1
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Front Neuroendocrinol 2022; 66:101008. [PMID: 35660551 DOI: 10.1016/j.yfrne.2022.101008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
While popular belief harbors little doubt that perceived stress can cause hair loss and premature graying, the scientific evidence for this is arguably much thinner. Here, we investigate whether these phenomena are real, and show that the cyclic growth and pigmentation of the hair follicle (HF) provides a tractable model system for dissecting how perceived stress modulates aspects of human physiology. Local production of stress-associated neurohormones and neurotrophins coalesces with neurotransmitters and neuropeptides released from HF-associated sensory and autonomic nerve endings, forming a complex local stress-response system that regulates perifollicular neurogenic inflammation, interacts with the HF microbiome and controls mitochondrial function. This local system integrates into the central stress response systems, allowing the study of systemic stress responses affecting organ function by quantifying stress mediator content of hair. Focusing on selected mediators in this "brain-HF axis" under stress conditions, we distill general principles of HF dysfunction induced by perceived stress.
Collapse
|
3
|
Aksoy H, Ergun T, Akkiprik M, Peker Eyuboglu İ, Seckin Gencosmanoglu D, Cöbek Ünalan GP, Yöney H. The impact of antipsoriatic treatment on serum pro-BDNF, BDNF levels, depression, anxiety scores, and quality of life. Dermatol Ther 2021; 34:e14872. [PMID: 33580990 DOI: 10.1111/dth.14872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 02/06/2021] [Indexed: 11/28/2022]
Abstract
Depression is a comorbidity of psoriasis. Suppression of neurotrophins has been proposed to cause depression. Peripheral brain-derived neurotrophic factor (BDNF) and its precursor, pro-BDNF have been shown to be altered in depression. To compare serum pro-BDNF and BDNF levels, depression, anxiety, and quality of life (QoL) in psoriasis patients, diseased, and healthy controls, to assess impact of 12-week antipsoriatic treatment on abovementioned markers. At baseline, all groups completed Beck Depression Inventory (BDI), Spielberger State-Trait Anxiety Inventory-II (STAI-II) and DLQI; serum BDNF, proBDNF levels were measured. These were repeated after 3-months of treatment in psoriasis patients. Depression and anxiety were significantly higher, QoL was poorer in psoriasis. ProBDNF and proBDNF/BDNF ratios were not different among groups at baseline but significantly decreased after treatment in psoriasis. Depression and QoL improved significantly, BDNF and anxiety scores did not change. Altered pro-BDNF and proBDNF/BDNF ratios may have a role in depression pathogenesis in psoriasis. Antipsoriatic treatment causes improvement in depression, QoL, and reduction of proBDNF and proBDNF/BDNF ratios. Effective disease control may reverse dysregulated neurotrophin pathways and its consequences like depression.
Collapse
Affiliation(s)
- Hasan Aksoy
- Department of Dermatology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Tülin Ergun
- Department of Dermatology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology and Genetics, Marmara University, School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyuboglu
- Department of Medical Biology and Genetics, Marmara University, School of Medicine, Istanbul, Turkey
| | | | | | | |
Collapse
|
4
|
Nicu C, Wikramanayake TC, Paus R. Clues that mitochondria are involved in the hair cycle clock: MPZL3 regulates entry into and progression of murine hair follicle cycling. Exp Dermatol 2020; 29:1243-1249. [PMID: 33040410 DOI: 10.1111/exd.14213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
The molecular nature of the hair cycle clock (HCC), the intrinsic oscillator system that drives hair follicle (HF) cycling, remains incompletely understood; therefore, all relevant key players need to be identified. Here, we present evidence that implicates myelin protein zero-like 3 (MPZL3), a multifunctional nuclear-encoded mitochondrial protein known to be involved in epidermal differentiation, in HCC regulation. By analysing global Mpzl3 knockout (-/-) mice, we show that in the absence of functional MPZL3, mice commence HF cycling with retarded first catagen-telogen transition after normal postnatal HF morphogenesis. However, Mpzl3 -/- mice subsequently display strikingly accelerated HF cycling, i.e. a precocious telogen-to-anagen transition during the second hair cycle, compared to controls, suggesting that MPZL3 inhibits anagen entry. We also show that intrafollicular MPZL3 protein expression fluctuates in a hair cycle-dependent manner. In telogen HFs, MPZL3 is localized to the secondary hair germ, an epicentre of hair cycle regulation, where it partially co-localizes with P-cadherin. In early anagen HF, MPZL3 is localized immediately distal to the proximal hair matrix. These findings introduce the novel concept that mitochondria are more actively involved in hair cycle control than previously recognized and that MPZL3 plays a central role in the HCC.
Collapse
Affiliation(s)
- Carina Nicu
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
5
|
Visualizing changes in brain-derived neurotrophic factor (BDNF) expression using bioluminescence imaging in living mice. Sci Rep 2017; 7:4949. [PMID: 28694523 PMCID: PMC5504055 DOI: 10.1038/s41598-017-05297-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/26/2017] [Indexed: 01/13/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a fundamental role in expressing various neural functions including memory consolidation. Alterations of BDNF levels in the brain are associated with neurodegenerative and neuropsychiatric disorders. Therefore, it is important to understand how levels of BDNF are controlled. Recently we generated a novel transgenic mouse strain, termed the Bdnf-Luciferase transgenic (Bdnf-Luc Tg) mouse, to monitor changes in Bdnf expression. In the present study, we detected the bioluminescence signal from living Bdnf-Luc Tg mice after intraperitoneal administration of d-luciferin. Despite high levels of Bdnf expression in the brain, it was difficult to detect a signal from the brain region, probably because of its poorly penetrable (short-wavelength) bioluminescence. However, we could detect the changes in the bioluminescence signal in the brain region using a luciferin analogue generating a near-infrared wavelength of bioluminescence. We also found a strong correlation between increases in body weight and bioluminescence signal in the abdominal region of Tg mice fed a high-fat diet. These results show that changes in Bdnf expression can be visualized using living mice, and that the Tg mouse could be a powerful tool for clarification of the role of Bdnf expression in pathophysiological and physiological conditions.
Collapse
|
6
|
Smith AA, Li J, Liu B, Hunter D, Pyles M, Gillette M, Dhamdhere GR, Abo A, Oro A, Helms JA. Activating Hair Follicle Stem Cells via R-spondin2 to Stimulate Hair Growth. J Invest Dermatol 2016; 136:1549-1558. [DOI: 10.1016/j.jid.2016.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
|
7
|
Welle MM, Wiener DJ. The Hair Follicle: A Comparative Review of Canine Hair Follicle Anatomy and Physiology. Toxicol Pathol 2016; 44:564-74. [PMID: 27000375 DOI: 10.1177/0192623316631843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hair follicle (HF) has a wide range of functions including thermoregulation, physical and immunological protection against external insults, sensory perception, social interactions, and camouflage. One of the most characteristic features of HFs is that they self-renew during hair cycle (HC) throughout the entire life of an individual to continuously produce new hair. HC disturbances are common in humans and comparable to some alopecic disorders in dogs. A normal HC is maintained by follicular stem cells (SCs), which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the human and canine bulge area, the particularity of compound HFs in humans and dogs as well as similarities in follicular biomarker expression, the dog might be a promising model to study human HC and SC disorders. In this review, we give an overview of normal follicular anatomy, the HC, and follicular SCs and discuss the possible pathogenetic mechanisms of noninflammatory alopecia.
Collapse
Affiliation(s)
- Monika M Welle
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominique J Wiener
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Ostrowski SM, Wright MC, Bolock AM, Geng X, Maricich SM. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis. Development 2015; 142:2533-44. [PMID: 26138479 DOI: 10.1242/dev.123141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022]
Abstract
Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.
Collapse
Affiliation(s)
- Stephen M Ostrowski
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Margaret C Wright
- Center for Neurosciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexa M Bolock
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xuehui Geng
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Stephen M Maricich
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
9
|
Li J, Yang Z, Li Z, Gu L, Wang Y, Sung C. Exogenous IGF-1 promotes hair growth by stimulating cell proliferation and down regulating TGF-β1 in C57BL/6 mice in vivo. Growth Horm IGF Res 2014; 24:89-94. [PMID: 24797500 DOI: 10.1016/j.ghir.2014.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/07/2014] [Accepted: 03/23/2014] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Insulin-like growth factor 1 (IGF-1) increases the growth of cultured hair follicles and plays a role in regulating hair migration during the development of hair follicles in transgenic mice. However, the exogenous effect of IGF-1 on hair growth in wild-type mice has not been reported. In the present study, we examined whether IGF-1 was an important regulator of hair follicle growth in wide-type mice in vivo. DESIGN C57BL/6 mice were injected with different concentrations of IGF-1 on dorsal skin. The treated tissues were analyzed by immunoassay methods for TGF-β1 and BrdU. RESULTS Local injection of IGF-1 increased hair follicle number and prolonged the growing phase during the transition from anagen to telogen. Meanwhile, immunology analyses revealed that IGF-1 also stimulated the proliferation of follicle cells in anagen of the matrix and down regulated TGF-β1 expression in hair follicles. CONCLUSIONS These observations suggest that IGF-1 is an effective stimulator of hair follicle development in wide-type mice in vivo and may be a promising drug candidate for baldness therapy.
Collapse
Affiliation(s)
- Jingjie Li
- Department of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Zhihong Yang
- College of Life Science, Huzhou University, Huzhou, Zhejiang 31300, PR China
| | - Zheng Li
- Department of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Lijuan Gu
- Department of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yunbo Wang
- Department of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Changkeun Sung
- Department of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
10
|
Zhu B, Xu T, Zhang Z, Ta N, Gao X, Hui L, Guo X, Liu D. Transcriptome sequencing reveals differences between anagen and telogen secondary hair follicle-derived dermal papilla cells of the Cashmere goat (Capra hircus). Physiol Genomics 2013; 46:104-11. [PMID: 24326349 DOI: 10.1152/physiolgenomics.00132.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dermal papilla is considered the control center of hair follicle growth and hair cycle. The secondary hair follicle (producing cashmere) growth cycle of the Cashmere goat (Capra hircus) is circannual, and each growth phase can be easily distinguished by its long duration. To identify gene expression patterns and differences of the dermal papilla cell (DPC) between the anagen and telogen phases, we established two DPC lines: ana-DPCs (DPCs derived from the anagen secondary hair follicle) and tel-DPCs (DPCs derived from the telogen secondary hair follicle). Compared with the ana-DPCs, the tel-DPCs lost the capacity to form cell aggregates and showed lower cell proliferation rate. Transcriptome sequencing revealed that 825 genes were differentially expressed by at least threefold between the two DPC lines. These genes were significantly enriched in cell cycle control, cell division, and chromosome partitioning from the Eukaryotic Orthologous Groups of proteins (KOG) database and in cell cycle, cell adhesion molecules, cytokine-cytokine receptor interaction, and p53 signaling pathway from the Kyoto Encyclopedia of Gene and Genomes (KEGG) database. Enrichment analyses revealed that in the middle of the telogen the DPCs of secondary hair follicles (SHFs) seemed on the one hand to promote the degeneration of SHFs and cessation of cashmere growth, while on the other hand to resist self-apoptosis and prepare for the regeneration or revivification of fully functional dermal papillae. These findings provide a better understanding of hair follicle growth and will be useful for identification of novel molecules associated with the control of hair growth cycle.
Collapse
Affiliation(s)
- Bing Zhu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bichsel KJ, Gogia N, Malouff T, Pena Z, Forney E, Hammiller B, Watson P, Hansen LA. Role for the epidermal growth factor receptor in chemotherapy-induced alopecia. PLoS One 2013; 8:e69368. [PMID: 23894460 PMCID: PMC3716704 DOI: 10.1371/journal.pone.0069368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/08/2013] [Indexed: 01/18/2023] Open
Abstract
Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia.
Collapse
Affiliation(s)
- Kyle J. Bichsel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Navdeep Gogia
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Timothy Malouff
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Zachary Pena
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Eric Forney
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Brianna Hammiller
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Patrice Watson
- Department of Preventative Medicine and Public Health, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Laura A. Hansen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
12
|
Lee J, Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol 2012; 23:906-16. [PMID: 22939761 DOI: 10.1016/j.semcdb.2012.08.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/06/2012] [Indexed: 01/06/2023]
Abstract
Hair follicles (HFs) is an appendage from the vertebrate skin epithelium, and is critical for environmental sensing, animal appearance, and body heat maintenance. HFs arise from the embryonic ectoderm and regenerate cyclically during adult life. Distinct morphological and functional stages from development through homeostasis have been extensively studied for the past decades to dissect the critical molecular mechanisms. Accumulating work suggests that different signaling cascades, such as Wnt, Bmp, Shh, and Notch, together with specific combinations of transcription factors are at work at different stages. Here we provide a comprehensive review of mouse genetics studies, which include lineage tracing along with knockout and over-expression of core genes from key signaling pathways, to paint an updated view of the molecular regulatory network that govern each stage of hair follicle development and adult cycling.
Collapse
Affiliation(s)
- Jayhun Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | | |
Collapse
|
13
|
Panchaprateep R, Korkij W, Asawanonda P. Brain-derived nerve factor and neurotrophins in androgenetic alopecia. Br J Dermatol 2011; 165:997-1002. [PMID: 21729031 DOI: 10.1111/j.1365-2133.2011.10514.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Several growth factors and cytokines have been shown to be involved in normal hair cycling as well as in androgenetic alopecia (AGA). However, the molecular cascades in AGA downstream from androgen receptor activation are far from being fully elucidated. OBJECTIVES We sought to determine the difference in the protein expression of growth factors/cytokines in balding vs. nonbalding scalp specimens from the same individuals affected with AGA. METHODS Balding and nonbalding scalp specimens were collected from four men with pattern baldness. Dermal papilla (DP) cells were isolated and cultured. Quantifying the protein expression of growth factors and cytokines expressed by these cells was performed using Quantibody® Human Growth Factor Array-1 (RayBiotech, Inc., Norcross, GA, U.S.A.). RESULTS Brain-derived nerve factor (BDNF) protein expression was upregulated by approximately 12-fold in supernatants obtained from balding as compared with nonbalding DP cells (P < 0·001). Expression of neurotrophin-3 and of β-nerve growth factor was also upregulated. On the other hand, protein expression of insulin-like growth factor-1 and its binding proteins as well as of the vascular endothelial growth factor family were significantly downregulated in the balding scalp. CONCLUSIONS Neurotrophic factors, especially BDNF, may be important in mediating the effects of androgens on hair follicles, serving as a negative regulatory control signal. Further studies may lead to novel pharmacological interventions in AGA.
Collapse
Affiliation(s)
- R Panchaprateep
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
14
|
Liezmann C, Klapp B, Peters EM. Stress, atopy and allergy: A re-evaluation from a psychoneuroimmunologic persepective. DERMATO-ENDOCRINOLOGY 2011; 3:37-40. [PMID: 21519408 DOI: 10.4161/derm.3.1.14618] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 01/08/2023]
Abstract
Since the early days of psychosomatic thinking, atopic disease was considered exemplary. In the 70s and 80s numerous reports stated increased anxiety, depression or ill stresscoping in atopics in correlation with enhanced disease activity. Employed patient groups however were small and diverse and controls rare. Therefore, the question remained, whether psychopathological findings in atopics were of pathogenetic relevance or an epiphenomenon of chronic inflammatory disease. Recently, the discussion has been revived and refocused by psychoneuroimmunological findings. We now know that atopic disease is characterized by an imbalance of the classical stress-axis response along the hypothalamus-pituitary-adrenal axis (HPA) and the sympathetic axis (SA). This imbalance can be found shoulder-to-shoulder with enhanced expression of newly emerging neuroendocrine stress mediators such as substance P (SP) and nerve growth factor that form up to a third stress axis (neurotrophin neuropeptide axis: NNA). Together they can alter the inflammatory as well as the neuroendocrine stress-response on several levels. In skin, the immediate inflammatory response to stress involves neuropeptide release and mast cell degranulation, in short neurogenic inflammation. Systemically, antigen-presentation and TH2 cytokine bias are promoted under the influence of cortisol and neuropeptides. Imbalanced stress-responsiveness may therefore be at the core of exacerbated allergic disease and deserves re-evaluation of therapeutic options such as neutralization of SP-signaling by antagonists against its receptor NK1, cortisol treatment as supplementation and relaxation techniques to balance the stress-response.
Collapse
Affiliation(s)
- Christiane Liezmann
- University-Medicine Charité; Internal Medicine and Dermatology; Department of Psychosomatic Medicine and Psychotherapy; Berlin
| | | | | |
Collapse
|
15
|
Al-Nuaimi Y, Baier G, Watson REB, Chuong CM, Paus R. The cycling hair follicle as an ideal systems biology research model. Exp Dermatol 2010; 19:707-13. [PMID: 20590819 PMCID: PMC4383261 DOI: 10.1111/j.1600-0625.2010.01114.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the postgenomic era, systems biology has rapidly emerged as an exciting field predicted to enhance the molecular understanding of complex biological systems by the use of quantitative experimental and mathematical approaches. Systems biology studies how the components of a biological system (e.g. genes, transcripts, proteins, metabolites) interact to bring about defined biological function or dysfunction. Living systems may be divided into five dimensions of complexity: (i) molecular; (ii) structural; (iii) temporal; (iv) abstraction and emergence; and (v) algorithmic. Understanding the details of these dimensions in living systems is the challenge that systems biology aims to address. Here, we argue that the hair follicle (HF), one of the signature features of mammals, is a perfect and clinically relevant model for systems biology research. The HF represents a stem cell-rich, essentially autonomous mini-organ, whose cyclic transformations follow a hypothetical intrafollicular "hair cycle clock" (HCC). This prototypic neuroectodermal-mesodermal interaction system, at the cross-roads of systems and chronobiology, encompasses various levels of complexity as it is subject to both intrafollicular and extrafollicular inputs (e.g. intracutaneous timing mechanisms with neural and systemic stimuli). Exploring how the cycling HF addresses the five dimensions of living systems, we argue that a systems biology approach to the study of hair growth and cycling, in man and mice, has great translational medicine potential. Namely, the easily accessible human HF invites preclinical and clinical testing of novel hypotheses generated with this approach.
Collapse
Affiliation(s)
- Yusur Al-Nuaimi
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Gerold Baier
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | - Rachel E. B. Watson
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ralf Paus
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Tateishi C, Tsuruta D, Sugawara K, Yoshizato K, Imanishi H, Nishida K, Ishii M, Kobayashi H. Spatial and temporal control of laminin-511 and -332 expressions during catagen. J Dermatol Sci 2010; 58:55-63. [PMID: 20226633 DOI: 10.1016/j.jdermsci.2010.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND We recently reported that the basement membrane (BM) zone components laminin-511 and -332 precisely regulate hair growth spatially and temporally during the anagen stage of the hair cycle. OBJECTIVE In this study, we examined the localization and roles of laminin-511 and -332 during catagen in mice. METHODS Using tissue from C57BL/6 hair depilation model mice, we performed immunohistochemistry, in situ hybridization, western blotting, and quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) studies. RESULTS Although the distribution of laminin-332 around the BM of lower hair follicles changed during catagen, its total expression was stable throughout catagen stages at both the mRNA and protein levels. In sharp contrast, in situ hybridization, western blotting, and QRT-PCR studies of laminin alpha 5 showed that laminin-511 expression was gradually downregulated. Moreover, while the injection of recombinant laminin-332 at anagen stage VI did not affect catagen progression, injection of a laminin-511-rich A549 cell conditioned media protein extract at anagen stage VI delayed progression of catagen. CONCLUSION These results indicated that downregulation of laminin-511 is important for hair regression.
Collapse
Affiliation(s)
- Chiharu Tateishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Prenatal hair development: implications for drug exposure determination. Forensic Sci Int 2010; 196:27-31. [PMID: 20074880 DOI: 10.1016/j.forsciint.2009.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/21/2009] [Indexed: 11/24/2022]
Abstract
Neonatal hair is a clinically important toxicological matrix, as it allows determination of in utero drug exposure. This paper serves to review the physiological development of the hair follicle and hair production during fetal life. An understanding of the mechanisms and timing of hair development in the prenatal period is critical to effectively assessing the time window of exposure determination associated with toxicological analysis of neonatal hair.
Collapse
|
18
|
Quarcoo D, Fischer TC, Peckenschneider N, Groneberg DA, Welker P. High abundances of neurotrophin 3 in atopic dermatitis mast cell. J Occup Med Toxicol 2009; 4:8. [PMID: 19386090 PMCID: PMC2680865 DOI: 10.1186/1745-6673-4-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 04/22/2009] [Indexed: 01/21/2023] Open
Abstract
Background Neurotrophin 3 (NT-3) is a member of the neurotrophin family, a group of related proteins that are known to regulate neuro-immune interactions in allergic diseases. Their cellular sources and role in the recruitment of mast cell precursors in atopic dermatitis have not been characterized in detail so far. Objective Characterize NT-3 on a transcriptional and translational level in individuals with atopic dermatitis with special focus on mast cells. Methods To meet this objective NT-3 levels in the serum of AD patients were measured, the effect of NT-3 on keratinocytes was evaluated and the gene expression and regulation assessed using ELISA, immunohistochemistry and RNA quantification. Results Systemic levels of NT-3 were found to be higher in individuals with AD as compared to healthy controls. A distinct genetic expression was found in the various cells of the skin. In lesional mast cells of individuals with atopic dermatitis an increased amount of NT-3 was apparent. Functional in vitro experiments demonstrated that NT-3 stimulation led to a suppression of IL-8 secretion by HaCat cells. Conclusion These findings could imply a role for NT-3 in the pathogenesis of allergic skin diseases.
Collapse
Affiliation(s)
- David Quarcoo
- Institute of Occupational Medicine, Charité - Universitätsmedizin Berlin, Free University and Humboldt University, D-14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
19
|
Naito A, Sato T, Matsumoto T, Takeyama K, Yoshino T, Kato S, Ohdera M. Dihydrotestosterone inhibits murine hair growth via the androgen receptor. Br J Dermatol 2008; 159:300-5. [PMID: 18547308 DOI: 10.1111/j.1365-2133.2008.08671.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Androgens cause regression of human hair follicles in the parietofrontal scalp, but the precise mechanisms by which they do so are unknown. Although many investigators have elucidated the effect of androgens on hair growth by using rodents and other animals, some of the evidence is conflicting. OBJECTIVES To investigate the effect of androgens on mouse hair regrowth and hair cycle by using androgen receptor knockout (ARKO) mice. Methods We examined the effects of dihydrotestosterone (DHT) on hair regrowth by using ARKO mice and wild-type (WT) littermates, compared the hair cycles in ARKO mice and WT littermates by histology and histomorphometry, and measured hair length and thickness in ARKO mice and WT littermates. RESULTS DHT inhibited the hair regrowth of WT mice but not that of their ARKO littermates. The anagen phase in the second hair cycle was longer in ARKO mice than in their WT littermates. The hair of ARKO mice was longer and thicker than that of their WT littermates. CONCLUSIONS Androgens inhibit hair growth in mice, and this inhibition might be caused by androgen-androgen receptor signals.
Collapse
Affiliation(s)
- A Naito
- Biological Science Research Laboratories, Research and Development Headquarters, LION Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Hendrix S, Picker B, Liezmann C, Peters EMJ. Skin and hair follicle innervation in experimental models: a guide for the exact and reproducible evaluation of neuronal plasticity. Exp Dermatol 2008; 17:214-27. [PMID: 18261087 DOI: 10.1111/j.1600-0625.2007.00653.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The remodelling of skin innervation is an instructive example of neuronal plasticity in the peripheral nervous system. Cutaneous innervation displays dramatic plasticity during morphogenesis, adult remodelling, skin diseases and after skin nerve lesions. To recognize even subtle changes or abnormalities of cutaneous innervation under different experimental conditions, it is critically important to use a quantitative approach. Here, we introduce a simple, fast and reproducible quantitative method based on immunofluorescence histochemistry for the exact quantification of peripheral nerve fibres. Computer-generated schematic representations of cutaneous innervation in defined skin compartments are presented with the aim of standardizing reports on gene and protein expression patterns. This guide should become a useful tool when screening new mouse mutants, disease models affecting innervation or mice treated with pharmaceuticals for discrete morphologic abnormalities of skin innervation in a highly reproducible and quantifiable manner. Moreover, this method can be easily transferred to other densely innervated peripheral organs.
Collapse
Affiliation(s)
- Sven Hendrix
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Groneberg DA, Fischer TC, Peckenschneider N, Noga O, Dinh QT, Welte T, Welker P. Cell type-specific regulation of brain-derived neurotrophic factor in states of allergic inflammation. Clin Exp Allergy 2007; 37:1386-91. [PMID: 17845420 DOI: 10.1111/j.1365-2222.2007.02790.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a molecule influencing neuronal proliferation and differentiation. In states of allergy, it may orchestrate inflammatory changes by linking the immune system with the nervous system. Because the precise regulation of gene transcription in mast cells MCs is not clear, the present studies assessed the gene regulation of BDNF in this inflammatory cell type. METHODS Transcriptional expression of BDNF in human skin was studied in isolated cells using RT-PCR. In situ lesional MC BDNF protein expression was analysed by immunohistochemistry and related to the differential staining of MCs and functional effects of BDNF on HaCaT keratinocytes. RESULTS BDNF mRNA expression was found in isolated human skin MCs, keratinocytes, and fibroblasts. Also, low levels were found in endothelial cells and melanocytes. BDNF protein expression was found in situ in lesional and non-lesional MCs. A significantly decreased expression of BDNF protein was found in atopic dermatitis lesional MCs when compared with control MC expression. Functional in vitro experiments demonstrated that a decrease in BDNF stimulation led to increased secretion rates for stem cell factor and IL-8 in HaCaT keratinocytes. CONCLUSION The demonstration of a decreased level of BDNF gene transcription in lesional MCs points to a differential regulation of MC-released neutrotrophins in cutaneous allergic inflammation. Topically administered neurotrophin receptor-modulating compounds should be receptor target specific and not universally acting in diseases such as atopic dermatitis or allergic asthma.
Collapse
Affiliation(s)
- D A Groneberg
- Institute of Occupational Medicine, Charité- Universitätsmedizin Berlin, Free University and Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Siebenhaar F, Sharov AA, Peters EMJ, Sharova TY, Syska W, Mardaryev AN, Freyschmidt-Paul P, Sundberg JP, Maurer M, Botchkarev VA. Substance P as an Immunomodulatory Neuropeptide in a Mouse Model for Autoimmune Hair Loss (Alopecia Areata). J Invest Dermatol 2007; 127:1489-97. [PMID: 17273166 DOI: 10.1038/sj.jid.5700704] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alopecia areata (AA) is an autoimmune disorder of the hair follicle characterized by inflammatory cell infiltrates around actively growing (anagen) hair follicles. Substance P (SP) plays a critical role in the cutaneous neuroimmune network and influences immune cell functions through the neurokinin-1 receptor (NK-1R). To better understand the role of SP as an immunomodulatory neuropeptide in AA, we studied its expression and effects on immune cells in a C3H/HeJ mouse model for AA. During early stages of AA development, the number of SP-immunoreactive nerve fibers in skin is increased, compared to non-affected mice. However, during advanced stages of AA, the number of SP-immunoreactive nerves and SP protein levels in skin are decreased, whereas the expression of the SP-degrading enzyme neutral endopeptidase (NEP) is increased, compared to control skin. In AA, NK-1R is expressed on CD8+ lymphocytes and macrophages accumulating around affected hair follicles. Additional SP supply to the skin of AA-affected mice leads to a significant increase of mast cell degranulation and to accelerated hair follicle regression (catagen), accompanied by an increase of CD8+ cells-expressing granzyme B. These data suggest that SP, NEP, and NK-1R serve as important regulators in the molecular signaling network modulating inflammatory response in autoimmune hair loss.
Collapse
Affiliation(s)
- Frank Siebenhaar
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhou Z, Kawana S, Aoki E, Katayama M, Nagano M, Suzuki H. Dynamic changes in nerve growth factor and substance P in the murine hair cycle induced by depilation. J Dermatol 2007; 33:833-41. [PMID: 17169085 DOI: 10.1111/j.1346-8138.2006.00191.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Increasing evidence suggests that various neurotrophins and neuropeptides play an important role in the progression of hair follicle cycling. Among them, nerve growth factor (NGF) and substance P (SP) have attracted special interest recently. However, the interaction between these factors during hair cycling has not yet been systematically studied. We therefore investigated the mutual relationships between NGF and SP and the mechanism by which the anagen stage of the hair cycle is initiated. Fluctuations in numbers of SP-positive nerve fibers and variations in amounts of SP, NGF, and another neurotrophic factor, glial cell-derived neurotrophic factor, in skin in the C57BL/6 mouse depilation-induced hair cycle model, together with the spatiotemporal expression patterns of each of these factors, were followed simultaneously by enzyme-linked immunosorbent assay and immunohistochemistry. The main finding was that a surge in NGF expression and a rapid increase in NGF content in skin is an initial event within 1 day after depilation, followed by elevation of SP content and numbers of SP-containing fibers 2 days after the increase in NGF. Our findings suggest that a rapid and abundant increase in NGF plays a key role in the induction and progression of anagen hair cycling through keratinocyte growth promotion. NGF may also induce plastic changes such as sprouting and hyperplasia in dermal nerve fibers and enhance their SP production. Elevated levels of SP in skin may additionally contribute to the progression of consecutive anagen hair cycles.
Collapse
Affiliation(s)
- Zhanchao Zhou
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Fessing MY, Sharova TY, Sharov AA, Atoyan R, Botchkarev VA. Involvement of the Edar signaling in the control of hair follicle involution (catagen). THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2075-84. [PMID: 17148670 PMCID: PMC1762472 DOI: 10.2353/ajpath.2006.060227] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ectodysplasin (Eda) and its receptor (Edar) are required for normal development of several ectodermal derivatives including hair follicles (HFs). Here, we show that during the murine hair cycle the expression of Eda A1, Edar, Edaradd, and TRAF6 transcripts are minimal in the resting phase and maximal during HF transition from active growth to regression (catagen). Eda A1 mRNA and Edar proteins were expressed in the hair matrix and outer and inner root sheaths of anagen HFs. During catagen, Eda A1 mRNA and Edar protein were expressed in the outer and inner root sheaths and later in the secondary hair germ. Catagen development accompanied by increased apoptosis in the outer root sheath was significantly accelerated in downless mice or after treatment of wild-type mice by a fusion protein that inhibits Edar signaling, compared with the corresponding controls. Microarray, real-time polymerase chain reaction, and immunohistochemical analyses of skin of downless mice revealed a strong decrease of expression of X-linked inhibitor of apoptosis protein (XIAP), compared with the controls, suggesting XIAP as a target for Edar signaling. Thus, our data demonstrate that in addition to its well-established role in HF morphogenesis, Edar signaling is also involved in hair cycle control and regulates apoptosis in HF keratinocytes during catagen.
Collapse
Affiliation(s)
- Michael Y Fessing
- Department of Dermatology, Boston University School of Medicine, 609 Albany St., Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
26
|
Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A. Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 2006; 143:175-87. [PMID: 16949762 DOI: 10.1016/j.neuroscience.2006.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 07/04/2006] [Accepted: 07/18/2006] [Indexed: 12/22/2022]
Abstract
Several studies have suggested that acid-sensing ion channel 2 (ASIC2) plays a role in mechanoperception and acid sensing in the peripheral nervous system. We examined the expression and distribution of ASIC2 in the rat dorsal root ganglion, the co-localization of ASIC2 with tropomyosin-related kinase (trk) receptors, and the effects of axotomy on ASIC2 expression. ASIC2 immunoreactivity was observed in both neurons and satellite cells. ASIC2-positive neurons accounted for 16.5 +/- 2.4% of the total neurons in normal dorsal root ganglion. Most ASIC2-positive neurons were medium-to-large neurons and were labeled with neurofilament 200 kD (NF200). Within these neurons, ASIC2 was not evenly distributed throughout the cytoplasm, but rather was accumulated prominently in the cytoplasm adjacent to the axon hillock and axonal process. We next examined the co-localization of ASIC2 with trk receptors. trkA was expressed in few ASIC2-positive neurons, and trkB and trkC were observed in 85.2% and 53.4% of ASIC2-positive neurons, respectively, while only 6.9% of ASIC2-positive neurons were co-localized with trkC alone. Peripheral axotomy markedly reduced ASIC2 expression in the axotomized dorsal root ganglion neurons. On the other hand, intense ASIC2 staining was observed in satellite cells. These results show that ASIC2 is expressed in the distinct neurochemical population of sensory neurons as well as satellite cells, and that peripheral axotomy induced marked reductions in ASIC2 in neurons.
Collapse
Affiliation(s)
- T Kawamata
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 416] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
28
|
Hamada K, Randall VA. Inhibitory autocrine factors produced by the mesenchyme-derived hair follicle dermal papilla may be a key to male pattern baldness. Br J Dermatol 2006; 154:609-18. [PMID: 16536801 DOI: 10.1111/j.1365-2133.2006.07144.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Androgenetic alopecia, or male pattern baldness, is a common, progressive disorder where large, terminal scalp hairs are gradually replaced by smaller hairs in precise patterns until only tiny vellus hairs remain. This balding can cause a marked reduction in the quality of life. Although these changes are driven by androgens, most molecular mechanisms are unknown, limiting available treatments. The mesenchyme-derived dermal papilla at the base of the mainly epithelial hair follicle controls the type of hair produced and is probably the site through which androgens act on follicle cells by altering the regulatory paracrine factors produced by dermal papilla cells. During changes in hair size the relationship between the hair and dermal papilla size remains constant, with alterations in both dermal papilla volume and cell number. This suggests that alterations within the dermal papilla itself play a key role in altering hair size in response to androgens. Cultured dermal papilla cells offer a useful model system to investigate this as they promote new hair growth in vivo, retain characteristics in vitro which reflect their parent follicle's response to androgens in vivo and secrete mitogenic factors for dermal papilla cells and keratinocytes. OBJECTIVES To investigate whether cultured dermal papilla cells from balding follicles secrete altered amounts/types of mitogenic factors for dermal papilla cells than those from larger, normal follicles. We also aimed to determine whether rodent cells would recognize mitogenic signals from human cells in vitro and whether factors produced by balding dermal papilla cells could alter the start of a new mouse hair cycle in vivo. METHODS Dermal papilla cells were cultured from normal, balding and almost clinically normal areas of balding scalps and their ability to produce mitogenic factors compared using both human and rat whisker dermal papilla cells as in vitro targets and mouse hair growth in vivo. RESULTS Normal scalp cells produced soluble factors which stimulated the growth of both human scalp and rat whisker dermal papilla cells in vitro, demonstrating dose-responsive mitogenic capability across species. Although balding cells stimulated some growth, this was much reduced and they also secreted inhibitory factor(s). Balding cell media also delayed new hair growth when injected into mice. CONCLUSIONS Human balding dermal papilla cells secrete inhibitory factors which affect the growth of both human and rodent dermal papilla cells and factors which delay the onset of anagen in mice in vivo. These inhibitory factor(s) probably cause the formation of smaller dermal papillae and smaller hairs in male pattern baldness. Identification of such factor(s) could lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- K Hamada
- Department of Biomedical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | | |
Collapse
|
29
|
Peters EMJ, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol 2006; 15:1-13. [PMID: 16364026 DOI: 10.1111/j.0906-6705.2005.00372.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress has long been discussed controversially as a cause of hair loss. However, solid proof of stress-induced hair growth inhibition had long been missing. If psychoemotional stress can affect hair growth, this must be mediated via definable neurorendocrine and/or neuroimmunological signaling pathways. Revisiting and up-dating relevant background data on neural mechanisms of hair growth control, we sketch essentials of hair follicle (HF) neurobiology and discuss the modulation of murine hair growth by neuropeptides, neurotransmitters, neurotrophins, and mast cells. Exploiting an established mouse model for stress, we summarize recent evidence that sonic stress triggers a cascade of molecular events including plasticity of the peptidergic peri- and interfollicular innervation and neuroimmune crosstalk. Substance P (SP) and NGF (nerve growth factor) are recruited as key mediators of stress-induced hair growth-inhibitory effects. These effects include perifollicular neurogenic inflammation, HF keratinocyte apoptosis, inhibition of proliferation within the HF epithelium, and premature HF regression (catagen induction). Intriguingly, most of these effects can be abrogated by treatment of stressed mice with SP-receptor neurokinin-1 receptor (NK-1) antagonists or NGF-neutralizing antibodies - as well as, surprisingly, by topical minoxidil. Thus there is now solid in vivo-evidence for the existence of a defined brain- HF axis. This axis can be utilized by psychoemotional and other stressors to prematurely terminate hair growth. Stress-induced hair growth inhibition can therefore serve as a highly instructive model for exploring the brain-skin connection and provides a unique experimental model for dissecting general principles of skin neuroendocrinology and neuroimmunology well beyond the HF.
Collapse
Affiliation(s)
- Eva M J Peters
- Biomedical Research Center, Psychoneuroimmunology Research Group, Internal Medicine, Psychosomatics, University Medicine Berlin, Charité Virchow Campus, Germany.
| | | | | |
Collapse
|
30
|
Mecklenburg L, Tobin DJ, Cirlan MV, Craciun C, Paus R. Premature termination of hair follicle morphogenesis and accelerated hair follicle cycling in Iasi congenital atrichia (fzica) mice points to fuzzy as a key element of hair cycle control. Exp Dermatol 2005; 14:561-70. [PMID: 16026577 DOI: 10.1111/j.0906-6705.2005.00343.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inbred laboratory mice have proven to be useful model systems for studying hair biology and pathomechanisms of hair loss. Fuzzy (fz) is an autosomal recessive mutation that results in hair coat abnormalities. Though this mutant has long been known, its cutaneous abnormalities still await systematic analysis. Here, we provide a systematic skin phenotype analysis of mice that are homozygous for Iasi congenital atrichia (fzica/fzica), which is allelic to fz. Homozygous mice exhibit a sparse hair coat after birth and completely loose their hair at around postnatal day 120. Although early and mid stages of hair follicle morphogenesis are normal, late hair follicle morphogenesis reveals multifocal cell degeneration within the Huxley layer of the inner root sheath (IRS) and a complete lack of the hair shaft medulla. In addition, hair follicle development is prematurely terminated by induction of the first postnatal hair cycle with premature entry into catagen. Subsequently, a dramatically shortened telogen is immediately followed by premature anagen development, resulting in a marked, generalized acceleration of hair follicle cycling. This suggests that fuzzy is not only involved in structural hair shaft integrity and differentiation of the IRS and medulla, but also plays an important role in the control of hair follicle cycling. Our data show that fuzzy is involved in controlling both catagen and anagen initiation, designating fuzzy an exciting target for characterizing the intracutaneous oscillator system that drives hair follicle cycling.
Collapse
Affiliation(s)
- Lars Mecklenburg
- Department of Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467, USA.
| | | | | | | | | |
Collapse
|
31
|
Peters EMJ, Hendrix S, Gölz G, Klapp BF, Arck PC, Paus R. Nerve growth factor and its precursor differentially regulate hair cycle progression in mice. J Histochem Cytochem 2005; 54:275-88. [PMID: 16009967 DOI: 10.1369/jhc.4a6585.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nerve growth factor (NGF) promotes proliferation via its high affinity receptor (TrkA). Its precursor proNGF promotes apoptosis via the pan-neurotrophin-receptor p75. Recently, we have identified NGF and p75 as important hair growth terminators. However, if proNGF is involved or if NGF can also promote hair growth via TrkA is unclear. By RT-PCR we found that NGF/proNGF mRNA levels peak during early anagen in murine back skin, whereas NGF/proNGF protein levels peak during catagen, indicating high turnover in early anagen and protein accumulation in catagen. By immunohistochemistry, NGF and TrkA are found in the proliferating compartments of the epidermis and hair follicle throughout the cycle. In contrast, strong proNGF is found in the highly differentiated inner root sheath and adjacent to the p75+ regressing epithelial strand in catagen. Commercial 7S NGF, which contains both NGF and proNGF, promotes anagen development in organ-cultured early anagen mouse skin, whereas it promotes catagen development in late anagen skin. Together, our findings suggest an anagen-promoting or anagen-supporting role for NGF/TrkA, and a catagen-promoting role for proNGF/p75 interactions. This has important implications for the future design of specific neurotrophin receptor ligands as novel pharmaceuticals in the modification of tissue remodeling processes such as hair growth or wound healing.
Collapse
Affiliation(s)
- Eva M J Peters
- Biomedical Research Center, Department of Internal Medicine, Psychosomatics, University-Medicine Berlin Charité, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The hair follicle, a unique characteristic of mammals, represents a stem cell-rich, prototypic neuroectodermal-mesodermal interaction system. This factory for pigmented epithelial fibers is unique in that it is the only organ in the mammalian body which, for its entire lifetime, undergoes cyclic transformations from stages of rapid growth (anagen) to apoptosis-driven regression (catagen) and back to anagen, via an interspersed period of relative quiescence (telogen). While it is undisputed that the biological "clock" that drives hair follicle cycling resides in the hair follicle itself, the molecular nature of the underlying oscillator system remains to be clarified. To meet this challenge is of profound general interest, since numerous key problems of modern biology can be studied exemplarily in this versatile model system. It is also clinically important, since the vast majority of patients with hair growth disorders suffers from an undesired alteration of hair follicle cycling. Here, we sketch basic background information and key concepts that one needs to keep in mind when exploring the enigmatic "hair cycle clock"(HCC), and summarize competing models of the HCC. We invite the reader on a very subjective guided tour, which focuses on our own trials, errors, and findings toward the distant goal of unravelling one of the most fascinating mysteries of biology: Why does the hair follicle cycle at all? How does it do it? What are the key players in the underlying molecular controls? Attempting to offer at least some meaningful answers, we share our prejudices and perspectives, and define crucial open questions.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University Hospital Hamburg-Eppendorf, University of Hamburg, Martinistr. 52, D-20426 Hamburg, Germany.
| | | |
Collapse
|
33
|
Peters EMJ, Hansen MG, Overall RW, Nakamura M, Pertile P, Klapp BF, Arck PC, Paus R. Control of Human Hair Growth by Neurotrophins: Brain-Derived Neurotrophic Factor Inhibits Hair Shaft Elongation, Induces Catagen, and Stimulates Follicular Transforming Growth Factor β2 Expression. J Invest Dermatol 2005; 124:675-85. [PMID: 15816823 DOI: 10.1111/j.0022-202x.2005.23648.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotrophins are important modulators of epithelial-mesenchymal interactions. Previously, we had shown that brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tyrosine kinase B (TrkB) are prominently involved in the control of murine hair follicle cycling. We now show that BDNF and TrkB are also expressed in the human hair follicle in a manner that is both hair cycle dependent and suggestive of epithelial-mesenchymal cross-talk between BDNF-secreting dermal papilla fibroblasts of anagen hair follicles and subpopulations of TrkB+ hair follicle keratinocytes. As functional evidence for an involvement of BDNF/TrkB in human hair growth control, we show in organ-cultured human anagen hair follicles that 50 ng per mL BDNF significantly inhibit hair shaft elongation, induce premature catagen development, and inhibit keratinocyte proliferation. Quantitative real-time rtPCR analysis demonstrates upregulation of the potent catagen inducer, transforming growth factor beta2 (TGFbeta2) by BDNF, whereas catagen induction by BDNF was partially reversible through co-administration of TGFbeta-neutralizing antibody. This suggests that TrkB-mediated signaling promotes the switch between anagen and catagen at least in part via upregulation of TGFbeta2. Thus, human scalp hair follicles are both a source and target of bioregulation by BDNF, which invites to target TrkB-mediated signaling for therapeutic hair growth modulation.
Collapse
Affiliation(s)
- Eva M J Peters
- Department of Internal Medicine, Biomedical Research Center, University Medicine Charité, Campus Virchow Hospital, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Midorikawa T, Chikazawa T, Yoshino T, Takada K, Arase S. Different gene expression profile observed in dermal papilla cells related to androgenic alopecia by DNA macroarray analysis. J Dermatol Sci 2005; 36:25-32. [PMID: 15488702 DOI: 10.1016/j.jdermsci.2004.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 05/06/2004] [Accepted: 05/12/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND Androgenic alopecia (AGA) is the most common type of baldness in men. Although etiological studies have proved that androgen is one of the causes of this symptom, the defined molecular mechanism underlying androgen-related actions remains largely unknown. OBJECTIVES To clarify the difference in the gene expression profile of dermal papilla cells (DPCs) in skin affected by baldness. METHODS DNA macroarray study was carried out on cultured DPCs from AGA skin comparing with DPCs from skin that is not affected by baldness. RESULTS From DNA macroarray analysis, we observed that 107 of the 1185 analyzed genes had differing expression levels. A marked difference was observed in the decreased gene expression of BMP2 and ephrin A3 and up-regulated in NT-4 gene. In order to clarify the roles of BMP2 and ephrin A3 in the hair follicles, we examined the proliferation of hair follicle keratinocyte and expression of a hair acidic keratin gene. Both BMP2 and ephrin A3 raised the proliferation rate of the outer root sheath cells (ORSCs) and induced gene expression in acidic hair keratin 3-II. CONCLUSION These results lead us to the hypothesis that both BMP2 and ephrin A3 function as hair growth promoting factors in the hair cycle.
Collapse
Affiliation(s)
- Tatsuyuki Midorikawa
- Biological Science Research Center, Lion Corporation, Odawara City, 100 Tajima Odawara, Kanagawa 256-0811, Japan
| | | | | | | | | |
Collapse
|
35
|
Hibino T, Nishiyama T. Role of TGF-beta2 in the human hair cycle. J Dermatol Sci 2005; 35:9-18. [PMID: 15194142 DOI: 10.1016/j.jdermsci.2003.12.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 12/05/2003] [Indexed: 01/01/2023]
Abstract
Male pattern baldness is the result of premature entry into catagen due to androgens. In order to prevent hair loss, it is important to understand two critical steps, i.e., the induction mechanism of premature entry and the regression process of catagen. At the initiation, dihydrotestosterone (DHT) stimulates synthesis of transforming growth factor-beta2 (TGF-beta2) in dermal papilla cells. TGF-beta2 suppresses proliferation of epithelial cells and stimulates synthesis of certain caspases. Then TGF-beta2 triggers the intrinsic caspase network and subsequently epithelial cells are eliminated through apoptotic cell death. TGF-beta antagonists are effective in preventing catagen-like morphological changes and in promoting elongation of hair follicles in vivo and in vitro. These lines of evidence strongly suggest the presence of a "catagen cascade" in male pattern baldness, involving: (1) the conversion of testosterone to DHT by type II 5-alpha-reductase; (2) the synthesis of TGF-beta2 in dermal papilla cells; and (3) the activation of the intrinsic caspase network. These sequential events contribute to the shortening of the human hair cycle.
Collapse
Affiliation(s)
- Toshihiko Hibino
- Shiseido Life Science Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan.
| | | |
Collapse
|
36
|
Guha U, Mecklenburg L, Cowin P, Kan L, O'Guin WM, D'Vizio D, Pestell RG, Paus R, Kessler JA. Bone morphogenetic protein signaling regulates postnatal hair follicle differentiation and cycling. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:729-40. [PMID: 15331398 PMCID: PMC1618597 DOI: 10.1016/s0002-9440(10)63336-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hair follicle morphogenesis and cycling were examined in transgenic mice that overexpress the bone morphogenetic protein (BMP) inhibitor Noggin under the control of the neuron-specific enolase promoter. The Noggin transgene was misexpressed in the proximal portion of the hair follicle, primarily the matrix cells, apart from the usual expression in neurons. Transgene expression appeared only after induction of both the primary (tylotrich) and secondary (nontylotrich) pelage hair follicles had already occurred, thus allowing examination of the role of BMP signaling in follicles that had been induced normally in the presence of BMPs. The overexpression of Noggin in these animals resulted in a dramatic loss of hair postnatally. There was an apparently normal, but shortened period of postnatal hair follicle morphogenesis, followed by premature initiation of hair follicle cycling via entry into the first catagen transformation. This resulted in a complete loss of hair shafts from the nontylotrich hair follicles in these mice while the tylotrich hair follicles were normal. The onset of anagen of the first postnatal hair follicle cycle was also accelerated in the transgenic mice. Our results show that BMP signaling is specifically required for proper proliferation and differentiation during late morphogenesis of nontylotrich hair follicles and that inhibition of this signaling pathway may be one of the triggers for the onset of catagen when the follicles are in anagen and the onset of anagen when the follicles are in telogen. Ectopic sebocyte differentiation was another hallmark of the phenotype of these transgenic mice suggesting that BMP signaling may be an important determinant of lineage selection by common progenitor cells in the skin. BMPs likely promote a hair follicle-type differentiation pathway of keratinocytes while suppressing the sebaceous differentiation pathway of skin epithelium.
Collapse
Affiliation(s)
- Udayan Guha
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Peters EMJ, Handjiski B, Kuhlmei A, Hagen E, Bielas H, Braun A, Klapp BF, Paus R, Arck PC. Neurogenic inflammation in stress-induced termination of murine hair growth is promoted by nerve growth factor. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:259-71. [PMID: 15215181 PMCID: PMC1618553 DOI: 10.1016/s0002-9440(10)63294-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, we have revealed the existence of a "brain-hair follicle axis" in murine skin and have identified the neuropeptide substance P (SP) as a key mediator of stress-induced hair growth inhibition in vivo. Published evidence suggests that increased numbers of SP-immunoreactive sensory fibers, as seen in the dermis of stressed mice in anagen-catagen transition, are a result of transient high levels of nerve growth factor (NGF). Thus, we now aimed at dissecting the role of NGF in stress-triggered hair growth termination in our murine model. By real time PCR and immunohistochemistry, stress-exposed mice showed an up-regulation of NGF and its low-affinity receptor p75NTR; the NGF high-affinity receptor TrkA was moderately down-regulated. On neutralization of NGF, premature onset of catagen, apoptosis, and increased number/activation of perifollicular mast cells and antigen-presenting cells, which reflects the skin response to stress, was significantly abrogated. Stress or subcutaneous injection of recombinant NGF (to mimic stress) resulted in an increased percentage of SP(+) neurons in dorsal root ganglia, as measured by retrograde tracing. Taken together, these data suggest that NGF is a central element in the perifollicular neurogenic inflammation that develops during the murine skin response to stress and antagonizing NGF may be a promising therapeutic approach to counter the negative effect of stress on hair growth.
Collapse
Affiliation(s)
- Eva Milena J Peters
- Center for Biomedical Research, Charité, University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Burbach GJ, Hellweg R, Haas CA, Del Turco D, Deicke U, Abramowski D, Jucker M, Staufenbiel M, Deller T. Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J Neurosci 2004; 24:2421-30. [PMID: 15014117 PMCID: PMC6729483 DOI: 10.1523/jneurosci.5599-03.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a versatile neurotrophic factor that has been implicated in cell survival, cell differentiation, axonal growth, and activity-dependent synaptic plasticity. Changes in BDNF expression have also been reported during the course of several neurological disorders, including Alzheimer's disease (AD). The role of BDNF in AD, however, has remained elusive. To learn more about this neurotrophic factor, we investigated BDNF expression in brain of amyloid precursor protein overexpressing mice (APP23 transgenic mice). In situ hybridization revealed BDNF mRNA signals associated with amyloid plaques. Laser microdissection in combination with quantitative RT-PCR demonstrated a sixfold increase of BDNF mRNA in the immediate plaque vicinity, a threefold increase in a tissue ring surrounding the plaque, and control levels in interplaque areas comparable with those measured in age-matched nontransgenic mice. Double immunofluorescence localized BDNF to microglial cells and astrocytes surrounding the plaque. Cortical BDNF protein levels were quantified by ELISA demonstrating a >10-fold increase compared with age-matched controls. This upregulation of BDNF protein significantly correlated with the beta-amyloid load in the transgenic animals. Taken together, our data demonstrate a plaque-associated upregulation of BDNF in APP23 transgenic mice and implicate this neurotrophin in the regulation of inflammatory and axonal growth processes in the plaque vicinity.
Collapse
Affiliation(s)
- Guido J Burbach
- Institute of Clinical Neuroanatomy, J. W. Goethe University, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Metz M, Botchkarev VA, Botchkareva NV, Welker P, Tobin DJ, Knop J, Maurer M, Paus R. Neurotrophin-3 regulates mast cell functions in neonatal mouse skin. Exp Dermatol 2004; 13:273-81. [PMID: 15140017 DOI: 10.1111/j.0906-6705.2004.00115.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nerve growth factor (NGF) has long been recognized as an important mast cell (MC) growth factor. To explore whether other neurotrophins (NTs) of the NGF family, which are widely expressed in mouse skin, affect the numbers and/or functions of MCs we examined the effects of NT-3 on neonatal skin MCs. We demonstrate that TrkC, the high affinity NT-3 receptor, is expressed by virtually all neonatal skin MCs in C57BL/6 mice, which indicates that MCs can respond to NT-3. Skin of neonatal and early postnatal NT-3-overexpressing mice (promoter: K14) displayed significantly and up to twofold increased numbers of MCs during the first 20 days after birth, as compared to wild-type mice. To check whether this increase in MC numbers in NT-3 transgenic mice reflects a higher rate of proliferation, we performed immunohistochemistry, which revealed that only 1-2% of all skin MCs both in NT-3-overexpressing and in wild-type controls showed Ki-67-positive nuclei, suggesting that the observed differences in the number of MCs do not reflect a higher rate of MC proliferation. Additionally, we show that the effect of NT-3 on the number of MCs is most likely to be stem cell factor (SCF)-independent, because NT-3 significantly downregulates secretion of SCF-protein in cultured dermal fibroblasts, as assessed by enzyme-linked immunosorbent assay. Numbers of skin MCs in neonatal TrkC-deficient mice were found to be modestly reduced, as compared to wild-type mice, indicating that NT-3 can modulate the number of MCs directly via TrkC, although TrkC does not seem to be essential for the number of basal MCs. To further analyze the effects of NT-3 on MCs, we stimulated skin organ culture of early postnatal C57BL/6 mouse skin with 5-50 ng/ml NT-3, which induced a significant increase in MC degranulation, as visualized by Giemsa staining. However, stimulation of isolated neonatal dermal skin MCs with NT-3 in vitro failed to result in MC activation, as measured by serotonin release. Our data suggest a role for NT-3 in the maturation of MCs, such as a TrkC-mediated stimulation of the differentiation of pre-existing, less mature MCs and/or by enhancing the migration of circulating MC precursors into the skin.
Collapse
Affiliation(s)
- Martin Metz
- Department of Dermatology, University Hospital Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Marconi A, Terracina M, Fila C, Franchi J, Bonté F, Romagnoli G, Maurelli R, Failla CM, Dumas M, Pincelli C. Expression and function of neurotrophins and their receptors in cultured human keratinocytes. J Invest Dermatol 2004; 121:1515-21. [PMID: 14675204 DOI: 10.1111/j.1523-1747.2003.12624.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Whereas nerve growth factor has been extensively studied in human keratinocytes, little is known on the role of other members of the neurotrophin family. We investigated the expression and function of neurotrophins and neurotrophin receptors in cultured human keratinocytes. We demonstrated by reverse transcription-polymerase chain reaction that keratinocytes synthesize neurotrophin-3, brain-derived neurotrophic factor, and neurotrophin-4/5. These cells also express tyrosinase kinase A and C, the nerve growth factor and neuro-trophin-3 high-affinity receptors, respectively. On the other hand, only the truncated extracellular isoform of tyrosinase kinase B, the high-affinity brain-derived neurotrophic factor and neurotrophin-4/5 receptor, is detected in keratinocytes. Moreover, neurotrophin-3, brain-derived neurotrophic factor, and neurotrophin-4/5 proteins are secreted by human keratinocytes at low levels. Keratinocyte stem cells synthesize the highest amounts of nerve growth factor, while they secrete higher levels of nerve growth factor as compared with transit amplifying cells. Neurotrophin-3 stimulates keratinocyte proliferation, where brain-derived neurotrophic factor or neurotrophin-4/5 does not exert any effect on keratinocyte proliferation. Addition of neurotrophin-3 slightly upregulates the secretion of nerve growth factor, whereas nerve growth factor strongly augments neurotrophin-3 release. Ultraviolet B irradiation downregulates nerve growth factor, whereas it augments neurotrophin-3 and neurotrophin-4/5 protein levels. Ultraviolet A irradiation increases the level of neurotrophin-3, whereas it does not exert any effect on the other neurotrophins. Finally, neurotrophins other than nerve growth factor fail to protect human keratinocytes from ultraviolet B-induced apoptosis. This work delineates a functional neurotrophin network, which may contribute to epidermal homeostasis.
Collapse
Affiliation(s)
- A Marconi
- Institute of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Botchkarev VA, Botchkareva NV, Peters EM, Paus R. Epithelial growth control by neurotrophins: leads and lessons from the hair follicle. PROGRESS IN BRAIN RESEARCH 2004; 146:493-513. [PMID: 14699982 DOI: 10.1016/s0079-6123(03)46031-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotrophins (NTs) exert many growth-regulatory functions beyond the nervous system. For example, murine hair follicles (HF) show developmentally and spatio-temporally stringently controlled expression of NTs, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4, and their cognate receptors, tyrosine kinase A-C (TrkA-C) and p75 neurotrophin receptor (p75NTR). Follicular NT and NT receptor expression exhibit significant, hair cycle-dependent fluctuations on the gene and protein level, which are mirrored by changes in nerve fiber density and neurotransmitter/neuropeptide content in the perifollicular neural networks. NT-3/TrkC and NGF/TrkA signaling stimulate HF development, while NT-3, NT-4 and BDNF inhibit the growth (anagen) of mature HF by the induction of apoptosis-driven HF regression (catagen). p75NTR stimulation inhibits HF development and stimulates catagen. Since the HF is thus both a prominent target and key peripheral source of NT, dissecting the role of NTs in the control of HF morphogenesis and cyclic remodeling provides a uniquely accessible, and easily manipulated, clinically relevant experimental model, which has many lessons to teach. Given that our most recent data also implicate NTs in human hair growth control, selective NT receptor agonists and antagonists may become innovative therapeutic tools for the management of hair growth disorders (alopecia, effluvium, hirsutism). Since, however, the same NT receptor agonists that inhibit hair growth (e.g., BDNF, NT-4) can actually stimulate epidermal keratinocyte proliferation, NT may exert differential effects on defined keratinocyte subpopulations. The studies reviewed here provide new clues to understanding the complex roles of NT in epithelial tissue biology and remodeling in vivo, and invite new applications for synthetic NT receptor ligands for the treatment of epithelial growth disorders, exploiting the HF as a lead model.
Collapse
|
42
|
Spears N, Molinek MD, Robinson LLL, Fulton N, Cameron H, Shimoda K, Telfer EE, Anderson RA, Price DJ. The role of neurotrophin receptors in female germ-cell survival in mouse and human. Development 2003; 130:5481-91. [PMID: 14507777 PMCID: PMC6209142 DOI: 10.1242/dev.00707] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During mammalian ovary formation, the production of ovarian follicles is accompanied by an enormous loss of germ cells. It is not known how this loss is regulated. We have investigated the role of the Trk tyrosine kinase receptors, primarily TrkB, in this process. The ovaries of TrkB-/- and TrkC-/- mice with a mixed (129Sv x C57BL/6) genetic background were examined shortly after birth. Around 50% of TrkB-/- mice had grossly abnormal ovaries that contained greatly reduced numbers of follicles. No defects were found in the ovaries of TrkC-/- mice. Congenic TrkB-/- mice were generated on 129Sv and C57BL/6 backgrounds: whereas the former had a mixed ovarian phenotype similar to that of the original colony of mice, the ovaries of all offspring of the C57BL/6 congenic line contained reduced numbers of follicles. RT-PCR showed that mRNA encoding TrkB and its two ligands, neurotrophin 4 (NT4) and brain-derived neurotrophic factor (BDNF), were present throughout the period of follicle formation in the mouse. In situ hybridisation showed that TrkB was expressed primarily in the germ cells before and after follicle formation. Mouse neonatal and fetal ovaries and human fetal ovaries were cultured in the presence of K252a, a potent inhibitor of all Trk receptors. In mice, K252a inhibited the survival of germ cells in newly formed (primordial) follicles. This effect was rescued by the addition of basic fibroblast growth factor (bFGF) to the culture medium. Combined addition of both BDNF and NT4 blocking antibodies lowered germ-cell survival, indicating that these TrkB ligands are required in this process. The results indicate that signalling through TrkB is an important component of the mechanism that regulates the early survival of female germ cells.
Collapse
Affiliation(s)
- Norah Spears
- Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Neurotrophins comprise a family of structurally and functionally related proteins that are critical for the development and maintenance of cutaneous innervation. They also fulfill multiple non-neurotrophic functions in skin, including regulation of epidermal proliferation and apoptosis, control of hair follicle development and cycling, and melanogenesis. Numerous indications suggest that neurotrophins play an important role in the pathogenesis of a variety of autoimmune diseases. In this review, we focus on the role of neurotrophins in the pathogenesis of alopecia areata, an autoimmune disorder that affects actively growing hair follicles. Recent data suggest that neurotrophins and their receptors are differentially expressed among the subsets of immune cells in alopecia areata-affected skin. Experimental data suggest that neurotrophins may regulate both the cyclic activity of the hair follicle and the functions of immune cells of inflammatory infiltrates. Additional research is required to bridge the gap between our current knowledge of neurotrophin functions in skin affected by alopecia areata and our knowledge of their potential clinical applications. Progress in this area of research will hopefully lead to the development of multiple applications for neurotrophins and their agonists/antagonists in alopecia areata and other hair growth disorders.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02112, USA.
| |
Collapse
|
45
|
Botchkarev VA, Paus R. Molecular biology of hair morphogenesis: development and cycling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:164-80. [PMID: 12949776 DOI: 10.1002/jez.b.33] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, hair follicles produce hairs that fulfill a number of functions including thermoregulation, collecting sensory information, protection against environmental trauma, social communication, and mimicry. Hair follicles develop as a result of epithelial-mesenchymal interactions between epidermal keratinocytes committed to hair-specific differentiation and cluster of dermal fibroblasts that form follicular papilla. During postnatal life, hair follicles show patterns of cyclic activity with periods of active growth and hair production (anagen), apoptosis-driven involution (catagen), and relative resting (telogen). During last decade, substantial progress has been achieved in delineating molecular mechanisms that control hair follicle development and cyclic activity. In this review, we summarize the data demonstrating that regulation of hair follicle development in the embryo and control of hair follicle growth during postnatal life are highly conserved and both require involvement of similar molecular mechanisms. Since many of the molecules that control hair follicle development and cycling are also involved in regulating morphogenesis and postnatal biology of other ectodermal derivatives, such as teeth, feathers, and mammary glands, basic principles and molecular mechanisms that govern hair follicle development and growth may also be applicable for other developmental systems.
Collapse
|
46
|
Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc 2003; 8:46-55. [PMID: 12894994 DOI: 10.1046/j.1523-1747.2003.12171.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal interactions play pivotal roles in the morphogenesis of many organs and various types of appendages. During hair follicle development, extensive interactions between two embryologically different hair follicle compartments (epidermal keratinocytes and dermal papilla fibroblasts) lead to the formation of the hair shaft-producing mini-organ that shows cyclic activity during postnatal life with periods of active growth, involution and resting. During the hair cycle, the epithelium and the mesenchyme are regulated by a distinct set of molecular signals that are unique for every distinct phase of the hair cycle. In telogen hair follicles, epithelial-mesenchymal interactions are characterized by a predominance of inhibitory signals that retain the hair follicle in a quiescent state. During anagen, a large variety of growth stimulatory pathways are activated in the epithelium and in the mesenchyme, the coordination of which are essential for proper hair fiber formation. During catagen, the termination of anagen-specific signaling interactions between the epithelium and the mesenchyme leads to apoptosis in the hair follicle epithelium, while activation of selected signaling pathways promotes the transition of the dermal papilla into a quiescent state. The signaling exchange between the follicular epithelium and the mesenchyme is modulated by proteoglycans, such as versican, which may significantly enhance or reduce the biological activities of secreted growth stimulators. However, additional research will be required to bridge the gap between our current understanding of mechanisms underlying epithelial-mesenchymal interactions in hair follicles and the potential clinical application of growth modulators involved in those interactions. Further progress in this area of research will hopefully lead to the development of new drugs for the treatment of hair growth disorders.
Collapse
|
47
|
Yee CL, Jones KR, Finger TE. Brain-derived neurotrophic factor is present in adult mouse taste cells with synapses. J Comp Neurol 2003; 459:15-24. [PMID: 12629664 DOI: 10.1002/cne.10589] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), one of the members of the nerve growth factor family of neurotrophins, is expressed in developing gustatory papillae and is thought to be the neurotrophin that supports gustatory innervation during development. BDNF expression does not cease after development but continues in some taste cells of adult mice. To determine which types of taste cells produce BDNF, we undertook an immunohistochemical study of taste cells in BDNF(LacZ) gene targeted "knock-in" adult mice. In these mice, beta-galactosidase (beta-gal) immunoreactivity is an indicator of cells that produce BDNF transcripts. In the tongues of adult BDNF(LacZ) mice, beta-gal (BDNF) is present in long slender taste cells, as well as pyriform taste cells. Bromodeoxyuridine labeling experiments in BDNF(LacZ) mice indicate that BDNF is not present in taste cells that are younger than 3 days postmitotic. BDNF mainly colocalizes with markers of type II and type III taste cells: ubiquitin carboxyl terminal hydrolase (PGP 9.5), serotonin (5-HT), neural cell adhesion molecule (N-CAM), synaptic associated protein of 25 kDa (SNAP-25), and to a lesser extent with alpha-gustducin. beta-Gal immunoreactivity is not associated with blood group H antigen, a marker of type I taste cells. We conclude that BDNF is absent from basal cells and type I (blood group H antigen immunoreactive) taste cells but is present in differentiated type II and type III taste cells. The presence of SNAP-25 in BDNF-expressing cells suggests a role for BDNF in synaptic formation and transmission.
Collapse
Affiliation(s)
- Cindy L Yee
- Rocky Mountain Taste and Smell Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Albert I Farbman
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208-3520, USA.
| |
Collapse
|
49
|
Abstract
In the last few years by means of the elucidation of the human genome and the acquisition of powerful investigative tools we have begun to understand the molecular basis of hair follicle growth control. In this article I will describe some of the salient recent contributions to the field and review the implications these findings have had on our understanding of mechanisms in dermatology and dermatopathology.
Collapse
Affiliation(s)
- K S Stenn
- Aderans Research Institute Inc., Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Sharov AA, Li GZ, Palkina TN, Sharova TY, Gilchrest BA, Botchkarev VA. Fas and c-kit are involved in the control of hair follicle melanocyte apoptosis and migration in chemotherapy-induced hair loss. J Invest Dermatol 2003; 120:27-35. [PMID: 12535195 DOI: 10.1046/j.1523-1747.2003.12022.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemotherapy alters the structure and function of hair follicle melanocytes. Molecular mechanisms controlling melanocyte responses during chemotherapy-induced hair loss, however, remain largely unknown. Using immunohistology and multicolor confocal microscopy, we show here that cyclophosphamide administration to C57BL/6 mice alters the activity and fate of hair follicle melanocytes. After 24-48 h, hair bulb melanocytes expressing Fas undergo apoptosis. The number of apoptotic follicular melanocytes is significantly reduced (p<0.01) in cyclophosphamide-treated Fas knockout mice compared to wild-type controls, suggesting that Fas signaling contributes to chemotherapy-induced melanocyte death. After 3-5 d, surviving hair bulb melanocytes express c-kit receptor, proliferate, and appear to migrate up the outer root sheath. Tyrosinase-positive and melanogenically active cells then appear in the epidermis. By Western blotting and immunohistochemistry, expression levels of the c-kit ligand, stem cell factor, in skin and epidermis are strongly increased after cyclophosphamide treatment. Cyclophosphamide-induced migration of the hair follicle melanocytes into epidermis is completely abrogated by administration of c-kit neutralizing antibody. These data suggest that chemotherapy induces a complex response in the hair follicle melanocytes, which includes apoptosis, proliferation, and migration. Pharmacologic manipulation of Fas and c-kit signaling pathways might be useful for the correction of skin hyperpigmentation as a side-effect of chemotherapy.
Collapse
Affiliation(s)
- Andrei A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|