.ntt.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Studies of intergenerational effects of parental chemical exposure have principally focused on maternal exposure, particularly for studies of adverse neurobehavioral consequences on the offspring. Maternal nicotine exposure has long been known to cause adverse neurobehavioral effects on the offspring. However, paternal toxicant exposure has also been found to cause neurobehavioral toxicity in their offspring. Recent work suggests that paternal nicotine exposure can have epigenetic effects, although it remains unclear whether such changes lead to neurobehavioral effects. In the current study, we investigated the effects of paternal nicotine exposure on neurobehavioral development of their offspring. Male Sprague-Dawley rats were exposed to 0 or 2 mg/kg/day nicotine (sc) for 56 consecutive days with two consecutive 2ML4 osmotic minipumps. Following treatment, these males were mated with drug-naïve female rats. Offspring of both sexes were tested in a behavioral battery to assess locomotion, emotional function and cognition. Paternal nicotine exposure did not impact offspring viability, health or growth. However, behavioral function of the offspring was significantly altered by paternal nicotine exposure. Male offspring with paternal nicotine exposure exhibited locomotor hyperactivity in the Figure-8 apparatus when tested during adolescence. When retested in adulthood and regardless of sex, offspring of the nicotine exposed father showed significantly reduced habituation of locomotor activity over the course of the session. Compared to controls, female offspring of nicotine-exposed fathers showed significantly reduced response latency in the radial arm maze test. In addition to locomotor hyperactivity, the offspring of nicotine-exposed fathers also showed significantly diminished habituation in the novel object recognition test. These results indicate that chronic paternal nicotine exposure can impact the behavior of offspring, producing locomotor hyperactivity and impaired habituation.
Collapse
|
25
|
Paternal THC exposure in rats causes long-lasting neurobehavioral effects in the offspring. Neurotoxicol Teratol 2019; 74:106806. [PMID: 31028824 DOI: 10.1016/j.ntt.2019.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
Abstract
Developmental neurotoxicity of a wide variety of toxicants mediated via maternal exposure during gestation is very well established. In contrast, the impacts of paternal toxicant exposure on offspring neurobehavioral function are much less well studied. A vector for paternal toxicant exposure on development of his offspring has been identified. Sperm DNA can be imprinted by chemical exposures of the father. Most but not all of the epigenetic marks in sperm are reprogrammed after fertilization. The persisting epigenetic marks can lead to abnormal genetic expression in the offspring. We have found that paternal delta-9-tetrohydrocannabinol (THC) exposure in rats causes changes in methylation of sperm (Murphy et al., 2018). This is similar to cannabis-associated changes in sperm DNA methylation we found in human males who smoke cannabis (Murphy et al., 2018). In the current study we investigated the intergeneration effects of THC exposure of young adult male rats (0 or 2 mg/kg/day orally for 12 days) to the neurobehavioral development of their offspring. This paternal THC exposure was not found to significantly impact the clinical health of the offspring, including litter size, sex ratio, pup birth weight, survival and growth. However, it did cause a long-lasting significant impairment in attentional performance in the offspring relative to controls when they were tested in adulthood. There was also a significant increase in habituation of locomotor activity in the adult offspring of the males exposed to THC prior to mating. This study shows that premating paternal THC exposure even at a modest dose for a brief period can cause deleterious long-term behavioral effects in the offspring, notably significant impairment in an operant attention task. Further research should be conducted to determine the degree to which this type of risk is seen in humans and to investigate the mechanisms underlying these effects and possible treatments to ameliorate these long-term adverse behavioral consequences of paternal THC exposure.
Collapse
|
26
|
Yang X, Guo AL, Pang YP, Cheng XJ, Xu T, Li XR, Liu J, Zhang YY, Liu Y. Astaxanthin Attenuates Environmental Tobacco Smoke-Induced Cognitive Deficits: A Critical Role of p38 MAPK. Mar Drugs 2019; 17:E24. [PMID: 30609815 PMCID: PMC6356379 DOI: 10.3390/md17010024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that environmental tobacco smoke (ETS) impairs cognitive function and induces oxidative stress in the brain. Recently, astaxanthin (ATX), a marine bioactive compound, has been reported to ameliorate cognitive deficits. However, the underlying pathogenesis remains unclear. In this study, ATX administration (40 mg/kg and 80 mg/kg, oral gavage) and cigarette smoking were carried out once a day for 10 weeks to investigate whether the p38 MAPK is involved in cognitive function in response to ATX treatment in the cortex and hippocampus of ETS mice. Results indicated that ATX administration improved spatial learning and memory of ETS mice (p < 0.05 or p < 0.01). Furthermore, exposure to ATX prevented the increases in the protein levels of the p38mitogen-activated protein kinase (p38 MAPK; p < 0.05 or p < 0.01) and nuclear factor-kappa B (NF-κB p65; p < 0.05 or p < 0.01), reversed the decreases in the mRNA and protein levels of synapsin I (SYN) and postsynaptic density protein 95 (PSD-95) (all p < 0.05 or p < 0.01). Moreover, ATX significantly down-regulated the increased levels of pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) (all p < 0.05 or p < 0.01). Meanwhile, the increased level of malondialdehyde (MDA) and the decreased activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were suppressed after exposure to ATX (all p < 0.05 or p < 0.01). Also, the results of the molecular docking study of ATX into the p38 MAPK binding site revealed that its mechanism was possibly similar to that of PH797804, a p38 MAPK inhibitor. Therefore, our results indicated that the ATX might be a critical agent in protecting the brain against neuroinflammation, synaptic plasticity impairment, and oxidative stress in the cortex and hippocampus of ETS mice.
Collapse
Affiliation(s)
- Xia Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - An-Lei Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yi-Peng Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiao-Jing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xin-Rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yu-Yun Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
27
|
Lewis LSC, Muldoon PP, Pilaka PP, Ottens AK. Frontal Cortex Proteome Perturbation after Juvenile Rat Secondhand Smoke Exposure. Proteomics 2018; 18:e1800268. [PMID: 30474317 PMCID: PMC6484431 DOI: 10.1002/pmic.201800268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/12/2018] [Indexed: 11/09/2022]
Abstract
Secondhand smoke remains a global concern for children's health. Epidemiological studies implicate exposure to secondhand smoke as a major risk factor for behavioral disorders, yet biological causation remains unclear. Model studies have mainly focused on secondhand smoke impacts to prenatal neurodevelopment, yet juvenile exposure represents a separate risk. Using ion mobility-enhanced data-independent mass spectrometry, the effect of juvenile secondhand smoke exposure on the prefrontal cortex, a principal part of the brain involved in behavioral control, is characterized. The produced dataset includes 800 significantly responsive proteins within the juvenile orbital frontal cortex, with 716 showing an increase in abundance. The neuroproteomic response reflects a prominent perturbation within the glutamatergic synaptic system, suggesting aberrant, disorganized excitation as observed underlying psychiatric disorders. Also disclosed are impacts to GABAergic and dopaminergic systems. Overall, the dataset provides a wealth of detail, facilitating further targeted research into the causal mechanisms underlying behavioral disorders associated with juvenile exposure to secondhand smoke and other environmental pollutants. All MS data have been deposited to the ProteomeXchange consortium with identifier PXD011744.
Collapse
Affiliation(s)
- Liam S C Lewis
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Pretal P Muldoon
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Pallavi P Pilaka
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
28
|
McCarthy DM, Morgan TJ, Lowe SE, Williamson MJ, Spencer TJ, Biederman J, Bhide PG. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol 2018; 16:e2006497. [PMID: 30325916 PMCID: PMC6191076 DOI: 10.1371/journal.pbio.2006497] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022] Open
Abstract
Use of tobacco products is injurious to health in men and women. However, tobacco use by pregnant women receives greater scrutiny because it can also compromise the health of future generations. More men smoke cigarettes than women. Yet the impact of nicotine use by men upon their descendants has not been as widely scrutinized. We exposed male C57BL/6 mice to nicotine (200 μg/mL in drinking water) for 12 wk and bred the mice with drug-naïve females to produce the F1 generation. Male and female F1 mice were bred with drug-naïve partners to produce the F2 generation. We analyzed spontaneous locomotor activity, working memory, attention, and reversal learning in male and female F1 and F2 mice. Both male and female F1 mice derived from the nicotine-exposed males showed significant increases in spontaneous locomotor activity and significant deficits in reversal learning. The male F1 mice also showed significant deficits in attention, brain monoamine content, and dopamine receptor mRNA expression. Examination of the F2 generation showed that male F2 mice derived from paternally nicotine-exposed female F1 mice had significant deficits in reversal learning. Analysis of epigenetic changes in the spermatozoa of the nicotine-exposed male founders (F0) showed significant changes in global DNA methylation and DNA methylation at promoter regions of the dopamine D2 receptor gene. Our findings show that nicotine exposure of male mice produces behavioral changes in multiple generations of descendants. Nicotine-induced changes in spermatozoal DNA methylation are a plausible mechanism for the transgenerational transmission of the phenotypes. These findings underscore the need to enlarge the current focus of research and public policy targeting nicotine exposure of pregnant mothers by a more equitable focus on nicotine exposure of the mother and the father.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Thomas J. Morgan
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Sarah E. Lowe
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Matthew J. Williamson
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Thomas J. Spencer
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph Biederman
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pradeep G. Bhide
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
29
|
Cauley M, Hall BJ, Abreu-Villaça Y, Junaid S, White H, Kiany A, Slotkin TA, Levin ED. Critical developmental periods for effects of low-level tobacco smoke exposure on behavioral performance. Neurotoxicology 2018; 68:81-87. [PMID: 30036564 PMCID: PMC6153040 DOI: 10.1016/j.neuro.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022]
Abstract
Tobacco exposure during development leads to neurobehavioral dysfunction in children, even when exposure is limited to secondhand smoke. We have previously shown in rats that developmental exposure to tobacco smoke extract (TSE), at levels mimicking secondhand smoke, starting preconception and extending throughout gestation, evoked subsequent locomotor hyperactivity and cognitive impairment. These effects were greater than those caused by equivalent exposures to nicotine alone, implying that other agents in tobacco smoke contributed to the adverse behavioral effects. In the present study, we examined the critical developmental windows of vulnerability for these effects, restricting TSE administration (0.2 mg/kg/day nicotine equivalent, or DMSO vehicle, delivered by subcutaneously-implanted pumps) to three distinct 10 day periods: the 10 days preceding mating, the first 10 days of gestation (early gestation), or the second 10 days of gestation (late gestation). The principal behavioral effects revealed a critical developmental window of vulnerability, as well as sex selectivity. Late gestational TSE exposure significantly increased errors in the initial training on the radial-arm maze in female offspring, whereas no effects were seen in males exposed during late gestation, or with either sex in the other exposure windows. In attentional testing with the visual signal detection test, male offspring exposed to TSE during early or late gestation showed hypervigilance during low-motivating conditions. These results demonstrate that gestational TSE exposure causes persistent behavioral effects that are dependent on the developmental window in which exposure occurs. The fact that effects were seen at TSE levels modeling secondhand smoke, emphasizes the need for decreasing involuntary tobacco smoke exposure, particularly during pregnancy.
Collapse
Affiliation(s)
- Marty Cauley
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brandon J Hall
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Shaqif Junaid
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hannah White
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Abtin Kiany
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Theodore A Slotkin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
30
|
Stroud LR, McCallum M, Salisbury AL. Impact of maternal prenatal smoking on fetal to infant neurobehavioral development. Dev Psychopathol 2018; 30:1087-1105. [PMID: 30068428 PMCID: PMC6541397 DOI: 10.1017/s0954579418000676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite recent emphasis on the profound importance of the fetal environment in "programming" postnatal development, measurement of offspring development typically begins after birth. Using a novel coding strategy combining direct fetal observation via ultrasound and actocardiography, we investigated the impact of maternal smoking during pregnancy (MSDP) on fetal neurobehavior; we also investigated links between fetal and infant neurobehavior. Participants were 90 pregnant mothers and their infants (52 MSDP-exposed; 51% minorities; ages 18-40). Fetal neurobehavior at baseline and in response to vibro-acoustic stimulus was assessed via ultrasound and actocardiography at M = 35 weeks gestation and coded via the Fetal Neurobehavioral Assessment System (FENS). After delivery, the NICU Network Neurobehavioral Scale was administered up to seven times over the first postnatal month. MSDP was associated with increased fetal activity and fetal limb movements. Fetal activity, complex body movements, and cardiac-somatic coupling were associated with infants' ability to attend to stimuli and to self-regulate over the first postnatal month. Furthermore, differential associations emerged by MSDP group between fetal activity, complex body movements, quality of movement, and coupling, and infant attention and self-regulation. The present study adds to a growing literature establishing the validity of fetal neurobehavioral measures in elucidating fetal programming pathways.
Collapse
|
31
|
Zhang L, Spencer TJ, Biederman J, Bhide PG. Attention and working memory deficits in a perinatal nicotine exposure mouse model. PLoS One 2018; 13:e0198064. [PMID: 29795664 PMCID: PMC5967717 DOI: 10.1371/journal.pone.0198064] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cigarette smoking by pregnant women is associated with a significant increase in the risk for cognitive disorders in their children. Preclinical models confirm this risk by showing that exposure of the developing brain to nicotine produces adverse behavioral outcomes. Here we describe behavioral phenotypes resulting from perinatal nicotine exposure in a mouse model, and discuss our findings in the context of findings from previously published studies using preclinical models of developmental nicotine exposure. METHODOLOGY/PRINCIPAL FINDINGS Female C57Bl/6 mice received drinking water containing nicotine (100μg/ml) + saccharin (2%) starting 3 weeks prior to breeding and continuing throughout pregnancy, and until 3 weeks postpartum. Over the same period, female mice in two control groups received drinking water containing saccharin (2%) or plain drinking water. Offspring from each group were weaned at 3-weeks of age and subjected to behavioral analyses at 3 months of age. We examined spontaneous locomotor activity, anxiety-like behavior, spatial working memory, object based attention, recognition memory and impulsive-like behavior. We found significant deficits in attention and working memory only in male mice, and no significant changes in the other behavioral phenotypes in male or female mice. Exposure to saccharin alone did not produce significant changes in either sex. CONCLUSION/SIGNIFICANCE The perinatal nicotine exposure produced significant deficits in attention and working memory in a sex-dependent manner in that the male but not female offspring displayed these behaviors. These behavioral phenotypes are associated with attention deficit hyperactivity disorder (ADHD) and have been reported in other studies that used pre- or perinatal nicotine exposure. Therefore, we suggest that preclinical models of developmental nicotine exposure could be useful tools for modeling ADHD and related disorders.
Collapse
Affiliation(s)
- Lin Zhang
- Center for Brain Repair, Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States of America
| | - Thomas J. Spencer
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Joseph Biederman
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Pradeep G. Bhide
- Center for Brain Repair, Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States of America
- * E-mail:
| |
Collapse
|
32
|
Alkam T, Mamiya T, Kimura N, Yoshida A, Kihara D, Tsunoda Y, Aoyama Y, Hiramatsu M, Kim HC, Nabeshima T. Prenatal nicotine exposure decreases the release of dopamine in the medial frontal cortex and induces atomoxetine-responsive neurobehavioral deficits in mice. Psychopharmacology (Berl) 2017; 234:1853-1869. [PMID: 28332006 DOI: 10.1007/s00213-017-4591-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
Increased risk of attention-deficit/hyperactivity disorder (AD/HD) is partly associated with the early developmental exposure to nicotine in tobacco smoke. Emerging reports link tobacco smoke exposure or prenatal nicotine exposure (PNE) with AD/HD-like behaviors in rodent models. We have previously reported that PNE induces cognitive behavioral deficits in offspring and decreases the contents of dopamine (DA) and its turnover in the prefrontal cortex (PFC) of offspring It is well known that the dysfunction of DAergic system in the brain is one of the core factors in the pathophysiology of AD/HD. Therefore, we examined whether the effects of PNE on the DAergic system underlie the AD/HD-related behavioral changes in mouse offspring. PNE reduced the release of DA in the medial PFC (mPFC) in mouse offspring. PNE reduced the number of tyrosine hydroxylase (TH)-positive varicosities in the mPFC and in the core as well as the shell of nucleus accumbens, but not in the striatum. PNE also induced behavioral deficits in cliff avoidance, object-based attention, and sensorimotor gating in offspring. These behavioral deficits were attenuated by acute treatment with atomoxetine (3 mg/kg, s.c.) or partially attenuated by acute treatment with MPH (1 mg/kg, s.c.). Taken together, our findings support the notion that PNE induces neurobehavioral abnormalities in mouse offspring by disrupting the DAergic system and improve our understanding about the incidence of AD/HD in children whose mothers were exposed to nicotine during their pregnancy.
Collapse
Affiliation(s)
- Tursun Alkam
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Nami Kimura
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Aya Yoshida
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Daisuke Kihara
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Tsunoda
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Aoyama
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan.
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan.
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Aino University, Ibaraki, Japan.
| |
Collapse
|
33
|
Lee PN, Fariss MW. A systematic review of possible serious adverse health effects of nicotine replacement therapy. Arch Toxicol 2017; 91:1565-1594. [PMID: 27699443 PMCID: PMC5364244 DOI: 10.1007/s00204-016-1856-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Abstract
We conducted a systematic literature review to identify and critically evaluate studies of serious adverse health effects (SAHEs) in humans using nicotine replacement therapy (NRT) products. Serious adverse health effects refer to adverse events, leading to substantial disruption of the ability to conduct normal life functions. Strength of evidence evaluations and conclusions were also determined for the identified SAHEs. We evaluated 34 epidemiological studies and clinical trials, relating NRT use to cancer, reproduction/development, CVD, stroke and/or other SAHEs in patients, and four meta-analyses on effects in healthy populations. The overall evidence suffers from many limitations, the most significant being the short-term exposure (≤12 weeks) and follow-up to NRT product use in most of the studies, the common failure to account for changes in smoking behaviour following NRT use, and the sparse information on SAHEs by type of NRT product used. The only SAHE from NRT exposure we identified was an increase in respiratory congenital abnormalities reported in one study. Limited evidence indicated a lack of effect between NRT exposure and SAHEs for CVD and various reproduction/developmental endpoints. For cancer, stroke and other SAHEs, the evidence was inadequate to demonstrate any association with NRT use. Our conclusions agree with recent statements from authoritative bodies.
Collapse
Affiliation(s)
- Peter N. Lee
- P N Lee Statistics and Computing Ltd, 17 Cedar Road, Sutton, Surrey SM2 5DA UK
| | | |
Collapse
|
34
|
Zhu J, Fan F, McCarthy DM, Zhang L, Cannon EN, Spencer TJ, Biederman J, Bhide PG. A prenatal nicotine exposure mouse model of methylphenidate responsive ADHD‐associated cognitive phenotypes. Int J Dev Neurosci 2017; 58:26-34. [DOI: 10.1016/j.ijdevneu.2017.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jinmin Zhu
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Fangfang Fan
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Deirdre M. McCarthy
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Lin Zhang
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Elisa N. Cannon
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Thomas J. Spencer
- Pediatric Psychopharmacology, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114United States
| | - Joseph Biederman
- Pediatric Psychopharmacology, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114United States
| | - Pradeep G. Bhide
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| |
Collapse
|
35
|
England LJ, Aagaard K, Bloch M, Conway K, Cosgrove K, Grana R, Gould TJ, Hatsukami D, Jensen F, Kandel D, Lanphear B, Leslie F, Pauly JR, Neiderhiser J, Rubinstein M, Slotkin TA, Spindel E, Stroud L, Wakschlag L. Developmental toxicity of nicotine: A transdisciplinary synthesis and implications for emerging tobacco products. Neurosci Biobehav Rev 2017; 72:176-189. [PMID: 27890689 PMCID: PMC5965681 DOI: 10.1016/j.neubiorev.2016.11.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/24/2022]
Abstract
While the health risks associated with adult cigarette smoking have been well described, effects of nicotine exposure during periods of developmental vulnerability are often overlooked. Using MEDLINE and PubMed literature searches, books, reports and expert opinion, a transdisciplinary group of scientists reviewed human and animal research on the health effects of exposure to nicotine during pregnancy and adolescence. A synthesis of this research supports that nicotine contributes critically to adverse effects of gestational tobacco exposure, including reduced pulmonary function, auditory processing defects, impaired infant cardiorespiratory function, and may contribute to cognitive and behavioral deficits in later life. Nicotine exposure during adolescence is associated with deficits in working memory, attention, and auditory processing, as well as increased impulsivity and anxiety. Finally, recent animal studies suggest that nicotine has a priming effect that increases addiction liability for other drugs. The evidence that nicotine adversely affects fetal and adolescent development is sufficient to warrant public health measures to protect pregnant women, children, and adolescents from nicotine exposure.
Collapse
Affiliation(s)
- Lucinda J England
- Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Kjersti Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Michele Bloch
- Division of Cancer Control and Population Science, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Kevin Conway
- Division of Epidemiology, Services and Prevention Research, National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| | - Kelly Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rachel Grana
- Division of Cancer Control and Population Science, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Pennsylvania State University, PA, USA
| | | | - Frances Jensen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise Kandel
- Department of Psychiatry and Mailman School of Public Health, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | | | - Frances Leslie
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA
| | - James R Pauly
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jenae Neiderhiser
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Mark Rubinstein
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Eliot Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Laura Stroud
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Lauren Wakschlag
- Department of Medical Social Sciences Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
36
|
Slotkin TA, Stadler A, Skavicus S, Card J, Ruff J, Levin ED, Seidler FJ. Is There a Critical Period for the Developmental Neurotoxicity of Low-Level Tobacco Smoke Exposure? Toxicol Sci 2017; 155:75-84. [PMID: 27633979 PMCID: PMC5216647 DOI: 10.1093/toxsci/kfw180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Secondhand tobacco smoke exposure in pregnancy increases the risk of neurodevelopmental disorders. We evaluated in rats whether there is a critical period during which tobacco smoke extract (TSE) affects the development of acetylcholine and serotonin systems, prominent targets for adverse effects of nicotine and tobacco smoke. We simulated secondhand smoke exposure by administering TSE so as to produce nicotine concentrations one-tenth those in active smoking, with 3 distinct, 10-day windows: premating, early gestation or late gestation. We conducted longitudinal evaluations in multiple brain regions, starting in early adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure in any of the 3 windows impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although the adverse effects were seen for all 3 treatment windows, there was a distinct progression, with lowest sensitivity for premating exposure and higher sensitivity for gestational exposures. Serotonin receptors were also reduced by TSE exposure with the same profile: little effect with premating exposure, intermediate effect with early gestational exposure and large effect with late gestational exposure. As serotonergic circuits can offset the neurobehavioral impact of cholinergic deficits, these receptor changes were maladaptive. Thus, there is no single 'critical period' for effects of low-level tobacco smoke but there is differential sensitivity dependent upon the developmental stage at the time of exposure. Our findings reinforce the need to avoid secondhand smoke exposure not only during pregnancy, but also in the period prior to conception, or generally for women of childbearing age.
Collapse
Affiliation(s)
| | | | | | | | | | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
37
|
Faa G, Manchia M, Pintus R, Gerosa C, Marcialis MA, Fanos V. Fetal programming of neuropsychiatric disorders. ACTA ACUST UNITED AC 2016; 108:207-223. [DOI: 10.1002/bdrc.21139] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Gavino Faa
- Division of Pathology, Department of Surgery; University Hospital San Giovanni di Dio; Cagliari Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
- Department of Pharmacology; Dalhousie University; Halifax Nova Scotia Canada
| | - Roberta Pintus
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section; AOU Cagliari and University of Cagliari; Cagliari Italy
| | - Clara Gerosa
- Division of Pathology, Department of Surgery; University Hospital San Giovanni di Dio; Cagliari Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section; AOU Cagliari and University of Cagliari; Cagliari Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section; AOU Cagliari and University of Cagliari; Cagliari Italy
| |
Collapse
|
38
|
Child and family health in the era of prevention: new opportunities and challenges. J Behav Med 2016; 40:159-174. [DOI: 10.1007/s10865-016-9791-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 08/29/2016] [Indexed: 02/04/2023]
|