1
|
Udoumoh AF, Igwebuike UM, Nwaogu IC, Obidike IR. Morphological features of the late-embryo-stage gastrointestinal tract of free-roaming light ecotype Nigerian indigenous chicken. Anat Histol Embryol 2024; 53:e13007. [PMID: 38069839 DOI: 10.1111/ahe.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
Morphological changes in the late-embryo-stage gastrointestinal tract of Nigerian indigenous chicken were investigated using anatomical techniques. The paraffin-embedded sections were stained with haematoxylin and eosin and periodic acid Schiff-Alcian blue (pH 2.5) stains. During the late pre-hatch period, the framework of the stomach was already established, but glands were yet poorly developed. Randomly oriented pre-glandular cells in the lamina propria mucosae at embryonic day (ED) 14 became organized into elongated simple tubular glands at ED 19 and assumed adult morphology at post-hatch day (PD) 1. Acidic and neutral mucin deposits were associated with the glandular cells. In the small intestine, enterocytes of the tunica epithelialis mucosae transformed from cuboidal-shaped cells (at ED 14) to tall columnar cells (at PD 1). Short crypts of Lieberkühn, goblet cells, microfold cells and enteroendocrine cells were evident at ED 19, while the lamina propria mucosae and submucosa contained mesenchymal cells, reticular cells and isolated lymphoblasts. Similarly, the crypts, lymphoblasts, mesenchymal and reticular cells were also associated with the lamina propria mucosae and submucosa of the caecum and colorectum at ED 19. It was inferred from these findings that extensive cellular and tissue modifications occur in the gastrointestinal tract within the narrow window of the late pre-hatch period. The definitive gut tunics, epithelium, glandular tissues, immune-competent cells and tissues are formed as a result. Thus, the embryonic gut of the bird is made capable of assuming its necessary functions of food digestion, nutrient absorption, water and ion re-absorption, immune surveillance, antibody production and immune responses at hatch.
Collapse
Affiliation(s)
- Anietie Francis Udoumoh
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Udensi Maduabuchi Igwebuike
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Innocent Chima Nwaogu
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ikechukwu Reginald Obidike
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
2
|
Sharma L, Pipil S, Rawat VS, Sehgal N. Role of cathepsins B and D in proteolysis of yolk in the catfish Clarias gariepinus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:749-765. [PMID: 35482165 DOI: 10.1007/s10695-022-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Yolk processing pathways vary in the oocytes of benthophil and pelagophil teleosts. The present study investigated the yolk processing pattern in the oocytes of the fresh water catfish Clarias gariepinus at vitellogenic, maturation, and ovulated stages. This study concludes that during maturation stage, an electrophoretic shift in the major peptide band on Polyacrylamide gel electrophoresis (PAGE) occurs due to a decrease in the size of the yolk protein. The PMF spectrum of corresponding peptides from vitellogenic and ovulated oocytes revealed a difference in the minor ions. A minor difference in the molecular weight of the corresponding peptides occurs due to a difference in their amino acid composition. Maximal activity of the proteases cathepsin D and cathepsin B was observed in the vitellogenic oocytes, thus confirming their role in the processing of yolk. A significant transient increase in the activity of cathepsin B in the mature oocytes also suggests its role in oocyte maturation.
Collapse
Affiliation(s)
- Luni Sharma
- Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Supriya Pipil
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Schönemann AM, Moreno Abril SI, Diz AP, Beiras R. The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118936. [PMID: 35124124 DOI: 10.1016/j.envpol.2022.118936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
Collapse
Affiliation(s)
- Alexandre M Schönemann
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Sandra Isabel Moreno Abril
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain.
| |
Collapse
|
4
|
Dettleff P, Rodríguez J, Patiño-García D, Orellana R, Castro R, Escobar-Aguirre S, Moreno RD, Palomino J. Molecular Characterization of Embryos with Different Buoyancy Levels in the Yellowtail Kingfish (Seriola lalandi). Animals (Basel) 2022; 12:ani12060720. [PMID: 35327117 PMCID: PMC8944698 DOI: 10.3390/ani12060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Low survival of embryos in Seriola lalandi captivity farming has been attributed to low buoyancy. This process is the result of oocyte hydration, which depends on the osmotic force exerted by free amino acids (FAA) generate of cathepsin-mediated yolk proteins proteolysis. In order to understand the molecular bases of buoyancy acquisition process and its loosing throughout the development of S. lalandi, the aim of this study was to compare gene expression and activity of cathepsins, as well as the FAA content between floating and low-floating embryos. Eggs, morula, blastula, gastrula and 24 h embryos were the stages collected in this study. These assessments were supplemented with morphometric and functional characterization of the embryos, where no differences in embryo and oil drop diameter, and constitutive gene expression were detected between floating and low-floating embryos. Cathepsin B did not show differences in expression or activity related to buoyancy condition. Both expression and activity of cathepsin D were higher in some low-floating developmental stages. By contrast, cathepsin L showed higher expression and activity in some floating early embryos. Higher FAA content was observed in floating embryos at least until gastrula stage in comparison to low-floating ones. In summary, expression and activity of cathepsins and FAA content, revealed specific pattern throughout development or buoyancy conditions of the embryos. This study identifies molecular differences between floating and low floating embryos at specific developmental stages where cathepsins and FAA are promising markers to evaluate the embryo quality in the farming of this species. Abstract The buoyancy of eggs and embryos is associated with successful development in pelagic fish. Buoyancy is the result of oocyte hydration, which depends on the osmotic force exerted by free amino acids (FAA) generated by yolk proteolysis, and cathepsins are the main enzymes involved in this process. Seriola lalandi is a pelagic fish whose farming has been hampered by development failure that have been partially attributed to decreased buoyancy of embryos. Therefore, the aim of this study was to compare the mRNA expression and activity of cathepsins B, D, and L, as well as the FAA content in floating and low-floating embryos at different developmental stages. The chosen stages were eggs, morula, blastula, gastrula and 24 h embryos. Complementary assessments showed that there were no differences attributed to buoyancy status in embryo and oil droplet diameters, as well as the transcriptional status at any developmental stage. Cathepsin B did not show differences in mRNA expression or activity related to buoyancy at any stage. Cathepsin D displayed higher transcript and activity levels only in low-floating eggs compared with those floating. Cathepsin L showed higher expression in floating eggs and 24 h embryos compared with that of low-floating, but the activity of this enzyme was higher in floating eggs and morula. Total FAA content constantly decreased throughout development in floating embryos, but it was always higher than low-floating embryos until gastrula stage. In 24 h embryos floating and low-floating embryos share similar quantities of FAA. In summary, differences in the expression and activity of cathepsins between floating and low-floating embryos could be revealed at specific embryonic stages, suggesting different functions of these enzymes throughout development. Besides 24 h embryos, FAA content seems to be a decisive factor for buoyancy of embryos during early development of S. lalandi. Overall, considering the main role of cathepsins and FAA in buoyancy acquisition process and therefore in both embryo quality and viability, our study identifies good marker candidates to evaluate embryo quality in the farming of this species.
Collapse
Affiliation(s)
- Phillip Dettleff
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 8940000, Chile;
| | - Javiera Rodríguez
- Laboratorio de Reproducción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820000, Chile;
| | - Daniel Patiño-García
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile;
| | - Renan Orellana
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile;
| | - Rodrigo Castro
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 3460000, Chile;
| | - Sebastián Escobar-Aguirre
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, San Joaquín, Santiago 8940000, Chile;
| | - Ricardo Daniel Moreno
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
- Correspondence: to: (R.D.M.); (J.P.)
| | - Jaime Palomino
- Escuela de Medicina Veterinaria, Facultad de Ciencias Médicas, Universidad Bernardo O’Higgins, Santiago 8320000, Chile
- Correspondence: to: (R.D.M.); (J.P.)
| |
Collapse
|
5
|
Jia Q, Ni Y, Min S, Ming L, Qian Y, Cen X, Wang J, Tong X. The ontogenesis of catabolic abilities and energy metabolism during endogenous nutritional periods of tongue sole, Cynoglossus semilaevis. JOURNAL OF FISH BIOLOGY 2021; 99:1708-1718. [PMID: 34392536 DOI: 10.1111/jfb.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/23/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The ontogenesis of catabolic abilities and energy metabolism during endogenous nutritional periods of tongue sole was investigated. In this work, trypsin-like proteases (TRY) and triglyceride lipase (LIP) activities were measured to assess the capacities to catabolize proteins and lipids, respectively. Meanwhile, specific enzymes including pyruvate kinase (PK), glutamic oxalo acetic transaminase (GOT) and glutamate dehydrogenase (GDH), and hydroxyacyl CoA dehydrogenase (HOAD) as well as their ratios were assayed to evaluate the abilities to use energy substrates of carbohydrates, amino acids and fatty acids, respectively, for energy production. In addition, activities of citrate synthase (CS) and lactate dehydrogenase (LDH) and LDH/CS ratio were calculated to analyse the evolution of aerobic and anaerobic pathways. The study found that hatching occurred at 38.8 h after fertilization (HAF), mouth-opening day of eleuteroembryo appeared at 3 days after hatching (DAH), and the most rapid embryonic growth was observed in blastula stage before hatching. Enzymatic assay revealed that except for PK which appeared in cleavage stage onwards, all the other enzymes functioned after fertilization, preparing well for the coming embryogenesis of tongue sole. By comparing the average specific activity of enzyme in each period, it can be found that the highest value occurred at 3 DAH (for TRY, LIP, PK and LDH), 2 DAH (for GDH), fertilized egg (for GOT) and segmentation stage (for HOAD and CS), and the lowest value occurred at fertilized egg (for HOAD, CS and GDH), cleavage stage (for TRY, PK and LDH), gastrula stage (for GOT) and hatching day (for LIP). Based on the changeable patterns of metabolic enzymatic activities and ratios, it is concluded that metabolic capacities on three energy substrates displayed stage-specific traits, and the dominant energy substrate was fatty acids before segmentation stage, amino acids until hatching day and carbohydrate during eleuteroembryo period. As for energy production mode, aerobic pathway appeared to increase greater in fertilized egg and gastrula stage, whereas anaerobic pathway played a predominant role during cleavage stage, blastula stage, segmentation stage and eleuteroembryo stage. These results are valuable to elucidate the nutritional requirements of embryonic stages in tongue sole and to further understand their energy metabolic mechanisms.
Collapse
Affiliation(s)
- Qian Jia
- Jiangsu Key Laboratory for Bioresources of Saline Solis, College of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Yuan Ni
- Jiangsu Key Laboratory for Bioresources of Saline Solis, College of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Shengnan Min
- Jiangsu Key Laboratory for Bioresources of Saline Solis, College of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Liang Ming
- Jiangsu Key Laboratory for Bioresources of Saline Solis, College of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Yiwen Qian
- Jiangsu Key Laboratory for Bioresources of Saline Solis, College of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Xueyan Cen
- Jiangsu Key Laboratory for Bioresources of Saline Solis, College of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Jialian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Solis, College of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Xuehong Tong
- Jiangsu Key Laboratory for Bioresources of Saline Solis, College of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, People's Republic of China
| |
Collapse
|
6
|
Chen S, Lin C, Tan J, Wang Y, Wang X, Wang X, Liu L, Li J, Hou L, Liu J, Leung JYS. Reproductive potential of mosquitofish is reduced by the masculinizing effect of a synthetic progesterone, gestodene: Evidence from morphology, courtship behaviour, ovary histology, sex hormones and gene expressions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144570. [PMID: 33486178 DOI: 10.1016/j.scitotenv.2020.144570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The ever-increasing use of synthetic hormones, especially progestins, for medical applications has drawn growing concerns due to their potential endocrine disrupting effects that may diminish the reproductive outputs of aquatic organisms. Using mosquitofish (Gambusia affinis) as a model species, we tested whether gestodene (GES), a commonly used progestin, can alter the expressions of genes associated with sex hormone synthesis and cause ensuing changes in morphological features, courtship behaviour and oocyte development. After exposing to GES at environmentally relevant concentrations (2.96, 32.9 and 354 ng L-1) for 40 days, we found that GES, especially at 354 ng L-1, induced masculinization of female fish, indicated by the reduced body weight to length ratio and development of gonopodia (i.e. anal fins of male fish). Thus, the males showed less intimacy and mating interest towards the GES-exposed females, indicated by the reduced time spent on attending, following and mating behaviours. While oocyte development was seemingly unaffected by GES, spermatogonia were developed in the ovary. All the aforementioned masculinizing effects of GES were associated with the increased testosterone level and decreased estradiol level, driven by upregulating androgen receptor genes (Arα and Arβ). Overall, our findings suggest that progestins could undermine the reproductive potential of aquatic organisms and hence their persistence in the progestin-contaminated environment.
Collapse
Affiliation(s)
- Shanduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Canyuan Lin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yifan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xiaoyun Wang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Lu Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Jiayi Li
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution, China.
| | - Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
7
|
Yilmaz O, Patinote A, Com E, Pineau C, Bobe J. Knock out of specific maternal vitellogenins in zebrafish (Danio rerio) evokes vital changes in egg proteomic profiles that resemble the phenotype of poor quality eggs. BMC Genomics 2021; 22:308. [PMID: 33910518 PMCID: PMC8082894 DOI: 10.1186/s12864-021-07606-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We previously reported the results of CRISPR/Cas9 knock-out (KO) of type-I and type-III vitellogenins (Vtgs) in zebrafish, which provided the first experimental evidence on essentiality and disparate functioning of Vtgs at different stages during early development. However, the specific contributions of different types of Vtg to major cellular processes remained to be investigated. The present study employed liquid chromatography and tandem mass spectrometry (LC-MS/MS) to meet this deficit. Proteomic profiles of zebrafish eggs lacking three type-I Vtgs simultaneously (vtg1-KO), or lacking only type III Vtg (vtg3-KO) were compared to those of wild type (Wt) eggs. Obtained spectra were searched against a zebrafish proteome database and identified proteins were quantified based on normalized spectral counts. RESULTS The vtg-KO caused severe changes in the proteome of 1-cell stage zebrafish eggs. These changes were disclosed by molecular signatures that highly resembled the proteomic phenotype of poor quality zebrafish eggs reported in our prior studies. Proteomic profiles of vtg-KO eggs and perturbations in abundances of hundreds of proteins revealed unique, noncompensable contributions of multiple Vtgs to protein and in energy homeostasis. The lack of this contribution appears to have a significant impact on endoplasmic reticulum and mitochondrial functions, and thus embryonic development, even after zygotic genome activation. Increased endoplasmic reticulum stress, Redox/Detox activities, glycolysis/gluconeogenesis, enrichment in cellular proliferation and in human neurodegenerative disease related activities in both vtg1- and vtg3-KO eggs were found to be indicators of the aforementioned conditions. Distinctive increase in apoptosis and Parkinson disease pathways, as well as the decrease in lipid metabolism related activities in vtg3-KO eggs implies compelling roles of Vtg3, the least abundant form of Vtgs in vertebrate eggs, in mitochondrial activities. Several differentially abundant proteins representing the altered molecular mechanisms have been identified as strong candidate markers for studying the details of these mechanisms during early embryonic development in zebrafish and possibly other vertebrates. CONCLUSIONS These findings indicate that the global egg proteome is subject to extensive modification depending on the presence or absence of specific Vtgs and that these modifications can have a major impact on developmental competence.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- INRAE, LPGP, 35000, Rennes, France.
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway.
| | | | - Emmanuelle Com
- Univ Rennes, Inserm, EHESP, Irset-UMR_S 1085, F-35042, Rennes cedex, France
- Protim, Univ Rennes, F-35042, Rennes cedex, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset-UMR_S 1085, F-35042, Rennes cedex, France
- Protim, Univ Rennes, F-35042, Rennes cedex, France
| | | |
Collapse
|
8
|
Yao J, Du H, Zhou H, Leng X, Wu J, He S, Luo J, Liang X, Liu H, Wang Q, Wei Q, Tan Q. Molecular characterization and expression profiles of six genes involved in vitellogenic deposition and hydrolysis of Chinese sturgeon (Acipenser sinensis) suggesting their transcriptional regulation on ovarian development. Theriogenology 2021; 162:59-66. [PMID: 33444917 DOI: 10.1016/j.theriogenology.2020.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023]
Abstract
Ovary development of Chinese sturgeon (Acipenser sinensis) in controlled breeding has been reported to respond to dietary lipid levels. However, the corresponding molecular regulatory mechanism about ovary development of Chinese sturgeon is still unclear. To elucidate the molecular mechanism of vitellogenic deposition and hydrolysis, six key genes, namely, vtgr (vitellogenin receptor), atp6v1c1 (Vacuolar H+-ATPase subunit c1), atp6v1h (Vacuolar H+-ATPase subunit h), ctsb (cathepsin B), ctsd (cathepsin D) and ctsl (cathepsin L) involved in vitellogenic deposition and hydrolysis of Chinese sturgeon were cloned and characterized, and their spatio-temporal mRNA expression profiles as well as transcriptional responses to dietary lipid level were investigated. The full-length cDNA sequences of these six genes showed similar domain structure to their respective orthologous genes from other vertebrates. Tissue-specific expression patterns of these genes were observed in ovary, liver, muscle, spleen, brain, gill, intestine, heart, stomach and kidney. Ovarian expression level of vtgr was the highest in stage II, and ctsl expression was the highest in stage IV, while the mRNA expressions of other 4 genes were the highest in stage III. The increase of dietary lipid level promoted ovary development and elevated the expressions of vtgr, atp6v1c1, atp6v1h, ctsb and ctsd in the ovary. The results of the present study indicated that these genes are crucial for vitellogenic deposition, and provided a preliminary understanding on the molecular regulation of vitellogenic deposition and hydrolysis during ovary development of Chinese sturgeon.
Collapse
Affiliation(s)
- Junpeng Yao
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Hai Zhou
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xiaoqian Leng
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Jinping Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Shan He
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Jiang Luo
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Xufang Liang
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China.
| | - Qingsong Tan
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
9
|
Zheng X, Zhang L, Jiang W, Abasubong KP, Zhang C, Zhang D, Li X, Jiang G, Chi C, Liu W. Effects of dietary icariin supplementation on the ovary development-related transcriptome of Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100756. [PMID: 33197858 DOI: 10.1016/j.cbd.2020.100756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
The Chinese mitten crab (Eriocheir sinensis) is an economically important aquaculture species in China, with distinct differences in ovarian maturation status between crabs fed with natural diets and artificial diets during the listing period, thus, leading to selling price differentiation. Our previous study showed that dietary supplementation with 100 mg/kg icariin can effectively promote ovarian development of E. sinensis. However, the internal molecular mechanism has not yet been elucidated because of a lack of comprehensive genome sequence information. We compared the ovary transcriptomes of E. sinensis fed with two diets containing 0 and 100 mg/kg ICA using the BGISEQ-500 platform. This yielded 12.54 Gb clean bases and 54,794 unigenes, 13,832 of which were found to be differentially expressed after icariin exposure. Twenty pathways closely related to gonadal development were selected through KEGG analysis. Seven differentially expressed genes relevant to vitellogenesis and oocyte maturation (serine/threonine-protein kinase mos-like, Eg2, cytoplasmic polyadenylation element-binding protein, cyclin B, vitellogenin 1, cathepsin D, and juvenile hormone esterase-like carboxylesterase 1) were validated by qRT-PCR, and four proteins (MEK1/2, ERK1/2, Cyclin B and Cdc2) associated with the progesterone mediated oocyte maturation pathway (i.e., MAPK/MPF pathway) were analyzed by western-blot. The results showed that icariin could promote the synthesis, processing and deposition of vitellogenin in oocytes, and that it also has the potential to promote oocyte maturation (resumption of Meiosis I) by altering the expression of the relevant genes and proteins.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Kenneth P Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Caiyan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Myers JN, Dyce PW, Chatakondi NG, Gorman SA, Quiniou SM, Su B, Peatman E, Dunham RA, Butts IA. Analysis of specific mRNA gene expression profiles as markers of egg and embryo quality for hybrid catfish aquaculture. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110675. [DOI: 10.1016/j.cbpa.2020.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
11
|
Shen F, Long Y, Li F, Ge G, Song G, Li Q, Qiao Z, Cui Z. De novo transcriptome assembly and sex-biased gene expression in the gonads of Amur catfish (Silurus asotus). Genomics 2020; 112:2603-2614. [PMID: 32109564 DOI: 10.1016/j.ygeno.2020.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
Amur catfish is extensively distributed and cultured in Asian countries. Despite of economic importance, the genomic information of this species remains limited. A reference transcriptome of Amur catfish was assembled and the sex-biased gene expression in the gonads was characterized using RNA-sequencing. The assembled transcriptome of Amur catfish consisted of 74,840 transcripts. The N50, mean length and max length of transcripts are 1970, 1235 and 16,748 bp. Putative sex-specific transcripts were identified and sex-specific expression of the representative genes was verified by RT-PCR. Differential expression analysis identified 5401 ovary-biased and 5618 testis-biased genes. The ovary-biased genes were mainly enriched in pathways such as RNA transport and ribosome biogenesis in eukaryotes. The testis-biased genes were enriched in calcium signaling and cytokine-cytokine receptor interaction, etc. Our data provide a valuable genomic resource for further investigating the genetic basis of sex determination, sex differentiation and sexual dimorphism of catfish.
Collapse
Affiliation(s)
- Fangfang Shen
- Fisheries College, Henan Normal University, Xinxiang 453007, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fengyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhigang Qiao
- Fisheries College, Henan Normal University, Xinxiang 453007, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Küster E, Kalkhof S, Aulhorn S, von Bergen M, Gündel U. Effects of Five Substances with Different Modes of Action on Cathepsin H, C and L Activities in Zebrafish Embryos. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3956. [PMID: 31627361 PMCID: PMC6843663 DOI: 10.3390/ijerph16203956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 11/24/2022]
Abstract
Cathepsins have been proposed as biomarkers of chemical exposure in the zebrafish embryo model but it is unclear whether they can also be used to detect sublethal stress. The present study evaluates three cathepsin types as candidate biomarkers in zebrafish embryos. In addition to other functions, cathepsins are also involved in yolk lysosomal processes for the internal nutrition of embryos of oviparous animals until external feeding starts. The baseline enzyme activity of cathepsin types H, C and L during the embryonic development of zebrafish in the first 96 h post fertilisation was studied. Secondly, the effect of leupeptin, a known cathepsin inhibitor, and four embryotoxic xenobiotic compounds with different modes of action (phenanthrene-baseline toxicity; rotenone-an inhibitor of electron transport chain in mitochondria; DNOC (Dinitro-ortho-cresol)-an inhibitor of ATP synthesis; and tebuconazole-a sterol biosynthesis inhibitor) on in vivo cathepsin H, C and L total activities have been tested. The positive control leupeptin showed effects on cathepsin L at a 20-fold lower concentration compared to the respective LC50 (0.4 mM) of the zebrafish embryo assay (FET). The observed effects on the enzyme activity of the four other xenobiotics were not or just slightly more sensitive (factor of 1.5 to 3), but the differences did not reach statistical significance. Results of this study indicate that the analysed cathepsins are not susceptible to toxins other than the known peptide-like inhibitors. However, specific cathepsin inhibitors might be identified using the zebrafish embryo.
Collapse
Affiliation(s)
- Eberhard Küster
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Bioanalysis, University of Applied Sciences Coburg, 96450 Coburg, Germany
- IZI, Fraunhofer Institute for Cell Therapy and Immunology, Department of Therapy Validation, 04103 Leipzig, Germany
| | - Silke Aulhorn
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrike Gündel
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Department Chemicals and Product Safety, Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| |
Collapse
|
13
|
Yilmaz O, Patinote A, Nguyen T, Com E, Pineau C, Bobe J. Genome editing reveals reproductive and developmental dependencies on specific types of vitellogenin in zebrafish (Danio rerio). Mol Reprod Dev 2019; 86:1168-1188. [DOI: 10.1002/mrd.23231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Ozlem Yilmaz
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Amélie Patinote
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Thaovi Nguyen
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Emmanuelle Com
- Protim, Inserm U1085, IrsetCampus de Beaulieu, Université de Rennes 1, Proteomics Core Facility Rennes Cedex France
| | - Charles Pineau
- Protim, Inserm U1085, IrsetCampus de Beaulieu, Université de Rennes 1, Proteomics Core Facility Rennes Cedex France
| | - Julien Bobe
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| |
Collapse
|
14
|
Gioacchini G, Marisaldi L, Basili D, Candelma M, Pignalosa P, Aiese Cigliano R, Sanseverino W, Hardiman G, Carnevali O. A de novo transcriptome assembly approach elucidates the dynamics of ovarian maturation in the swordfish (Xiphias gladius). Sci Rep 2019; 9:7375. [PMID: 31089194 PMCID: PMC6517582 DOI: 10.1038/s41598-019-43872-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
The Mediterranean swordfish (Xiphias gladius) has been recently classified as overfished and in 2016, the International Commission for the Conservation of the Atlantic Tunas (ICCAT) established a multi-annual management plan to recover this stock. To successfully achieve this goal, knowledge about swordfish biology is needed. To date, few studies on swordfish have been performed and none of them has provided useful insights into the reproductive biology at molecular level. Here we set to characterise the molecular dynamics underlying ovarian maturation by employing a de novo transcriptome assembly approach. Differential gene expression analysis in mature and immature ovaries identified a number of differentially expressed genes associated with biological processes driving ovarian maturation. Focusing on ovarian steroidogenesis and vitellogenin uptake, we depict the molecular dynamics characterizing these processes while a phylogenetic analysis let us identify a candidate vitellogenin receptor. This is the first swordfish transcriptome assembly and these findings provide in-depth understanding of molecular processes describing ovarian maturation. Moreover, the establishment of a publicly available database containing information on the swordfish transcriptome aims to boost research on this species with the long-term of developing more comprehensive and successful stock management plans.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Luca Marisaldi
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Danilo Basili
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Michela Candelma
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | | | | | | | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, BT9 5AG, Belfast, UK
| | - Oliana Carnevali
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy.
| |
Collapse
|
15
|
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. FISHES 2018. [DOI: 10.3390/fishes3040045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Collapse
|
16
|
Oh HJ, Kim JH, Mun SH, Kim JH, Kim DJ, Kwon JY. Expression of Yolk Processing Enzyme Genes in Fertilized Eggs from Artificially Matured Female Eel, Anguilla japonica. Dev Reprod 2018; 22:289-295. [PMID: 30324166 PMCID: PMC6182232 DOI: 10.12717/dr.2018.22.3.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 11/17/2022]
Abstract
Large quantity of eggs fail to be fertilized and many of fertilized eggs are
unable to hatch in the eel, Anguilla japonica. Larvae of eel
absorb egg yolk up to 8 days after hatching but the majority of hatched larvae
die before they reach the stage of first feeding in this species. Genes of key
enzymes for yolk processing (cathepsin B, D, L and lipoprotein lipase -
abbreviated as ctsb, ctsd, ctsl and lpl,
respectively) could be associated with egg quality. In this study, we
investigated differences in the expression of these genes between floating eggs
and sinking eggs, and also the relationship between the gene expressions of the
enzymes and fertilization rates in the fertilized eggs obtained from
artificially matured female eels. Expressions of yolk processing enzyme genes
did not show significant difference between floating and sinking egg groups.
Expression of ctsb decreased when fertilization rate was high.
Expression of ctsd, ctsl and lpl, however, did
not show any significant differences. These results suggest that
ctsb expression could be an indicator of egg quality, and
that some proteins prone to be digested by ctsb could be very
important in the process of fertilization and normal cleavage in this species.
Further study should identify these critical proteins to improve our
understanding on the quality of fish eggs.
Collapse
Affiliation(s)
- Hyeon Ji Oh
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| | - Jung-Hyun Kim
- Aquaculture Research Team, NFRDI, Busan 46083, Korea.,Dept. of Future Culture Center, NFRDI, Jeju 63610, Korea
| | - Seong Hee Mun
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| | - Jin Hui Kim
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| | - Dae-Jung Kim
- Aquaculture Research Team, NFRDI, Busan 46083, Korea.,Dept. of Future Culture Center, NFRDI, Jeju 63610, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
17
|
Gwon SH, Kim HK, Baek HJ, Lee YD, Kwon JY. Cathepsin B & D and the Survival of Early Embryos in Red Spotted Grouper, Ephinephelus akaara. Dev Reprod 2017; 21:457-466. [PMID: 29354791 PMCID: PMC5769140 DOI: 10.12717/dr.2017.21.4.457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022]
Abstract
Survival of embryos largely depends on yolk processing during early development. Proteolytic enzymes, cathepsin B & D (ctsb & ctsd) are known to have some important roles in yolk processing of various fish species. Mature female red spotted groupers were injected with human chorionic gonadotropin (HCG) to induce ovulation. The fertilized eggs and embryos were sampled at 0, 4 and 24 HPF (hours post fertilization). Survivals of each groups of embryos were checked at 24 and 48 HPH (hours post hatching). Transcripts of ctsb & ctsd showed the highest level at 0 HPF and relatively high at 4 HPF, but greatly decreased at 24 HPF. In bad egg quality group (BE, embryos survived until 24 HPH), transcript level of ctsb at 4 HPF were significantly lower than the transcript level at the same stage in good egg quality group (GE, embryos survived until 48 HPH) while no significant change of ctsb transcript level was observed at 0 or 24 HPF between BE and GE. Transcript level of ctsd was decreased at 24 HPF, but the difference was not as strong as the case of ctsb transcript. These results suggest that maternal ctsb transcript rather than ctsd transcript is likely to be involved in egg quality resulting in the difference of survival rate of embryos at early developmental period in this species.
Collapse
Affiliation(s)
- Seo-Hui Gwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hyun Kyu Kim
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hea Ja Baek
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Don Lee
- Dept. of Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
18
|
Nynca J, Arnold GJ, Fröhlich T, Ciereszko A. Shotgun proteomics of rainbow trout ovarian fluid. Reprod Fertil Dev 2017; 27:504-12. [PMID: 25482144 DOI: 10.1071/rd13224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/18/2013] [Indexed: 01/29/2023] Open
Abstract
In the present study we used a shotgun proteomic approach to identify 54 proteins of rainbow trout ovarian fluid. The study has unravelled the identity of several proteins not previously reported in fish ovarian fluid. The proteome of trout ovarian fluid consists of diverse proteins participating in lipid binding and metabolism, carbohydrate and ion transport, innate immunity, maturation and ovulation processes. Most trout ovarian fluid proteins correspond to follicular fluid proteins of higher vertebrates, but 15% of the proteins were found to be different, such as those related to the immune system (precerebellin-like protein), proteolysis (myeloid cell lineage chitinase), carbohydrate and lipid binding and metabolism (vitellogenins), cell structure and shape (vitelline envelope protein gamma) and a protein with unknown functions (UPF0762 protein C6orf58 homologue). The present study could help in the decoding of the biological function of these proteins and in the discovery of potential biomarkers of oocyte quality.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor Lynen Str. 25, 81377 Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor Lynen Str. 25, 81377 Munich, Germany
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
19
|
Palomino J, Herrera G, Torres-Fuentes J, Dettleff P, Patel A, Martínez V. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi. Anim Reprod Sci 2017; 180:23-29. [PMID: 28262464 DOI: 10.1016/j.anireprosci.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/09/2017] [Accepted: 02/19/2017] [Indexed: 12/14/2022]
Abstract
In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species.
Collapse
Affiliation(s)
- Jaime Palomino
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile; Animal Reproduction Laboratory, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Giannina Herrera
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile; Animal Reproduction Laboratory, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Jorge Torres-Fuentes
- Animal Reproduction Laboratory, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Phillip Dettleff
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Alok Patel
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Víctor Martínez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile.
| |
Collapse
|
20
|
Liang X, Hu Y, Feng S, Zhang S, Zhang Y, Sun C. Heavy chain (LvH) and light chain (LvL) of lipovitellin (Lv) of zebrafish can both bind to bacteria and enhance phagocytosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:47-55. [PMID: 27185202 DOI: 10.1016/j.dci.2016.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
Lipovitellin (Lv) is an apoprotein in oviparous animals. Lv consists of a heavy chain (LvH) and a light chain (LvL) which are traditionally regarded as energy reserves for developing embryos. Recently, Lv has been shown to be involved in immune defense of developing embryos in fish. However, it remains unknown if each of LvH and LvL possesses immune activity; and if so, whether or not they function similarly. Here we clearly demonstrated that recombinant LvH (rLvH) and LvL (rLvL) from zebrafish vg1 gene bound to both the Gram-negative bacteria Escherichia coli and Vibrio anguillarum and the Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus as well as the pathogen-associated molecular patterns LPS, LTA and PGN. In addition, both rLvH and rLvL were able to enhance the phagocytosis of bacteria E. coli and S. aureus by macrophages. All these data suggest that both LvH and LvL, in addition to being energy reserves, are also maternal immune-relevant factors capable of interacting with invading bacteria in zebrafish embryos/larvae.
Collapse
Affiliation(s)
- Xue Liang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yu Hu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shuoqi Feng
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yu Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
21
|
Uribe MC, Grier HJ, García-Alarcón A, Parenti LR. Oogenesis: From Oogonia to Ovulation in the Flagfish,Jordanella floridaeGoode and Bean, 1879 (Teleostei: Cyprinodontidae). J Morphol 2016; 277:1339-54. [DOI: 10.1002/jmor.20580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Carmen Uribe
- Facultad De Ciencias, Departamento De Biología Comparada; Universidad Nacional Autónoma De México; Ciudad De México 04510 México
| | - Harry J. Grier
- Fish and Wildlife Research Institute; St. Petersburg Florida 33701
- Division of Fishes, Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington District of Columbia 20013-7012
| | - Adriana García-Alarcón
- Facultad De Ciencias, Departamento De Biología Comparada; Universidad Nacional Autónoma De México; Ciudad De México 04510 México
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington District of Columbia 20013-7012
| |
Collapse
|
22
|
Langdon YG, Fuentes R, Zhang H, Abrams EW, Marlow FL, Mullins MC. Split top: a maternal cathepsin B that regulates dorsoventral patterning and morphogenesis. Development 2016; 143:1016-28. [PMID: 26893345 PMCID: PMC4813285 DOI: 10.1242/dev.128900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022]
Abstract
The vertebrate embryonic dorsoventral axis is established and patterned by Wnt and bone morphogenetic protein (BMP) signaling pathways, respectively. Whereas Wnt signaling establishes the dorsal side of the embryo and induces the dorsal organizer, a BMP signaling gradient patterns tissues along the dorsoventral axis. Early Wnt signaling is provided maternally, whereas BMP ligand expression in the zebrafish is zygotic, but regulated by maternal factors. Concomitant with BMP activity patterning dorsoventral axial tissues, the embryo also undergoes dramatic morphogenetic processes, including the cell movements of gastrulation, epiboly and dorsal convergence. Although the zygotic regulation of these cell migration processes is increasingly understood, far less is known of the maternal regulators of these processes. Similarly, the maternal regulation of dorsoventral patterning, and in particular the maternal control of ventral tissue specification, is poorly understood. We identified split top, a recessive maternal-effect zebrafish mutant that disrupts embryonic patterning upstream of endogenous BMP signaling. Embryos from split top mutant females exhibit a dorsalized embryonic axis, which can be rescued by BMP misexpression or by derepressing endogenous BMP signaling. In addition to dorsoventral patterning defects, split top mutants display morphogenesis defects that are both BMP dependent and independent. These morphogenesis defects include incomplete dorsal convergence, delayed epiboly progression and an early lysis phenotype during gastrula stages. The latter two morphogenesis defects are associated with disruption of the actin and microtubule cytoskeleton within the yolk cell and defects in the outer enveloping cell layer, which are both known mediators of epiboly movements. Through chromosomal mapping and RNA sequencing analysis, we identified the lysosomal endopeptidase cathepsin Ba (ctsba) as the gene deficient in split top embryos. Our results identify a novel role for Ctsba in morphogenesis and expand our understanding of the maternal regulation of dorsoventral patterning.
Collapse
Affiliation(s)
- Yvette G Langdon
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA Millsaps College, Department of Biology, Jackson, MS 39210, USA
| | - Ricardo Fuentes
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Hong Zhang
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Elliott W Abrams
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Florence L Marlow
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Yilmaz O, Prat F, Ibáñez AJ, Köksoy S, Amano H, Sullivan CV. Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): Molecular characterization, quantification in plasma, liver and ovary, and maturational proteolysis. Comp Biochem Physiol B Biochem Mol Biol 2015; 194-195:71-86. [PMID: 26643259 DOI: 10.1016/j.cbpb.2015.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya, 07070, Turkey
| | - Francisco Prat
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Avda. República Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - A Jose Ibáñez
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal, s/n 12595, Ribera de Cabanes, Castellòn, Spain
| | - Sadi Köksoy
- Central Research and Immunology Laboratories, Akdeniz University, Faculty of Medicine, Antalya, 07070, Turkey
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Craig V Sullivan
- Department of Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
24
|
Trumbić Ž, Bekaert M, Taggart JB, Bron JE, Gharbi K, Mladineo I. Development and validation of a mixed-tissue oligonucleotide DNA microarray for Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758). BMC Genomics 2015; 16:1007. [PMID: 26607231 PMCID: PMC4659210 DOI: 10.1186/s12864-015-2208-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing. T. thynnus aquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. RESULTS We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adult T. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15 K Agilent oligonucleotide DNA microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. CONCLUSIONS Sequence data generated from a novel mixed-tissue T. thynnus cDNA library provide an important transcriptomic resource that can be further employed for study of various aspects of T. thynnus ecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.
Collapse
Affiliation(s)
- Željka Trumbić
- University Department of Marine Studies, University of Split, Split, Croatia.
| | - Michaël Bekaert
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - Karim Gharbi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, Scotland, UK.
| | - Ivona Mladineo
- Institute of Oceanography and Fisheries, Split, Croatia.
| |
Collapse
|
25
|
Sun C, Zhang S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015. [PMID: 26506386 DOI: 10.3390/nu710543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
26
|
Sun C, Zhang S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015; 7:8818-29. [PMID: 26506386 PMCID: PMC4632452 DOI: 10.3390/nu7105432] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
27
|
Lee JW, Lee YM, Yang H, Noh JK, Kim HC, Park CJ, Park JW, Hwang IJ, Kim SY, Lee JH. Expression Analysis of Cathepsin F during Embryogenesis and Early Developmental Stage in Olive Flounder (Paralichthys olivaceus). Dev Reprod 2015; 17:221-9. [PMID: 25949137 PMCID: PMC4282294 DOI: 10.12717/dr.2013.17.3.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/28/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022]
Abstract
Cathepsins are members of the multigene family of lysosomal cysteine proteinases and have regulated function in several life processes. The potential role of cathepsin F cysteine gene was expected as protease in the yolk processing mechanism during early developmental stage, but expression analysis was unknown after fertilization. The alignment analysis showed that amino acid sequence of cathepsin F from olive flounder liver expressed sequence tag (EST) homologous to cathepsin F of other known cathepsin F sequences with 87-98% identity. In this study, we examined the gene expression analysis of cathepsin F in various tissues at variety age flounder. Tissue distribution of the cathepsin F mRNA has been shown to be ubiquitous and constitutive pattern regardless of age in each group, although derived from cDNA library using liver sample. The mRNA level of cathepsin F more increased as developmental proceed during embryogenesis and early developmental stage, especially increased in the blastula, hatching stage and 3 days post hatching (dph). As a result, it may suggest that the proteolysis of yolk proteins (YPs) has been implicated as a mechanism for nutrient supply during early larval stages in olive flounder.
Collapse
Affiliation(s)
- Jang-Wook Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Young Mee Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Yang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jae Koo Noh
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - In Joon Hwang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Sung Yeon Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jeong-Ho Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| |
Collapse
|
28
|
Salmerón C, Navarro I, Johnston IA, Gutiérrez J, Capilla E. Characterisation and expression analysis of cathepsins and ubiquitin-proteasome genes in gilthead sea bream (Sparus aurata) skeletal muscle. BMC Res Notes 2015; 8:149. [PMID: 25880457 PMCID: PMC4431372 DOI: 10.1186/s13104-015-1121-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/02/2015] [Indexed: 12/02/2022] Open
Abstract
Background The proteolytic enzymes involved in normal protein turnover in fish muscle are also responsible for post-mortem softening of the flesh and are therefore potential determinants of product quality. The main enzyme systems involved are calpains, cathepsins, and the ubiquitin-proteasome (UbP). In this study on Sparus aurata (Sa), the coding sequences of cathepsins (SaCTSB and SaCTSDb) and UbP family members (SaN3 and SaUb) were cloned from fast skeletal muscle, and their expression patterns were examined during ontogeny and in a fasting/re-feeding experiment. Results The amino acid sequences identified shared 66-100% overall identity with their orthologues in other vertebrates, with well conserved characteristic functional domains and catalytic residues. SaCTSDb showed phylogenetic, sequence and tissue distribution differences with respect to its paralogue SaCTSDa, previously identified in the ovary. Expression of gilthead sea bream cathepsins (B, L, Da, Db) and UbP members (N3, Ub, MuRF1 and MAFbx) in fast skeletal muscle was determined at three different life-history stages and in response to fasting and re-feeding in juveniles. Most of the proteolytic genes analysed were significantly up-regulated during fasting, and down-regulated with re-feeding and, between the fingerling (15 g) and juvenile/adult stages (~50/500 g), consistent with a decrease in muscle proteolysis in both later contexts. In contrast, SaCTSDa and SaMuRF1 expression was relatively stable with ontogeny and SaUb had higher expression in fingerlings and adults than juveniles. Conclusions The data obtained in the present study suggest that cathepsins and UbP genes in gilthead sea bream are co-ordinately regulated during ontogeny to control muscle growth, and indicate that feeding regimes can modulate their expression, providing a potential dietary method of influencing post-mortem fillet tenderisation, and hence, product quality. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1121-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Isabel Navarro
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews Fife, KY16 8LB, Scotland, UK.
| | - Joaquim Gutiérrez
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Encarnación Capilla
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| |
Collapse
|
29
|
Maradonna F, Nozzi V, Dalla Valle L, Traversi I, Gioacchini G, Benato F, Colletti E, Gallo P, Di Marco Pisciottano I, Mita DG, Hardiman G, Mandich A, Carnevali O. A developmental hepatotoxicity study of dietary bisphenol A in Sparus aurata juveniles. Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:1-13. [PMID: 24981242 DOI: 10.1016/j.cbpc.2014.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Previous studies in rats have indicated that a diet enriched with Bisphenol A adversely effects metabolism and reproductive success. In rats exposed to BPA by maternal gavage, alteration in the developmental programming, higher obesity rates and reproductive anomalies were induced. Starting with this evidence, the aim of this study was to provide important insights on the effects induced by a BPA enriched diet, on the reproductive physiology and metabolism of juvenile fish, simulating the scenario occurring when wild fish fed on prey contaminated with environmental BPA. Seabream was chosen as model, as it is one of the primary commercial species valued by consumers and these results could provide important findings on adverse effects that could be passed on to humans by eating contaminated fish. A novel method for measuring BPA in the food and water by affinity chromatography was developed. Analysis of signals involved in reproduction uncovered altered levels of vtg and Zp, clearly indicating the estrogenic effect of BPA. Similarly, BPA up-regulated catd and era gene expression. A noteworthy outcome from this study was the full length cloning of two vtg encoding proteins, namely vtgA and vtgB, which are differently modulated by BPA. Cyp1a1 and EROD activity were significantly downregulated, confirming the ability of estrogenic compounds to inhibit the detoxification process. GST activity was unaffected by BPA contamination, while CAT activity was down regulated. These results collectively confirm the estrogenic effect of BPA and provide additional characterization of novel vtg genes in Sparus aurata.
Collapse
Affiliation(s)
- Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Valentina Nozzi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | | | - Ilaria Traversi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, 16132 Genova, Italy; INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesca Benato
- Dipartimento di Biologia, Università di Padova, 35131 Padova, Italy
| | - Elisa Colletti
- Dipartimento di Biologia, Università di Padova, 35131 Padova, Italy
| | - Pasquale Gallo
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy; Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici (NA), Italy
| | | | - Damiano G Mita
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Computational Science Research Center Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA
| | - Alberta Mandich
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, 16132 Genova, Italy; INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| |
Collapse
|
30
|
Armiliato N, Ammar D, Nezzi L, Straliotto M, Muller YMR, Nazari EM. Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:405-14. [PMID: 24617544 DOI: 10.1080/15287394.2014.880393] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glyphosate is a broad-spectrum organophosphate (OP) herbicide, highly soluble in water, and when applied in terrestrial systems it penetrates into soil, eventually reaching the aquatic community and affecting nontarget organisms. The aim of this study was to evaluate the toxicity of glyphosate on ovaries of zebrafish (Danio rerio). Ovaries (n = 18 per triplicate) were exposed to 65 μg/L of glyphosate [N-(phosphonomethyl) glycine] for 15 d. This concentration was determined according to Resolution 357/2005/CONAMA/Brazil, which establishes the permissible concentration of glyphosate in Brazilian inland waters. Nonexposed ovaries (n = 18 per triplicate) were used as control. Subsequently, morphology and expression of steroidogenic factor-1 (SF-1) of exposed and nonexposed ovaries was determined. No apparent changes were noted in general morphology of exposed and nonexposed ovaries. However, a significant increase in diameter of oocytes was observed after exposure to glyphosate. When ovarian ultrastructure was examined the presence of concentric membranes, appearing as myelin-like structures, associated with the external membranes of mitochondria and with yolk granules was found. After glyphosate exposure, immunohistochemistry and immunoblotting revealed greater expression of SF-1 in the oocytes, which suggests a relationship between oocyte growth and SF-1 expression. These subtle adverse effects of glyphosate on oocytes raised a potential concern for fish reproduction. These results contribute to understanding glyphosate-induced toxicity to nontarget organisms, showing subcellular and molecular impairments that may affect reproduction in +female fish.
Collapse
Affiliation(s)
- Neide Armiliato
- a Departamento de Biologia Celular, Embriologia e Genética , Universidade Federal de Santa Catarina, Florianópolis , Santa Catarina , Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Lanes CFC, Bizuayehu TT, de Oliveira Fernandes JM, Kiron V, Babiak I. Transcriptome of Atlantic cod (Gadus morhua L.) early embryos from farmed and wild broodstocks. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:677-694. [PMID: 23887676 DOI: 10.1007/s10126-013-9527-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
Significant efforts have been made to elucidate factors affecting egg quality in fish. Recently, we have shown that eggs originating from wild broodstock (WB) of Atlantic cod (Gadus morhua L.) are of superior quality to those derived from farmed broodstock (FB), and this is associated with differences in the chemical composition of egg yolk. However, maternal transcripts, accumulated during oogenesis, have not been studied extensively in fish. The aim of the present study was to characterize putative maternal mRNA transcriptome in fertilized eggs of Atlantic cod and to compare transcript pools between WB and FB in order to investigate the relation between egg developmental potential and putative maternal mRNA deposits. We performed high-throughput 454 pyrosequencing. For each WB and FB group, five cDNA libraries were individually tagged and sequenced, resulting in 98,687 (WB) and 119,333 (FB) average reads per library. Sequencing reads were de novo assembled, annotated, and mapped. Out of 13,726 identified isotigs, 238 were differentially expressed between WB and FB, with 155 isotigs significantly upregulated in WB. The sequence reads were mapped to 11,340 different Atlantic cod transcripts and 158 sequences were differentially expressed between the 2 groups. Important transcripts involved in fructose metabolism, fatty acid metabolism, glycerophospholipid metabolism, and oxidative phosphorylation were differentially represented between the two broodstock groups, showing potential as biomarkers of egg quality in teleosts. Our findings contribute to the hypothesis that maternal mRNAs affect egg quality and, consequently, the early development of fish.
Collapse
|
32
|
Niu D, Jin K, Wang L, Feng B, Li J. Molecular characterization and expression analysis of four cathepsin L genes in the razor clam, Sinonovacula constricta. FISH & SHELLFISH IMMUNOLOGY 2013; 35:581-588. [PMID: 23765116 DOI: 10.1016/j.fsi.2013.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
Cathepsin L (CTSL) is a lysosomal cysteine protease involved in immune responses in vertebrates. However, few studies exist regarding the role of cathepsin L in bivalves. In this study, we isolated and characterized four cathepsin L genes from the razor clam Sinonovacula constricta, referred to as CTSL1, CTSL2, CTSL3 and CTSL4. These four genes contained typical papain-like cysteine protease structure and enzyme activity sites with ERWNIN-like and GNFD-like motifs in the proregion domain and an oxyanion hole (Gln) and a catalytic triad (Cys, His and Asn) in the mature domain. Expression analysis of the four transcripts revealed a tissue-specific pattern with high expression of CTSL1 and CTSL3 in liver and gonad tissues and high expression of CTSL2 and CTSL4 in liver and gill tissues. During the developmental stages, the four transcripts showed the highest expression in the juvenile stage; however, CTSL3 had a much higher expression level than the other three transcripts during embryogenesis. The four transcripts showed significant changes in expression as early as 4 h or 8 h after infection with Vibrio anguillarum. The fact that bacterial infection can induce expression of the four CTSL transcripts suggests that these transcripts are important components of the innate immunity system of the clam.
Collapse
Affiliation(s)
- Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 201306, China
| | | | | | | | | |
Collapse
|
33
|
Liang JZ, Rao YZ, Lun ZR, Yang TB. Cathepsin L in the orange-spotted grouper, Epinephelus coioides: molecular cloning and gene expression after a Vibrio anguillarum challenge. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1795-1806. [PMID: 22723013 DOI: 10.1007/s10695-012-9676-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
The orange-spotted grouper, Epinephelus coioides, is an important fish maricultured in many Asian countries. In the present study, the full-length cDNA of cathepsin L, an immunity related gene of fishes, was isolated from E. coioides using rapid amplification of cDNA ends (RACE). It is 1,443 bp in length, including an open reading frame (ORF) of 1,011 bp. The open reading frame encoded a preproprotein of 336 amino acids (aa), which consisted of a signal peptide of 16 aa, a proregion peptide of 98 aa and a mature peptide of 222 aa. The preproprotein contained an oxyanion hole (Gln), a catalytic triad formed by Cys, His and Asn, and the conserved ERWNIN, GNFD and GCNGG motifs, all characteristic of cathepsin L. Homology analysis revealed that the deduced amino acid sequence of E. coioides cathepsin L shared 80.1-94.8 % identity with those of reported fishes. Tissue-dependent mRNA expression analysis showed that the cathepsin L transcript was expressed in all the examined tissues of the healthy E. coioides, being highest in the liver and moderate in the heart, gonad and intestine. After Vibrio anguillarum stimulation, the mRNA expression of cathepsin L in E. coioides was significantly increased in the skin, fin, gills, liver, blood, spleen, head kidney and intestine, with the highest observed in the spleen (10.6-fold) at 12 h post-injection and the next in blood (7.5-fold) at 8 h post-injection. These results provided initial information for further studies on the physiological and immunological roles of the cathepsin L gene in the orange-spotted grouper.
Collapse
Affiliation(s)
- Jing-Zhen Liang
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying-Zhu Rao
- Life Science and Technology School, Zhanjiang Normal University, Zhanjiang, 524048, China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ting-Bao Yang
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
34
|
Dong ZD, Zhang J, Ji XS, Zhou FN, Fu Y, Chen W, Zeng YQ, Li TM, Wang H. Molecular cloning, characterization and expression of cathepsin D from grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2012; 33:1207-1214. [PMID: 23009921 DOI: 10.1016/j.fsi.2012.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Cathepsin D is a lysosomal aspartic proteinase which participates in various degradation functions within the cell. In this current study, we cloned and characterized the complete cDNA of grass carp cathepsin D through 5'- and 3'-RACE. The cathepsin D contained a 56 bp 5' terminal untranslated region (5'-UTR), a 1197 bp open reading frame encoding 398 amino acids, and a 394 bp 3'-UTR. Grass carp cathepsin D shared high similarity with those from other species, and showed the highest amino acid identity of 91% to Danio rerio. Unlike many other organisms, the grass carp cathepsin D contains only one N-glycosylation site closest to the N-terminal. Real-time quantitative RT-PCR demonstrated that Cathepsin D expressed in all twelve tissues (bladder, brain, liver, heart, gill, muscle, fin, eye, intestines, spleen, gonad and head kidney). The relative expression levels of Cathepsin D in gonad and liver were 26.58 and 24.95 times as much as those in fin, respectively. The expression level of Cathepsin D in muscle approximately 16-fold higher, in intestines and spleen were 12-fold higher. The cathepsin D expression showed an upward trend during embryonic development. After challenged with Aeromonas hydrophil, the expression of grass carp cathepsin D gene showed significant changes in the four test tissues (liver, head kidney, spleen and intestines). The fact that the bacterial infection can obviously improve the cathepsin D expression in immune-related organs, may suggest that cathepsin D plays an important role in the innate immune response of grass carp.
Collapse
Affiliation(s)
- Zhong-dian Dong
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gardner LD, Jayasundara N, Castilho PC, Block B. Microarray gene expression profiles from mature gonad tissues of Atlantic bluefin tuna, Thunnus thynnus in the Gulf of Mexico. BMC Genomics 2012; 13:530. [PMID: 23036107 PMCID: PMC3478158 DOI: 10.1186/1471-2164-13-530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 10/01/2012] [Indexed: 01/17/2023] Open
Abstract
Background Bluefin tunas are highly prized pelagic fish species representing a significant economic resource to fisheries throughout the world. Atlantic bluefin tuna (Thunnus thynnus) populations have significantly declined due to overexploitation. As a consequence of their value and population decline, T. thynnus has been the focus of considerable research effort concerning many aspects of their life history. However, in-depth understanding of T. thynnus reproductive biology is still lacking. Knowledge of reproductive physiology is a very important tool for determining effective fisheries and aquaculture management. Transcriptome techniques are proving powerful and provide novel insights into physiological processes. Construction of a microarray from T. thynnus ESTs sourced from reproductive tissues has provided an ideal platform to study the reproductive physiology of bluefin tunas. The aim of this investigation was to compare transcription profiles from the ovaries and testes of mature T. thynnus to establish sex specific variations underlying their reproductive physiology. Results Male and females T. thynnus gonad tissues were collected from the wild and histologically staged. Sub-samples of sexually mature tissues were also measured for their mRNA differential expression among the sexes using the custom microarray design BFT 4X44K. A total of 7068 ESTs were assessed for differential expression of which 1273 ESTs were significantly different (p<0.05) with >2 fold change in expression according to sex. Differential expression for 13 of these ESTs was validated with quantitative PCR. These include genes involved in egg envelope formation, hydration, and lipid transport/accumulation more highly expressed in ovaries compared with testis, while genes involved in meiosis, sperm motility and lipid metabolism were more highly expressed in testis compared with ovaries. Conclusions This investigation has furthered our knowledge of bluefin tunas reproductive biology by using a contemporary transcriptome approach. Gene expression profiles in T. thynnus sexually mature testes and ovaries were characterized with reference to gametogenesis and potential alternative functions. This report is the first application of microarray technology for bluefin tunas and demonstrates the efficacy by which this technique may be used for further characterization of specific biological aspects for this valuable teleost fish.
Collapse
Affiliation(s)
- Luke D Gardner
- Biology Department, Hopkins Marine Station, Pacific Grove, Stanford University, California 93950, USA.
| | | | | | | |
Collapse
|
36
|
Bourin M, Gautron J, Berges M, Nys Y, Réhault-Godbert S. Sex- and tissue-specific expression of “similar to nothepsin” and cathepsin D in relation to egg yolk formation in Gallus gallus. Poult Sci 2012; 91:2288-93. [DOI: 10.3382/ps.2011-01910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Crespo D, Mañanós EL, Roher N, MacKenzie SA, Planas JV. Tumor Necrosis Factor Alpha May Act as an Intraovarian Mediator of Luteinizing Hormone-Induced Oocyte Maturation in Trout1. Biol Reprod 2012; 86:1-12. [DOI: 10.1095/biolreprod.111.094433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Follo C, Ozzano M, Mugoni V, Castino R, Santoro M, Isidoro C. Knock-down of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish. PLoS One 2011; 6:e21908. [PMID: 21747967 PMCID: PMC3128622 DOI: 10.1371/journal.pone.0021908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/14/2011] [Indexed: 02/04/2023] Open
Abstract
The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates.
Collapse
Affiliation(s)
- Carlo Follo
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Matteo Ozzano
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Vera Mugoni
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Roberta Castino
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Massimo Santoro
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ciro Isidoro
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
- * E-mail:
| |
Collapse
|
39
|
Tingaud-Sequeira A, Carnevali O, Cerdà J. Cathepsin B differential expression and enzyme processing and activity during Fundulus heteroclitus embryogenesis. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:221-8. [PMID: 21059400 DOI: 10.1016/j.cbpa.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/11/2022]
Abstract
The role of lysosomal proteases such as cathepsin B (Ctsb) and one of the paralogs of cathepsin L (Ctsla) during yolk metabolism in fish oocytes is well established. However, the function of Ctsb during embryogenesis, particularly in marine teleosts, has been poorly documented. In this study, the spatio-temporal expression of Ctsb and Ctsla, their enzymatic activities, and the processing of the Ctsb and its cellular localization, was investigated in developing embryos of the killifish (Fundulus heteroclitus). Both fhctsb and fhctsla transcript levels, as well as cathepsin B- and L-like activities, gradually increased in embryos from the 2-4 cell stage up to 7 days post-fertilization. During the morula to gastrula transition an increase of the active FhCtsb single chain form was followed by a rise in cathepsin B activity, which were apparently regulated by post-transcriptional mechanisms. During neurulation, a 8-fold increase in cathepsin B activity was accompanied by a more moderate increase in cathepsin L activity, which was 6-fold enhanced by 7 dpf. These increased catalytic activities were well-correlated to changes in the electrophoretic pattern of yolk proteins and a strong expression of fhctsb and its protein product in the yolk syncytial layer. The increase of cathepsin B activity was further correlated with an increment of the relative amount of the FhCtsb single and double chain forms, both active forms of FhCtsb. These results suggest that FhCtsb may be involved in the mechanisms underlying the onset of gastrulation in F. heteroclitus embryos, and may play complementary roles with FhCtsla during yolk metabolism.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | | |
Collapse
|
40
|
Giorgini E, Conti C, Ferraris P, Sabbatini S, Tosi G, Rubini C, Vaccari L, Gioacchini G, Carnevali O. Effects of Lactobacillus rhamnosus on zebrafish oocyte maturation: an FTIR imaging and biochemical analysis. Anal Bioanal Chem 2010; 398:3063-72. [DOI: 10.1007/s00216-010-4234-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 12/27/2022]
|
41
|
Fan X, Klein M, Flanagan-Steet HR, Steet R. Selective yolk deposition and mannose phosphorylation of lysosomal glycosidases in zebrafish. J Biol Chem 2010; 285:32946-32953. [PMID: 20729204 DOI: 10.1074/jbc.m110.158295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation and function of lysosomal hydrolases during yolk consumption and embryogenesis in zebrafish are poorly understood. In an effort to better define the lysosomal biochemistry of this organism, we analyzed the developmental expression, biochemical properties, and function of several glycosidases in zebrafish eggs, embryos, and adult tissues. Our results demonstrated that the specific activity of most enzymes increases during embryogenesis, likely reflecting a greater need for turnover within the embryo as yolk-derived nutrients are depleted. Analysis of glycosidase activity in zebrafish and medaka eggs revealed selective deposition of enzymes required for the degradation of N-linked glycans, including an abundance of acidic mannosidases. Treatment of zebrafish embryos with the α-mannosidase inhibitor swainsonine resulted in the accumulation of glycosylated vitellogenin fragments and demonstrated a function for maternally deposited acid α-mannosidase in yolk consumption. Surprisingly, we also found that, unlike mammals, acid α-glucosidase from zebrafish and medaka does not appear to be modified with mannose 6-phosphate residues. We further showed these residues were not acquired on human acid α-glucosidase when expressed in zebrafish embryos, suggesting unique differences in the ability of the human and zebrafish N-acetylglucosamine-1-phosphotransferase to recognize and modify certain lysosomal glycosidases. Together, these results provide novel insight into the role of acidic glycosidases during yolk utilization and the evolution of the mannose 6-phosphate targeting system in vertebrates.
Collapse
Affiliation(s)
- Xiang Fan
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Maximilian Klein
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | - Richard Steet
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
42
|
|
43
|
Vitellogenin C-terminal fragments participate in fertilization as egg-coat binding partners of sperm trypsin-like proteases in the ascidian Halocynthia roretzi. Biochem Biophys Res Commun 2010; 392:479-84. [DOI: 10.1016/j.bbrc.2010.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 01/04/2010] [Indexed: 11/17/2022]
|
44
|
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 2010; 165:367-89. [PMID: 19505465 DOI: 10.1016/j.ygcen.2009.05.022] [Citation(s) in RCA: 566] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation.
Collapse
Affiliation(s)
- Esther Lubzens
- Department of Marine Biology, Israel Oceanographic and Limnological Research, 81080 Haifa, Israel.
| | | | | | | |
Collapse
|
45
|
Leatherland JF, Li M, Barkataki S. Stressors, glucocorticoids and ovarian function in teleosts. JOURNAL OF FISH BIOLOGY 2010; 76:86-111. [PMID: 20738701 DOI: 10.1111/j.1095-8649.2009.02514.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The purpose of this overview is to re-examine the postulated direct and indirect actions of glucocorticoids on ovarian function in teleosts. The re-examination is undertaken in light of recent advances in the understanding of the stress response itself, the mode of action of the hypothalamus-pituitary gland-ovarian (HPO) axis, the mechanisms of control of oestrogen-dependent hepatic vitellogenin (VtG) secretion and the apparent roles of corticotrophin-releasing hormone (CRH) and CRH-related factors in the regulation of feeding activity. Many of the results of different studies, particularly whole-animal studies, are conflicting, and little is known as to whether the hormone acts directly on various components of the HPO axis or indirectly by virtue of redirection of energy resources away from ovarian growth to provide a source of metabolic resources for other organ systems involved in the physiological stress response. In vitro studies provide some new insights into the direct actions of glucocorticoid on hepatic VtG synthesis and ovarian follicle steroidogenesis, but even here, in some studies the cellular sites of action of these hormones is not altogether clear. The overview emphasizes the complexity of the stress response, the complexity of the regulation of glucocorticoid-dependent gene expression and the extensive interactive nature of the HPO with other hypothalamus-pituitary gland-peripheral endocrine gland axes, such as the thyroid (HPT), 'somatic' (GH-IGF) and interrenal tissue (HPI) axes.
Collapse
Affiliation(s)
- J F Leatherland
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | |
Collapse
|
46
|
Clelland E, Peng C. Endocrine/paracrine control of zebrafish ovarian development. Mol Cell Endocrinol 2009; 312:42-52. [PMID: 19406202 DOI: 10.1016/j.mce.2009.04.009] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 12/11/2022]
Abstract
Ovarian differentiation and the processes of follicle development, oocyte maturation and ovulation are complex events, requiring the coordinated action of regulatory molecules. In zebrafish, ovarian development is initiated at 10 days after hatching and fish become sexually mature at 3 months. Adult zebrafish have asynchronous ovaries, which contain follicles of all stages of development. Eggs are spawned daily under proper environmental conditions in a population of zebrafish, with individual females spawning irregularly every 4-7 days in mixed sex conditions. Maximal embryo viability is achieved when sexually isolated females are bred in 10-day intervals [Niimi, A.J., LaHam, Q.N., 1974. Influence of breeding time interval on egg number, mortality, and hatching of the zebra fish Brachydanio verio. Can. J. Zool. 52, 515-517]. Similar to other vertebrates, hormones from the hypothalamus-pituitary-gonadal axis play important roles in regulating follicle development. Follicle stimulating hormone (FSH) stimulates estradiol production, which in turn, promotes viteollogenesis. Luteinizing hormone (LH) stimulates the production of 17,20beta-dihydroxy-4-pregnen-3-one (17,20betaP) or maturation inducing hormone (MIH) which acts through membrane progestin receptors to activate maturation promoting factor, leading to oocyte maturation. Recent studies in zebrafish have also provided novel insights into the functions of ovary-derived growth factors in follicle development and oocyte maturation. The present review summarizes the current knowledge on how endocrine and paracrine factors regulate ovarian development in zebrafish. Special emphasis is placed on how follicle development and oocyte maturation in adult females is regulated by gonadotropins, ovarian steroids and growth factors produced by the ovary.
Collapse
Affiliation(s)
- Eric Clelland
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
47
|
Reading BJ, Hiramatsu N, Sawaguchi S, Matsubara T, Hara A, Lively MO, Sullivan CV. Conserved and variant molecular and functional features of multiple egg yolk precursor proteins (vitellogenins) in white perch (Morone americana) and other teleosts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:169-187. [PMID: 18766402 DOI: 10.1007/s10126-008-9133-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 05/26/2023]
Abstract
Three complete cDNAs encoding different forms of vitellogenin (Vtg) were isolated from a white perch (Morone americana) liver cDNA library and characterized with respect to immunobiochemical and functional features of the three Vtgs and their product yolk proteins (YPs) in this species and in the congeneric striped bass (Morone saxatilis). The two longest cDNAs encoded Vtgs with a complete suite of yolk protein domains that, based on comparisons with vtg sequences from other species, were categorized as VtgAa and VtgAb using the current nomenclature for multiple teleost Vtgs. The shorter cDNA encoded a Vtg that lacked a phosvitin domain, had a shortened C-terminus, and was categorized as VtgC. Mapping of peptide sequences from the purified Vtgs and their derived YPs to Vtg sequences deduced from the cDNAs definitively identified the white perch VtgAa, VtgAb, and VtgC proteins. Detailed comparisons of the primary structures of each Vtg with partial or complete sequences of Morone yolk proteins or of Vtgs from other fishes revealed conserved and variant structural elements of teleost Vtgs with functional significance, including, as examples, signal peptide cleavage sites, dimerization sites, cathepsin D protease recognition sites, and receptor-binding domains. These comparisons also yielded an interim revision of the classification scheme for multiple teleost Vtgs.
Collapse
Affiliation(s)
- Benjamin J Reading
- Department of Zoology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Finn RN, Kolarevic J, Kongshaug H, Nilsen F. Evolution and differential expression of a vertebrate vitellogenin gene cluster. BMC Evol Biol 2009; 9:2. [PMID: 19123940 PMCID: PMC2632621 DOI: 10.1186/1471-2148-9-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 01/05/2009] [Indexed: 02/01/2023] Open
Abstract
Background The multiplicity or loss of the vitellogenin (vtg) gene family in vertebrates has been argued to have broad implications for the mode of reproduction (placental or non-placental), cleavage pattern (meroblastic or holoblastic) and character of the egg (pelagic or benthic). Earlier proposals for the existence of three forms of vertebrate vtgs present conflicting models for their origin and subsequent duplication. Results By integrating phylogenetics of novel vtg transcripts from old and modern teleosts with syntenic analyses of all available genomic variants of non-metatherian vertebrates we identify the gene orthologies between the Sarcopterygii (tetrapod branch) and Actinopterygii (fish branch). We argue that the vertebrate vtg gene cluster originated in proto-chromosome m, but that vtg genes have subsequently duplicated and rearranged following whole genome duplications. Sequencing of a novel fourth vtg transcript in labrid species, and the presence of duplicated paralogs in certain model organisms supports the notion that lineage-specific gene duplications frequently occur in teleosts. The data show that the vtg gene cluster is more conserved between acanthomorph teleosts and tetrapods, than in ostariophysan teleosts such as the zebrafish. The differential expression of the labrid vtg genes are further consistent with the notion that neofunctionalized Aa-type vtgs are important determinants of the pelagic or benthic character of the eggs in acanthomorph teleosts. Conclusion The vertebrate vtg gene cluster existed prior to the separation of Sarcopterygii from Actinopterygii >450 million years ago, a period associated with the second round of whole genome duplication. The presence of higher copy numbers in a more highly expressed subcluster is particularly prevalent in teleosts. The differential expression and latent neofunctionalization of vtg genes in acanthomorph teleosts is an adaptive feature associated with oocyte hydration and spawning in the marine environment.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, University of Bergen, Bergen High Technology Center, Postbox 7803, N-5020, Bergen, Norway.
| | | | | | | |
Collapse
|
49
|
Bobe J, Nguyen T, Fostier A. Ovarian function of the trout preovulatory ovary: new insights from recent gene expression studies. Comp Biochem Physiol A Mol Integr Physiol 2008; 153:63-8. [PMID: 19027867 DOI: 10.1016/j.cbpa.2008.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/24/2008] [Accepted: 10/25/2008] [Indexed: 10/21/2022]
Abstract
During the preovulatory period the follicle-enclosed oocyte progressively acquires maturational and developmental competence. In addition, the follicle is also preparing for the release of the oocyte from the follicle at ovulation. Using real-time PCR and cDNA microarrays we have investigated the molecular mechanisms of oocyte competence acquisition and ovulation in rainbow trout (Oncorhynchus mykiss) by monitoring gene expression in the preovulatory ovary. These studies have demonstrated that many molecular events related to maturational competence and developmental competence acquisition, and ovulation occur concomitantly in the preovulatory ovarian follicle. Oocyte maturational competence acquisition is associated with a decrease of estrogen synthesis and signaling capacities. We also observed a differential expression of genes encoding for igfs and related binding protein, members of the TGF beta superfamily, proteins involved in ion and water transport, bone morphogenetic proteins, and cathepsins. In addition, our observation of a strong up-regulation, prior to ovulation, of genes encoding for proteins putatively involved in proteolysis, inflammation, coagulation, vasodilatation, and angiogenesis further supports the hypothesis comparing ovulation with an inflammatory-like reaction. Together, our results suggest that a finely tuned cross-talk exists between oocyte and follicular layers and between the ovulatory process and the oocyte maturational and developmental competence acquisition processes.
Collapse
Affiliation(s)
- Julien Bobe
- Institut National de la Recherche Agronomique, UR1037 SCRIBE, IFR140, Genopole Ouest, Rennes, France.
| | | | | |
Collapse
|
50
|
Maradonna F, Carnevali O. Vitellogenin, zona radiata protein, cathepsin D and heat shock protein 70 as biomarkers of exposure to xenobiotics. Biomarkers 2008; 12:240-55. [PMID: 17453739 DOI: 10.1080/13547500601070859] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The antagonistic and/or synergistic effects of different chemical compounds were examined in the marine teleost, Gobius niger, by testing a series of biomarkers involved in fish reproduction. Among the biomarkers analysed, vitellogenin (VTG) and zona radiata proteins (ZRP) are key molecules involved in reproduction, widely used to detect the presence of pollutants in the marine environment, while heat shock protein 70 (HSP70) and cathepsin D (CATD) have recently been introduced as bioindicators of endocrine disruption. The detection of VTG and ZRP in the plasma of wild male specimens is universally accepted as an early warning signal of environmental pollution. The evaluation of VTG, ZRP and CATD expression demonstrated the oestrogenic effect of nonylphenol on both male and female fish; on the contrary beta-naphthoflavone behaves mainly as an anti-oestrogen although, when co-injected with compounds with oestrogenic activity, it enhances ZRP gene expression. Regarding the chaperone, all treatments stressed the fish, inducing an increase in HSP70 gene transcription. The results obtained underlined the importance of testing the effects of compound mixtures: fish in the wild are subjected to a blend of chemicals and the effects observed derive from the synergic or antagonistic interactions of these compounds.
Collapse
Affiliation(s)
- F Maradonna
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | | |
Collapse
|